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Abstract. Information about past climate, tectonics, and landscape evolution is often obtained by dating geomorphic 

surfaces comprising deposited or aggraded material, e.g., fluvial fill terraces, alluvial fans, volcanic flows, or glacial till. 10 

Although surface ages can provide valuable information about these landforms, they can only constrain the period of active 

deposition of surface material, which may span a significant period of time in the case of alluvial landforms. In contrast, 

surface abandonment often occurs abruptly and coincides with important events like drainage reorganisation, climate change, 

or landscape uplift. However, abandonment cannot be directly dated because it represents a cessation in the deposition of 

dateable material. In this study, we present a new approach to inferring when a surface was likely abandoned using exposure 15 

ages derived from in situ-produced cosmogenic nuclides. We use artificial data to measure the discrepancy between the 

youngest age randomly sampled from a surface and the true timing of surface abandonment. Our analyses simulate surface 

dating scenarios with variable durations of surface formation and variable numbers of sample exposure ages. From our 

artificial data, we derive a set of probabilistic equations and a Matlab tool that can be applied to a set of real sampled surface 

ages to estimate the probable period of time within which abandonment is likely to have occurred. Our new approach to 20 

constraining surface abandonment has applications for geomorphological studies that relate surface ages to tectonic 

deformation, past climate, or the rates of surface processes.  

1 Introduction 

Geomorphological studies that link the formation of landforms to past changes in climate or tectonic deformation depend on 

the accurate dating of surfaces comprising aggraded or deposited material. Surfaces commonly targeted for dating include 25 

alluvial fans, fluvial fill terraces, glacial till, pediments, and volcanic flows, among others. For example, fluvial fill terraces 

and alluvial-fan surfaces are widely dated in order to (i) decipher how erosion and sedimentation have responded to past 

hydroclimate changes (Owen et al., 2014; Schildgen et al., 2016; Tofelde et al., 2017); (ii) derive time-integrated slip rates 

for active faults (e.g., Frankel et al., 2007, 2011; Gosse, 2011; Hughes et al., 2018); and (iii) quantify the rates of surface 
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processes such as weathering, landform erosion, or channel avulsion and incision (Schildgen et al., 2012; Regmi et al., 2014; 

Bufe et al., 2017; D’Arcy et al., 2018). 

A common assumption is that a geomorphic surface can be represented by a single formation age. Surfaces are usually point-

sampled in multiple locations, e.g., by cosmogenic nuclide exposure dating of surface boulders. Typically, a limited number 

(often fewer than 10) large, stable surface boulders are sampled for exposure dating, which exhibit no evidence of 5 

weathering, rotation, or disturbance. From the set of ages obtained, an average surface age is calculated with an uncertainty 

that reflects the spread of sampled ages. However, many geomorphic surfaces are active for an extended period of time, 

during which material is continually deposited until the surface is abandoned (e.g., Savi et al., 2016; Denn et al., 2017; 

Foster et al., 2017). Alluvial-fan surfaces provide one example. Rather than being formed instantaneously, fan surfaces are 

typically active for thousands or tens of thousands of years before being abandoned when the channel avulses or incises (e.g., 10 

Dühnforth et al., 2007). This prolonged period of activity results in a meaningful spread in ages collected from a single 

surface (e.g., , Owen et al., 2011). For any geomorphic surface with a non-negligible period of formation, a set of surface 

ages will capture a portion of the full timespan over which that surface was active. An average of those ages will sit 

somewhere within the true timespan of surface deposition, but will overlook information such as the maximum age, which 

might approximate the onset of surface activity, or the minimum age, which might approximate the timing of surface 15 

abandonment. 

In some cases, the timing of surface abandonment may be a more useful constraint than an average surface age. In contrast to 

surface deposition, abandonment occurs at a particular moment in time (e.g., coinciding with a switch to incision) and so 

can, in principle, be defined with greater precision. For surfaces with an extended period of formation, the timing of 

abandonment is more likely to coincide with events of interest such as reorganisation of a drainage network (Bufe et al., 20 

2017); changes in climate, sediment supply, or base level (Steffen et al., 2009; Tofelde et al., 2017; Mouslopoulou et al., 

2017; Brooke et al., 2018); or tectonic deformation such as faulting, uplift, or subsidence (e.g., Frankel et al., 2007, 2011; 

Ganev et al., 2010). Abandonment ages would also benefit any study that uses surface exposure dating to measure the rate of 

a post-depositional process, such as in situ weathering (e.g., White et al., 1996, 2005; D’Arcy et al., 2015, 2018), the 

topographic decay of landforms (e.g., Hanks et al., 1984; Andrews & Bucknam, 1987; Spelz et al., 2008), or channel 25 

avulsion and incision (e.g., Schildgen et al., 2012; Finnegan et al., 2014; Malatesta et al., 2017). Yet the abandonment of a 

surface represents a cessation in the deposition of dateable material, and therefore cannot be directly dated. Instead, the 

timing of abandonment must be inferred. Some studies make assumptions about when geomorphic surfaces were abandoned 

based on independent information such as palaeoclimate records (e.g., Cesta and Ward, 2016); others assume that the 

youngest sampled surface ages fall close to the timing of surface abandonment (e.g., Sarıkaya et al., 2015; Foster et al., 30 

2017; Ratnayaka et al. 2018; Clow et al., 2019). These approaches risk circular or inaccurate interpretations, highlighting the 

need for a robust method to quantitatively infer the timing of surface abandonment from a set of sampled surface ages. 

Here, we introduce a new probabilistic approach to constraining when a depositional surface was abandoned, based on what 

is known about its activity. We use artificial data to randomly point-sample the ages of virtual surfaces, in scenarios that are 
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representative of studies dating natural geomorphic landforms such as alluvial fans. We quantify how close the youngest 

obtained age is likely to fall to the true timing of abandonment, depending on the overall period of surface activity and the 

number of samples collected. From these artificial data, we derive a set of probabilistic equations and a Matlab tool that can 

be applied to real geomorphic surfaces to estimate when they were abandoned. 

2 Justification 5 

Here, we present a hypothetical example of a dated alluvial-fan surface to illustrate why the timing of abandonment may, in 

some cases, be more useful than an average of sampled surface ages. 

Consider an alluvial-fan surface that was active for a 30 kyr timespan, starting at 80 ka and ending at 50 ka when the surface 

was abandoned due to fan incision (Fig. 1). In this example, the fan surface was deposited throughout a period of climatic 

stability and abandoned when the climate changed, and we make the assumption that there is an equal likelihood of obtaining 10 

any age within the entire period of deposition. A distribution of surface ages can be obtained by point-sampling the fan 

surface; an approach analogous to studies using cosmogenic nuclides to measure the exposure ages of boulders. We present 

two possible outcomes in Fig. 1, where 6 surface ages are obtained. In scenario 1, the ages are distributed relatively evenly 

through time, producing a mean age of 65.8 ka that closely approximates the true average surface age of 65 ka, and a 

standard deviation of 10.5 kyr. In scenario 2, the ages obtained are unevenly distributed through time, producing a slightly 15 

older mean surface age (71.4 ka) and a smaller standard deviation (5.2 kyr). These scenarios are plotted against time in Fig.  

1b as data points and kernel density plots, and they resemble equivalent natural datasets (e.g., Owen et al., 2014). 

Sample set 2 is more tightly clustered than sample set 1 despite being less representative of the average surface age, 

illustrating that greater clustering of ages is not an indicator of accuracy. Furthermore, neither average age corresponds to 

any meaningful event. The fan surface was equally active for the entire period between 80 and 50 ka, the average ages sit 20 

within a period of climatic and depositional stability, and the peaks in the kernel density plots are artefacts created by 

randomly sampling a linear series. 

In contrast, the abandonment of the fan surface does occur at a precise moment in time when deposition ends at 50 ka. In this 

example, abandonment coincides with an abrupt change in climate that triggered an incision event (cf., Simpson and 

Castelltort, 2012), so is arguably a more informative target for dating than an average age that imprecisely approximates the 25 

mid-point in the duration of surface deposition. However, the abandonment of the surface represents a cessation in the 

deposition of dateable material, so its timing instead must be inferred from what is known about the surface activity. Given 

that the sampled ages constrain the timespan over which the surface was formed, and abandonment occurred sometime after 

the youngest age, it could be assumed that the youngest sampled age best approximates abandonment. In scenario 1, the 

youngest age falls within ~1 kyr of surface abandonment, which would enable a correct interpretation of correlation between 30 

fan incision and the climate change event. In scenario 2, however, there is a ~14 kyr discrepancy between the youngest 

sampled age and the timing of surface abandonment, which would probably fail to demonstrate the correlation between 
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climate change and fan incision. Therefore, the question becomes: how close is the youngest age obtained from a surface to 

the actual timing of surface abandonment? 

This question cannot currently be answered, yet the ability to reliably estimate when a surface was abandoned has important 

implications for many geomorphological studies (see section 1). In this study, we use artificial data to constrain the likely 

time difference between the youngest age obtained from a geomorphic surface and the true timing of surface abandonment. 5 

There are several advantages to taking an artificial data approach. First, we can repeat the random sampling of surface ages 

(e.g., as depicted in Fig. 1) a large number of times to probabilistically determine where the youngest sampled age tends to 

fall. Second, we can prescribe the surface parameters, meaning the exact timing of abandonment and the full period of 

surface activity are known. Third, we can select surface properties that are representative of real geomorphic surfaces and 

numbers of samples commonly obtained in geomorphic studies. Fourth, we can perform a thorough quantification of the 10 

uncertainties in our analyses. 

3 Methods 

3.1 Artificial data approach 

We used artificial data to constrain the temporal discrepancy between the youngest age sampled on a surface and the actual 

timing of surface abandonment. Our experiments are designed to be representative of natural alluvial-fan surfaces, but the 15 

results are more widely applicable to any abandoned depositional surface that has been subsequently dated.  

In the absence of additional information (e.g., the existence of an additional surface with an intermediate age), the 

abandonment of a surface could have occurred at any time between the youngest sampled age, 𝑎𝑚𝑖𝑛, and the present, or 

within a particular time window after 𝑎𝑚𝑖𝑛. In the example case (Fig. 1), the data in sample set 1 would require a time 

window of 1.1 kyr, (and 14.4 kyr for sample set 2), placed immediately after the youngest sampled ages, to overlap with the 20 

correct timing of surface abandonment, 𝑡𝑎𝑏𝑎𝑛 . We know the temporal discrepancy between 𝑎𝑚𝑖𝑛  and 𝑡𝑎𝑏𝑎𝑛   in these 

examples because we impose 𝑡𝑎𝑏𝑎𝑛; for real-world cases, this information is unknown. The likely proximity of 𝑎𝑚𝑖𝑛 to 𝑡𝑎𝑏𝑎𝑛 

will depend on the number of surface ages obtained, n. The greater the number of samples, the closer the youngest sampled 

age is likely to come to the abandonment age (Fig. 2a). The proximity of 𝑎𝑚𝑖𝑛  to 𝑡𝑎𝑏𝑎𝑛 also depends on the total duration of 

surface activity, which we denote as T. If n ages are randomly-sampled from a longer time span, then 𝑎𝑚𝑖𝑛  is likely to fall 25 

farther from 𝑡𝑎𝑏𝑎𝑛 (Fig. 2b). 

Our artificial data experiments simulate surfaces with a length of the period of activity, T between 10 and 50 kyr, sampled 

with numbers of surface ages, n between 2 and 10. These values are representative of natural alluvial-fan surfaces and typical 

dating studies involving a small number of ages. For each combination of T and n, we randomly sampled a set of surface 

ages 10,000 times, allowing us to reliably constrain the probability that 𝑎𝑚𝑖𝑛  falls within a certain temporal distance of 𝑡𝑎𝑏𝑎𝑛 30 

in each scenario. 

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-21
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 22 May 2019
c© Author(s) 2019. CC BY 4.0 License.



5 

 

3.2 Implementation 

We first implemented our experiments using discrete sampling within a spreadsheet. For each surface, we created a list of 

selectable surface ages spanning the total period of surface activity, T, and placed at equal intervals of 0.1 kyr. For the 

example case (Fig. 1), this would mean a list of selectable ages of 80.0 ka, 79.9 ka, 79.8 ka, etc., to a minimum value of 50.0 

ka. We chose periods of surface activity, T, equal to 10, 20, 30, 40, and 50 kyr. From each list, we randomly selected n 5 

unique values, and repeated this exercise 10,000 times for each integer value of n between 2 and 10. For example, if n = 6 

and T = 20 kyr, then we extracted 10,000 different datasets, each comprising 6 randomly sampled surface ages, from the 20 

kyr-long list of selectable ages available at 0.1 kyr intervals. This process is analogous to simple random sampling of 6 

cosmogenic nuclide exposure ages, e.g., from surface boulders, on an alluvial fan surface that formed over a 20 kyr period 

and deposited a ‘selectable’ boulder every 100 years. We extracted 10,000 sets of surface ages for each of the 45 different 10 

combinations of T (5 unique values) and n (9 unique values). For each dataset, we calculated the mean value of the sampled 

ages, �̅�, and the time difference 𝑎𝑚𝑖𝑛 − 𝑡𝑎𝑏𝑎𝑛. 

We define this time difference 𝑎𝑚𝑖𝑛 − 𝑡𝑎𝑏𝑎𝑛 as 𝜏, and this parameter is the primary focus of our analyses. From our artificial 

data, we extract cumulative frequency distributions of 𝜏 in each T-n scenario.  

To test whether 10,000 iterations are sufficient to produce reliable statistics and whether the discretization of ages has an 15 

important effect, we repeated all experiments using a non-discrete approach in a Matlab script. We defined T as a time range, 

from within which any point in time could be randomly sampled, i.e., an excess number of ‘selectable’ surface ages were 

available rather than a list of discrete values. Performing 100,000 iterations with the Matlab script produced identical results 

to the discrete spreadsheet-based approach with 10,000 iterations. All data analyses are provided by D’Arcy et al. (2019) in 

an online data repository. Finally, we explore the assumptions and limitations of our analyses in section 5.3. 20 

3.3 Experimental assumptions 

In designing our artificial data experiments, we make several assumptions. First, surface ages are randomly selected from the 

total period of surface activity. Therefore, when constructing our experiments, we assume that when ages are collected from 

real geomorphic surfaces, they are randomly point-sampling the full timespan of surface formation, and that this timespan 

represents a uniform probability distribution of selectable ages. This may not always be the case, for example, if boulders on 25 

an alluvial-fan surface are spatially clustered by age and all samples are taken from one part of the surface. Second, the entire 

period of surface activity is assumed to be available for sampling, i.e., no subset of the surface history is missing as a result 

of processes like burial or erosion. Third, all selectable ages within the period of surface activity have an equal likelihood of 

being sampled; this implies that the surface formed with a constant deposition rate and there are no pulses of activity that 

increase the probability of sampling a particular age. Finally, we do not explicitly factor in processes like nuclide 30 

inheritance, erosion, or incomplete exposure, which can affect exposure ages derived from cosmogenic nuclides. We 

consider the implications of all these assumptions for real datasets in section 5.3. 
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4 Results 

4.1 Random sampling of surface ages 

To illustrate the results of our experiments, we first present one example scenario in Fig. 3, in which the surface is formed 

between 80 ka and 50 ka (i.e., T = 30 kyr) and is randomly sampled with n = 2, 4, 6, or 8 ages (with 10,000 repeat 5 

experiments for each value of n). Figure 3a shows how a frequency distribution of the mean value of all sampled ages, �̅�, 

changes with n. The distribution is centred on the true average surface age of 65 ka and narrows as a greater number of ages 

are sampled. If only 2 ages are sampled then �̅� can occupy almost any age within the full period of surface activity, and as n 

increases, �̅�  tends to fall closer to 65 ka. The distribution of �̅�  approaches a normal distribution as n increases. This 

observation is compatible with the central limit theorem and the law of large numbers, and �̅� converges on the true average 10 

surface age as the number of samples increases, despite the dataset randomly sampling a linear series. 

A frequency distribution can also be plotted for the youngest age, 𝑎𝑚𝑖𝑛, randomly sampled from the surface (Fig. 3b). If only 

2 ages are collected, then the youngest can fall almost anywhere between 50 and 80 ka, although the distribution is 

asymmetric and younger values of 𝑎𝑚𝑖𝑛  occur slightly more frequently than older values. As n increases, the distribution of 

𝑎𝑚𝑖𝑛  shifts towards 50 ka such that when n = 8, 𝑎𝑚𝑖𝑛  falls within 5-10 kyr of 𝑡𝑎𝑏𝑎𝑛 in the majority of sampling experiments. 15 

As 𝑡𝑎𝑏𝑎𝑛  is known in our experiments (50 ka), 𝜏 can be calculated for each set of ages sampled. Cumulative frequency 

distributions of 𝜏 reveal how close the youngest sampled age comes to the known timing of surface abandonment (Fig. 3c). 

For example, if only 2 ages are obtained, then in 60% of experiments 𝜏 ≤ 12 kyr, i.e., the youngest age falls somewhere 

within 12 kyr of abandonment. If 6 ages are obtained, then in 90% of experiments 𝜏 ≤ 10 kyr. Any percentile of 𝜏 can be 

measured from Fig. 3c, allowing  𝜏 to be plotted against n (Fig. 3d). As a greater number of ages are sampled, the value of 𝜏 20 

associated with a given percentile decreases, i.e., the youngest sampled age comes closer to the timing of surface 

abandonment as the number of samples increases. However, the decrease in  𝜏 is non-linear and diminishes with increasing 

n. For example, as n increases from 2 to 4 ages, the 95th percentile of  𝜏 falls from ~23 kyr to ~16 kyr, but collecting another 

2 ages (n = 6) only reduces  𝜏  to ~12 kyr. The 95th percentile of  𝜏  falls below 10 kyr when n exceeds 7 ages. In other words, 

if 7 ages are randomly-sampled from a surface, abandonment will have occurred within 10 kyr after the youngest age in 95% 25 

of cases. 

We equate the percentiles of  𝜏 in Fig. 3c with the probability, P, of abandonment occurring within a time window defined 

by 𝜏. Thus, if P = 0.9, the window of time 𝜏 (placed immediately after 𝑎𝑚𝑖𝑛) is large enough that in 90% of our experiments, 

the true timing of surface abandonment would fall within it. This is equal to the 90th percentile of  𝜏, which would be 7.5 kyr 

for the scenario T = 30 kyr and n = 8, for example (Fig. 3d). Note that in this scenario, 𝜏 does not imply that the surface was 30 

abandoned exactly 7.5 kyr after 𝑎𝑚𝑖𝑛 , but rather that there is a 90% likelihood that abandonment occurred anywhere within a 
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7.5 kyr window after 𝑎𝑚𝑖𝑛 . The probable window of abandonment, 𝜏, increases with P because a larger window of time is 

required to capture the true timing of abandonment in a greater proportion of cases. At the same time, 𝜏 is inversely and non-

linearly related to the sample size of ages obtained, n (Fig. 4). The dependencies between 𝜏 and n, T, and P are illustrated in 

Fig. 4 for all tested scenarios that are representative of natural alluvial fan surfaces (n = 2 to 10; T = 10 to 50 kyr), with 

probabilities between 0.50 and 0.95. 5 

For example, if 6 ages are obtained from a surface that formed over a 30 kyr duration, then 𝜏 = 12 kyr for P = 0.95 (Fig. 4a). 

If P decreases to 0.5 (Fig. 4f) then 𝜏 decreases to 3 kyr for this particular scenario (n = 6 and T = 30 kyr). 

The results of our artificial data experiments (Fig. 4) can be described by one equation that allows 𝜏 to be calculated for any 

scenario: 

𝜏 =  𝜏0 + 𝑃𝑇𝑒𝑘𝑛            (1) 10 

Here, the parameter k is a decay constant that increases exponentially with P (Fig. 5a): 

𝑘 = 𝑎 + 𝑏𝑒𝑐𝑃            (2) 

Constants a, b, and c can be derived empirically using our artificial data. Note that we calibrate all our equations with time in 

kyr. 

a = -0.425 ± 0.029  b = 0.011 ± 0.011  c = 2.830 ± 0.885 15 

The parameter 𝜏0 increases linearly with T, but with a slope that increases exponentially with P (Fig. 5b), and can therefore 

be described by a pair of relationships: 

𝜏0 =  𝑚𝑇            (3) 

𝑚 =  𝑚0 + 𝑔𝑒ℎ𝑃             (4) 

Parameters 𝑚0, g, and h are constants with values again determined empirically from our artificial data experiments: 20 

𝑚0 = 0.019 ± 0.008  g = 0.005 ± 0.002  h = 3.784 ± 0.406 

Given that 𝜏0 signifies the value of 𝜏 as n trends towards infinity, it represents the most precise possible constraint on the 

abandonment period, 𝜏. For the scenarios shown in Fig. 5b, which represent reasonable values of T for natural alluvial fans 

and desirable values of P, 𝜏0 varies from a few centuries to ~10 kyr. These 𝜏0 values illustrate the limits to precision when 

inferring the timing of surface abandonment in this probabilistic way. 25 

4.2 Total period of surface formation 

Equations 1-4 can be solved for 𝜏 with knowledge of only the number of ages sampled, n, and the total period of surface 

formation, T, as well as a chosen probability, P. We are able to parameterise equations 1 through 4 using artificial data 

because we know the value of T in our experiments. However, when sampling real depositional surfaces, T is unknown and 

instead only the span of sampled ages, 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 , can be measured. This span might approximate T, but some fraction of 30 

time will remain unsampled. To resolve this conundrum, our artificial data experiments also determine the fraction of T that 

is captured by 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 in scenarios of varying n (Fig. 6). 
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The data indicate that, for example, 6 randomly-distributed ages will span ~70% of the total timespan of surface activity, T, 

in the average case. In the 1% of ‘worst’ (most clustered ages) cases, 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 will only represent ~30% of T, and in the 

1% of ‘best’ (least clustered ages) cases it will represent more than 95% of T. In half of all experiments for n = 6 (from P25 

to P75), 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛  falls within 60-85% of T. There is a diminishing improvement with an increasing number of sampled 

ages, such that by n = 10, the average span of ages has only increased to ~80% of T and 50% of all experiments fall between 5 

75-90% of T. An order of magnitude more ages (hundreds) would be needed for the mean 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛 to come within 95% 

of the full period of surface activity. 

A regression can be fitted to the distributions in Fig. 6, taking the form: 

𝑎𝑚𝑎𝑥−𝑎𝑚𝑖𝑛

𝑇
=  𝑞 + 𝑟𝑒𝑠𝑛       (5)  

Parameters q, r, and s are empirical coefficients derived graphically from our artificial data. For the mean case (the solid 10 

black line in Fig. 6), they take the values: 

𝑞𝑎𝑣  = 0.838 ± 0.007  𝑟𝑎𝑣  = -1.035 ± 0.030  𝑠𝑎𝑣  = -0.366 ± 0.016 

Equation 5 is also fitted to ±1 standard deviation (σ) above and below the mean values in Fig. 6 (dashed black lines). For 1σ 

above the mean, parameters q, r, and s take the values: 

𝑞+1𝜎 = 0.928 ± 0.005  𝑟+1𝜎 = -0.983 ± 0.055  𝑠+1𝜎 = -0.512 ± 0.027 15 

For 1σ below the mean, parameters q, r, and s take the values: 

𝑞−1𝜎 = 0.764 ± 0.007  𝑟−1𝜎 = -1.196 ± 0.015  𝑠−1𝜎 = -0.296 ± 0.008 

Equation 5 can therefore be used to estimate the size of T in the average case plus ±1σ bounds, given the measured span of 

ages collected from a surface. Equations 1-5 can now be used to probabilistically calculate a window of time during which 

any dated surface was likely abandoned. 20 

4.3 Application to real surface ages 

Given that Eq. 1 is probabilistic (i.e., P is a variable), it can be used to infer a probability distribution of abandonment ages 

from a set of measured surface ages. We illustrate the steps involved in applying Eq. 1 to real data in Fig. 7. 

First, 𝜏 is calculated using equations 1-5 with discrete values of P (Fig. 7a), resulting in discrete windows of time in which 

abandonment is likely to have occurred with different probabilities. These values of 𝜏 can be converted into a probability 25 

distribution (Fig. 7b) by calculating the density of P within fixed increments of 𝜏. If the sampled surface ages are known 

with exact precision, then the resulting distribution of 𝜏 values provides a probability distribution of times that would directly 

postdate the youngest age and yield a probability distribution of surface abandonment ages. However, real surface ages have 

associated uncertainties that must also be incorporated into the estimated abandonment ages (Fig. 7c). First, we use ±3σ 

uncertainty on 𝑎𝑚𝑖𝑛  to determine a probability distribution of potential 𝑎𝑚𝑖𝑛  values; in Fig. 7c we assume a normal 30 

distribution, as is typical for exposure ages of individual boulders, but alternative distributions could be used if appropriate. 

This distribution of 𝑎𝑚𝑖𝑛  values is then discretised, and separate probability distributions of 𝜏  are calculated for each 
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potential value of 𝑎𝑚𝑖𝑛 , i.e., repeating Fig. 7a-b. The resulting, temporally shifted probability distributions of 𝜏 are weighted 

according to the probability distribution of 𝑎𝑚𝑖𝑛  and summed, resulting in an overall probability distribution of likely 

abandonment ages that accounts for uncertainty on the youngest age (Fig. 7c). 

If the 1σ uncertainty on 𝑎𝑚𝑖𝑛 is small compared to 𝜏 calculated using Eq. 1, then incorporating age uncertainty will have 

little impact on the resulting probability distribution of abandonment ages. If the 1σ uncertainty on 𝑎𝑚𝑖𝑛 is large, it will have 5 

a greater influence on the final probability distribution of abandonment ages. In the supporting information, we provide a 

Matlab script that can be used to input a set of measured surface ages and output a probability distribution of abandonment 

timings following the steps outlined in Fig. 7. 

5 Discussion 

5.1 Implications for surface dating 10 

Our artificial data provide new information about what measured ages represent when collected from aggraded surfaces that 

formed over non-negligible timespans. Crucially, our findings indicate that averages of sampled surface ages are likely to be 

imprecise representations of the mid-point of surface formation, and may not correlate with any external forcing event (Fig. 

1). In contrast, surface abandonment typically occurs at a discrete moment in time and is more likely to coincide with 

external forcing events such as changes in climate or tectonics. By using artificial data, we have derived a set of probabilistic 15 

equations for inferring when a surface was likely to have been abandoned, based on a distribution of randomly-sampled 

surface ages. These equations can complement and enhance interpretations based on any dataset comprising surface ages. 

While a distribution of ages is required for dating surfaces that have formed over extended periods of time, our analyses 

reveal diminishing returns from sampling an increasing number of ages; these diminishing returns apply to constraints on 

abandonment (Figs 3d and 4) and the total duration of surface activity (Fig. 6). An appropriate number of surface ages will 20 

depend on the desired precision, but our results indicate that there is little to be gained by obtaining more than 6 to 7 ages per 

surface (Figs. 3, 4, and 6), assuming no outliers, for the purposes of most geomorphological studies. Indeed, to obtain 

significantly more information about a surface, an order of magnitude more ages would be required. As explained in section 

4.1, 𝜏0 represents the maximum precision with which the abandonment age can, in principle, be inferred. For many natural 

surfaces, 𝜏0 can range from a few centuries to ~10 kyr (Fig. 5d), depending on the period of surface activity and the desired 25 

probability. Our methodology thus provides a new way of quantifying the limits to the precision with which a distribution of 

surface ages can be interpreted. These limits are in addition to the age uncertainty associated with cosmogenic nuclide 

exposure dating, and both are an important consideration when inverting landforms and sedimentary deposits for palaeo-

environmental information (Foreman and Straub, 2017). 

When sampling in the field, it may sometimes be advantageous to target different parts of a surface in order to capture as 30 

much of its period of activity as possible. This strategy applies to surfaces upon which the locus of deposition has 

systematically migrated during deposition. For example, if channel migration on an alluvial-fan surface resulted in particular 
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fragments of its overall history being recorded in particular parts of the surface (e.g., Savi et al., 2016; Schürch et al., 2016; 

D’Arcy et al., 2017a,b), then greater spatial coverage would capture a greater range of ages. However, if each deposition 

event followed a random trajectory on the surface, resulting in all potentially ‘selectable’ ages being spatially mixed, then it 

would be unnecessary to distribute sampling locations across the surface. 

5.2 Case study: Alluvial fans in the Laguna Salada Basin, Mexico 5 

Here, we use a case study of alluvial-fan surfaces in the Laguna Salada Basin, Mexico, to demonstrate how our findings can 

be applied to real surfaces to gain new information about when they were abandoned. 

The Laguna Salada Basin is a half-graben in northern Baja California, Mexico. This basin contains well-preserved alluvial 

fans eroded from the neighbouring Sierra El Mayor and Sierra Cucapa, with at least 8 generations of distinct fan surfaces 

formed by a sequence of aggradation and incision cycles. The ages of two of these fan surfaces—mapped as Q4 and Q7—10 

were estimated by Spelz et al. (2008) using 10Be exposure ages of stable surface boulders with no evidence of erosion or 

disturbance (Fig. 8). We used the CREp calculator (Martin et al., 2017) to update the exposure age estimates of Spelz et al. 

(2008) using the time-corrected Lal/Stone scaling scheme (Lal, 1991; Stone, 2000), the ERA40 atmosphere model (Uppala 

et al., 2005), the atmospheric 10Be-based VDM geomagnetic database of Muscheler et al. (2005) and Valet et al. (2005), and 

the current global reference SLHL 10Be production rate of 4.13 ±0.20 at g-1 yr-1 in the ICE-D database (Martin et al., 2017). 15 

We assume a sample density of 2.7 g cm-3 and no boulder erosion. The oldest age measured on the Q4 surface was excluded 

as an outlier by Spelz et al. (2008), and we maintain this interpretation. The remaining exposure ages span 14.4 ±1.1 ka to 

32.1 ±2.9 ka for Q4 (n = 5), and 188.6 ±22.7 ka to 246.9 ±13.7 ka for Q7 (n = 6) (Fig. 8b, yellow bars). On both fan surfaces, 

the dispersion of ages greatly exceeds the age uncertainty, confirming that each surface was deposited over an extended 

period of time. 20 

For both distributions of fan surface ages, we used equations 1 to 5 to calculate probable abandonment windows, 𝜏, for 

different values of P. For example, on the Q4 fan surface with an 𝑎𝑚𝑖𝑛  of 14.4 ±1.1 ka, 𝜏 = 3.3 kyr when P = 0.5, suggesting 

a 50% probability that the surface was abandoned within 3.3 kyr after 𝑎𝑚𝑖𝑛, i.e., between 14.4 ka and 11.1 ka. The size of 𝜏 

increases with P, as explained in section 4.1, such that 𝜏 = 12.0 kyr for the Q4 surface when P = 0.95, i.e., the abandonment 

window ranges from 14.4 ka to 2.4 ka. If Eq. 1 is applied to the data without accounting for age uncertainty, the resulting 25 

probability distribution of 𝜏 is highly asymmetric (Fig. 8c, red dashed lines). Of course, the uncertainty on 𝑎𝑚𝑖𝑛 must be 

accounted for, so following the approach outlined in Fig. 7, we derived a continuous probability distribution of 𝜏 for the Q4 

and Q7 fan surfaces that incorporates age uncertainty using the Matlab tool (Fig. 8c, solid black lines). These probability 

distributions of 𝜏 illustrate how the likelihood of surface abandonment is distributed over time for two representative natural 

datasets. On the Q4 surface, the measured age uncertainty is small compared to 𝜏, so the resulting 𝜏 distribution has an 30 

asymmetric shape that is primarily determined by the form of Eqs 1 to 5 and our artificial data calibration (Figs 3 and 4). The 

majority of the Q4 𝜏 distribution occupies a short timespan that is smaller than the spread of sampled surface ages; this result 

supports our reasoning that the timing of surface abandonment can, in some cases, be constrained more precisely than a 
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representative age of surface formation (see section 2). The age uncertainty on 𝑎𝑚𝑖𝑛 is significantly larger on the older Q7 

surface and therefore dominates the probability distribution of 𝜏, giving it a wider and more symmetrical shape despite the 

greater number of measured ages, n. This result underscores the importance of accounting for age uncertainty when using 

our equations to infer the likely timing of surface abandonment, which our supplementary Matlab tool incorporates. 

5.2.1 Climatic implications 5 

Our estimates of when the Laguna Salada fans were abandoned have important climatic implications. Spelz et al. (2008) 

speculated that the aggradation and incision of the fan surfaces was partly controlled by past climate changes, and there is 

growing evidence that alluvial systems can be highly sensitive hydroclimate recorders (D’Arcy et al., 2017a,b; Wickert and 

Schildgen, 2019). We explore this idea by comparing the surface age data with two palaeoclimate proxy records (Fig. 8): the 

GRIP ice core δ18O record from Greenland (Johnsen et al., 1997) and the LR04 global benthic δ18O stack (Lisiecki and 10 

Raymo, 2005). These records primarily reflect the growth and decay of continental ice sheets, which are generalised into 

Marine Isotope Stages (MIS). 

The sampled Q7 ages clearly coincide with the broadly interglacial conditions of MIS 7, so we interpret that the surface was 

deposited throughout this stage. Our statistical analyses indicate that the Q7 surface was abandoned—in this case due to fan 

incision—during the subsequent MIS 6 and coinciding with a transition to a more glacial climate. Indeed, 71% of the area 15 

beneath the Q7 𝜏 distribution falls within MIS 6 (191-130 ka), which we interpret as a 71% likelihood that the surface was 

abandoned and incised during this stage. For the Q4 fan surface, the sampled ages alone indicate that abandonment coincided 

with the end of the Last Glacial Maximum (MIS 2) and the global shift to interglacial conditions in the Holocene. Spelz et al. 

(2008) interpreted this observation (fan incision during a shift to interglacial climate) to contradict the Q7 data (fan incision 

during a shift to glacial climate). However, supplementing the measured ages with our probabilistic analyses reveals that Q4 20 

abandonment is likely to have occurred during the Younger Dryas, a short-lived climate episode between 12.9-11.7 ka 

during which the northern-hemisphere climate returned to a cooler state (Carlson, 2013). In Fig. 8c, 36% of the 𝜏 distribution 

falls within the Younger Dryas and the peak of the 𝜏 distribution—i.e., the single most probable abandonment age—falls at 

12.7 ka. This interpretation reconciles the Q7 and Q4 surfaces on the Laguna Salada fans, which would have both been 

incised as a result of climatic shifts towards more glacial conditions. This case study also demonstrates how our probabilistic 25 

approach, uniquely enabled by our use of artificial data, can be used to quantify the likelihood of individual abandonment 

scenarios and strengthen palaeoclimatic interpretations derived from alluvial deposits. 

5.2.2. Tectonic and weathering implications 

The results in Fig. 8 also have tectonic implications. The Laguna Salada fans are dissected by fault scarps related to the 

Laguna Salada fault and the Cañada David detachment; the largest Q7 scarp has an offset of 9.9 m (Spelz et al., 2008). 30 

Typically, studies divide the fault offset by the mean surface age (which for Q7 is 215.9 ka) to estimate a time-averaged slip 

rate, which would be 0.046 mm yr-1 in this example. However, as a scarp can only accumulate displacement once the surface 
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has been abandoned, i.e., when it is no longer being resurfaced, the estimated age of abandonment may be a more 

appropriate timescale for determining a displacement rate. Accumulating a 9.9 m offset since 177 ka (the most likely 

abandonment age, Fig. 8c) would produce a time-averaged slip rate of 0.056 mm yr-1; an increase of 22%. Following this 

logic, the probability distribution of 𝜏 could be translated into a probability distribution of time-averaged slip rates. For the 

Q4 fan surface, calculating a slip rate with a most likely abandonment age (e.g., 12.7 ka) instead of the mean surface age 5 

(23.3 ka) would result in an even larger increase in the calculated displacement rate of 83%. Underestimating fault slip rates 

by this magnitude could have major implications for tectonic and fault hazard analyses. 

Spelz et al. (2008) also measured the diffusional decay of fault scarp geometry over time, and used the calculated mean fan 

surface ages to derive time-integrated scarp mass diffusivities between ~0.01-0.10 m2 kyr-1. Intriguingly, the authors 

interpreted these diffusivities to be anomalously slow. This conundrum could be partly resolved by, again, using the 10 

estimated surface abandonment ages to calculate scarp mass diffusivity, rather than average surface ages. This approach 

would result in faster diffusion rates, as Spelz et al. (2008) expected, while simultaneously recognising that a fault scarp can 

only form and erode once a fan surface has been abandoned. 

The alluvial fans of the Laguna Salada Basin provide a representative example of natural, aggraded geomorphic surfaces, 

which are formed over a non-negligible period of activity and dated with a small set of exposure ages that randomly-sample 15 

the duration of surface activity. This case study demonstrates that Eqs 1 through 5, together with an incorporation of 

exposure age uncertainty provided by the Matlab tool, can provide valuable constraints on the timing of surface 

abandonment. These constraints complement the sampled surface ages and can enhance interpretations involving 

palaeoclimate, tectonics, and landform evolution. 

5.3 Limitations to the probabilistic approach 20 

Our artificial data, and therefore the parameterisation of Eqs 1 to 5, assume that a distribution of surface ages are randomly 

sampling the full duration of surface activity. In some cases, this assumption might be realistic, e.g., the Q7 surface on the 

Laguna Salada fans (Fig. 8) was sampled in different places and produced ages spanning all of MIS 7, suggesting the full 

duration of surface activity might be well-represented. If so, Eqs 1 to 5 could be symmetrically applied to the oldest sampled 

age to estimate the onset of deposition. In contrast, the Q4 surface was sampled entirely at the fan apex, where enhanced 25 

vertical aggradation makes it likely that the earliest deposits from this depositional episode have been buried. In practice, this 

sampling approach would improve estimates of when abandonment occurred. By clustering the surface ages towards the end 

of the depositional period, T would effectively shorten and 𝜏 would be constrained more precisely. Because our approach 

derives T empirically from the ages that are actually sampled on a surface (Eq. 5), the burial of early deposits does not matter 

for estimating abandonment. However, vertical burial would mean that T would no longer represent the total duration of 30 

deposition, and it would therefore be inappropriate to use our equations to estimate the onset of deposition.  

Like burial, subsequent erosion of part of a surface might hide a fragment of the period of deposition from sampling. The 

implications of erosion depend on how spatially-homogenous the surface is, i.e., whether erosion has randomly eliminated 
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‘selectable’ ages from throughout the duration of activity, or instead eradicated complete fragments of the timespan of 

activity. Again, erosion would only impede our method of inferring the abandonment age if the youngest part of the duration 

of activity were destroyed. Given that burial and erosion are site-specific, they cannot be universally incorporated into our 

equations and must be considered on an individual-case basis. 

Equations 1 to 5 assume that all sampled surface ages are true ages. In reality, incorrect ages are sometimes encountered 5 

when dating surfaces. For example, cosmogenic nuclide exposure ages may be biased towards older ages as a result of 

nuclide inheritance, as is interpreted to be the case with the oldest age on the Laguna Salada Q4 fan surface (Fig. 8a). 

Including old outliers in our analyses would lead to an over-estimation of the size of both T and 𝜏 , and therefore 

unnecessarily imprecise estimates of the abandonment window, but would not change the position of 𝑎𝑚𝑖𝑛 . A more serious 

error would arise from incorrect young ages, e.g., resulting from erosion or shielding of boulders targeted for cosmogenic 10 

nuclide exposure dating. The inclusion of spurious young ages could expand the apparent period of surface activity T past 

the true timing of abandonment, leading to estimates of 𝜏  that are both too large and, more importantly, too young. 

Therefore, equations 1-5 and the Matlab tool should be applied to ‘clean’ datasets that do not contain spurious ages, and 

particularly not spuriously young ages when attempting to calculate abandonment times. 

Finally, our approach derives the true period of surface activity, T, from the measured age range 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛, based on the 15 

results of our artificial data experiments (see section 4.2 and Fig. 6). This step is necessary because the true duration of T is 

ultimately unknowable for natural surfaces, so we parameterise Eq. 5 using the mean ratio of (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)/𝑇 among our 

artificial data experiments. Of course, any given set of real surface ages might happen to capture a greater or smaller fraction 

of T than the mean case. For this reason, we also provide parameterisations of Eq. 5 for ±1 standard deviation above and 

below the mean ratio of (𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛)/𝑇, thus allowing ±1σ uncertainty on T to be tested. In practice, the uncertainty 20 

associated with T has little effect on the probability distributions of 𝜏 produced by Eq. 1, and so is likely to be insignificant 

for most geomorphological applications. To illustrate the sensitivity of 𝜏  to the uncertainty on T, we re-calculate the 

probability distributions of 𝜏 for the Q4 and Q7 Laguna Salada alluvial fan surfaces with the Matlab tool (Fig. 9) using the 

±1σ bounds on T (Fig. 6).  

The uncertainty on T has a negligible effect on the probability distributions of 𝜏, for both the young and precisely-dated Q4 25 

surface where the 𝜏 distribution is most sensitive to the form of Eqs 1 to 5, and the older, less-precisely dated Q7 surface 

where the 𝜏 distribution is most sensitive to the measured age uncertainty. This sensitivity analysis demonstrates how the 

conversion of 𝑎𝑚𝑎𝑥 − 𝑎𝑚𝑖𝑛  to T has little bearing on the estimated timings of surface abandonment. Nonetheless, our 

artificial data calibration allows the ±1σ uncertainty on T to be calculated, if desired. 

6 Conclusions 30 

Our study uses artificial data to simulate depositional geomorphic surfaces that form over a non-negligible timespan, and are 

subsequently dated with a set of randomly-sampled surface ages. We investigate scenarios that are representative of natural 
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alluvial fans, which are commonly targeted for surface dating, however our results may be more broadly applicable to other 

depositional landforms that form over protracted periods of time. Our findings suggest that, for a variety of different 

purposes, inferring the timing of surface abandonment may provide more informative and more precise interpretations than 

taking an average of measured surface ages. We use our artificial data to derive a set of probabilistic equations that can be 

applied to a distribution of real sampled surface ages to estimate a period of time within which abandonment is likely to have 5 

occurred. These equations account for site-specific variables including the number of ages and the duration of activity for a 

particular surface, and they can be used to generate a probability distribution of likely abandonment ages. We furthermore 

provide a Matlab script that allows for the uncertainty associated with measured ages to be incorporated in the probability 

distribution of abandonment ages. The ability to constrain the timing of surface abandonment has useful applications for 

geomorphological studies that relate surface ages to tectonic deformation (e.g., deriving fault slip rates), climate (e.g., 10 

reconstructing past hydroclimate changes), or the rates of surface processes (e.g., weathering and landform evolution), a 

subset of which we demonstrate using a case study of alluvial fan surfaces in the Laguna Salada Basin, Mexico. The 

statistical framework we introduce in this paper offers a new method of probabilistically estimating when a surface was 

abandoned, which can complement and enhance interpretations of any distribution of sampled ages obtained from surfaces 

that experienced a non-negligible period of deposition. 15 
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Figures 10 

 

 

 

Figure 1: (A) Conceptual alluvial fan surface that was formed over a 30 kyr period, from 80 ka to 50 ka, after which it was 

abandoned, e.g., due to incision. Two different dating scenarios (sample sets 1 and 2) are shown in which 6 surface ages are 15 
randomly selected. (B) The true period of surface activity (grey bar), compared with the sampled ages presented as data points 

(circles), kernel density plots, and mean surface ages ±1 standard deviation (stars). A hypothetical climate scenario is depicted as a 

dotted line. 
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Figure 2: Schematic surface with a period of activity, T (orange bar), abandoned at 𝒕𝒂𝒃𝒂𝒏, and randomly sampled with n ages 

(circles). (A) If n increases, the youngest sampled age, 𝒂𝒎𝒊𝒏, is likely to fall closer to 𝒕𝒂𝒃𝒂𝒏. (B) If T increases, the youngest sampled 

age, 𝒂𝒎𝒊𝒏, is likely to fall farther from 𝒕𝒂𝒃𝒂𝒏, even if the same number of ages are sampled. 5 
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Figure 3: Example results of the artificial data experiments for a surface active from 80 to 50 ka (T = 30 kyr). A number of ages, n, 

were randomly sampled from the surface 10,000 times. (A) Frequency distributions of resulting mean sampled age, �̅�. (B) 

Frequency distributions of the youngest sampled age, 𝒂𝒎𝒊𝒏. (C) Cumulative frequency distributions of 𝝉 normalised to a sum of 1. 5 
(D) Selected percentiles of 𝝉 plotted against n. 
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Figure 4: The probable abandonment window, 𝝉, as a function of the number of boulder ages, n. Data are shown for different 

probabilities, P (panels), and durations of surface activity, T (colours). Parameter k is a decay constant that depends on P (see text 

for details). 5 
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Figure 5: (A) Variation in the decay constant, k, as a function of the probability, P. Error bars show the standard error on k 

when Eq. 1 is fitted to the data in Fig. 4. The regression corresponds to Eq. 2.  (B) Variation in 𝜏0 as a function of T for 

different values of P (indicated by colours). Linear regressions are fitted corresponding to Eq. 3. Inset: Variation in m as a 5 

function of P. An exponential regression is fitted corresponding to Eq. 4. 
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Figure 6: Box plots showing the fraction of the total period of fan activity, T, captured by the span of sampled boulder ages in the 

artificial data experiments, 𝒂𝒎𝒂𝒙 − 𝒂𝒎𝒊𝒏 plotted against the number of sampled ages, n. Each box represents 10,000 experiments. 

As a greater number of ages are sampled, the span of the set of ages is more likely to capture a greater fraction of T, although with 5 
diminishing returns for increasing n. Black lines show exponential regressions corresponding to Eq. 5 and fitted to the mean 

values (solid) and ±1 standard deviation (dashed). 
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Figure 7: Schematic demonstrating how to infer the timing of surface abandonment from a set of sampled ages. (A) Probable 

abandonment windows, 𝝉, are calculated using Eq. 1 for discrete values of P (coloured bars). (B) A continuous probability 

distribution of 𝝉 is calculated as the density of P within each discrete window of 𝝉 in (A). (C) In reality, 𝒂𝒎𝒊𝒏 is not perfectly 5 
known, and has an associated age uncertainty that must be accounted for. (i) The ±3σ uncertainty on 𝒂𝒎𝒊𝒏 provides a distribution 

of probable values of 𝒂𝒎𝒊𝒏. (ii) The distribution of 𝒂𝒎𝒊𝒏 values is discretised. In the Matlab tool, we have set this discretization to 

be 1/10 the 1σ uncertainty on the youngest age, 𝒂𝒎𝒊𝒏, to provide a highly resolved result (note that the cartoon illustration here 

shows much wider discretisation bins for ease of visualisation), but this discretisation value can be modified. The discrete window 

of 𝝉 used to calculate the density of P in (B) is set to the same width. (iii) Probability distributions of 𝝉 are calculated for each 10 
potential value of 𝒂𝒎𝒊𝒏 (as per panel B), and weighted according to the probability distribution of 𝒂𝒎𝒊𝒏 values. (iv) The weighted, 

temporally shifted 𝝉 distributions are then summed to produce a final probability distribution of surface abandonment timing that 

incorporates uncertainty in the youngest age. (D) Equations used to infer the timing of surface abandonment, calibrated with our 

artificial data. 
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Figure 8: Two alluvial-fan surfaces in the Laguna Salada Basin, northern Baja California, Mexico. Left: Q4 surface; right: Q7 

surface, after Spelz et al. (2008). (A) Locations of surface boulders sampled for 10Be cosmogenic nuclide exposure dating. (B) 

Boulder exposure ages recalculated after Spelz et al. (2008) (white circles) and mean surface ages ±1σ (yellow stars). (C) 5 
Probability distributions of 𝝉  calculated using Eq. 1 and incorporating uncertainty on 𝒂𝒎𝒊𝒏  following Fig. 7 (black). For 

illustrative purposes, probability distributions of 𝝉 are shown if uncertainty on 𝒂𝒎𝒊𝒏 is not incorporated (red dashed). (D) Selected 

palaeoclimate proxies: the GRIP ice core δ18O record from Greenland (blue; Johnsen et al., 1997) and the LR04 global benthic 

δ18O stack (black, Lisiecki and Raymo, 2005). Marine Isotope Stages (MIS) are indicated by boxes. 
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Figure 9: (A) Measured surface ages for the Laguna Salada alluvial fan surfaces, following Fig. 8b. (B) Probability distributions of 

𝝉 calculated using Eq. 1 and incorporating age uncertainty, where T is derived from the measured spread of surface ages using the 

mean case in Fig. 6 (black curves) and ±1σ uncertainties on T (red and blue curves). 5 

 

 

Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-21
Manuscript under review for journal Earth Surf. Dynam.
Discussion started: 22 May 2019
c© Author(s) 2019. CC BY 4.0 License.


