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1 Reviewer 1: General Comments

The general comments from reviewer 1 are presented below, and are discussed at some length. We attempt to address
all the key issues raised there, and to highlight how we are responding to those comments in our revisions. We thank
the reviewer very much for such a careful and helpful review of our paper.

1.1 Comment 1

General comments Eaton et al. (2019) present what seems to be a new way to compute confidence
intervals around grain-size distributions that is based on the binomial approach. Encouraging the routine
computation of confidence intervals around sampled grain-size distributions is a worthwhile undertaking
and often a monitoring requirement for detecting change in rivers beds over time or space. The study
by Eaton et al.sets out to provide such a tool. However, the authors do not succeed in making their
tool easily accessible: in fact as presented, their approach remains a black box to most potential users.
The manuscript does not provide more than general statistical background information and no step-by-
step explanations are given on how a potential user could apply the authors. approach to his/her field
data. The reader is not much the wiser even after downloading the supplemental material which contains
computer code but still no instructions on how to apply the computations. For a user whose basic
work tool is spreadsheet computation, the study by Eaton et al. (2019) provides no help for computing
confidence intervals.

1.2 reply by authors

This is very useful feedback for us. Our intention is indeed to provide a user-friendly tool that implements binomial
statistical theory to calculate confidence bands about grain size distributions to prevent type 1 statistical errors. The
revised manuscript now provides an overview of the confidence interval calculation procedure, and then lays out the
precise statistical basis for the calculations for di↵erent kinds of data (i.e. raw observations and binned data). We
have also written a new pair of functions to perform sample to sample comparisons to determine whether sample
grain sizes for a percentile of interest are statistically di↵erent.

We have re-written the introduction and statistical basis sections of the paper, and we have added an overview
section to better explain

1. how the binomial distribution can be applied to both raw data comprising n measurements of b-axis diameters
and also to the typical binned data collected in the field; and

2. how the binomial theory can be used to generate confidence intervals about an estimate of a given grain size
percentile.

The process is summarized in the new overview section, which describes how to estimate the percentile confidence
interval (a term we introduce and use throughout the revised paper), and how to map that onto the sample cumulative
frequency distribution to estimate the associated grain size confidence interval. The distinction between these two
things is at the root of much of the confusion generated by our original manuscript.
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In addition, we have written an appendix to the paper that describes how to use the simpler normal approximation
to the binomial distribution to calculate the confidence interval, as well as a spreadsheet implementation of that
approach.

We have also created an appendix containing reference tables of the percentile confidence interval bounds for a
range of percentiles of interest (i.e. D10, D15, D20 . . .D90), sample size (n), and acceptable confidence limit (↵).

1.3 Comment 2

Computation of confidence bands around grain-size distributions without assuming an underlying dis-
tribution type is not a new idea. Fripp and Diplas (1993) presented a binomial approach to compute
the relation between sample size and error around individual percentiles. The study by Church and
Rice (1996) applied a bootstrap approach to a large pebble count of 3500 particles and computed error
bands around various percentiles of the grain size distribution. The grain-size distributions did not fit a
particular distribution type, but the bootstrap confidence limits were reasonably close to those computed
assuming an underlying skewed log-normal distribution. Petrie and Diplas (2002) cautioned that ...the
binomial distribution considers only two possibilities for each particle sampled: (1) the particle is within
a specific size class (e.g.,smaller than a certain size) or (2) the particle is not within the specified size
class. The binomial distribution is then inadequate to use for representing entire size distributions. To
overcome this limitation and to compute confidence bands around the cumulative frequency distribution
from a pebble count with data binned into size classes while considering distribution characteristics of
the distribution, Petrie and Diplas (2000) developed a multinomial approach.

1.4 reply by authors

This is also very useful information for us, and we have read the papers with interest. The work by Diplas and
colleagues is particularly relevant and strengthens our paper. The analysis by Fripp and Diplas (1993) is now used
as a jumping o↵ point for our analysis: we have re-written our manuscript to use that paper as the basis from which
we start, we describe that approach in the appendix, and we have implemented a version of it in a spreadsheet that
accompanies this paper.

The paper by Rice and Church (1996) was the inspiration for the re-sampling analysis that we presented in our
original paper. However, we have clearly not done justice to the analysis presented therein, so we have expanded
that section.

The work by Petrie and Diplas with multinomial theory is primarily focused on determining the sample size
required for a given level of accuracy for estimating the shape and relative position of the cumulative grain size
distribution, using binned data. Our approach and intent is di↵erent: we develop our statistical theory using
individual measurements of b-axis diameters, and we develop confidence bounds to be plotted when comparing
distributions to avoid type 1 and 2 statistical errors. In this context, the binomial approach is most appropriate.
Our implementation of binomial theory is based on the interpretation that a measured stone is either (a) greater than
a percentile of interest for the population, or (b) less than or equal to the percentile of interest, with no reference to
or limitation imposed by having binned data. In this context, the estimation of j percentiles involves the execution
of j independent binomial experiments with assumed probabilities corresponding to the percentile of interest. To
test the di↵erence between our approach and the traditional binned data, we use the scheme described in our paper
to directly compare the distributions based on all measurements, and the binned data.

While current practice in the field is still to collect binned data, the automated techniques for grain size analysis
that are standard practice in most experimental laboratories, and which are being increasingly deployed in the field
promise to deliver much more data than can be collected manually, and will obviate the need for binned data.
Our methodology is best leveraged in that context, using the automated data analysis approach possible using
languages like R and Python. Therefore, our di↵erentiation between binned data and the underlying b-axis diameter
measurements is not simply a technical one, it is based on our perceptions of the future data types that will be
commonly used.

1.5 Comment 3

While the study presented by Eaton et al. (2019) is successful in raising awareness that the n=100 sample
size is too low to attain reasonable accuracy for pebble counts in most gravel beds and that sample sizes of
400 or 500 particles are required to enable statistical evaluations about sameness or di↵erence, the study
does not succeed in presenting its computational approach in an easy to understand way. Providing
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computer code in R-language is not helpful for most users, hence the authors computations cannot be
repeated or applied by users who are not expert statisticians but are seeking to determine confidence
limits around their sampled grain-size distributions.The authors display the confidence bands that they
drew with their binomial approach around grain-size distributions sampled in other studies (Kondolf,
1992; Bunte et al.2009, Bunte and Abt, 2011) and go on to discuss whether the now-drawn confidence
bands warrant the interpretations made in the original studies. In the final sections of the study, the
authors show general relations between sampling error, as computed with their binomial approach, and
sample size as well as distribution sorting.

1.6 reply by authors

We are very grateful for the feedback about the relative di�culty in understanding our approach, and about the
need for addition means of implementing our tools for estimating the confidence bands. We have responded to the
first point by re-writing the section of the paper presenting the method, and to the second by developing reference
materials in two appendices, as well as a spreadsheet implementing the normal approximation to our solution, as
described by Fripp and Diplas (1993).

2 Recommendations for improving the paper

The reviewer made several helpful suggestions for improving the paper, listed below:

Reference prior work and build on it Eaton et al. (2019) should discuss prior studies that likewise
compute errors around percentiles without assuming an underlying distribution type and explain the
improvements and advantages o↵ered in the study presented. What reason is therefor a user to select the
authors approach if the authors do not explain WHY their approach constitutes an improvement?

We have improved the links between our paper and the previous work. We also re-iterate in the revised paper that
our main purpose is to produce a user-friendly introduction to the basic method for estimating confidence bounds
using binomial theory. We point out that our approach is statistically conventional, has precedents in the literature,
and is consistent with empirical analyses. We also more strongly articulate our key message – that all grain size
curves ought to be plotted with confidence intervals, particularly when two distributions are being compared.

Provide explanations and instructions In order for readers to apply the binomial approach to their own
data, the authors need to provide a step-by step explanation on how to use their approach rather than
referring to a book on statistics, pointing to a website, and o↵ering computer code in R-language. O↵ering
a reader access to computer code is a courtesy, but not a substitute for a step-by step explanation,
especially not for a very hands-on and applied topic of monitoring bed-material changes.

With this particular comment in mind, we have re-written the manuscript and generated various reference materials.

Comparison of results to those from prior work: How do percentile errors computed from the authors
binomial approach compare to percentile errors computed from other approaches? Apart from a similarity
of sampling errors around the D50 and D84that the authors computed from their binomial as well as a
bootstrap approach for asymmetrical grain-size distribution (the authors flume experiment), the authors
do not show how their binomial approach to computing confidence bands relates to confidence bands
computed from other approaches. The authors should apply their binomial approach together with the
approaches suggested by Fripp and Diplas (1993),Petrie and Diplas (2000), and Rice and Church (1996) as
well as simply to sample-size equations for an error around the mean to a few pebble-count distributions
that di↵er in their sorting and skewness (esp. the extent of a fine tail) and then assess di↵erence sand
similarities between results.

In our revised paper, we make the links to the cited literature clear, and we replicate the approach described by Rice
and Church, and then compare it to the binomial methodology we describe.

Explain whether or how confidence intervals computed from the binomial approach are a↵ected by sorting
and skewness of a sampled grain-size distribution While the authors show that confidence bands increase
in width with a distribution’s sorting co-e�cient, the authors do not explain how exactly sorting (and
skewness) of a sampled grain-size distribution (e.g., a tail of fines) flow into the computation of confidence
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intervals based on the binomial approach. The binomial approach introduced by Fripp and Diplas (1993)
does not seem to involve sorting or skewness of the sampled distribution, suggesting that confidence
intervals from a binomial approach are similar for all percentiles within a sampled grain-size distribution
with a known sample size and number of size classes.

The revised text and several new figures address this point.

Have a user in mind and o↵er a procedure that is reasonably easy to be applied by the user The authors
provide a study that is of interest to users who are involved in relations of sample size to error. However,
the study is geared towards a statistically expert audience rather than the needs of non-expert potential
users. If the authors’ work is to be applied for monitoring purposes by sta↵ from environmental agencies
or consulting and by those whose main interest is not statistical but who need to apply such relations,
then the authors need to provide detailed explanation and instruction.A spreadsheet implementation of
their computations of a percentile error would be considerably more helpful than code in R-language.

We have developed additional resources that address this point, and we are particularly thankful for this feedback,
since our main purpose is to make it easy for people to use our approach.

Editing suggestions Figures provided by the authors are generally fine, but considering that the study
discusses plotted details of whether or not confidence bands overlap,a larger figure size would be helpful.
It would also be helpful to place the figures below their first mention in the text, not simply at the top of
the page with a mention some-where below on the page. With respect to writing style and typos (etc.),
the manuscript is well written and clean

We have re-worked many of our figures, but will leave it to the editorial sta↵ to properly place the figures in the final
version of the manuscript.

3 Reviewer 1: Specific comments

The reviewer also provides a list of specific comments that improved the paper. Those comments are quoted below,
along with our responses to them.

p.2, l. 15: “. . .but the largest source of uncertainty in many cases is likely to be sampling variability,
which is a function of sample size.” How do the authors know that sampling variability (do they mean
statistical uncertainty due to a poorly sorted channel bed?) rather than methodological di↵erences
(e.g., measurements of particle sizes, spatial heterogeneity, di↵erences in the sampled channel width
or leaving poorly accessible stream locations unsampled) is the most likely factor causing uncertainty?
The comparative study by Bunte et al. (2009) showed that di↵erences in sampling outcomes due to
methodological variability can be huge.

In order to avoid confusion, we have rewritten the sentence to read “but the largest source of uncertainty in many
cases is likely to be associated with sample size, particularly for standard pebble counts of about 100 stones.”

p. 2, line 21: “. . . We then use this approach to demonstrate that the higher percentiles, such as
D84, are subject to substantial uncertainty for typically used sample sizes, and that. . .” 1) Given this
statement, it is odd then that the confidence bands drawn by the authors around the size-distributions
from two streams sampled by Bunte et al. (2009) and another stream sampled by Bunte and Abt (2001)
are all narrower for the D84 than for the D75 and the D95. 2) That statement is not backed by results
from other studies: Rice and Church (1996) have shown for a very large pebble count that uncertainty
was lowest for the D75 and D84 sizes, followed by the D50 and D95 sizes, and highest for the smallest
percentiles. Green (1993) corroborated this finding; on average, the D73 could be determined with the
least uncertainty. Similarly, Bunte and Abt (2001a) found in their field study that uncertainty was lowest
for the D50 and the D75, slightly higher for the D84, D95 and D25, and percentiles lower than D25 were
subject to the highest uncertainties.

This section of the paper has been re-written, and this sentence is no longer included. The underlying issue that that
the standard graphs use lognormal axes. As a result, the uncertainty expressed in mm for the D84 is in fact larger
than it is for the D50, even when the uncertainty expressed in phi units is smaller. The point is not an essential one
in any case, and is no longer relevant, given the revisions we have made.
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p. 3, l. 3: “. . .since we preserve each measurement rather than grouping them into size classes, the data
can be treated as a binomial experiment, . . .” Does that mean that the binomial computations is not
applicable to field data binned in 0.5 phi units which results from measuring particle size using a 0.5-phi
template?

We have hopefully addressed this question more clearly in the new section presenting an overview of the method
we use and in the revised section where we discuss how to apply binomial theory to binned data. (in any case this
section containing this sentence has been rewritten to improve clarity).

In Eq. 1, Pr and p are not defined

This equation is now introduced (and defined) in the overview section to improve clarity. It is used first in an example
of the standard coin toss binomial experiment, and then in the directly analogous problem of estimating the bed
surface D50.

p. 4, line 10-19: The description of the methodology is too vague. To allow a reader to replicate the
computations, authors need to provide step-by-step guidance. Reference to websites and other studies is
not su�cient for a paper that would like to introduce a new approach to computing confidence bands.

The new overview section and the re-written statistical basis section hopefully address this point. We have also
adopted the term percentile confidence interval and grain size confidence interval throughout the text to more
clearly explain how binomial theory can be used address the uncertainty associated with sampling (i.e. the percentile
confidence interval), and how the shape of the cumulative frequency curve determines the uncertainty for a given
grain size percentile estimate (i.e. the grain size confidence interval). In the overview section, we use a new figure to
explain the relation between percentile and grain size confidence intervals.

p. 4, line 21: That statement comes out of the blue . . .what areas? What tails?? Fig. 2 does not
provide much help either.

The sentence now reads “One disadvantage of the exact solution described above is that the areas under the tails
of the binomial distribution di↵er”. The Figure shows the binomial distribution, so the link between the figure and
the text is now more explicit. We have also modified the figure caption and legend labels to explicitly identify the
distribution tails.

p. 5, line 1-5: Again, step-by-step instructions are needed to allow a reader to replicate the authors’
approach.

We have tried to address this confusion by creating the overview section that precedes the admittedly rather dense
description of the statistical basis for our approach. The precise mathematical approach is laid out in the code
behind our functions in the GSDtools package (note: we have changed the name of the R package to reflect its more
general nature since the addition of two hypothesis testing tools); the underlying calculations which are described
in the text can be viewed mathematically by installing the package and then typing WolmanCI at the command line
prompt. We have also included the source code for the functions in the online archive of code and data associated
with this paper. The purpose of publishing an R package is to make our exact code and methodology available for
both scrutiny and practical use. We have implemented the simpler normal approximation used by Fripp and Diplas
(1993) in a spreadsheet version, and we have described the basis for this approximation in a new appendix to the
paper. Hopefully, these additions will help potential users replicate our approach.

Also, we have included step-by-step instructions for the two new functions we have created to test hypotheses
about di↵erences between two samples.

p. 6, line 5-6 “. . .Based on the overlap in 5 confidence intervals for the eight samples, the distributions
do not appear to be statistically di↵erent (see Fig. 3). . .. 1) Confidence bands plotted by the authors
for their stream table sediment overlap for samples 2 and 3, but not for samples 1 and 4 (Fig. 3, panel
A). 2) With respect to their multinomial approach, Petrie and Diplas (2000) stated that error bands are
identical for all particle- size distributions as long as the value for alpha (e.g., 0.05) and the number of
sampled size classes remain the same. For the authors’ 8 samples from the stream table sediment surface,
I assume that the same number of size classes were collected in each of the 8 samples and that the same
alpha value was applied to all computed confidence bands. If the statement by Petrie and Diplas (2000)
was true for the error bands conducted by the authors, then why do the error bands plotted in Fig. 3
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di↵er between samples? 3) The authors use as basis for their analyses a sand-rich sand-gravel mixture
with a D50 near 1.5 mm. The lengths of b-axes appear to have been determined to a precision of two
decimals (e.g., 0.53 mm). It is di�cult to imagine how a pebble count was performed and particle sizes
were measured on sediment this small.

This section has been completely re-written, and the text and figure referred to has been removed. In summary
though, the data collected were not binned into size classes, individual grain diameters were recorded; the error
bands referred to by Petrie and Diplas are percentile confidence intervals, not grain size confidence intervals (an issue
we explain in our new overview section); and the measurements were made from a digital photographs of the bed
taken 15 cm above the bed with a pixel resolution of about 50 microns. Obviously this introduces the possibility
of grains being partially hidden in the photo, but this e↵ect is far less pronounced in laboratory sediments because,
due to scaling issues, sediment finer than the field equivalent of 10 mm grains are not included in the bulk mixture
(i.e. there are relatively few ‘fine’ grains that can fill in pores and obscure the larger grains the way they can in the
field). In addition, the purpose of these data is simply to represent a known population of grains from which to draw
samples, not to actually represent the bed surface GSD of the experiment accurately.

p. 7, Fig. 4: 1) While the box of box and whisker plots typically shows the quartiles, there is less
standardization of what the whiskers represent. Please indicate what the whiskers in this plot represent.
It can’t be the overall spread because “outliers” are plotted as dots. Please define. 2) What parameter
is plotted on the y-axis? Please clarify. 3) It would have been useful to show the 95

We have abandoned this figure, and instead used a di↵erent approach to test the binomial predictions against
bootstrap error estimates for a much wider range of percentiles. The new figure plot the predicted and bootstrap
errors on a typical grain size distribution curve, and we evaluate their goodness of fit using s 1:1 model (i.e. a model of
perfect agreement) and the Nash Sutcli↵e goodness of fit statistic (which is basically the same as an R2 value, where 1
equals a perfect model). The completely re-written section on confidence interval testing now engages with previous
approaches more explicitly and is more extensive. Note that we replicated the entire confidence interval testing using
a di↵erent population of grain sizes defined by 1,000,000 observations drawn from a log normal distribution with
virtually the same results.

p. 6, line 9-19. The authors state that they found a close match between the confidence bands computed
from the binomial approach and a bootstrap approach (Fig. 4) for an unskewed grain-size distribution
(i.e., their stream table sediment). The comparison plot by Petrie and Diplas (2000) for a pebble count
from the Mamquam River shows that the confidence bands computed with the approach by Fripp and
Diplas (1993) are between n 0.02 and 0.06 phi-units higher than those from the bootstrap approach
computed by Rice and Church (1996). Is the binomial approach by Fripp and Diplas (1993) similar or
di↵erent to the authors’ binomial approach? Does a binomial approach yield wider confidence bands than
a bootstrap approach?

We address all of these points in revisions to the introduction (where we talk about the Fripp and Diplas approach),
and in the confidence interval testing section. We write in the revised paper “The advantage of a bootstrap approach is
that is replicates the act of sampling, and therefore does not introduce any additional assumptions or approximations.
The accuracy of the bootstrap approach is limited only by the number of samples collected, and the degree to which
the individual estimates of a given percentile reproduce the distribution that would be produced by an infinite
number of samples.” The di↵erences observed by Petrie and Diplas are presumably due to their use of the normal
approximation of the binomial distribution.

p. 7, lines 11-19: In the authors’ reassessment of particle-size distributions from Kondolf (1997) and
from Bunte et al. (2009), the authors need to clearly state to what percentage confidence the plotted
confidence bands refer? I assume they are 95% confidence bands. Please clarify.

Figure captions all now clearly indicate that the polygons represent 95% confidence intervals.

p. 8, Fig. 6: The study by Eaton et al. (2019) has drawn confidence limits around grain- size distributions
from three Rocky Mountain gravel-bed streams sampled by Bunte et al. (2009) and Bunte and Abt (2001).
1) Based on visual examination of the error bands plotted in Fig. 6, I’d say that for Willow Creek, the
error bands for ri✏es and pools are di↵erent except for the narrow range between 20 and 50 mm within
which they cross. 2) The plotted confidence intervals for Willow Creek and the St. Vrain are jagged
around the sampled distribution and seem to widen notably for the flatter sections of the cumulative size
distribution but neck down for the steeper sections. The authors o↵er no explanation for this phenomenon.
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The observed changes in the width of the grain size confidence interval do indeed correlate with the shape of the
cumulative frequency curve. This e↵ect is due to the mapping of the percentile confidence interval onto the grain size
confidence interval. We have added a new figure and an overview section to better explain this point. Comparing
samples to determine whether a given percentile of interest is di↵erent or whether the samples can be considered
di↵erent as a whole can only be approximately done using a visual interpretation of the confidence intervals. We
have developed two new functions to rigorously compare samples; these functions (and the step-by-step instructions
for how to conduct the analysis) are presented in the statistical basis section; they are also used in the reanalysis
section; and they are included in the online demonstration of how to use the GSDtools package.

p. 10, line 9-14: The authors write: “Our method for estimating uncertainty requires only the cumulative
distribution and the number of measurements used to construct the distribution. Therefore, confidence
intervals can be constructed and plotted for virtually all existing surface grain size distributions (provided
that the number of stones that were measured is known, which is almost always the case),. . .” If
computation of the width of the confidence interval for any percentile of interest re- quires only knowledge
of the sampled distribution and sample size n, and if the computation is conducted for each percentile
individually, then how does the spread or sorting of the sampled distribution influence the computed
confidence interval? Please CLARIFY!

This is explained in the overview section, and relates to the di↵erence between the percentile confidence interval and
the grain size confidence interval.

p. 11, Fig. 9 and p. 12, Fig. 10: 1) The units in which the error is computed needs to be clearly stated.
Somewhere down in the text the reader gets a hint that the error pertains to a percentage error in mm
units. 2) The findings that percentile errors decrease with sample size and with the distribution sorting is
in and of itself nothing new. What is new here is that the error is computed from the authors’ binomial
approach (assuming an underlying log-normal distribution for Fig. 10). To allow a reader to see whether
there is a di↵erence between errors computed from the authors’ binomial approach and other approaches
(e.g., Fripp and Diplas (1993) or simply errors around a mean), the computed relations between errors
and n should be compared to errors computed with other approaches. 3) For comparison with other
studies that compute percentile errors in terms of absolute +- error in phi-units it would be helpful if the
error-n relations in Fig. 9 had a second y-axis with error in terms of the absolute +- error in phi-units.
4) It would be useful if the relation of error to n was also provided for the error around the D16.

The intention of this section is to provide the user with some guidance related to sample size required to reach a
specified level of precision. As should be now clear in the revised paper, the grain size confidence interval cannot
actually be estimated until the sample is collected. As a result, we have compared our results to those from others
in the confidence interval testing section. This section has been edited to better emphasize that the analysis is only
meant to guide sample size estimation, but does not obviate the necessity of calculating the grain size confidence
intervals once the sample has been collected. With respect to the units, Eq 3 is now written so as to make it clear
that we are calculating a normalized di↵erence, which is by definition dimensionless.

p. 12, line 8: The authors state that for a given n and sorting, errors are largest for steep gravel fans
and bar top surfaces and smaller for typical gravel beds with a sorting near 1. That is a useful comment.
It would be even more useful to elaborate a little bit here on what kind of sorting values to expect for
di↵erent morphological or sedimentary channel units and hence what a user needs to expect in terms of
the error - sample size relation.

We agree with this comment, which is what motivated us to model the e↵ect of grain size distribution spread on
uncertainty using log normal grain size distribution (the following section). Unfortunately, our data do not support
even finer resolution of the issue on a sedimentary unit by unit basis.

p. 14, line 12-13: I am afraid that the authors’ time estimates refer to dry deposits of mainly mid-
sized gravels. The time requirements for a 500-particle pebble count in- creases to about 5 hours when
sampling in poorly wadeable conditions, in the presence of abundant algae and large woody debris, under
overhanging bushes, and with particles being next to irretrievable from the bed because they are tightly
wedged within neighboring particles or small particles placed in tiny pockets between large clasts. The
necessity for a large sample size remains, but users and their funding agencies need to commit to realistic
time requirement.
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We have incorporated the reviewer’s time estimate for more arduous samples in a sentence that reads “ In less ideal
conditions or when working alone, it may take upwards of 5 hours to collect a 500 stone sample, but as we have
demonstrated, the uncertainty of the data increases quickly as sample size declines (see Figs. 10 and 11), which may
make the extra e↵ort worthwhile in many situations.”

Typos etc. p. 2, l.5: The value should be 22.6 (=2ˆ0.5*16), not 22.7. p. 3 L. 5. . .compute the quantiles
of the (Fig. 1). Something is o↵ in that sentence. p. 4, Footnote: The access date is in the future.

We have fixed all of this smaller issues.

4 Reviewer 2: General Comments

The comments provided by Reviewer 2 are presented below, along with our responses. Many of the points have
been addressed in our reply to Reviewer 1 above, but these comments were equally helpful in re-shaping the paper,
particularly in those instances when Reviewer 2 has identified the same points raised by Reviewer 1.

4.1 Comment 1

The submitted paper focuses on estimating uncertainties in measured grain size distributions using sta-
tistical analysis of grain size data from experiments, field measurements and synthetic data. I think that
the authors make an important main point, which is that uncertainties in grain size distributions should
be reported especially when used to assess grain size changes over time or in space. Although I am sup-
portive of the overall goals, topics, and messages of this manuscript, I think that there are many details
missing from the methods. This makes it di�cult to evaluate how this calculation is actually applied,
the assumptions involved, and finally how it compares to previously published studies on uncertainties in
grain sizes. I suggest adding these details such that your paper can be understood by a broader audience.

4.2 reply by authors

To address these concerns, we have re-written much of the paper and generated additional figures that we hope better
describe how our approach actually works. The revised paper also includes an expanded results section that clarifies
the links to previous work, as well as reference appendices providing supporting information. We also now provide
a spreadsheet that implements the normal approximation to our technique (as described by Fripp and Diplas, 1993)
to estimating percentile confidence limits. Finally, we added two functions for explicitly comparing two samples to
determine whether di↵erences in the grain size estimate for a given percentile are actually significant. We appreciate
all of the suggestions that are made in this review, and we are confident that the revised version will reach a broader
audience.

4.3 Comment 2

I would really like to see a more detailed review of what previous studies have done to quantify uncertain-
ties in the D50 and other percentiles of the grain size distributions. Do approaches without an assumed
grain size distribution exist? If so, what is wrong with these approaches that motivates this current
study? I’m a bit confused because in the introduction you state that there is no easy way to estimate
the required sample size. In the abstract you also write that you propose a simple approach to estimate
sample size, but this also relies on assuming a log-normal distribution as in previous studies highlighted
on p 2 lines 8-9. What is the di↵erence between your approach that assumes a log normal distribution
to estimate sample size and other log normal approaches? It is not entirely clear to me in reading the
introduction what is new in this study compared to previous approaches. A more in depth review of
previous approaches and a statement of how this new approach is di↵erent would really help.

4.4 reply by authors

We have extended our discussion of previous approaches by re-writing the paper to leverage the previous work by
Diplas and colleagues as the starting point, and we describe in more detail how we replicated the bootstrap approach
of Rice and Church to estimate the uncertainty of samples with various sizes drawn from our population of 3411
b-axis measurements. Basically, we believe that our approach is entirely consistent with that proposed by Fripp and
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Diplas (1993), and replicates the empirical results presented by Rice and Church (1996). The main issue that we try
to address in this paper is not that previous methods are flawed, but rather that we as a community have failed to
use those approaches to quantify sampling uncertainty (despite the precedents in the literature). As a result, there
are published results that are clearly not statistically defensible, and it is our impression that many people continue
to collect relatively small samples with limited appreciation of what that means in terms of uncertainty.

In our revisions, we will also emphasize that we think are the main contributions of this paper, which are:

• to describe clearly how surface sampling can be described as a binomial experiment, analogous to a traditional
coin toss experiment;

• to present a simple set of tools based on binomial theory with which anybody can easily calculate the grain
size confidence interval about any sample percentile that will contain the population percentile size;

• to demonstrate the importance of considering uncertainty when comparing samples of the bed surface, or when
making calculations based on those samples; and finally

• to make some assumptions about distribution shape so that we can provide some general guidance on the
sample size required to reach a desired level of sampling precision.

This last point involves making assumptions about the underlying distribution (i.e. we assume a log normal grain
size curve), but that is simply to generate synthetic data with which to model the e↵ect of sample size and the spread
of the distribution on the precision of a percentile estimate. We will make it clear that any distribution form could
have been used, but that we chose a log-normal distribution because (1) it is the simplest to describe (i.e. it can be
described by a mean and standard deviation), (2) it has been used previously by others, and (3) many gravel beds
are approximately log-normal. We more clearly emphasize our central message in our revisions, and de-emphasize
the point about sample size.

4.5 Comment 4

The reviewer made several comments about our calculations that we would like to address:

In section 2.1, how is equation (1) used? Please provide a step wise explanation nohow someone would
perform these calculations and what information is needed. Right now it is somewhat di�cult to un-
derstand how equation (2) is actually solved. Although I appreciate the inclusion of the R code that is
part of this paper, a simple explanation of your detailed methodology is really needed in the main text
to properly evaluate your methods. What are successes, please define. I am also somewhat confused
about the definition of p, earlier you state it is the percentile of a distribution but on P 4 L6 is it called
a probability.

We have completely re-written the statistical basis, including an overview section that walks the user through the
idea of a binomial experiment, the probabilities of a particular outcome (and the relation of those probabilities to
the grain size percentiles for the population being sampled), and the relation between percentile confidence intervals
and grain size confidence intervals.

In section 2.2, please also provide more details on this approach, one brief sentence on interpolation really
does not make this calculation clear.

We have re-written the entire section to improve clarity.

Section 3 and Figure 4 How many times did you create a sample with 100 grains to make these distributions
in Figure 4? It seems like the results could really vary with the number of 100 grain samples? Also, some
explanation of the boxplots is needed to evaluate the results. What are the horizontal lines at the top
and bottom ends of the distributions? This information is needed to validate that the two predictions
actually provide similar results. Can you provide the actual numeric values of the 99%confidence interval
bounds for the two methods in the figures to enable quantitative comparisons?

We have re-written the entire section with these comments in mind. We repeat the kind of bootstrap error estimates
presented by Rice and Church (1996), and make a more extensive comparison of the binomial predictions and
the bootstrap estimates. We ended up taking 5000 samples from the population to ensure that the distributions
of estimates stabilized. In addition, the entire analysis was repeated using samples from a synthetic log normal
population of 1,000,000 observations; the re-analysis yielded nearly identical results.
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5 Reviewer 1: Specific comments

The reviewer also provides a list of specific comments that will improve the paper, listed below, followed by our
response to them.

P 1 L 21-22 For facies mapping, my understanding of the Bu�ngton approach is not that it is meant to
be purely qualitative as implied here. They have visual classification of patches that are then verified by
numerous pebble counts on the patches. So their approach likely provides a more accurate representation
of the grain size distribution because they use many pebble counts in a single reach.

This is a good point, and we now refer to semi-qualitative methodologies to avoid the issue.

P3 L5 Missing word(s) here.

This text has been deleted during the revisions.

P4 L 12-16 Please state if this text is for a specific sample (e.g. the data shown in Figure 1), right now it
seems to be written as if it applies to all grain size measurements but I don’t think that is actually the
case?

It is in fact true for the percentile confidence interval for all samples, but not the grain size confidence interval (which
depends on the shape of the cumulative frequency distribution for the sample in question). We have made extensive
edits to existing sections and we have added an overview section that addresses this point explicitly.

P4 L 15-16 Please explain what you mean by 19 times out of 20. I’m not clear why these exact numbers
are chosen instead of a percent of trials. It is also not clear how this percent of trails was calculated or
how the range of 159-180 was determined.

This section of the paper has been re-written and is augmented by the new overview section that now better explains
the how the bounds to the percentile confidence intervals are determined.

P4 L 21-23 Stating that the area under the tails di↵ers is pretty vague. Do you mean tails of the
distribution? How are the tails of the distribution defined? Please state why these di↵erent areas are
problematic. Similarly, upper and lower limits of what exactly? What do you mean by a one-sided
interval and how does this relate to your calculations? I can guess what you mean but the lack of
language specificity here makes your text somewhat di�cult to follow.

This section has been re-written to improve clarity, and is also augmented by Appendix A, which describes how the
confidence interval bounds are determined using the more familiar normal approximation to the binomial distribution.
We have also added text to the caption of the figure that explicitly references the distribution tails. We also define
one-tailed distributions (though admittedly it remains a technical, statistical definition).

Figure 3 More details are needed as to how the grain size data were collected, through a random sample
or grid count? Were the samples in di↵erent locations on stream table and using the same or di↵erent
operators? It is a little di�cult to see the confidence bounds in this figure to assess overlap of various
distributions, not sure though how you can easily address this problem.

This figure has been deleted during the re-write of the paper. The main point is that we have a population of 3411
measurements that we can use to replicate the bootstrap error calculations performed by Rice and Church (1996).
Since the time and space distribution of the sub-samples used to generate this population is never referred to in the
rest of the paper, we chose to delete the figure and simplify the text. Where this population is first introduced, we
provide a bit more information about the sampling, as requested. The sentence in the paper reads “the population
shown is defined by 3411 measurements of bed surface b-axis diameters at randomly selected locations in the wetted
channel of a laboratory experiment performed by the authors.”

P 7 L 8 typo here

Fixed
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Figure 5. I appreciate this reanalysis but I don’t think that you can say that the distributions are
statistically similar or di↵erent without a similar confidence bound on the bulk sample data. Previous
studies have demonstrated that bulk samples also have considerable uncertainty depending on the size of
the actual bulk sample and the portion of the sample that is occupied by the largest grain sizes. So the
bulk sample is also not free from uncertainties and this needs to be acknowledged.

This is a fair point. Given that we have added new sections and figures to the paper, and that we have extended our
comparison of our method to previous methods, we chose to remove this figure and the associated analysis.

P 8 L 3-5 The statement that fine sediment would be deposited preferentially in the pool rather than in
the run/ri✏e during the waning limb of the preceding hydrograph needs some references to support it.

We have added references to some of the seminal work on this topic.

P 12 L 6-7 Please explain why you are assuming the standard deviation of the distribution is related to
logD84-logD50.

To make the paper clearer and to improve the comparability of the field data and the results of the log normal
simulations, we now use a sorting index (�84 � �16) to quantify the spread of the distribution. This is, we think, a
clearer way of conveying what we did without introducing unnecessary complications.

P 12 L 10-12 I do not entirely why you are simulating log-normal samples with this given range of D50
values and SDlog values? How were these distributions simulated by defining D50 and SDlog beforehand?
Figure 10 does not seem to be referenced or explained anywhere in the text.

We have added edits at various points in this section to make a few points related to this comment. We point
out that the purpose of this section of the paper is simply to provide some guidance to choosing an appropriate
sample size, and that this is a secondary objective of the paper (the primary objective being the articulation of the
importance and relative ease of generating confidence intervals about bed surface grain size distributions). We also
now clearly state that we approach this problem first using a set of field data to estimate the grain size uncertainty
associated with di↵erent sample sizes, and second by using log normal distributions to quantify the e↵ect of data
spread, indexed by standard deviation. We generated the log normal distributions using the rnorm function in R
(e.g. GSD = 2^rnorm(n = 352, mean = 5.6, sd = 1.3)).

P 13 L. 14-22 More details are needed as to how you estimated that this grain size is entrained at a
certain shear stress and discharge. Did you use Shields equation? What critical Shields stress did you
assume? How did you then translate this shear stress into a discharge beyond using a stage-discharge
relation; did you have a measured channel bed slope and are you assuming stage is equivalent to the
average flow depth in a reach? What is the basis of the assumption that D50 becomes fully mobile at
twice the shear stress needed to initiate D50 movement? Some rational and supporting references are
needed to support this argument. I am also a little confused about this uncertainty in grain size because
all of these sizes (46, 55, 64 mm) are essentially in the same half-phi bin. I may be mistaken but if you
have binned your data into half phi intervals for this analysis, wouldn’t you expect a similar, although
likely smaller, level of uncertainty in the D50 anyway? This uncertainty would occur because you are
deter- mining the measured stream bed D50 value (55 mm) by interpolation between the two percentiles
straddling the 50th percentile value, and these two bounding percentiles correspond to grain size bins 45
and 64 mm. But you do not actually have any grain size resolution finer than half phi bin size. So when
you calculate a median grain size of 55 mm, you are interpolating this grain size to a finer resolution
than you actually have data. Doesn’t this already seem to imply that your uncertainty in D50 might be
somewhere within a half phi bin size when you only have binned data, depending of course on how the
actual grain sizes are distributed within that half phi bin?

We now explain how we determined the entrainment threshold (visual observation of painted tracers, confirmed to
occur at a dimensionless shear stress of about 0.045). The other details of the methodology to estimate shear stress
are described in the referenced papers. We have added a reference supporting full mobility at twice the entrainment
threshold. The issue of interpolation using binned data, and the accuracy of that kind of data relative to individual
measurements of b axis diameters is now addressed in the overview section and in the re-written statistical basis
section. In particular, our new Fig. 3 demonstrates that the di↵erences between binned data and interpolations from
cumulative data are small compared to the sampling confidence interval, which means that, in practice, binned data
can be treated as if they were not binned.
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P 15 L 12-13 Although I certainly agree that having more than 100 sampled particles would be better for
uncertainties in most studies, these time estimates assume a team of people performing pebble counts.
Having conducted a very large number of pebble counts on my own, these can take much longer than 20
minutes. The time also really depends as to whether you are binning grain sizes or measuring individual
b axes. Finally, setting up and finding grains on a grid also adds to the pebble count time, so I would
argue that this 20 minute estimate is a minimum.

We have added a note to this section of the paper that does acknowledge the di�culties of collecting large samples
in arduous conditions.
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Abstract. Most studies of gravel bed rivers present at least one bed surface grain size distribution, but there is almost never

any information provided about the uncertainty of the percentile estimates. We present a simple method for estimating the

::::
grain

::::
size confidence intervals about the grain size

:::::
sample

:
percentiles derived from standard Wolman or pebble count samples

of bed surface texture. Our approach uses binomial probability theory to generate confidence intervals for all grain sizes in

the distribution. We
:::
The

:::::
width

::
of

::
a

::::
grain

::::
size

:::::::::
confidence

:::::::
interval

:::::::
depends

:::
on

:::
the

:::::::::
confidence

::::
level

:::::::
selected

:::
by

:::
the

::::
user

:::::
(e.g.,5

:::::::
↵= 0.05

:::
for

::
a

::::
95%

:::::::::
confidence

::::::::
interval),

:::
the

::::::
number

::
of

::::::
stones

:::::::
sampled

::
to

:::::::
generate

:::
the

::::::::::
cumulative

::::::::
frequency

::::::::::
distribution,

::::
and

::
the

:::::
shape

::
of
:::
the

:::::::::
frequency

:::::::::
distribution

:::::
itself.

:::
For

::
a

::::
95%

:::::::::
confidence

:::::::
interval,

:::
the

:::
true

:::::
grain

:::
size

::
of

:::
the

:::::::::
underlying

:::::::::
population

::::
will

:::
fall

:::::
within

:::
the

::::::::::
confidence

::::::
interval

:::
for

:::
the

::::::
sample

:::::
95%

::
of

:::
the

::::
time.

::::
The

:::::::
method

::::
uses

:::::::
binomial

::::::
theory

::
to

::::::::
calculate

:
a
:::::::::
percentile

:::::::::
confidence

::::::
interval

:::
for

::::
each

::::::::
percentile

::
of

:::::::
interest,

::::
then

:::::
maps

:::
that

:::::::::
confidence

:::::::
interval

::::
onto

:::
the

:::::::::
cumulative

::::::::
frequency

::::::::::
distribution

::
of

:::
the

::::::
sample

::
in

::::
order

:::
to

:::::::
calculate

:::
the

:::::
more

:::::
useful

:::::
grain

:::
size

:::::::::
confidence

:::::::
interval.

::::
The

:::::::
validity

::
of

:::
this

::::::::
approach

::
is

::::::::
confirmed

:::
by10

:::::::::
comparing

::
the

::::::::::
predictions

::::
using

::::::::
binomial

:::::
theory

::::
with

::::::::
estimates

::
of

:::
the

:::::
grain

:::
size

:::::::::
confidence

:::::::
interval

::::
based

:::
on

:::::::
repeated

::::::::
sampling

::::
from

:
a
::::::
known

:::::::::
population.

:::
We

::::
also

:::::::::
developed

:
a
::::::::::
two-sample

:::
test

::
of

:::
the

:::::::
equality

::
of

:
a
:::::
given

::::
grain

::::
size

::::::::
percentile

:::::
(e.g.,

::::
D50),

::::::
which

:::
can

::
be

::::
used

::
to

::::::::
compare

:::::::
different

:::::
sites,

:::::::
sampling

::::::::
methods

::
or

::::::::
operators.

::::
The

:::
test

:::
can

:::
be

::::::
applied

::::
with

:::::
either

:::::::::
individual

::
or

::::::
binned

::::
grain

::::
size

::::
data.

::::::
These

:::::::
analyses

::::
are

:::::::::::
implemented

::
in

:::
the

:::::
freely

::::::::
available

:
GSDtools

:::::::
package,

:::::::
written

::
in

:::
the

::
R
:::::::::
language.

::
A

::::::
solution

:::::
using

:::
the

::::::
normal

:::::::::::::
approximation

::
to

:::
the

:::::::
binomial

::::::::::
distribution

::
is

:::::::::::
implemented

::
in

:
a
:::::::::::
spreadsheet.

::::::::
Applying

:::
our

::::::::
approach15

::
to

::::::
various

:::::::
samples

::
of

::::
grain

::::
size

::::::::::
distributions

::
in

:::
the

:::::
field,

::
we

:
find that the standard sample size of 100 observations is associated

with errors
:::::::
typically

:::::::::
associated

::::
with

::::::::::
uncertainty

::::::::
estimates

:
ranging from about ±15% to ±30%, which may be unacceptably

large for many applications. In comparison, a sample of 500 stones produces an uncertainty
:::::::::
uncertainty

::::::::
estimates

:
ranging

from about ±9% to ±18%. In order to help workers develop appropriate sampling approaches that produce the desired level

of precision, we present simple equations that approximate the proportional uncertainty associated with the median size and20

the 84th percentile
:::
50th

::::
and

::::
84th

:::::::::
percentiles

:
of the distribution as a function of the sample size and the standard deviation of

the distribution, assuming that the underlying distribution is log-normal. However, the
:::::
sorting

::::::::::
coefficient;

:::
the true uncertainty

of any sample
:::::::
depends

:::
on

:::
the

:::::
shape

::
of

:::
the

:::::::
sample

::::::::::
distribution,

::::
and can only be accurately estimated once the sample has

1



been collected, so these simple equations complement – but do not replace – the basic uncertainty analysis using binomial

probability theory.25

1 Introduction

A common task in geomorphology is to estimate one or more percentiles of a particle size distribution, denoted Dp:::
DP , where

D represents the particle diameter (mm) and the subscript p
::
P indicates the percentile of interest. Such estimates are typically

used in calculations of flow resistance, sediment transport, and channel stability; they are also used to track changes in bed

condition over time, and to compare one site to another. In fluvial geomorphology, commonly used percentiles include D5030

(which is the median) and D84.
::
In

:::::::
practice,

::::::::
sampling

::::::::::
uncertainty

:::
for

:::
the

:::::::::
estimated

::::
grain

:::::
sizes

::
is
::::::
almost

:::::
never

::::::::::
considered

:::::
during

::::
data

:::::::
analysis

::::
and

:::::::::::
interpretation.

:::::
This

:::::
paper

::::::::
presents

:
a
::::::
simple

::::::::
approach

:::::
based

:::
on

:::::::
binomial

::::::
theory

:::
for

:::::::::
calculating

:::::
grain

:::
size

:::::::::
confidence

::::::::
intervals,

:::
and

:::
for

::::::
testing

:::::::
whether

::
or

:::
not

:::
the

:::::
grain

:::
size

::::::::::
percentiles

::::
from

::::
two

::::::
samples

:::
are

::::::::::
statistically

::::::::
different.

Various methods for measuring bed surface sediment texture have been reviewed by previous researchers (???). While some

approaches have focused on using qualitative
::::::::::::
semi-qualitative

:
approaches such as facies mapping (e.g. ?), or visual estimation35

procedures (e.g. ?), the most common means of characterizing the texture of a gravel bed surface is still the cumulative

frequency analysis of some version of the pebble count (????). Pebble counts are sometimes completed by using a random

walk approach, wherein the operator walks along the bed of the river, sampling those stones that are under the toe of each boot

and recording the b-axis diameter. In other cases, a regular grid is superimposed upon the sedimentological unit to be sampled,

and the b-axis diameter of all the particles under each vertex is measured. In still other cases, computer-based photographic40

analysis identifies the b-axis of all particles in an image of the bed surface. Data are typically reported as cumulative grain size

distributions for 0.5� size intervals (e.g., 8 - 11.3 mm, 11.3 to 16 mm, 16 - 22.7 mm, 22.7
:::
22.6

::::
mm,

:::::
22.6 - 32 mm, and so

on), from which the grain sizes corresponding to various percentiles are extracted. Attempts to characterize the uncertainty of

this approach have focused on estimating the uncertainty of D50, and have typically assumed that the underlying distribution is

log normal (???). Attempts to characterize the uncertainty associated with other percentiles besides the median have relied on45

statistical analysis of extensive field data sets (????), and do not provide an easy means of calculating the sample size required

to achieve a given confidence level.

Operator error and the technique used to randomly select bed particles have frequently been identified as important sources

of uncertainty
::
in

:::
bed

:::::::
surface

:::::::
samples

:
(????), but the largest source of uncertainty in many cases is likely to be sampling

variability, which is a function of sample size
::::::::
associated

:::::
with

::::::
sample

::::
size,

:::::::::
particularly

:::
for

::::::::
standard

:::::
pebble

::::::
counts

::
of

:::::
about

::::
10050

:::::
stones. Unfortunately, the magnitude of the confidence interval

::::::::
bounding

::
an

:::::::::
estimated

::::
grain

::::
size

:
is seldom calculated and/or

reported, and the implications of this uncertainty are – we believe – generally under-appreciated. To address this issue, we

believe that it should become standard practice to calculate and graphically present the confidence intervals about surface grain

size distributions.

:::
For

:::
the

::::
most

:::::
part,

:::::::
attempts

::
to

::::::::::
characterize

:::
the

::::::::::
uncertainty

::
of

::::::
pebble

::::::
counts

::::
have

:::::::
focused

:::
on

:::::::::
estimating

:::
the

:::::::::
uncertainty

:::
of55

::::
D50,

:::
and

:::::
have

:::::::
typically

::::::::
assumed

:::
that

:::
the

:::::::::
underlying

::::::::::
distribution

::
is

:::
log

::::::
normal

:::::
(???)

:
;
:::::
when

::::
used

::
to

:::::::::
determine

:::
the

::::::
number

:::
of

2



:::::::::::
measurements

::::::::
required

::
to

:::::
reach

:
a
:::::
given

::::
level

::
of

::::::
sample

:::::::::
precision,

::::
these

::::::::::
approaches

::::
also

::::::
require

:::
that

:::
the

::::::::
standard

::::::::
deviation

::
of

::
the

::::::::::
underlying

:::::::::
distribution

:::
be

::::::
known,

::::::::::
beforehand.

:

:::::::
Attempts

:::
to

::::::::::
characterize

:::
the

::::::::::
uncertainty

:::::::::
associated

:::::
with

:::::
other

:::::::::
percentiles

:::::::
besides

:::
the

:::::::
median

::::
have

::::::
relied

::
on

:::::::::
empirical

::::::
analysis

:::
of

::::::::
extensive

::::
field

::::
data

::::
sets

::::::
(????)

:
,
:::::
which

:::::::
cannot

::
be

::::::
easily

::::::
applied

:::
to

::::::
pebble

::::::
counts

::::
from

:::::
other

::::::
gravel

:::
bed

::::::
rivers60

:::::
having

::
a
:::::::
different

:::::::::
population

::
of

:::::
grain

:::::
sizes.

:::::::
Perhaps

::::::
because

::
of

:::
the

::::::::::
complexity

:::::::
involved

::
in

::::::::
extending

:::
the

:::::
grain

::::
size

:::::::::
confidence

:::::::
intervals

:::::
about

:::
the

::::::
median

::
to
:::

the
::::

rest
::
of

:::
the

::::::::::
distribution,

::::::::::
researchers

::::::
almost

:::::
never

::::::
present

:::::::::
confidence

::::::::
intervals

::
on

::::::::::
cumulative

::::::::
frequency

::::::::::
distribution

:::::
plots,

::
or

::::::::
constrain

::::::::::
comparisons

::
of

::::
one

:::::::::
distribution

::
to
:::::::
another

::
by

::::
any

:::::::
estimate

::
of

::::::::
statistical

:::::::::::
significance.

:::::
While

:::::
others

:::::
have

:::::::::
recognized

:::
the

:::::::::
limitations

:::
of

::::::::
relatively

:::::
small

::::::
sample

::::
sizes

::::::
(????)

:
,
:
it
::::

still
::::::
seems

::
to

::
be

::::::::
standard

:::::::
practice

::
to

:::
rely

:::
on

::::::
surface

:::::::
samples

::
of

:::::
about

:::
100

:::::::::::
observations.

:
65

::
?

::
do

::::::
present

::
a
::::::
means

::
of

:::::::::
generating

::::::::::
confidence

:::::::
intervals

:::::::::
bounding

:
a
:::::

grain
::::

size
:::::::::::

distribution.
:::::
They

::::::
present

::
a
:::::::
method

:::
for

::::::::::
determining

:::
the

::::::::
minimum

::::::
sample

::::
size

:::::::
required

::
to

::::::
achieve

::
a
::::::
desired

::::
level

:::
of

::::::
sample

::::::::
precision

::::
using

:::
the

:::::::
normal

::::::::::::
approximation

::
to

:::
the

:::::::
binomial

::::::::::
distribution,

:::::::
wherein

::::::::::
uncertainty

::
is

::::::::
expressed

::
in

:::::
terms

::
of

:::
the

::::::::
percentile

:::::
being

:::::::::
estimated

::::
(i.e.,

::::
they

:::::::
estimate

:::
the

::::::::
percentile

:::::::::
confidence

::::::::
interval),

:::
but

:::
not

:::
in

:::::
terms

::
of

:::::
actual

:::::
grain

:::::
sizes

::::
(i.e.,

:::
the

:::::
grain

::::
size

:::::::::
confidence

::::::::
interval).

::
?

::::::::::
demonstrate

:::
that

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

::::::::
predicted

:::
by

::
?
::
is

::::::
similar

::
to
::::

the
::::::::
empirical

::::::::
estimates

::::::::
produced

:::
by

::
?,
:::::

who
:::::::::
repeatedly70

::::::::::
sub-sampled

:
a
::::::
known

:::::::::
population

::
of

:::::
grain

::::
size

:::::::::::
measurements

::
in
:::::
order

::
to

:::::::
quantify

:::
the

:::::::::
confidence

:::::::
interval;

::::
they

::::
also

::::::::::
recommend

::::::
plotting

:::
the

:::::::::
confidence

::::::::
intervals

::
on

:::
the

:::::::
standard

::::::::::
cumulative

:::::::::
distribution

:::::
plots

::
as

::
an

::::
easy

::::
way

::
of

:::::::::
visualizing

:::
the

:::::::::::
implications

::
of

:::::::
sampling

::::::::::
uncertainty.

::
It

::
is

:::::
worth

::::::
noting

:::
that

:::
the

:::::::
primary

:::::
focus

::
of

:::
the

::::::::
previous

:::::::
analyses

:::
has

::::
been

:::::::
directed

:::::::
toward

::::::::::
determining

::
the

:::::::
sample

:::
size

::::::::
necessary

::
to

:::::::
achieve

:
a
:::::
given

::::
level

::
of

::::::
sample

:::::::::
precision;

:
it
:::
has

:::
not

:::::
been

::::::
adapted

::
to
:::
the

:::::::
analysis

:::
and

::::::::::::
interpretation

::
of

::::::
surface

::::::::::
distribution

:::::::
samples,

::::
once

::::
they

::::
have

:::::
been

::::::::
collected.75

:
A
:::::::

number
:::
of

::::::
studies

::::
have

:::::::::
compared

:::::
grain

::::
size

::::::::::
distributions

:::
for

::::
two

::
or

:::::
more

:::::::
samples

:::
to

:::::
assess

::::::::::
differences

::::::
among

:::::
sites,

:::::::
sampling

::::::::
methods

::
or

::::::::
operators

::::::::
(??????).

::
A

::::::
simple

::::::::
approach

:::::
would

:::
be

::
to

:::::::
construct

::::::::::
confidence

:::::::
intervals

:::
for

:::
the

:::
two

:::::::::
estimates.

:
If
:::
the

:::::::::
confidence

::::::::
intervals

::
do

:::
not

:::::::
overlap,

::::
one

:::
can

:::::::
conclude

::::
that

:::
the

::::::::
estimates

:::
are

::::::::::
significantly

:::::::
different

::
at
:::
the

:::::::::
confidence

:::::
level

::::
used

::
to

:::::::
compute

:::
the

:::::::
intervals

:::::
(e.g.,

:::::
95%);

::::
and

::
if

:
a
::::::::
percentile

::::::::
estimate

::::
from

:::
one

:::::::
sample

::::
falls

:::::
within

:::
the

:::::::::
confidence

:::::::
interval

:::
for

::
the

:::::
other

:::::::
sample,

::::
then

:::
one

::::::
cannot

:::::
reject

:::
the

::::
null

:::::::::
hypothesis

::::
that

:::
the

::::::::
percentile

::::::
values

:::
are

:::
the

:::::
same.

::::::::
However,

:::
the

::::::::::
conclusion80

:
is
::::::::::
ambiguous

:::::
when

::
the

::::::::::
confidence

:::::::
intervals

:::::::
overlap

:::
but

::
do

:::
not

:::::::
include

::::
both

::::::::
estimates;

::::
even

:::
for

::::::::::
populations

::::
with

:::::::::::
significantly

:::::::
different

::::::::
percentile

::::::
values,

::
it

::
is

:::::::
possible

::
for

:::
the

:::::::::
confidence

::::::::
intervals

::
to

:::::::
overlap.

::::::::
Therefore,

:::::
there

::
is

:
a
::::
need

:::
for

:
a
:::::::
method

::
to

:::::
allow

:::::::::
two-sample

:::::::::
hypothesis

::::
tests

:::
of

:::
the

::::::
equality

:::
of

::::::::
percentile

::::::
values.

:

The objective of this note is introduce a
::
to

::::::::
introduce

:
robust, distribution-free approach to computing confidence intervals

:::::::::
approaches

::
to
::::

(a)
:::::::::
computing

:::::::::
percentile

:::::::::
confidence

::::::::
intervals

::::
and

::::
then

::::::::
mapping

:::::
them

::::
onto

::
a
:::::
given

::::::::::
cumulative

:::::::::
frequency85

:::::::::
distribution

:::::
from

::
a

:::::::
standard

::::::
pebble

::::::
count

::
in

:::::
order

::
to
::::::::

estimate
:::
the

:::::
grain

::::
size

::::::::::
confidence

::::::
interval

::::
for

:::
the

:::::::
sample,

::::
and

:::
(b)

:::::::::
conducting

::::::::::
two-sample

:::::::::
hypothesis

::::
tests

:::
of

:::
the

:::::::
equality

:::
of

::::
grain

::::
size

:::::::::
percentile

::::::
values.

::::
The

::::::::::
approaches

:::
can

:::
be

::::::
applied

::::
not

::::
only

::
in

::::
cases

::
in
::::::
which

::::::::
individual

:::::
grain

::::::::
diameters

:::
are

:::::::::
measured,

:::
but

::::
also

::
to

:::
the

:::::::
common

:::::::
situation

:::
in

:::::
which

:::::
grain

::::::::
diameters

:::
are

:::::::
recorded

::::::
within

::::::::
phi-based

::::::
classes,

:::
so

::::
long

::
as

:::
the

::::::
number

::
of

::::::
stones

:::::::
sampled

::
to

:::::
derive

:::
the

:::::::::
cumulative

::::::::::
distribution

::
is

:::
also

:::::::
known.

90
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:::
The

:::::::
primary

:::::::
purpose

:::
of

:::
this

:::::
work

::
is

::
to

:::::
guide

::::
the

:::::::
analysis

:::
and

::::::::::::
interpretation

::
of

:::
the

:::::
grain

::::
size

::::::::
samples.

:::::
While

:::::
grain

::::
size

:::::::::
confidence

:::::::
intervals

:::
are

::::
most

:::::::::
applicable

::::
when

:::::::::
comparing

::::
two

:::::::
samples

:
to
::::::::
ascertain

:::::::
whether

::
or

:::
not

::::
they

::
are

::::::::::
statistically

::::::::
different,

::
we

::::
also

::::::::::
demonstrate

::::
how

::::::::::
knowledge

::
of

:::::
grain

:::
size

::::::::::
uncertainty

:::::
could

::
be

:::::::
applied

::
in

:
a
:::::::::::

management
:::::::
context,

::::::
where

::::
flood

::::::
return

:::::
period

::
is

:::::
linked

::
to

:::::::
channel

::::::::
instability

::::
(for

::::::::
example).

:::
As

:::
we

::::::::::
demonstrate

::
in

:::
the

:::::
paper,

:::::::::
percentile

:::::::::
uncertainty

::
is

::::::::::::::
distribution-free,

:::
and

:::
can

:::
be

::::::::
estimated

:::::
using

:::::::
standard

:::::::
look-up

:::::
tables

::::::
similar

::
to

::::
those

:::::
used for percentile estimates. We then use this approach to95

demonstrate that the higher percentiles, such as
:::::
t-tests,

:::
or

::::
using

:::
the

:::::::
normal

::::::::::::
approximation

::
to

:::
the

:::::::
binomial

::::::::::
distribution

:::::::
referred

::
to

::
by

::
?
::::
(see

::::::::
Appendix

:::
A).

::::::::::
Translating

::::::::
percentile

::::::::::
confidence

:::::::
intervals

::
to
:::::
grain

::::
size

:::::::::
confidence

::::::::
intervals

:::::::
requires

::::::::::
information

::::
about

:::
the

:::::
grain

::::
size

::::::::::
distribution,

:::
but

::
is

:::::::::
essentially

:
a
::::::::
mapping

:::::::
exercise,

:::
not

::
a

::::::::
statistical

::::
one.

:::
We

:::::::::
implement

::::
both

:::
the

:::::::::
estimation

::
of

:
a
:::::::::
percentile

:::::::::
confidence

:::::::
interval

:::
and

::::
the

:::::::
mapping

:::
of

:
it
:::::

onto
:
a
:::::
grain

::::
size

:::::::::
confidence

:::::::
interval

:::::
using:

:::
(1)

::
a
::::::::::
spreadsheet

::::
that

::
we

:::::::
provide

:::::
which

::::
uses

::::
the

::::::
normal

::::::::::::
approximation

::
to

:::
the

::::::::
binomial

::::::::::
distribution,

::::::::
described

:::
by

:::
(?);

::::
and

:::
(2)

::
an

::
R
:::::::
package

::::::
called100

GSDtools
:::
that

:::
we

::::
have

::::::
written

:::
for

::::
this

:::::::
purpose

:::
that

::::
uses

:::
the

::::::::
statistical

::::::::
approach

::::::::
described

::
in

::::
this

:::::
paper.

::
A

::::::::::::
demonstration

::
is

:::::::
available

::::::
online

::
at https://bceaton.github.io/GSDtools_demo_2019.nb.html,

:::::
which

::::::::
provides

::::::::::
instructions

::
for

::::::::
installing

::::
and

:::::
using

:::
the

:
GSDtools

:::::::
package;

::::
the

::::::::::::
demonstration

::
is

::::
also

:::::::
included

:::
in

:::
the

::::
data

:::::::::
repository

::::::::
associated

:::::
with

:::
this

:::::
paper.

:::::::
Finally,

:::
we

:::
use

::::
both

:::::::
existing

::::
data

:::
sets

::::
and

:::
the

:::::
results

:::::
from

:
a
::::::
Monte

:::::
Carlo

:::::::::
simulation

::
to

:::::::
develop

:::::::::::::::
recommendations

::::::::
regarding

:::
the

::::::
sample

::::
sizes

::::::::
required

::
to

:::::::
achieve

:
a
:::::::::::::
pre-determined

::::::::
precision

:::
for

::::::::
estimates

::
of

:::
the

::::
D50::::

and
:::
the

:
D84, are subject105

to substantial uncertainty for typically used sample sizes, and that this uncertainty translates into significant uncertainty in

estimates of sediment entrainment thresholds. We then provide recommendations regarding sample sizes for estimating particle

size percentiles.

2 Statistical basis
::::::::::
Calculating

::::::::::
confidence

:::::::
intervals

2.1
::::::::

Overview110

The key to our approach is that the estimation of any grain size quantile Dp ::::::::
percentile can be treated as a binomial experi-

mentduring which
:
,
:::::
much

:::
like

:::::::::
predicting

:::
the

::::::::
outcome

::
of

::
a

:::::::::::
coin-flipping

::::::::::
experiment.

:::
For

::::::::
example,

:::
we

:::::
could

::::
toss

:
a
::::
coin

::::
100

::::
times

::::
and

:::::
count

:::
the

::::::
number

:::
of

:::::
times

:::
the

::::
coin

::::
lands

:::::::::
head-side

:::
up.

:::
For

::::
each

::::
toss

:::
(of

:
a
:::
fair

:::::
coin,

::
at

:::::
least),

:::
the

::::::::::
probability

:::
(p)

::
of

::::::::
obtaining

:
a
::::
head

::
is
:::::
0.50.

:::
The

:::::::
number

::
of

:::::
times

::::
that

::
we

:::
get

:::::
heads

::::::
during

:::::::
repeated

:::::::::::
experiments

:::::::::
comprising

::::
100

::::
coin

:::::
tosses

::::
will

::::
vary

::::
about

::
a
:::::
mean

::::
value

:::
of

:::
50,

::::::::
following

:::
the

:::::::
binomial

::::::::::
distribution

::::
(see

:::
Fig.

::::
??).

:
115

:::
The

:::::::::
probability

:::
of

::::::
getting

:
a
:::::::
specific

::::::
number

::
of

:::::
heads

:::::
(Bk)

:::
can

::
be

:::::::::
computed

::::
from

:::
the

::::::::
binomial

::::::::::
distribution:

:

Bk(k,n,p) = pk(1� p)n�k n!

k!(n� k)!
:::::::::::::::::::::::::::::::

(1)

::
for

::::::
which

:
k
::

is
:::
the

:::::::
number

::::::::
successes

:::
(in

::::
this

::::
case,

:::
the

:::::::
number

::
of

::::::
heads)

::::::::
observed

:::::
during

::
n
:::::
trials

:::
for

:::::
which

:::
the

:::::::::
probability

:::
of

::::::
success

::
is

::
p.

::::
The

::::::::::
probabilities

:::
of

::::::::
obtaining

:::::::
between

:::
40

:::
and

:::
60

:::::
heads

::::::::
calculated

:::::
using

::::
Eq.

::
??

:::
are

::::::
shown

::
in

::::
Fig.

:::
??.

::::
The

::::
sum

::
of

::
all

:::
the

:::::::::::
probabilities

::::::
shown

::
in

:::
the

:::::
figure

::
is

::::
0.96,

::::::
which

:::::::::
represents

:::
the

:::::::
coverage

::::::::::
probability,

:::
Pc,

:::::::::
associated

::::
with

:::
the

:::::::
interval120

::::
from

::
40

::
to
:::
60

:::::::::
successes.
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Figure 1.
:::::::
Binomial

:::::::::
probability

::::::::
distribution

:::
for

:::::::
obtaining

:::::::
between

::
40

:::
and

:::
60

:::::::
successes

::
in

:::
100

::::
trials

:::::
when

::
the

:::::::::
probability

::
of

::::::
success

::
is

:::
0.5.

:::
The

:::::::::
probabilities

:::
for

::::
each

::::::
outcome

:::
are

::::::::
calculated

::::
using

:::::
Eq.??.

:::
We

:::
can

:::::
apply

:::
this

::::::::
approach

::
to

:
a
:::
bed

::::::
surface

:::::
grain

:::
size

:::::::
sample.

:::::::
Imagine

:::
that

:::
we

:::
are

::::::::
sampling

:
a
:::::::::
population

::
of

::::::
surface

::::::::
sediment

::::
sizes

:::
like

::::
that

::::::
shown

::
in

:::
Fig.

::::
??a,

:::
for

:::::
which

:
the

:::
true

::::::
median

:::::
grain

:::
size

:::
of

::
the

::::::::::
population

:::::
(D50)

::
is

:::::
known

::::
(the

:::::::::
population

::::::
shown

:
is
:::::::
defined

::
by

:::::
3411

:::::::::::
measurements

:::
of

:::
bed

::::::
surface

:
b-axis diameter of n particles is measured, some of which will be smaller than

the true value of Dp for the population of grains on the bed,
::::::::
diameters

::
at

::::::::
randomly

:::::::
selected

::::::::
locations

::
in

:::
the

::::::
wetted

:::::::
channel

::
of125

:
a
:::::::::
laboratory

:::::::::
experiment

:::::::::
performed

::
by

:::
the

:::::::
authors,

::::
and

:::
has

:
a
:::::::
median

::::::
surface

:::
size

:::
of

:::
1.7

::::
mm).

:::
We

:::::
know

::::
that

:::
half

:::
of

::
the

:::::::
surface

:::::
grains

:::
are

::::::
smaller

:::::
than

:::
the

::::
D50,

:::
so

::
for

:::::
each

:::::
stone

:::
that

:::
we

::::::
select,

:::
the

:::::::::
probability

:::
of

:
it
::::::

being
::::::
smaller

::::
than

:::
the

::::
D50::

is
:::::
0.50.

::
If

::
we

::::::::
measure

:::
100

::::::
stones

:::
and

::::::::
compare

::::
them

::
to

:::
the

:::::
D50,

::::
then

:::::::
binomial

::::::::
sampling

::::::
theory

::::
tells

::
us

::::
that

:::
the

:::::::::
probability

::
of

::::::::
selecting

::::::
exactly

::
50

::::::
stones

:::
that

:::
are

::::
less

::::
than

:::
D50::

is
::::
just

::::
0.08,

:::
but

::::
that

::
the

::::::::::
probability

::
of

::::::::
selecting

:::::::
between

::
40

:
and some of which will be

larger.For repeated samples
::
60

::::::
stones

:::
less

::::
than

::::
D50::

is
::::
0.96

::::
(see

::::
Fig.

:::
??).

:
130

:::::
Figure

::::
??b

:::::
shows

::
a
:::::::
random

::::::
sample

::
of

::::
100

:::::
stones

:::::
taken

:
from the population , the number of measured stones that will be

:::::
shown

::
in

::::
Fig.

::::
??a.

:::::
Each

:::::
circle

::::::::
represents

::
a
::::::::
measured

::::::
b-axis

::::::::
diameter,

:::
and

:::
all

:::
100

::::::::::::
measurements

:::
are

:::::::
plotted

::
as

:
a
::::::::::
cumulative

::::::::
frequency

::::::::::
distribution;

:::
the

::::::
median

::::::
surface

::::
size

::
of

:::
the

::::::
sample,

::::
d50,

::
is

::
1.5

::::
mm.

:::::
There

:::
are

:::::
clear

:::::::::
differences

:::::::
between

:::
the

:::::::::
distribution

::
of

:::
the

::::::
sample

:::
and

:::
the

:::::::::
underlying

::::::::::
population,

:::::
which

::
is

::
to

::
be

:::::::::
expected.

:::
The

::::
first

::::
step

::
in

:::::::::
calculating

:
a
:::::
grain

::::
size

:::::::::
confidence

::::::
interval

::::
that

::
is

:::::
likely

::
to

:::::::
contain

:::
the

:::
true

:::::::
median

::::
value

:::
of

:::
the

:::::::::
population135

:
is
::
to
::::::
choose

::
a
:::::::::
confidence

:::::
level;

::
in

:::
this

::::::::
example,

:::
we

:::
set

:::
the

:::::::::
confidence

::::
level

::
to

:::::
0.96,

::::::::::::
corresponding

::
to

:::
the

:::::::
coverage

::::::::::
probability

:::::
shown

::
in
::::

Fig.
::::

??.
:::
As

:
a
::::::
result,

:::
the

::::
true

:::::
value

::
of

:::
the

::::
D50::::

will
::::

fall
:::::::
between

:::
the

:::::::
sample

:::
d40::::

and
:::
the

::::::
sample

::::
d60 ::::

96%
:::
of

:::
the

::::
time.

::::
This

:::::::::
represents

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

:::
(see

::::
Fig.

:::::
??c),

:::
and

::
it
::::
does

::::
not

::::::
depend

:::
on

:::
the

:::::
shape

::
of

:::
the

:::::
grain

::::
size

::::::::::
distribution.

:::
For

::::::::
reference,

::
a
::
set

:::
of

::::::::
percentile

:::::::::
confidence

:::::::
interval

::::::::::
calculations

:::
are

::::::::
presented

::
in

::::::::
Appendix

:::
B.

::::
Once

::
a

:::::::::
confidence

::::
level

:::
has

:::::
been

::::::
chosen

:::
and

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

:::
has

::::
been

:::::::::
identified,

:
a
:::::
grain

::::
size

:::::::::
confidence140

::::::
interval

:::
can

::
be

::::::::
estimated

:::
by

:::::::
mapping

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

::::
onto

:::
the

:::::::
sampled

:::::
grain

:::
size

:::::::::::
distribution,

::
as

::::::::
indicated
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Figure 2.
::::::
Defining

:::
the

::::::
relation

::::::
between

:::
the

::::::::
percentile

::::::::
confidence

::::::
interval

:::
and

:::
the

::::
grain

::::
size

::::::::
confidence

::::::
interval

:::
for

:
a
:::::::
sampled

:::
d50:::::

value.

::
(a)

:::::
Begin

::::
with

::
the

::::::
known

:::::::::
distribution

::
for

:::
the

::::::::
population

:::::
being

:::::::
sampled,

::::
with

:
a
::::::
vertical

:::
line

::::::::
indicating

:::
the

:::
true

:::::
D50.

::
(b)

::::::
Derive

:
a
::::::
sample

::::::::
distribution

::::
from

:::
100

:::::::::::
measurements

::::
from

::
the

::::::::
population

::::::
shown

:
in
:::
(a)

::::
(note

:::
that

::
the

::::::
sample

:::
d50:::

and
::
the

:::::::::
population

:::
D50:::

are
:::::::
different).

:::
(c)

:::
Use

::::::
binomial

::::::
theory

:
to
:::::::

estimate
:::
the

:::::::
percentile

:::::::::
confidence

::::::
interval

:::
that

::::::
contains

:::
the

::::::::
population

:::::
D50.

::
(d)

::::
Map

:::
the

:::::::
percentile

:::::::::
confidence

::::::
interval

:::
onto

:::
the

::::::
sample

::::::::
cumulative

::::::::
frequency

::::::::
distribution

::
to
:::::::
estimate

:::
the

::::
grain

:::
size

::::::::
confidence

::::::
interval

::::::
around

:::
the

:::::
sample

:::::::
estimate,

:::
d50:::::

(note
:::
that

::
the

::::::::
confidence

::::::
interval

::::
does

:::::
indeed

::::::
contain

:::
the

:::
true

::::
D50 ::

for
:::
the

:::::::::
population).

:::::::::
graphically

::
in

::::
Fig.

::::
??d.

::::::
Unlike

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval,

:::
the

:::::
grain

::::
size

:::::::::
confidence

::::::
interval

::::::::
depends

::
on

:::
the

:::::
shape

:::
of

::
the

::::::::::
cumulative

::::::::
frequency

::::::::::
distribution,

::::
and

:::
can

::::
only

:::
be

::::::::
calculated

::::
once

:::
the

:::::::
sample

:::
has

::::
been

::::::::
collected.

:

:::
The

::::::::
approach

::::::::::::
demonstrated

:::::
above

:::
for

::::
the

::::::
median

::::
size

::::
can

::
be

:::::::
applied

::
to

:::
all

:::::
other

:::::
grain

::::
size

:::::::::
percentiles

:::
by

:::::::
varying

:::
the

:::::::::
probability

:
p
::
in
::::
Eq.

:::
??,

::::::::::
accordingly.

:::
For

::::::::
example,

:::
the

:::::::::
probability

:::
of

::::::
picking

:::
up

:
a
:::::
stone smaller than the true value of Dp will145

vary about a mean value n · p, just as the number of heads observed during n tosses of
::::
D84 ::

of a fair coin will vary about a mean

value of 0.5n. The
:::::::::
population

::
is

::::
0.84,

:::::
while

:::
the

::::::::::
probability

::
of

::::::
picking

:::
up

:
a
:::::
stone

:::::::
smaller

::::
than

:::
the

:::
true

::::
D16::

is
:::
just

:::::
0.16.

::
If

:::
we

:::::
define

::
P

::
to

::
be

:::
the

:::::::::
percentile

::
of

::::::
interest

:::
for

:::
the

:::::::::
population

:::::
being

::::::::
sampled,

:::
then

:::
the

::::::::::
probability

::
of

:::::::
selecting

::
a
::::
stone

:::::::
smaller

::::
than

:::
that

::::::::
percentile

::
is

::::::::::
p= P/100,

:::::::
meaning

::::
that

::::
there

::
is

:
a
:::::
direct

:::::::::::::
correspondence

:::::::
between

:::
the

:::::
grain

:::
size

::::::::
percentile

::::
and

:::
the

:::::::::
probability

::
of

:::::::::::
encountering

:
a
:::::
grain

::::::
smaller

::::
than

::::
that

:::::::::
percentile.

:::
As

:::
we

::::
show

::
in
:::
the

::::
next

:::::::
section,

:::
the

:
binomial distribution can be used to150
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Figure 3. A grain size distribution from a stream table experiment based on a sample size of 200 observations. Blue
::
In

::::
Panel

:::
(a),

::::
blue circles

indicate individual grain size measurements
::::
(d(i)), and the red line is the cumulative frequency distribution for binned data using the standard

0.5 � bins. Dashed lines indicate
:
In

::::
Panel

:::
(b),

:
the interpolation procedure for translating the estimated

::::::::
interpolated

:::::
upper

:::
and

::::
lower

::::::::
percentile

confidence intervals
:::::
bounds

:
for the binned data

::
are

:::::
shown

:
as percentiles (i.e., the horizontal lines) into ,

:::
and

:
the corresponding

::::::::
associated

:::
95%

:
grain size quantiles (i.e.,

::::::::
confidence

::::::
interval

::::::::
containing the vertical lines) that bound the estimate of the

:::
true D84 (represented as black

solid lines)
::
for

:::
the

::::::::
population

:
is
::::::

shown
:
in
::::

grey.

derive
:::::
grain

:::
size

:
confidence intervals for any estimate of Dp ::

dP:
for a sample that can be expected to contain the true value of

Dp :::
DP:

for the entire population.

2.1.1
::::::::
Statistical

:::::
basis

In order to illustrate our approach for estimating confidence intervals
::
in

:::::
detail, we will use grain size data from a recent

laboratory experiment, comprising
:
a
::::::
sample

:::
of 200 measurements of b-axis diameters ; since we preserve each measurement155

rather than grouping them into size classes, the data can be treated as a binomial experiment, analogous to flipping a coin,

wherein each measurement represents the outcome of a single coin flip
:::
from

::::
our

:::::::::
laboratory

:::::::::
population

::
of

:::::
3411

::::::::::
observations.

These data are sorted in rank order and then used to compute the quantiles of the (Fig. ??). The difference in granularity

between the raw data
:::::
sample

:::::::::::
distribution.

::::
The

::::::::
difference

::::::::
between

:::
the

::::::::::
cumulative

::::::::::
distribution

::
of

::::
raw

::::
data

::::::
(based

:::
on

::::
200

:::::::::::
measurements

:::
of

:::::
b-axis

:::::::::
diameters)

:
and the standard binned data is illustrated on the figure by adding a cumulative frequency160

curve based on binned data using the standard 0.5� size classes.

A variety of approaches has been proposed in the statistical literature for estimating quantiles from a sample (?). The

differences among methods are greatest for smaller sample sizes, and decrease as
::::
0.5�

::::::
binned

::::
data

::::::
(which

::
is
:::::::

typical
:::
for

::::
most

::::
field

::::::::
samples)

::
is

:::::::::
illustrated

::
in

::::::
Figure

:::
??.

:::::
While

::::
the

::::::::
calculated

::::
d84 :::::

value
:::
for

:::
the

::::::
binned

::::
data

::::::
shown

::
in

::::
Fig.

:::
??a

::
is
::::

not

:::::::
identical

::
to

:::
that

:::::
from

:::
the

::::::
original

:::::
data,

:::
the

::::::::
difference

::
is

:::::
small

::::::::
compared

::::
with

:::
the

:::::
grain

:::
size

:::::::::
confidence

:::::::
interval

:::::::::
associated

::::
with165

:
a
::::::
sample

::::
size

::
of

::::
200,

::::::
shown

::
in

::::
Fig.

::::
??b.

:::
We

:::
first

:::::::
develop

::
a

::::::
method

::
to
:::::
apply

::
to
:::::::

samples
::::::::::

comprising
:
n increases.The first step
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in all approaches is to sort the measured values from lowest to highest and use these to define order statistics d(i) such that

d(1)  d(2)  ... d(n), where, for example, d(1) is the minimum value of di::::::::
individual

::::::::::::
measurements

:::
of

::::
grain

::::::::
diameter,

::::
and

:::
then

::::::::
describe

::
an

:::::::::::::
approximation

:::
that

::::
can

:::
be

::::::
applied

::
to

:::
the

:::::
more

::::::::::
commonly

::::::::::
encountered

::::
0.5�

:::::::
binned

:::::::::
cumulative

:::::
grain

::::
size

::::::::::
distributions.170

2.2 Exact solution for a confidence interval

2.1.1
:::::
Exact

:::::::
solution

:::
for

::
a

:::::::::
confidence

:::::::
interval

Suppose we wish to compute a specific quantile, say Dp:::::::::
confidence

:::::::
interval

:::::::::
containing

:::
the

:::::::::
population

:::::::::
percentile,

::::
DP , from

our sample of sediment particles. The probabilities of drawing a specific number of particles, k, that are smaller than Dp (i. e.,

d(k) <Dp and d(k+1) >Dp) can be computed from the binomial distribution :175

Pr(k,n,p) = pk(1� p)n�k n!

k!(n� k)!

:::
200

::::::
b-axis

:::::::
diameter

:::::::::::::
measurements.

::::
The

:::
first

::::
step

::
is

::
to

::::::::
generate

:::::
order

::::::::
statistics,

::::
d(i),::

by
:::::::

sorting
:::
the

::::::::::::
measurements

::::
into

::::
rank

::::
order

:::::
from

:::::
lowest

:::
to

::::::
highest

:::::
(such

::::
that

::::::::::::::::::::
d(1)  d(2)  ... d(n)).::::::

Figure
:::
??a

:::::
plots

:::
d(i):::::::

against
:::
the

::::
ratio

:::::::::
(i� 1)/n,

:::::
which

::
is
::
a

:::::
direct

:::::::::::
representation

:::
of

::
the

:::::::::
proportion

:::
of

:::
the

:::::::::
distribution

::::
that

::
is

::::
finer

::::
than

:::
that

:::::
grain

::::
size.

To define a confidence interval, we first specify the confidence level, usually expressed as 100·(1�↵)%. For 95% confidence,180

↵= 0.05. Following ?, we then find lower and upper values of the order statistics (d(l) and d(u), respectively)
:::
that

:::::::::
determine

::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval, such that the coverage probability (Pc) is as close as possible to 1�↵ , but no smaller.

::::
Note

:::
that,

:::
in

:::
our

:::::::
example

::
of

::::
100

::::
coin

:::::
tosses

:::::
from

:::
the

:::::::
previous

:::::::
section,

:::
we

::::
made

::
a
:::::::::
calculation

:::
by

::::::
setting

:::::
l = 40

::::
and

::::::
u= 60,

::::::
which

::::
gave

::
us

:
a
::::::::
coverage

:::::::::
probability

::
of

:::::
96%.

:
Coverage probability is defined as:

Pc =
u�1X

k=0
::

Bk(u� 1k
:
,n,p)�

l�1X

k=0
::

Bk(l� 1k
:
,n,p) (2)185

where B(j,n,p) is the cumulative distribution function for j "successes "
:::
Bk ::

is
:::
the

::::::::
binomial

:::::::::
probability

::::::::::
distribution

:::
for

::
k

::::::::
successes in n trials for probability p. ,

:::::::
defined

::
in

::::
Eq.

:::
??.

:
The goal, then, is to find integer values l and u that satisfy the

condition that Pc � 1�↵, with the additional condition that l and u be approximately symmetric about the expected value of k

:::
(i.e., n ·p

:
). The lower and upper confidence limits are then given by

::::
grain

::::
size

:::::::::
confidence

::::::
bound

::
for

:::
the

:::::::
estimate

:::
of

:::
DP ::

is
::::
then

::::::
mapped

::
to
:::::
grain

::::
size

:::::::::::
measurement d(l) and

:::::
upper

:::::
bound

::
is
:::::::
mapped

::
to

:
d(u). :::::::::

Obviously,
:::
this

::::::::
approach

::::::
cannot

::
be

:::::::
applied

::
to

:::
the190

:::::
binned

::::
data

:::::::
usually

:::::::
collected

:::
in

:::
the

::::
field,

:::
but

::
is
::::::::
intended

:::
for

:::
the

:::
the

::::::::::
increasingly

::::::::
common

:::::::::
automated,

::::::::::
image-base

:::::::::
techniques

:::
that

:::::
retain

:::::::::
individual

::::
grain

::::
size

::::::::::::
measurements.

:

We have created an R function (QuantBD) that determines the upper and lower confidence limits
:::::
bounds, and returns the

coverage probability, which is included in the supplementary material for this paperGSDtools
:::::::
package. Our function is based

on a script published online by W. Huber 1, which follows the approach described in ?. For n= 200, p= 0.84 and ↵= 0.05195

1https://stats.stackexchange.com/q/284970!, last accessed on 19 September, 2019
:::
2018
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Figure 4. Binomial distribution values for n= 200 and p= 0.84, displaying the range of k values included in the coverage probability. The

dark grey bars indicate which order statistics are included in the
:::

95% confidence interval, and light grey indicates order statistics
::
the

::::
tails

::
of

::
the

:::::::::
distribution that lie outside the interval. The vertical dashed lines indicate confidence limits computed by an approximate approach that

places equal area under the two tails
:::::

outside
::
the

:::::::::
confidence

::::::
interval.

(i.e., 95% confidence level), l = 159 and u= 180, with a coverage probability (0.953) that is only slightly greater than the

desired value of 0.95. This implies that the number of particles in a sample of200
:
of

::::
200 measurements that would be smaller

than the true D84 should range from 159 particles to 180 particles, 19 times out of 20.
::::
95%

::
of

:::
the

::::
time.

:
This in turn implies that

the true D84 could correspond to sample estimates ranging from the 80th percentile (i.e., 159/200) to the 90th percentile (i.e.,

180/200). We can translate the
::::::::
percentile

:::::::::
confidence

:
bounds into corresponding grain size values

:::::::::
confidence

::::::
bounds using our200

ranked grain size measurements: the lower bound of 159 corresponds to a measurement of 2.7
::
2.8

:
mm, and the upper bound

corresponds to a measurement of 3.7
::
3.6

:
mm.

2.2 Approximate solution for equal-area tails

2.1.1
:::::::::::
Approximate

::::::::
solution

:::
for

:::::::::
equal-area

::::
tails

One disadvantage of the exact solution described above is that the areas under the tails differ, as evident from
::
of

:::
the

::::::::
binomial205

:::::::::
distribution

:::::
differ

:
(Fig. ??

:
),
::::
such

::::
that

:::
the

::::::::
expected

::::
value

::
is
:::
not

:::::::
located

::
in

:::
the

:::::
center

::
of

:::
the

:::::::::
confidence

:::::::
interval. ? described an

alternative approach based on interpolation for finding lower or upper limits for one-sided intervals .
:::
(i.e.,

:::::::::
confidence

::::::::
intervals

::::::::
pertaining

::
to
::

a
:::::::::
one-tailed

:::::::::
hypothesis

:::::
test).

:
This approach can be applied to find two-sided intervals by finding one-sided

intervals, each with a confidence level of 1�↵/2.
:
,
:::::
which

::::::
results

::
in

:
a
::::::::::
confidence

::::::
interval

::::
that

:
is
:::::::::
symmetric

:::::
about

:::
the

::::::::
expected

::::
value

::::
(see

:::
the

::::::
dashed

:::::
lines

::
in

:::
Fig.

::::
??).

:
By interpolating between the integer values of k, we can find real numbers for which210

the binomial distribution has values of ↵/2 and 1�↵/2, which we refer to as le and ue. The corresponding grain sizes can be

found by interpolating between measured diameters whose ranked order brackets the real numbers le and ue.
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The values of le and ue are indicated on Fig. ?? by dashed vertical lines. As can be seen, the values of l and u generated

using the equal tail approximation are shifted to the left of those found by the exact approach. Consequently, the approximate

confidence limits are also shifted to the left of the exact approach
:
,
:::::::
resulting

::
in

::
a
::::::::::
symmetrical

::::::::::
confidence

::::::
interval. The corre-215

sponding grain sizes representing the confidence interval are 2.7 mm and 3.6
::
3.4

:
mm, which are similar to the exact solution

presented above.

2.2 Approximate solution for binned data

2.1.1
:::::::::::
Approximate

::::::::
solution

:::
for

::::::
binned

::::
data

We have adapted the approximate solution described above to allow estimation of confidence limits for binned data, which220

is accomplished by our R function called WolmanCI . We
::
in

:::
the GSDtools

:::::::
package.

:::
Just

:::
as

::::::
before,

:::
we use the equal area

approximation of the binomial distribution to compute upper and lower limits of k, and then
::
(le :::

and
::::
ue),

:::
but

::::
then

::
we

:
transform

these ordinal values into percentiles by normalizing by the number of observations. Using our sample data, the ordinal confi-

dence bounds le = 157.03 and ue = 177.36 thus become the percentiles 79% and 89%
::::::::
percentile

::::::::::
confidence

::::::
bounds

:::
d79::::

and

:::
d89, respectively.225

To estimate the confidence limit in terms of grain sizes
::::
Next, we simply interpolate from the empirical

:::::
binned

:
cumulative

frequency distribution based on the classed sediment diameters to find the corresponding quantiles
::::
grain

:::::
sizes

:::
that

::::::
define

:::
the

::::
grain

::::
size

:::::::::
confidence

:::::::
interval. Note that the linear interpolation is applied to log2(d), and that the interpolated values are then

transformed to diameters in mm.

This interpolation procedure is represented graphically on
:
in

:
Fig. ??. The dashed

::
b;

:::
the horizontal lines represent percentile230

values of
::
the

::::::::
percentile

::::::::::
confidence

::::::
interval

:::::::
(defined

:::
by le/n and ue/n), while the solid horizontal line represents the percentile

of interest (i. e., p= 0.84).
:::
grey

::::
box

:::::::
indicates

::::
the

::::::::
associated

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval.

:
Our binned sample data yield a

::::
grain

::::
size confidence interval for the D84 that ranges from 2.7

:::::
range

::::
from

:::
2.8

:
mm to 3.5 mm.

Clearly, the
:::
The

:
binomial probability approach requires that the sample distribution be known in order

:::
uses

:::
the

:::::::
sample

:::::::::
cumulative

:::::::::
frequency

::::::::::
distribution to calculate the confidence intervals in units of length. While this is problematic when235

attempting
::::
grain

::::
size

::::::::::
confidence

:::::::
interval.

::::
This

::::::
makes

::
it

:::::::
difficult

:
to predict the statistical power associated with a given

::
of

sample size, n, before actually
::::
prior

::
to collecting the sample, it is possible to use

:
.
::::::::
However,

:::
the

::::::::
approach

:::
can

::
be

::::::
applied

::
to
:
any

previously collected distributionto calculate and plot confidence intervals of the bed surface grain sizes, provided the number

of observations used to generate the distribution is known. The approach can also be used to estimate the confidence intervals

about any previously published grain size distribution, and240

3
::::::::::
Two-sample

::::::::::
hypothesis

::::
tests

3.1
:::::

When
:::::::::
individual

:::::
grain

:::::::::
diameters

:::
are

::::::::
available
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:::::::
Suppose

:::
we

::::
have

::::
two

:::::::
samples

:::
for

:::::
which

:::::::::
individual

:::::
grain

::::::::
diameters

::::
have

:::::
been

::::::::
measured

:::::
(e.g.,

:::
two

:::::
sites,

::::
two

::::::::
operators,

::::
two

:::::::
sampling

:::::::::
methods).

::::
The

::::::
values

::
in

:::
the

::::
two

:::::::
samples

:::
are

:::::::
denoted

:::
as

:::
Xi,:::::::

(where
:
i
::::::
ranges

:::::
from

:
1
:

to assess whether or not a

given set of distributions is statistically different or not
:::
nx)

::::
and

::
Yj::::::

(j = 1
::
to

::::
ny)

:::::
where

:::
nx:::

and
:::
ny:::

are
:::
the

:::::::
number

::
of

::::::
grains245

::
in

::::
each

:::::::
sample.

::
In

::::
this

::::
case,

::::
one

::::
can

:::
use

::
a

:::::::::
resampling

:::::::
method

::::::::::
(specifically

::::
the

::::::::
bootstrap)

:::
to

:::::::
develop

:
a
::::::::::

hypothesis
::::
test.

::
A

::::::::::::
straightforward

::::::::
approach

::
is

:::::
based

:::
on

::
the

:::::::::
percentile

::::::::
bootstrap

:::
(?),

::::
and

:::::::
involves

:::
the

::::::::
following

:::::
steps:

1.
::::
Take

:
a
:::::::
random

::::::
sample

::
of

:::
nx ::::::::

diameters,
::::
with

:::::::::::
replacement,

::::
from

:::
the

:::
set

::
of

::::::
values

::
of

:::
Xi.::::

This
::::::::
bootstrap

::::::
sample

::
is

:::::::
denoted

::
as

:::
xk,

:::::
k = 1

::
to

:::
nx.

4 Confidence interval testing250

The approximate method presented in the preceding section can easily be tested numerically by sub-sampling a large

population of observations, determining the distribution of resulting percentile size estimates produced by the sub-samples,

2.
::::
Take

:
a
:::::::
random

::::::
sample

::
of

:::
ny ::::::::

diameters,
::::
with

:::::::::::
replacement,

:::::
from

:::
the

::
set

::
of

::::::
values

::
of

:::
Yj .

::::
This

::::::::
bootstrap

::::::
sample

::
is

:::::::
denoted

::
as

::
yl,:::::

l = 1
::
to

:::
ny .

:
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3.
::::::::
Determine

:::
the

:::::::
desired

::::::::
percentile

:::::
value

:::::
from

::::
each

:::::::
sample,

:::::
(dP )x:and comparing it to the confidence interval based on

binomial theory.We have eight samples of about 400 observations each from a stream table experiment. Based on the

overlap in confidence intervals for the eight samples
::::::
(dP )y ,

:::
and

:::::::
compute

:::
the

:::::::::
difference:

::::::::::::::::::::
�dP = (dP )x � (dP )y .

4.
::::::
Repeat

::::
steps

::
1

::
to

:
3
:::
nr :::::

times
::::
(e.g.,

:::
nr :

=
::::::
1000),

::::
each

::::
time

::::::
storing

:::
the

:::::
value

::
of

:::::
�dP .

:

5.
::::::::
Determine

::
a
:::::::::
confidence

:::::::
interval

::
for

:::::
�dP ::

by
:::::::::
computing

:::
the

::::::::
quantiles

::::::::::::
corresponding

::
to

::::
↵/2

:::
and

::::::::
1�↵/2,

:::::
where

::
↵

::
is

:::
the260

::::::
desired

::::::::::
significance

::::
level

:::
for

:::
the

:::
test

:::::
(e.g.,

::
↵

:
=
:::::
0.05).

:

6.
:
If
:::
the

:::::::::
confidence

:::::::
interval

:::::::::
determined

::
in

::::
step

:
5
::::
does

:::
not

:::::::
overlap

::
0,

::::
then

:::
one

:::
can

:::::
reject

:::
the

:::
null

:::::::::
hypothesis

::::
that

:::
the

:::::::
sampled

:::::::::
populations

:::::
have

::
the

:::::
same

:::::
value

::
of

::::
DP .

:

::::
This

:::::::
analysis

::
is

:::::::::::
implemented

::::
with

:::
the

:::::::
function

:
CompareRAWs

:
in
:::

the
:
GSDtools

:::::::
package.

::::
The

:::::::
required

::::::
inputs

:::
are

::::
two

::::::
vectors

:::::
listing

:::
the

::::::::
measured

::
b
:::
axis

:::::::::
diameters

:::
for

::::
each

::::::
sample.

:
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3.1
:::::

When
::::
only

::::::
binned

::::
data

::::
are

::::::::
available

::::
and

::::::
sample

::::
size

:
is
:::::::
known

:::
For

::::::::
situations

::
in

:::::
which

::::
only

:::
the

:::::::::
cumulative

:::::::::
frequency

:::::::::
distribution

::
is

::::::::
available,

:::
an

:::::::
approach

::::::
similar

::
to

:::::::::
parametric

::::::::::::
bootstrapping

:::
can

::
be

:::::::
applied,

:::::
which

:::::::
employs

:::
the

::::::
inverse

:::::::::
transform

:::::::
approach

:::::::::::::::::
(see Chapter 7 in ?)

::
to

::::::
convert

:
a
:::
set

::
of

:::::::
random

::::::
uniform

::::::::
numbers

::
in

::
the

:::::::
interval

:::
(0,

::
1)

::
to

:
a
:::::::
random

::::::
sample

::
of

::::
grain

:::::::::
diameters

::
by

:::::::::::
interpolating

::::
from

:::
the

::::::
binned

:::::::::
cumulative

:::::::::
frequency

::::::::::
distribution,

::::::
similar

::
to

:::
the

::::::::
procedure

::::::::
described

:::::
above

:::
for

::::::::::
determining

::::::::::
confidence

:::::::
intervals

:::
for

::::::
binned

::::
data.

:
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:::
The

::::::::
approach

:::::::
involves

:::
the

::::::::
following

:::::
steps:

:

11



1.
:::::::
Generate

::
a
:::
set

::
of

:::
nx :::::::

uniform
::::::
random

::::::::
numbers,

:::
ui, the distributions do not appear to be statistically different (see Fig.

??). Therefore, the data have been pooled to form a single data set of
::::
i= 1

::
to

:::
nx.

:::::::::
Transform

:::::
these

:::
into

::
a
::::::::::::
corresponding

::
set

::
of

:::::
grain

::::::::
diameters

:::
xi ::

by
:::::
using

:::
the

:::::::::
cumulative

:::::::::
frequency

:::::::::
distribution

:::
for

::::
one

::::::
sample.

:

2.
:::::::
Generate

::
a
:::
set

::
of

:::
ny:::::::

uniform
:::::::

random
::::::::

numbers,
::::
uj ,

:::::
j = 1

::
to

::::
ny .

:::::::::
Transform

:::::
these

::::
into

:
a
::::::::::::
corresponding

:::
set

:::
of

:::::
grain275

::::::::
diameters

::
yj:::

by
::::
using

:::
the

::::::::::
cumulative

::::::::
frequency

::::::::::
distribution

:::
for

:::
the

::::::
second

::::::
sample.

:

3.
::::::::
Determine

:::
the

::::::
desired

:::::
grain

:::
size

:::::::::
percentile

::::
from

::::
each

:::::::
sample,

:::::
(dP )x:::

and
::::::
(dP )y ,

:::
and

:::::::
compute

:::
the

:::::::::
difference:

::::::::::::::::::::
�dP = (dP )x � (dP )y .

4.
::::::
Repeat

::::
steps

::
1

::
to

:
3
:::
nr :::::

times
::::
(e.g.,

:::
nr :

=
::::::
1000),

::::
each

::::
time

::::::
storing

:::
the

:::::
value

::
of

:::::
�dP .

:

5.
::::::::
Determine

::
a
:::::::::
confidence

:::::::
interval

::
for

:::::
�dP ::

by
:::::::::
computing

:::
the

::::::::
quantiles

::::::::::::
corresponding

::
to

::::
↵/2

:::
and

::::::::
1�↵/2,

:::::
where

::
↵

::
is

:::
the280

::::::
desired

::::::::::
significance

::::
level

:::
for

:::
the

:::
test

:::::
(e.g.,

::
↵

:
=
:::::
0.05).

:

6.
:
If
:::
the

:::::::::
confidence

:::::::
interval

:::::::::
determined

::
in

::::
step

:
5
::::
does

:::
not

:::::::
overlap

::
0,

::::
then

:::
one

:::
can

:::::
reject

:::
the

:::
null

:::::::::
hypothesis

::::
that

:::
the

:::::::
sampled

:::::::::
populations

:::::
have

::
the

:::::
same

:::::
value

::
of

::::
DP .

:

::::
This

:::::::
analysis

::
is

:::::::::::
implemented

::
in

:::
the

:
CompareCFDs

:::::::
function.

::
It

:::::::
requires

::::
that

:::
the

::::
user

::::::
provide

::::
the

:::::::::
cumulative

:::::::::
frequency

:::::::::
distribution

:::
for

::::
each

::::::
sample

:::
(as

::
a

:::
data

:::::::
frame),

::
as

::::
well

::
as

:::
the

:::::::
number

::
of

:::::::::::
measurement

::::
upon

::::::
which

::::
each

::::::::::
distribution

:
is
::::::
based.

:
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4
::::::::::
Confidence

:::::::
interval

::::::
testing

:::
We

:::
can

:::
test

:::::::
whether

:::
or

:::
not

:::
our

::::::::
approach

::::::::::
successfully

:::::::
predicts

:::
the

::::::::::
uncertainty

:::::::::
associated

::::
with

::
a

:::::
given

::::::
sample

::::
size

::::
using

::::
our

:::::
known

:::::::::
population

:::
of 3411 observations. For the purposes of our uncertainty analysis, we let these 3411 observations define the

population of interest and then take repeated, random sub-samples
:::::::::::
measurements

::::
from

::::
the

:::
lab.

::::
The

:::::
effect

::
of

::::::
sample

::::
size

:::
on

::
the

::::::
spread

::
of

:::
the

::::
data

::
is
::::::::::::
demonstrated

:::::::::
graphically

::
in

::::
Fig.

:::
??.

::
In

::::
Fig.

::::
??a,

::
25

:::::::
random

:::::::
samples

::
of

::::
100

:::::
stones

:::::::
selected

:::::
from

:::
the290

:::::::::
population

:::
are

::::::
plotted,

:::::
along

:::
the

::::
with

::::
95%

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval

:::::::::
bracketing

:::
the

:::
true

:::::
grain

:::
size

::::::::::
population,

:::::::::
calculated

::::
using

::::
our

:::::::
binomial

::::::::
approach.

:::
In

:::
Fig.

::::
??b,

:::::::
random

:::::::
samples

::
of

::::
400

:::::
stones

:::
are

:::::::
plotted,

:::::
along

:::
the

::::
with

::::::::::::
corresponding

:::::::::
confidence

:::::::
interval.

:
A
::::::::::
comparison

::
of
:::
the

::::
two

::::
plots

::::::
shows

:::
that

::::::
sample

::::
size

::::
(i.e.

:::
100

:::
vs.

:::
400

::::::
stones)

::::
has

:
a
:::::
strong

:::::
effect

:::
on

:::::::::
variability

::
of

:::
the

:::::::
sampled

:::::::::::
distributions.

::
It

:
is
::::

also
:::::
clear

:::
that

:::
the

:::::::::
variability

::
of

:::
the

:::::::
samples

::
is
::::
well

::::::::
predicted

:::
by

:::
the

::::::::
binomial

::::::::
approach,

:::::
since

:::
the

::::::
sample

:::
data

::::::::
generally

::::
fall

:::::
within

:::
the

:::::::::
confidence

:::::::
interval

:::
for

:::
the

:::::::::
population.

:
295

::
In

:::::
order

::
to

:::::
more

::::::::
formally

:::
test

:::
the

::::::::
binomial

:::::::::
approach,

:::
we

::::::::
collected

::::::
10,000

:::::::
random

:::::::
samples

:
(with replacement) of 100

observationsfrom the larger data set. For each sub-sample, we generate the cumulative frequency distribution and then estimate

the bed surface D16, D50, and D84.
::::
from

:::
our

::::::::::
population

::
of

:::::
3411

:::::::::::
observations,

:::::::::
calculated

::::::
sample

:::::::::
percentiles

:::::::
ranging

:::::
from

::
the

:::
d5:::

to
:::
the

:::
d95:::

for
:::::

each
:::::::
sample,

:::
and

:::::
used

:::
the

::::::::::
distribution

:::
of

::::::::
estimates

::
to

:::::::::
determine

:::
the

:::::
grain

::::
size

:::::::::
confidence

::::::::
interval.

::::
This

:::::::::
resampling

:::::::
analysis

::::
was

:::::::::
conducted

::::::
twice;

::::
once

:::
for

:::::::
samples

:::
of

::::
100

:::::
stones

::::
and

::::
then

:::::
again

:::
for

:::::::
samples

:::
of

:::
400

:::::::
stones.300

::::
This

::::::::
empirical

::::::::::::
approximation

:::
of

:::
the

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval

::
is
::::

the
:::::
same

::::::::
technique

:::::
used

::
by

::
?
:
.
::::
The

:::::::::
advantage

::
of

::
a

:::::::::
resampling

::::::::
approach

::
is

::::
that

::
it

::::::::
replicates

:::
the

:::
act

:::
of

::::::::
sampling,

::::
and

::::::::
therefore

::::
does

:::
not

:::::::::
introduce

:::
any

:::::::::
additional

:::::::::::
assumptions

12
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Figure 5.
:::::
Effect

::
of

:::::
sample

:::
size

::
on

:::::::::
uncertainty.

::
In

:::::
Panel

::
(a),

:::
25

::::::
samples

::
of

:::
100

:::::
stones

:::::
drawn

::::
from

:
a
:::::
known

::::::::
population

:::
are

::::::
plotted,

::::
along

::::
with

::
the

::::
95%

::::
grain

:::
size

:::::::::
confidence

::::::
interval

:::::::
calculated

:::
for

:::
D5::

to
:::
D95:::::

using
::
the

:::::::
binomial

:::::::
method.

::
In

::::
Panel

:::
(b)

::::::
samples

::
of

:::
400

:::::
stones

:::
are

::::::
plotted,

::::
along

::::
with

::
the

:::::::
predicted

:::::
grain

:::
size

::::::::
confidence

::::::
interval.

::
or

:::::::::::::
approximations.

::::
The

::::::::
accuracy

::
of

::::
the

:::::::::
resampling

::::::::
approach

::
is
:::::::

limited
::::
only

:::
by

:::
the

:::::::
number

::
of

:::::::
samples

:::::::::
collected,

::::
and

:::
the

:::::
degree

::
to
::::::
which

:::
the

::::::::
individual

::::::::
estimates

::
of

::
a
:::::
given

::::::::
percentile

:::::::::
reproduce

:::
the

:::::::::
distribution

::::
that

:::::
would

:::
be

::::::::
produced

::
by

:::
an

::::::
infinite

::::::
number

::
of

::::::::
samples.

::::
The

::::
only

:::::
draw

::::
back

::
of

::::
this

::::::::
approach

::
is

::::
that

:::
the

::::::
results

:::
are

::::
only

::::::
strictly

:::::::::
applicable

::
to

:::
the

::::::::::
population

::
to305

:::::
which

:::
the

:::::::::
resampling

:::::::
analysis

::::
has

::::
been

::::::
applied

:::
(?)

:
.
:::::
While

::
it
::
is

::
an

:::::
ideal

::::
way

::
to

:::::
assess

:::
the

:::::
effect

:::
of

::::::
sample

:::
size

:::
on

:::::::::
variability

::
for

::
a
::::::
known

:::::::::
population,

::::::::::
resampling

:::::::::
confidence

:::::::
intervals

::::::
cannot

::
be

:::::::::
calculated

:::
for

:::::::::
individual

::::::
samples

::::::
drawn

::::
from

:::
an

::::::::
unknown

::::
grain

::::
size

:::::::::
population.

:

The box-plots represent the distribution of estimates for the D16, D50, and D84 of the same bed surface, based on repeatedly

selecting 100 measurements from the larger population of observations. The 99% confidence interval estimated using binomial310

theory is shown in red, the 50% confidence interval is shown in blue, and the ‘true’ percentile for the population is shown

in black, for comparison.
:
In

::::
Fig.

::::
??,

:::
the

::::::::::
resampling

::::::::
estimates

::
of

:::
the

:::::
95%

:::::
grain

::::
size

:::::::::
confidence

::::::::
intervals

:::
for

:::
D5:::

to
::::
D95

:::::
based

::
on

::::::::
samples

::
of

::::
100

::::::
stones

:::
are

::::::
plotted

:::
as

:::
red

::::::
circles,

::::
and

:::::
those

:::::
based

:::
on

:::::::
samples

:::
of

::::
400

:::::
stones

::::
are

::::::
plotted

::
as
:::::

blue

::::::
circles.

:::
For

::::::::::
comparison,

:::
the

::::::::::
confidence

:::::::
intervals

::::::::
predicted

:::::
using

:::
our

::::::::
binomial

::::::::
approach

:::
are

::::::
plotted

:::::
using

::::::
dashed

:::::
lines.

:::::
There

:
is
::
a
:::::
close

:::::::::
agreement

:::::::
between

:::
the

::::::::::
resampling

:::::::::
confidence

:::::::
intervals

::::
and

:::
the

::::::::
binomial

:::::::::
confidence

::::::::
intervals,

:::::::::
indicating

:::
that

::::
our315

:::::::::::::
implementation

::
of

:::::::
binomial

::::::::
sampling

::::::
theory

:::::::
captures

:::
the

::::::
effects

::
of

::::::
sample

::::
size

:::
that

:::
we

:::::
have

::::::::::
numerically

::::::::
simulated

:::::
using

:::
the

:::::::::
resampling

::::::::
approach.

:

As seen in Fig. ??, the spread of the estimates from the repeated sub-sampling of the data set is generally similar to the

confidence intervals based on binomial theory; the predicted confidence interval containing 50% of the observations (shown in

blue) corresponds approximately to the
:::
We

::::
have

::::
also

:::::::::
calculated

:::
the

:::::::
statistics

:::
of

:
a
:::
1:1

:::::
linear

:::
fit

:::::::
between

:::
the

:::::
upper

::::
and

:::::
lower320

::::::
bounds

::
of

:::
the

:::::::::
confidence

:::::::
intervals

::::::::
predicted

::
by

::::::::
binomial

::::::
theory

:::
and

:::::
those

::::::::
calculated

:::::
using

:::
the

:::::::::
resampling

::::::::
approach

:::
for

::::::
sample

::::
sizes

::
of

::::
100

:::
and

::::
400.

:::
For

:
a
:::::::
sample

:::
size

::
of

::::
100

::::::
stones,

:::
the

:::
1:1

::
fit

:::
had

::
a
::::
Nash

::::::::
Sutcliffe

:::::
model

::::::::
efficiency

:::::::
(NSE)

::
of

::::::
0.998,

:
a
::::
root

13
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Figure 6. All
::::::::
Comparing

::::::::
calculated

::::::::
resampling

:
grain size distributions from a stream table experiment based on a sample size of about 400

observations
::::::::
confidence

:::::::
intervals

:
to
::::::::

predicted
::::::
intervals

:::::
using

::
the

:::::::
binomial

:::::::
approach. The estimated grain sizes

:::
size

::::::::
confidence

:::::::
intervals

:::
for

::::::
samples

::
of

:::
100

:::::
stones are shown

:
in
:::

red, along with the 95% confidence intervals
:::
and

::::
those

::
for

:::::::
samples

::
of

:::
400

:::::
stones

::
are

:::::
shown

::
in
::::
blue.

::::
mean

::::::::
standard

::::
error

::::::::
(RMSE)

:::
of

:::::::
0.0353�

:::::
units,

:::
and

:
a
:::::
mean

::::
bias

::::::
(MB)

::
of

:::::::::
�0.0035�

::::
units.

:::::
Since

:::::::::
NSE = 1

::::::::
indicates

::::::
perfect

:::::
model

:::::::::
agreement

::::::
(see ?),

::::
and

::::::::::
considering

:::
that

:::::
MB

::
is

:::::
small

::::::
relative

::
to
:::
the

::::::::
RMSE,

:::::
these

::
fit

::::::::::
parameters

::::::
indicate

::
a
:::::
good

:::
1:1

::::::::
agreement

:::::::
between

:::
the

::::::::::
resampling

::::::::
estimates

:::
and

:::::::
binomial

::::::::::
predictions

::
of

:::
the upper and lower quartiles of the box plots, and the325

95% confidence interval corresponds approximately to the overall spread of the numerical estimates. A more direct comparison

shows that the calculated 50% confidence intervals contain 54% of the grain size estimates from the sub-samples,while the 95%

confidence intervals contain 97% of the estimates.
:::::::::
confidence

:::::::
interval

::::::
bounds.

::::
The

:::::
results

:::
for

::
a

::::::
sample

:::
size

::
of

::::
400

:::::
stones

:::::
were

::::::::
essentially

:::
the

:::::
same

:::::::::::::
(NSE = 0.999,

:::::::::::::::::
RMSE = 0.0262�,

::::
and

:::::::::::::::
MB = 7e� 04�).

::
In

:::::
order

::
to

:::::::
confirm

:::
that

:::
the

::::
size

::
of

::::
the

::::::
original

::::::::::
population

:::
did

:::
not

:::::
affect

:::
our

::::::::::
comparison

:::
of

:::
the

:::::::::
resampling

::::
and

::::::::
binomial330

:::::::::
confidence

::::::
bounds

::::::::
estimates,

:::
we

:::::::
repeated

:::
the

:::::
entire

:::::::
analysis

:::::
using

::
a

::::::::
simulated

:::::::::
log-normal

:::::
grain

:::
size

::::::::::
distribution

::
of

:::::::::
1,000,000

::::::::::::
measurements.

::::
The

::::::::
graphical

::::::::::
comparison

::
of

:::
the

:::::::
binomial

::::
and

:::::::::
resampling

::::::::::
confidence

:::::::
intervals

:::
for

:::
the

::::::::
simulated

:::::::::::
distributions
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:::
(not

:::::::
shown)

:::
was

::::::::::
essentially

:::
the

:::::
same

::
as

::::
that

:::::
shown

:::
in

:::
Fig.

::::
??,

:::
and

:::
the

::::
1:1

:::::
model

:::
fit

:::
was

:::::::
similar

::
to

:::
the

:::
fits

:::::::
reported

::::::
above

:::::::::::::
(NSE = 0.998,

::::::::::::::::
RMSE = 0.043�,

:::
and

::::::::::::::::
MB =�0.0013�).

:

The close match between the confidence intervals calculated from
::::
grain

::::
size

:::::::::
confidence

:::::::
intervals

::::::::
predicted

:::::
using

:
binomial335

theory and the distribution of percentiles based on sub-sampling
::::
those

:::::::::
estimated

:::::
using

:::
the

:::::::::
resampling

:::::::
analysis

:
supports the

validity of the proposed approach for computing confidence limits about the cumulative grain size distribution. Since these

confidence limits are straightforward to calculate, we argue that it should be standard practice to plot them on all grain size

distribution graphs, particularly those that purport to show a difference between two distributions.
:::::::
intervals.

5 Reassessing previous analyses340

In order to demonstrate the importance of understanding the uncertainty, we have reanalyzed the results of several previous pa-

pers that have compared bed surface texture distributions, but which have not considered uncertainty associated with sampling

variability. In most
::::
some

:
cases, these re-analyses confirm the authors’ interpretations, and strengthen them by highlighting

which parts of the distributions are different and which are similar, thus allowing for a more nuanced understanding. In some

cases, however, the re-analyses
:::::
others,

::::
they

:
demonstrate that the observed differences do not appear to be statistically signif-345

icant, and suggest that the interpretations and explanations of those differences are not supported but
::
by

:
the authors’ data.

In either case, we believe that adding information about the
::::
grain

::::
size

:
confidence intervals is a valuable step that should be

included in every surface grain size distribution analysis.

The data published by ? include pebble counts of about 400 stones for different channel units in two mountain streams (see

Fig. ??). Adding the confidence bands
::::
grain

:::
size

:::::::::
confidence

::::::::
intervals to the distributions emphasizes the advantages of taking350

larger sample sizes, since the confidence bands are narrower than those for a sample of only 100 stones (e. g., Fig. ??). It also

emphasizes that the key difference for the bed texture in poolsand in runsor riffles is
:::::::::
differences

:::
and

:::::::::
similarities

::::::::
between

:::
the

::::::::::
distributions.

::::::
Based

::
on

:::
the

::::
data

::
in

::::
Fig.

:::
??,

:
it
::::::
seems

:::
that

:::::
clear

:::::::::
differences

::
in

:::
bed

::::::
texture

:::::
exist

:::::
when

:::::::::
comparing

:::::
pools,

::::
runs,

::::
and

:::::
riffles

::
for

:
the fraction of sediment less than about 22.6 mm; the distributions of sediment coarser than this are not statistically

different for either stream.This observation
::::
quite

:::::::
similar.

:::::
Using

:::
the

:
CompareCFDs

::::::
function

::
to

::::::::
compare

:::::::::
percentiles

:::::::
ranging355

::::
from

:::
D5::

to
::::
D95:::

(in
:::::::::
increments

::
of

:::
5),

:::
we

:::::
found

::::
that

:::
the

:::::::::
differences

::
in

:::
the

:::::::
samples

:::::
from

::::::
Willow

:::::
Creek

:::
for

::::::::::
percentiles

::::::
greater

:::
than

::::
D65:::

are
:::::::::
significant

:::
for

::::::::
↵= 0.05,

:::
but

:::
not

::
for

::::::::
↵= 0.01

::::
(i.e.,

:::
for

:
a
::::
99%

:::::::::
confidence

::::::::
interval).

:::
For

:::::
North

:::
St.

:::::
Vrain

:::::
Creek,

:::::
there

::
are

:::::::::
significant

::::::::::
differences

::
at

:::::::
↵= 0.05

:::
for

:::::::::
percentiles

:::::
finer

::::
than

::::
D20,

:::
and

:::
for

:::
the

::::
D80:::

and
:::::
D85,

::::::
though

::::
none

::
of

:::
the

::::::::::
differences

::
for

:::
the

:::::::
coarser

:::
part

::
of

:::
the

::::::::::
distribution

:::
are

:::::::::
significant

:::
for

::::::::
↵= 0.01.

:::
The

:::::::
relative

::::::::
similarity

::
of

::::
pool

::::
and

:::::::
run/riffle

::::::::
sediment

:::::::
textures

:::
for

:::
the

::::::
coarser

::::
part

::
of

:::
the

:::::::::
distribution

:
suggests that the

::::
most360

::::::::
noticeable

:
differences in bed surface texture are likely due to the deposition of finer bed-load sediment in pools on the waning

limb of the previous flood hydrograph
:::::::::::::::::
(as suggested by ???), and that the bed surface texture of both kinds of mainstem units

during flood events could
::::::::
generally be quite similar. The analysis also clearly demonstrates that size distributions of the exposed

channel bars in these two streams are statistically different from both the pools and the runs/riffles. From these plots we can

conclude that the bed roughness (which is typically indexed by the bed surface D50 or by sediment coarser than that) is similar365
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Figure 7. Comparing the bulk surface sample and pebble count distributions, published by Kondolf (1997, their Fig
:::::
counts

::::
from

:::::::
different

::::::
channel

::::
units. 3). Panel A shows the traditional grain size distribution representation

::::::
presents

::::
data

::::::
reported

:::
by

:
?
::
for

::::::
Willow

:::::
Creek. Panel B

uses
:::::
presents

::::
data

:::
for

::::
North

:::
St.

::::
Vrain

::::::
Creek.

:::::
Shaded

:::::::
polygons

:::::::
represent

:
the

:::
95% confidence band calculated for

::::::
intervals

:::::
about the pebble

count to highlight where the distributions are statistically similar and where they are different
:::::
sample

:::::::::
distribution.

Figure ?? plots data published by ?, which were used to compare the bed surface grain size distribution estimated using a pebble count

method, and from a truncated bulk sample of the bed surface. Re-plotting the analysis by ? demonstrates that the coarse tail (i.e., Di > 22.6

mm) of their bulk sample of the bed surface is statistically similar to the coarse end of the distribution for a pebble count, once the sediment

finer than 4 mm is excluded from the analysis of the bulk sediment. Interestingly, the finer half of the two distributions appear to be

statistically different. While ? reached essentially the same conclusion, the use of confidence bands about the distributions highlights the

statistical similarity of the coarse tail, and can be used to suggest that the transition occurs at a grain size of about 22.6 mm.

Comparing pebble counts from different channel units. Panel A presents data reported by ? for Willow Creek. Panel B presents data for

North St. Vrain Creek.

for the mainstem units (i.e., pools, and runs/riffles), but that exposed bar surfaces in these two streams are systematically less

rough. These kinds of inferences could have important implications for decisions about the spatial resolution of roughness

estimates required to build 2D or 3D flow models; it is also possible to reach the same conclusions based on the original data

plots in ?, but the addition of confidence bands supports the robustness of the inference.

A more fundamental motivation for plotting the binomial confidence bands is illustrated in Fig. ??, which compares the bed370

surface texture estimated by two different operators using the standard heel-to-toe technique to sample more than 400 stones

from the same sedimentological unit. These data were published by ? (see their Fig. 7). Based on their original representation

of the two distributions (Fig. ??, Panel A
:
a), ? concluded that

“operators produced quite different sampling results . . . operator B sampled more fine particles and fewer cobbles

. . . than operator A and produced thus a generally finer distribution.”375

However, once the confidence bands
::::
grain

::::
size

:::::::::
confidence

:::::::
intervals

:
are plotted (Fig.??, Panel B

:
b), it is clear that the differences

do not appear
::
are

:::
not

::::::::
generally

:
statistically significant.

:::::
Using

:::
the CompareCFDs

:::::::
function

::
to

::::::::
compare

::::
each

::::::::
percentile

:::::
from
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Figure 8. Comparing pebble counts of the same bed surface by different operators. The data plotted were published by ?. Panel A shows the

traditional grain size distribution representation. Panel B uses the
:::
95%

::::
grain

::::
size confidence band

::::::
intervals calculated for the pebble count

to demonstrate that the two distributions are not statistically different.

:::
D5 ::

to
::::
D95,

:::
we

:::::
found

:::
no

::::::::::
statistically

:::::::::
significant

:::::::::
differences

:::
for

::::
any

::::::::
percentile

::
at

:::::::::
↵= 0.01;

::
at

::::::::
↵= 0.05,

::::
only

::::::::::
differences

:::
for

::
the

:::::
D80,

::::
D85 :::

and
::::
D95:::

are
::::::::::::::
significant.When

:::::::::
comparing

:::::::::::
distributions,

::
it

:
is
::::::::

common
:::::::
practice

::
to

:::::
apply

:::
the

:::::::::
Bonferroni

:::::::::
correction

::
in

:::::
which

::
↵
::
is
::::::::
replaced

::
by

::::::
↵/m,

:::::
where

:::
m

::
is

:::
the

:::::::
number

::
of

:::::::
metrics

:::::
being

:::::::::
compared.

::::::::
Applying

::::
this

:::::::::
correction,

:::::
there

::
is

:::
no380

::::::::
statistical

::::::::
difference

::::::::
between

:::
the

:::
two

:::::::
samples

:::
for

:::::::::
↵= 0.05.

::::
The

::::
value

:::
in

::::::::::
considering

::::::::
sampling

::::::::
variability

:::
in

:::
the

:::::::
analysis

::
is

:::
that

::
it

:::::::
supports

:
a
:::::
more

:::::::
nuanced

:::::::::::
interpretation

::
of
::::::::::
differences

::
in

::::
grain

::::
size

:::::::::::
distributions.

:

A similar analysis of the heel-to-toe sampling method and the sampling frame method advocated by ? shows that the dis-

tributions produced by the two methods are not
::::::::
generally statistically different, either

::::
(Fig.

:::
??).

::::
The CompareCFDs

:::::::
function

::::
only

:::::
found

:::::::::
significant

::::::::::
differences

:::
for

::::
grain

::::
size

::::::::::
percentiles

::::::
coarser

::::
than

::::
D70:::

for
:::::::::
↵= 0.05,

::::
and

:::::::
between

::::
D75::::

and
::::
D90 :::

for385

::::::::
↵= 0.01.

:::::
Once

:::
the

:::::::::
Bonferroni

:::::::::
correction

::
is

:::::::
applied,

::::
none

:::
of

:::
the

:::::::::
differences

::::::::
between

:::
the

:::
two

:::::::
samples

::::::
would

::
be

::::::::::
considered

::::::::
significant

::
at
::::::::
↵= 0.05.

In both cases, the uncertainty associated with sampling variability appears to be greater than any
:::
the difference between

operators or between sampling methods, and thus one cannot claim these differences as evidence for statistically significant

effects. It may be
:
is

:::::
likely

:
the case that there are significant differences among operators or between sampling methods, but390

larger sample sizes would be required to reduce the magnitude of sampling variability in order to identify those differences.

Indeed, ? found that operator errors were difficult to detect for small sample sizes (wherein the sampling uncertainties were

comparatively large), but became evident as sample size increased, so the issue at hand is not whether there are important

differences between operators, but whether the differences in Fig. ?? are statistically significant. Interestingly, ? were able to

detect operator differences at sample sizes of about 300 stones, whereas ? did not detect statistical differences for samples of395

about 400 stones, indicating either that ? had larger operator differences than did ?, or smaller sample uncertainties due to the

nature of the sediment size distribution.
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Figure 9. Comparing sampling methods for the same bed surface and operator. The data plotted were published by ?, and were collected by

operator B. Panel A shows the traditional grain size distribution representation. Panel B uses the
:::
95%

::::
grain

::::
size confidence band

::::::
intervals

calculated for the pebble count to demonstrate that the two distributions do not appear to be statistically different.

6 Determining sample size

Our method for estimating uncertainty requires only the cumulative distribution and the number of measurements used to

construct the distribution. Therefore,
::
As

:::
we

::::::::::::
demonstrated

::
in

:::
the

:::::::
previous

:::::::
section,

:::::
grain

:::
size

:
confidence intervals can be con-400

structed and plotted for virtually all existing surface grain size distributions (provided that the number of stones that were

measured is known, which is almost always the case), and future sampling efforts need not be modified in any way in order to

take advantage of our method.
:::::
While

:::
the

:::::::
primary

:::::::
purpose

::
of

:::
our

:::::
paper

::
is
::
to
:::::::::::

demonstrate
:::
the

:::::::::
importance

:::
of

:::::::::
calculating

:::::
grain

:::
size

:::::::::
confidence

::::::::
intervals

::::
when

:::::::::
analyzing

::::
grain

::::
size

::::
data,

:::
our

:::::::
method

:::
can

::::
also

::
be

:::::::
adapted

::
to

::::::
predict

:::
the

::::::
sample

::::
size

:::::::
required

::
to

::::::
achieve

:
a
:::::::
desired

::::
level

::
of

::::::::
sampling

::::::::
precision,

:::::
prior

::
to

::::::::
collecting

:::
the

:::::::
sample.405

The actual uncertainty of an estimated grain size percentile cannot be predicted using our method
:::::
While

:::
the

:::::::::
percentile

:::::::::
confidence

::::::
interval

:::
for

::::
any

:::::::::
percentile

::
of

::::::
interest

::::
can

::
be

:::::::::
calculated

:::::
based

:::
on

:::
the

:::::::
sample

::::
size,

::
n,

::::
and

:::
the

::::::
desired

::::::::::
confidence

::::
level,

::
↵
::::
(see

:::::::::
Appendix

::
B,

:::
for

:::::::::
example),

::
it

::::::
cannot

::
be

:::::::
mapped

:::::
onto

:::
the

::::
grain

::::
size

::::::::::
confidence

::::::
interval

:
before the cumulative

distribution has been generated. This problem is well recognized, and has been approached in the past by making various

assumptions about the distribution shape (????), or using computational approaches
:::::::
empirical

:::::::::::::
approximations

:
(????), but in410

all cases it is still necessary to know something about the spread of the distribution – regardless of its assumed shape – in order

to predict the level of uncertainty associated with a given sample size
::::
assess

:::
the

:::::::::::
implications

::
of

::::::
sample

::::
size

:::
for

:::
the

::::::::
precision

::
of

:::
the

:::::::
resulting

:::::
grain

::::
size

::::::::
estimates. It is perhaps the difficulty of predicting sample uncertainty

::::::::
precision that has led to the

persistent use of the standard 100-stone sample.
::::
Here

:::
we

::::::
provide

::
a
::::::
simple

:::::
means

:::
of

::::::::::
determining

:::
the

:::::::::
appropriate

:::::::
sample

::::
size;

:::
first

:::
we

:::
use

:::::::
existing

::::
data

::
to

:::::::
calculate

:::
the

::::::::::
uncertainty

::
of

::::::::
estimates

:::
for

:::
d50:::

and
::::
d84;

::::
and

:::
then

:::
we

:::
use

:::::::::
simulated

:::::::::
log-normal

:::::
grain415

:::
size

:::::::::::
distributions

::
to

:::::::
quantify

:::
the

:::::
effect

::
of

:::
the

::::::
spread

::
of

:::
the

:::::::::
distribution

:::
on

::::::::::
uncertainty.
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Figure 10. Estimated uncertainty for estimates of D50 (Panel A) and D84 (Panel B) are plotted against sample size. Curves were generated

for all the bed surface samples analysed in this paper (???), and for bed surface samples collected by BGC Engineering and students from

The University of British Columbia (unpublished data)
:
,
:::
and

::::
those

::::::::
published

::
by

:::
???. Vertical lines highlight the range of uncertainties for

sample sizes of 200 and 500 stones.

6.1 Uncertainty based on field data

Here, we demonstrate the effect of sample size on uncertainty. We begin by calculating the uncertainty of estimates for D50 and

D84 for all the surface samples used in this paper, for eight samples collected by BGC Engineering from gravel bed channels

in the Canadian Rocky Mountains, and for samples from two locations on Cheakamus River, British Columbia, collected420

by undergraduate students from the Department of Geography at The University of British Columbia.
:::
The

:::::::
number

::
of

::::::
stones

::::::
actually

:::::::::
measured

::
to

:::::
create

:::::
these

::::::::::
distributions

::
is

::::::::
irrelevant,

:::::
since

::
it

::
is

:::
the

:::::
shape

::
of

:::
the

:::::::::
cumulative

::::::::::
distribution

:::
that

::::::::::
determines

:::
how

:::
the

::::::
known

::::::::
percentile

::::::::::
confidence

::::::
interval

:::::
maps

::::
onto

:::
the

::::
grain

::::
size

:::::::::
confidence

:::::::
interval.

:::::
Since

::::
these

:::::::::::
distributions

::::
come

:::::
from

:
a
::::
wide

:::::
range

::
of

:::::::::::
environments

::::
and

::::
have

:
a
:::::
range

::
of

::::::::::
distribution

::::::
shapes,

::::
they

:::
are

:::::::::
reasonable

::::::::::::
representation

::
of

:::
the

:::::
range

::::
grain

::::
size

:::::::::
confidence

:::::::
intervals

::::
that

::::
could

:::
be

:::::::::
associated

::::
with

:
a
:::::
given

::::::::
percentile

:::::::::
confidence

:::::::
interval.

:
425

Uncertainty (✏) is expressed as a proportion of the estimate,
::
in

:::
the

::::
grain

::::
size

:::::::
estimate

::
is calculated as follows:

✏P
:
= 0.5

0

@Dupper �Dlower

Dest

dupper � dlower

dP
:::::::::::::

1

A (3)

where Dupper :::::
dupper:is the upper 95% confidence bound calculated for a given sample size , Dlower :::::

bound
::
of

:::
the

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval,

:::::
dlower:is the lower confidence bound, and Dest ::

dP:
is the estimated size for

::::
grain

::::
size

::
of

:
the percentile of

interest. For the sake of simplicity, we have assumed that uncertainty is symmetrically distributed about Dest, but this is not430

true for all distribution shapes. Therefore, we can be approximately 95% confident that the interval Dest[1± ✏] includes the

true value of the percentile
::
As

::
a
:::::
result,

:::
✏50:::::::::

represents
:::
the

::::::::
half-width

::
of

:::
the

:::::
grain

:::
size

::::::::::
confidence

::::::
interval

:::::
about

:::
the

::::::
median

:::::
grain

:::
size

::::::::::
(normalized

:::
by

::::
d50),

::::
and

:::
✏84 ::::::::

represents
:::::::::
half-width

::
of

:::
the

::::::::::
normalized

::::
grain

::::
size

:::::::::
confidence

:::::::
interval

::
for

:::
the

::::
d84.
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Figure 11. Estimated uncertainty for estimates of D50 (Panel A) and D84 (Panel B) are plotted against sample size for a simulated set of log

normal surface distributions with a range of standard deviations
:::::
sorting

::::::
indices. The markers are color-coded by standard deviation

:::
si�. The

bounding curves for SDlog = 0.5 �
::::::
si� = 1

:
and SDlog = 2.0 �

:::::::
si� = 5.0

:
are shown for reference, calculated using Eq. (??) and Eq. (??).

Fig. ?? presents the range of uncertainties
::::::::
calculated

::::::
values

::
of

:::
✏50 :::

and
:::
✏84:for various gravel bed surface samples, including

those shown in Figs. (??), (??), (??), and (??). For a sample size of 100 stones, the uncertainties are relatively large, with435

a mean uncertainty across all of the distributions of ±25% for D50 and of ±21% for D84. The mean uncertainty drops to

±18% for D50 and ±15% for D84 for
:::
✏50:::::

value
::
of

::::
0.25

::::
and

::
a

:::::
mean

:::
✏84 :::::

value
::
of

:::::
0.21;

:::
for

:
a sample of 200 stones, and to

±11% (D50) and ±9% (D84)
:::
✏50:::::

drops
::
to

:::::
0.18,

::::
and

:::
✏84 :::::

drops
::
to

:::::
0.15,

:::
on

:::::::
average;

:::
and

:
for 500 stones

:::::::
n= 500,

::::::::::
✏50 = 0.11,

:::
and

:::::::::
✏84 = 0.09.

:::::
This

:::::::
analysis

:::::::::
transforms

:::
the

::::::::::
predictable,

:::::::::::::
distribution-free

::::::::::
contraction

::
of

:::
the

:::::::::
percentile

:::::::::
confidence

::::::
interval

:::
as

::::::
sample

:::
size

::::::::
increases

::::
into

:::
the

:::::::::::::::::::
distribution-dependent

:::::::::
contraction

::
of

:::
the

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval.

::::::
Clearly

:::::
there

::
is

:
a
:::::
wide440

::::
range

::::::::::
cumulative

:::::::::
frequency

::::::::::
distribution

::::::
shapes

::
in

:::
our

::::
data

::::
set,

:::::::
resulting

:::
in

:
a
:::::
large

:::::::::
differences

:::
in

:::
✏50::::

and
:::
✏84 :::

for
:::
the

:::::
same

::::::
sample

:::
size

::::
(and

::::::::
therefore

:::
the

:::::
same

::::::::
percentile

:::::::::
confidence

:::::::
interval).

6.2 Uncertainty for Log-normal distributions

We can also approach this problem by assuming that
::
In

:::::
order

::
to

:::::::
quantify

::::
the

:::::
effect

::
of

::::::::::
distribution

:::::
shape

:::
on

:::
the

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval,

:::
we

:::::::::
conducted

::
a
:::::::::
modelling

:::::::
analysis

::::::
using

::::::::
simulated

::::::::::
log-normal

:
bed surface texture distributions are445

approximately log-normal, but have varying degrees of gradation, indicated by a standard deviation expressed
:::
that

::::
have

::
a

::::
range

:::
of

::::::
sorting

:::::
index

::::::
values.

:::::
Here,

::::::
sorting

::::
index

:::::
(si�)

::
is

::::::
defined

:::
by

:::
the

::::::::
following

::::::::
equation.

si� = �84 ��16
:::::::::::::

(4)

:::
The

::::
term

::::
�84:::::

refers
:::
to

:::
the

::::
84th

:::::::::
percentile

::::
grain

::::
size

:
(in � units(SDlog)

:
),
::::
and

:::
�16::::::

refers
:::
the

::::
16th

:::::::::
percentile. As a point of

comparison, if we estimate the SDlog ::
we

:::::::::
estimated

:::
si�:for the samples analyzed in the previous sectionby assuming that450

SDlog = log2D84 � log2D50, then SDlog ranges from 0.8 to 1.8
:
.
:::
For

:::::
those

::::::::
samples,

:::
the

::::::
sorting

:::::
index

::::::
ranges

::::
from

:::::
1.5�

::
to

::::
5.6�, with a median value of 1. For those samples, the

::::
2.5�.

::::
The

:
largest values of SDlog :::

si�:
were associated with samples
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from channels on steep gravel bed fans and on bar top surfaces, while samples characterizing the bed of typical gravel bed

streams had values close to the median value.

We generated a relation between uncertainty and sample size by first simulating
:::::::
simulated

:
3000 log-normal grain size455

distributions with D50 ranging from 22.6 mm to 90.5 mm, n ranging from 51 to 999
::
50

::
to

:::::
1000 stones, and SDlog ranging

from 0.5
::
si�:::::::

ranging
::::
from

::
1� to 2

:
5�. We then used

:::
For

::::
each

:::::::::
simulated

::::::
sample,

:::
we

:::::::::
calculated

:::::::::
uncertainty

:::
for

::::
D50::::

and
::::
D84

::::
using

::::
Eq.

::
??.

::::
The

:::::::::
calculated

:::::
values

::
of

:::
✏50::::

and
::
✏84:::

are
::::::
plotted

::
in
::::
Fig.

:::
??.

:::::
Using

:::
the

::::
data

::::::
shown

::
in

::
the

::::::
figure,

:::
we

::
fit least-squares

regression to fit models of the form

ln(✏P
:
) = a ·n+ b ·SDlogsi�

::
+ c (5)460

where a, b, and c are the estimated coefficients. The empirical model describing the uncertainty of D50 ::::::::
predicting

:::
✏50:has

an adjusted R2 value of 0.95, with the variable n explaining about 47
::
43% of the total variance, and SDlog explaining 47

:::
si�

::::::::
explaining

:::
51% of the variance. The model for D84 :::

✏84 has an adjusted R2 value of 0.9
::::
0.91 with the variables n and SDlog

explaining the similar amounts
:::
si� :::::::::

explaining
::::::
similar

:::::::::
proportions

:
of the total variance (46% and 45

::
as

::::
they

::
do

::
in

:::
the

:::
✏50::::::

model

::::
(41%

::::
and

::
50%, respectively).465

After back-transforming from logarithms, the equation describing the uncertainty in D50:::
✏50 can be expressed as:

✏50 =A ·n�0.498�0.506
:::::

(6)

where the coefficient A is given by:

A= exp(�0.346�0.171
::::::

+0.832SDlog0.359si�
:::::::

) (7)

The equation for estimating uncertainty in D84 ::::::::
equations

:::
for

:::
✏84 are:470

✏84 =B ·n�0.51 (8)

where B is given by:

B = exp(�0.10.021
::::

+0.842SDlog0.366si�
:::::::

) (9)

Table ?? provides values of A and B for a range of standard deviations.

::::::
sorting

::::::
indices.

:
475

7 Practical implications of uncertainty

The implications of uncertainty can be important in a range of practical applications. Here
::
As

:::
an

:::::::
example, we translate

uncertainty in grain size percentiles into uncertainty in
::::
grain

::::
size

::::::::::
confidence

:::::::
intervals

::::
into

:::::::::
confidence

::::::::
intervals

:::
for the crit-

ical discharge for significant morphologic change using data for Fishtrap Creek, a gravel bed stream in British Columbia

that has been studied by the authors (???). The estimated bed surface D50 for Fishtrap Creek is about 55 mm, which we480
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Table 1. Coefficient values for estimating uncertainty in D50 and D84 as a function of SDlog and sample size (n)
::
si�:

using Eqs. (??) and

(??)

Coef. 0.75�
::::
1.5� 1.00�

::::
2.00�

:
1.25�

::::
2.5� 1.50�

::::
3.0� 1.75�

::::
3.5� 2.00�

::::
4.00�

: :::::
4.50�

A 0.278
::::
1.444 0.486

::::
1.728

:
0.694

::::
2.068 0.901

::::
2.474 1.109

::::
2.961 1.317

::::
3.543

: ::::
4.240

:

B 0.531
::::
1.768 0.742

::::
2.123

:
0.952

::::
2.550 1.163

::::
3.062 1.374

::::
3.677 1.584

::::
4.415

: ::::
5.302

estimate becomes entrained at a shear stress of 40 Pa, corresponding to a discharge of about 2.5 m3s�1(?);
::::

the
::::::::
threshold

::::::::
discharge

:
is
::::::

based
::
on

:::::
visual

::::::::::
observation

::
of

::::::
tracer

::::
stone

::::::::::
movement,

:::
and

::::::::::
corresponds

::
to
::
a
::::::
critical

::::::::::::
dimensionless

:::::
shear

:::::
stress

::
of

::::::::::::
approximately

:::::
0.045. If we assume that significant channel change can be expected when D50 becomes fully mobile (which

occurs at about twice the entrainment threshold)
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(which occurs at about twice the entrainment threshold, according to ?), then

we would expect channel change to occur at a shear stress of 80 Pa, which corresponds to a critical discharge of 8.3 m3s�1,485

based on the stage-discharge relations published by ?.

Since we used the standard technique of sampling 100 stones to estimate D50 and since the standard deviation
::::::
sorting

:::::
index

of the bed surface distribution is about 1.0�
:
is
:::::

about
:::::
2.0�, we can assume that the uncertainty will be about ±16

:::
±17%, based

on Eqs. (?? and ??), which in turn suggests that we can expect the actual surface D50 to be as small as 46 mm or as large

as 64 mm. This range of D50 values translates to shear stresses that produce full mobility that range from 67 Pa to 93
::
94490

Pa. This in turn translates to critical discharge values for morphologic change ranging from 5.9 m3s�1to 11.1
:::
11.2

:
m3s�1,

which correspond to return periods of about 1.5 years and 7.2
:::
7.4 years, based on the flood frequency analysis presented in ?.

Specifying a critical discharge for morphologic change that lies somewhere between a flood that occurs virtually every year

and one that occurs about once a decade, on average, is of little practical use, and highlights the cost of relatively imprecise

sampling techniques.495

If we had taken a sample of 500 stones, we could assert that the true value of D50 would likely fall between 51 mm and

59 mm, assuming an uncertainty of ±7%. The estimates of the critical discharge would range from 7.2 m3s�1 to 9.5 m3s�1,

which in turn correspond to return periods of 2 years and 4.1 years, respectively. This constrains the problem more tightly, and

is of much more practical use for managing the potential geohazards associated with channel change.

Operationally, it takes about 20 minutes
::
for

::
a

::::
crew

::
of

::::
two

::
or

::::
three

::::::
people

:
to sample 100 stones from a typical

:::
dry

:::
bar

::
in

::
a500

gravel bed river, and a bit over an hour to sample 500 stones, so the effort required to sample the larger number of stones is

::::
often

:
far from prohibitive.

::
In

:::
less

:::::
ideal

::::::::
conditions

:::
or

::::
when

:::::::
working

::::::
alone,

:
it
::::
may

::::
take

:::::::
upwards

::
of

::
5

:::::
hours

::
to

:::::
collect

::
a

:::
500

:::::
stone

::::::
sample,

:::
but

:::
as

::
we

:::::
have

::::::::::::
demonstrated,

:::
the

:::::::::
uncertainty

::
of
::::

the
:::
data

::::::::
increases

:::::::
quickly

::
as

::::::
sample

::::
size

:::::::
declines

::::
(see

:::::
Figs.

::
??

::::
and

:::
??),

:::::
which

::::
may

:::::
make

:::
the

::::
extra

:::::
effort

::::::::::
worthwhile

::
in

:::::
many

::::::::
situations.

:
Furthermore, computer-based analyses using photographs

of the channel bed may be able to identify virtually all of the particles on the bed surface, and generate even larger samples. The505

statistical advantage
::::::::
advantages

:
of the potential increase in sample size are obvious, and justify further concerted development

of these computer-based methods, in our opinion.
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8 Conclusions

Based on the statistical approach presented in this paper, we developed a suite of functions in the R language that can be used to

estimate the uncertainty of any percentile in a cumulative grain size distribution
:::
first

::::::::
calculate

:::
the

::::::::
percentile

:::::::::
confidence

:::::::
interval510

:::
and

::::
then

:::::::
translate

:::
that

::::
into

:::
the

::::
grain

::::
size

:::::::::
confidence

::::::
interval

:::
for

::::::
typical

::::::
pebble

:::::
count

::::::
samples

:
(see the supplemental material for

the source code). The approach
:::
We

:::
also

:::::::
provide

:
a
::::::::::
spreadsheet

:::::
which

::::
uses

:::
the

::::::
normal

::::::::::::
approximation

::
to

:::
the

:::::::
binomial

::::::::::
distribution

::
to

:::::::
estimate

:::
the

::::
grain

::::
size

:::::::::
confidence

:::::::
interval.

:::
The

::::::::
approach

::::::::
presented

::
in

:::
this

:::::
paper

:
uses binomial theory to generate uncertainty

estimates for any
::::::::
calculate

:::
the

::::::::
percentile

:::::::::
confidence

:::::::
interval

:::
for

:::
any

:::::::::
percentile

::
of

::::::
interest

:::::
(e.g.

::::::
P = 50

::
or

::::::::
P = 84),

::::
and

::::
then

::::
maps

::::
that

:::::::::
confidence

::::::
interval

::::
onto

:::
the

:
cumulative grain size distribution based on pebble count data , and

::
to

:::::::
estimate

:::
the

:::::
grain515

:::
size

:::::::::
confidence

:::::::
interval.

:::
As

:
a
::::::
result,

:::
the

:::::::
approach

:
requires only that the total number of stones used to generate the distribution

is known . Approaches were developed for cases
:
in

:::::
order

::
to
::::::::

generate
:::::
grain

:::
size

::::::::::
distribution

:::::
plots

::::
that

:::::::
indicate

:::::::
visually

:::
the

:::::::
precision

:::
of

:::
the

::::::
sample

::::::::::
distribution

::::
(e.g.

::::
Fig.

::::
??).

:::
We

::::
have

:::::::::
developed

::::::::
statistical

::::::::::
approaches

:::
that

::::
can

::
be

:::::
used

::
for

::::::::
samples in

which individual grain sizes are known and
:::
for

::::::
samples

:
in which data are binned (e.g., into � classes).

By estimating the uncertainty
:::::
grain

:::
size

:::::::::
confidence

::::::::
intervals for each percentile in the distribution, the uncertainty

::::::
sample520

:::::::
precision

:
can be displayed graphically as a polygon surrounding the distribution estimates. When comparing two different

distributions, this means of displaying grain size distribution data highlights which distributions appear statistically different,

and which do not.

Our analysis of various samples collected in the field demonstrates that the uncertainty
::::
grain

:::
size

:::::::::
confidence

:::::::
interval depends

on the shape of the distribution, with more widely graded sediments having higher uncertainty
:::::
wider

:::::
grain

:::
size

::::::::::
confidence525

:::::::
intervals than narrowly graded ones. Our analysis also suggests that typical gravel bed river channels have a similar gradation,

and that the typical uncertainty of the D50 varies from ±25% for a sample size of 100 observations to about ±11% for 500

observations.

When designing a bed sampling program, it is useful to estimate the precision of the sampling strategy and to select the

sample size accordingly; to do so, we must first assume something about the spread of the data (assuming a log-normal530

distribution), and then verify the uncertainty after collecting the samples. Simple equations for predicting uncertainty (as a

percent of the estimate) are presented here to help workers select the appropriate sample size for the intended purpose of the

data.

Appendix A:
::::::
Normal

::::::::::::::
approximation

:::::
While

::
it

:
is
:::::::

difficult
::
to
:::::::::
determine

:::
the

::::::::
percentile

::::::::::
confidence

::::::
interval

:::::
using

:::
Eq.

:::
??

:::::::
without

:::::
using

:
a
::::::::
scripting

:::::::
approach

:::::::
similar

::
to535

::
the

::::
one

:::
we

:::::::::
implement

::
in

:::
the GSDtools

:::::::
package,

:::
we

:::
can

:::::::::::
approximate

:::
the

::::::::
percentile

:::::::::
confidence

:::::::
interval

::::::::::
analytically,

::::
and

:::
use

::
the

:::::::::::::
approximating

::::::::
equations

::
in

::::::::::
spreadsheet

::::::::::
calculations.

:::
As

::
?

::::
point

::::
out,

:::
the

::::::::
percentile

::
of

:::::::
interest

:::
(P )

:::
can

:::
be

:::::::::::
approximated

:::
by

:
a
::::::::
normally

:::::::::
distributed

:::::::
variable

::::
with

:
a
:::::::
standard

::::::::
deviation

:::::::::
calculated

::
as

:::::::
follows:

p
np(1� p)

:::::::::
n
:
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540

(A1)

:::
The

::::
term

::
n
:::::
refers

:::
to

:::
the

::::::
number

:::
of

:::::
stones

:::::
being

:::::::::
measured,

::::
and

:
p
::::::
refers

::
to

:::
the

:::::::::
probability

:::
of

:
a
:::::
single

:::::
stone

:::::
being

:::::
finer

::::
than

::
the

:::::
grain

::::
size

:::
for

:
a
:::::::::
percentile

::
of

:::::::
interest,

::::
DP :::::

(recall
:::::

from
:::::
above

::::
that

::::::::::
p= P/100,

::::
such

::::
that

::::::::
p= 0.84

::
for

::::::
D84).

:::
The

::::::::
standard

:::::::
deviation

:::
for

::::::::
n= 100

:::
and

:::::::
P = 84

:::::
would

:::
be

:::
3.7

:
.
:::::
That

:::::
means

::::
that

:::
the

::::
true

::::
D84 :::::

would
:::

be
::::::::
expected

::
to

:::
fall

:::::::
between

::::::::
sampled545

::::
d80.3:::

and
:::::
d87.7:::

for
:
a
::::::
sample

:::
of

:::
100

:::::::::::
observations

::::::::::::
approximately

::::
68%

::
of

:::
the

:::::
time,

:::
and

:::::
would

::::
fall

::::::
outside

:::
that

:::::
range

:::::
32%

::
of

:::
the

::::
time.

:

::::
More

:::::::::
generally,

::
we

:::
can

:::
use

:::
the

::::::
normal

::::::::::::
approximation

::
to

::::::::
calculate

:::
the

::::::::
percentile

:::::::::
confidence

::::::
interval

:::
for

:::
any

::::::
chosen

:::::::::
confidence

::::
level

::::
(↵).

:::
We

::::::
simply

::::
need

::
to
::::

find
:::
the

::::::::::
appropriate

:::::
value

::
of

:::
the

::
z

:::::::
statistic

::
for

::::
the

::::::
chosen

:::::
values

:::
of

::
↵

:::
and

::
n,

::::
and

::::::::
calculate

:::
the

::::::::
percentile

:::::::::
confidence

:::::::
interval

::::
using

:::
the

:::::::::
following

:::::::::
confidence

:::::::
bounds:550

Pupper = P +�z
:::::::::::::

(A2)

Plower = P ��z
:::::::::::::

(A3)

:::
The

:::
use

::
of

::
a
::::::
normal

::::::::::
distribution

::
to

::::::::::
approximate

:::
the

:::::::
binomial

::::::::::
distribution

::
is

::::::::
generally

:::::::
assumed

::
to

:::
be

::::
valid

:::
for

:
p
::::::
values

::
in

:::
the

::::
range

::::::::::::::

5
n  p 1� 5

n ,
:::::::
although

:::::
some

::::
have

::::::::::::
recommended

:::
the

:::::
more

::::::::
stringent

:::::
range

::
of

::::::::::::::

20
n  p 1� 20

n ::::::
(e.g. ?)

:
.
:::
For

:
a
:::::::

sample555

:::
size

::
of

::::
100

::::::
stones,

:::
the

:::::
limits

:::::::::
correspond

::
to

:::
5th

::::
and

::::
95th

:::::::::
percentiles

::
of

:::
the

::::::::::
distribution.

:

:::
For

::::
ease

::
of

::::::::
reference,

:::::
Table

:::
??

:::::::
presents

::
�

:::::
values

:::
for

::
P
:::::::
ranging

::::
from

:::
10

::::
(i.e.,

:::
the

:::::
D10)

::
to

::
90

::::::
(D90)

:::
and

:::
for

::
n

::::::
ranging

:::::
from

::
50

:::::::::::
observations

::
to

::::
3200

:::::::::::
observations.

:::
For

:::::::::
↵= 0.10,

::::::::
z = 1.64;

:::
for

:
a
::::::::
↵= 0.05,

::::::::
z = 1.96;

::::
and

::
for

:::::::::
↵= 0.01,

::::::::
z = 2.58.

:::
The

:::::
table

:::
can

::
be

::::
used

:::
to

:::::::
estimate

:::
the

::::::::::
approximate

:::::::::
percentile

:::::::::
confidence

:::::::
intervals

:::
for

::::::::
common

:::::
values

:::
of

::
↵,

::
P

:::
and

:::
n.

::::::::
However,

:::
the

::::
user

:::
will

::::
have

:::
to

::::::::
manually

:::::::
translate

:::
the

:::::::::
percentile

:::::::::
confidence

::::::::
intervals

::::
into

::::
grain

::::
size

::::::::::
confidence

:::::::
intervals

:::::
using

:::
the

::::::::::
cumulative560

::::::::
frequency

::::::::::
distribution

::
for

:::::
their

::::::
sample.

:

:
A
::::::::::
spreadsheet

::::
(see

:::::::::::
supplemental

::::::::
material)

:::::::::::
implementing

:::::
these

::::::::::
calculations

:::
has

::::
also

::::
been

:::::::::
developed.

::::
That

::::::::::
spreadsheet

:::::
maps

::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

::::
onto

:::
the

:::::
user’s

:::::
grain

::::
size

:::::::::
distribution

:::::::
sample

::
in

:::::
order

::
to

:::::::
estimate

:::
the

:::::
grain

:::
size

::::::::::
confidence

:::::::
interval.
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Table A1.
:::::::
Percentile

:::::::
standard

:::::::
deviations

:::
for

::::::
various

:::::
sample

::::
sizes

:::
(n)

:::
and

::::::::
percentiles

::::
(Dp)

:
n

:::
D10: :::

D16: :::
D25: :::

D50: :::
D75: :::

D84: :::
D90:

::
50

::
4.2

: ::
5.2

: ::
6.1

: ::
7.1

: ::
6.1

: ::
5.2

: ::
4.2

:

:::
100

::
3.0

: ::
3.7

: ::
4.3

: ::
5.0

: ::
4.3

: ::
3.7

: ::
3.0

:

:::
200

::
2.1

: ::
2.6

: ::
3.1

: ::
3.5

: ::
3.1

: ::
2.6

: ::
2.1

:

:::
400

::
1.5

: ::
1.8

: ::
2.2

: ::
2.5

: ::
2.2

: ::
1.8

: ::
1.5

:

:::
800

::
1.1

: ::
1.3

: ::
1.5

: ::
1.8

: ::
1.5

: ::
1.3

: ::
1.1

:

::::
1600

::
0.8

: ::
0.9

: ::
1.1

: ::
1.2

: ::
1.1

: ::
0.9

: ::
0.7

:

::::
3200

::
0.5

: ::
0.6

: ::
0.8

: ::
0.9

: ::
0.8

: ::
0.6

: ::
0.5

:
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Appendix B:
::::::::
Binomial

::::::::::
distribution

:::::::::
reference

:::::
tables565

::::
This

:::::::
appendix

:::::::
presents

::::::::
reference

::::::
tables

::
for

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

::::::::::
calculations

::::::::
described

::::::
above.

:::
The

:::::
tables

:::::::
present

::::::::::
calculations

::
for

::
a
:::::
range

::
of

:::::::::
percentiles

::::
(P )

:::
and

::::::
sample

:::::
sizes

:::
(n).

::::
The

::::::::::
calculations

::::::::
presented

:::::
were

:::::
made

:::::
using

:::
the GSDtools

:::::::
package,

::::::
hosted

::
on

:::::
Brett

::::::
Eaton’s

:::::::
GitHub

:::::
page.

:
It
::
is

:::::
freely

:::::::::
accessible

::
to

:::::::::
download.

::::
You

:::
can

::::
also

:::
find

::
a

:::::::::::
demonstration

::::::::
showing

:::
how

::
to

::::::
install

:::
and

:::
use

:::
the

:::::::
package

:
at
:
https://bceaton.github.io/GSDtools_demo_2019.nb.html

:
.
:::
The

::::::
source

::::
code

:::
for

:::
the

:::::::
package

:::
can

::
be

:::::
found

::
in
:::
the

::::::
online

::::
data

::::::::
repository

:::::::::
associated

::::
with

::::
this

:::::
paper.570

:::::
These

:::::::::
percentile

:::::::::
confidence

:::::::
bounds

::
do

::::
not

:::::::
depend

::
on

::::
the

::::::::::::
characteristics

::
of
::::

the
:::::
grain

::::
size

::::::::::
distribution,

:::::
since

::::
they

::::
are

:::::::::
determined

:::
by

::::::::
binomial

::::::::
sampling

::::::
theory.

::::::::::
Estimating

:::
the

::::::::::::
corresponding

:::::
grain

::::
size

:::::::::
confidence

:::::::
bounds

:::::::
requires

:::
the

::::
user

:::
to

:::
map

:::
the

:::::::::
percentile

:::::::::
confidence

:::::::
interval

::::
onto

:::
the

:::::
grain

::::
size

:::::::::
distribution

::
in
:::::

order
::
to
::::

find
:::
the

:::::
grain

::::
size

:::::::::
confidence

:::::::
interval.

::::
The

GSDtools
:::::::
package

:::
will

::::::::::::
automatically

:::::::
estimate

:::
the

::::
grain

::::
size

:::::::
interval.

:

Table B1.
::::
Upper

:::
and

:::::
lower

:::::::
percentile

:::::::::
confidence

:::::
interval

::::::
bounds

:::
for

:::::::
↵= 0.05

::::
(95%

::::::::
confidence

:::::
level)

n = 100 n = 200 n = 300 n = 400 n = 500

:
P

:::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper:

::
10

::
4.0

: :::
15.8

: ::
5.8

: :::
14.1

: ::
6.6

: :::
13.3

: ::
7.0

: :::
12.9

: ::
7.3

: :::
12.6

:

::
15

::
7.8

: :::
21.8

: :::
10.0

: :::
19.9

: :::
10.9

: :::
19.0

: :::
11.5

: :::
18.5

: :::
11.8

: :::
18.1

:

::
20

:::
12.0

: :::
27.6

: :::
14.3

: :::
25.4

: :::
15.4

: :::
24.5

: :::
16.0

: :::
23.9

: :::
16.4

: :::
23.5

:

::
25

:::
16.2

: :::
33.2

: :::
18.9

: :::
30.9

: :::
20.0

: :::
29.8

: :::
20.7

: :::
29.2

: :::
21.2

: :::
28.7

:

::
30

:::
20.7

: :::
38.7

: :::
23.5

: :::
36.2

: :::
24.7

: :::
35.1

: :::
25.4

: :::
34.4

: :::
25.9

: :::
34.0

:

::
35

:::
25.3

: :::
44.0

: :::
28.2

: :::
41.4

: :::
29.5

: :::
40.3

: :::
30.2

: :::
39.6

: :::
30.7

: :::
39.1

:

::
40

:::
30.0

: :::
49.2

: :::
33.0

: :::
46.6

: :::
34.3

: :::
45.4

: :::
35.1

: :::
44.7

: :::
35.6

: :::
44.2

:

::
45

:::
34.8

: :::
54.3

: :::
37.9

: :::
51.7

: :::
39.2

: :::
50.5

: :::
40.0

: :::
49.8

: :::
40.5

: :::
49.3

:

::
50

:::
39.7

: :::
59.3

: :::
42.8

: :::
56.7

: :::
44.2

: :::
55.5

: :::
45.0

: :::
54.8

: :::
45.5

: :::
54.3

:

::
55

:::
44.7

: :::
64.2

: :::
47.8

: :::
61.6

: :::
49.2

: :::
60.5

: :::
50.0

: :::
59.7

: :::
50.5

: :::
59.3

:

::
60

:::
49.8

: :::
69.0

: :::
52.9

: :::
66.5

: :::
54.3

: :::
65.3

: :::
55.0

: :::
64.7

: :::
55.6

: :::
64.2

:

::
65

:::
55.0

: :::
73.7

: :::
58.1

: :::
71.3

: :::
59.4

: :::
70.2

: :::
60.2

: :::
69.5

: :::
60.7

: :::
69.1

:

::
70

:::
60.3

: :::
78.3

: :::
63.3

: :::
76.0

: :::
64.6

: :::
75.0

: :::
65.3

: :::
74.3

: :::
65.8

: :::
73.9

:

::
75

:::
65.8

: :::
82.8

: :::
68.6

: :::
80.6

: :::
69.8

: :::
79.7

: :::
70.6

: :::
79.1

: :::
71.1

: :::
78.6

:

::
80

:::
71.4

: :::
87.0

: :::
74.1

: :::
85.2

: :::
75.2

: :::
84.3

: :::
75.9

: :::
83.7

: :::
76.3

: :::
83.4

:

::
85

:::
77.2

: :::
91.2

: :::
79.6

: :::
89.5

: :::
80.7

: :::
88.8

: :::
81.3

: :::
88.3

: :::
81.7

: :::
88.0

:

::
90

:::
83.2

: :::
95.0

: :::
85.4

: :::
93.7

: :::
86.3

: :::
93.1

: :::
86.8

: :::
92.7

: :::
87.2

: :::
92.5

:

26



Table B2.
::::
Upper

:::
and

:::::
lower

:::::::
percentile

:::::::::
confidence

:::::
interval

::::::
bounds

:::
for

:::::::
↵= 0.10

::::
(90%

::::::::
confidence

:::::
level)

n = 100 n = 200 n = 300 n = 400 n = 500

:
P

:::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper:

::
10

::
4.8

: :::
14.7

: ::
6.4

: :::
13.4

: ::
7.1

: :::
12.8

: ::
7.5

: :::
12.4

: ::
7.7

: :::
12.2

:

::
15

::
8.8

: :::
20.6

: :::
10.7

: :::
19.0

: :::
11.5

: :::
18.3

: :::
12.0

: :::
17.9

: :::
12.3

: :::
17.6

:

::
20

:::
13.1

: :::
26.3

: :::
15.2

: :::
24.5

: :::
16.1

: :::
23.7

: :::
16.6

: :::
23.2

: :::
17.0

: :::
22.9

:

::
25

:::
17.5

: :::
31.8

: :::
19.8

: :::
29.9

: :::
20.8

: :::
29.0

: :::
21.3

: :::
28.5

: :::
21.7

: :::
28.1

:

::
30

:::
22.1

: :::
37.2

: :::
24.5

: :::
35.1

: :::
25.5

: :::
34.2

: :::
26.1

: :::
33.7

: :::
26.6

: :::
33.3

:

::
35

:::
26.7

: :::
42.5

: :::
29.2

: :::
40.3

: :::
30.3

: :::
39.4

: :::
31.0

: :::
38.8

: :::
31.4

: :::
38.4

:

::
40

:::
31.5

: :::
47.6

: :::
34.1

: :::
45.5

: :::
35.2

: :::
44.5

: :::
35.9

: :::
43.9

: :::
36.3

: :::
43.5

:

::
45

:::
36.3

: :::
52.7

: :::
39.0

: :::
50.6

: :::
40.1

: :::
49.6

: :::
40.8

: :::
49.0

: :::
41.2

: :::
48.6

:

::
50

:::
41.3

: :::
57.7

: :::
43.9

: :::
55.6

: :::
45.1

: :::
54.6

: :::
45.8

: :::
54.0

: :::
46.2

: :::
53.6

:

::
55

:::
46.3

: :::
62.7

: :::
48.9

: :::
60.5

: :::
50.1

: :::
59.6

: :::
50.8

: :::
59.0

: :::
51.2

: :::
58.6

:

::
60

:::
51.4

: :::
67.5

: :::
54.0

: :::
65.4

: :::
55.2

: :::
64.5

: :::
55.8

: :::
63.9

: :::
56.3

: :::
63.5

:

::
65

:::
56.5

: :::
72.3

: :::
59.2

: :::
70.3

: :::
60.3

: :::
69.3

: :::
60.9

: :::
68.8

: :::
61.4

: :::
68.4

:

::
70

:::
61.8

: :::
76.9

: :::
64.4

: :::
75.0

: :::
65.4

: :::
74.2

: :::
66.1

: :::
73.6

: :::
66.5

: :::
73.2

:

::
75

:::
67.2

: :::
81.5

: :::
69.6

: :::
79.7

: :::
70.7

: :::
78.9

: :::
71.3

: :::
78.4

: :::
71.7

: :::
78.1

:

::
80

:::
72.7

: :::
85.9

: :::
75.0

: :::
84.3

: :::
76.0

: :::
83.6

: :::
76.5

: :::
83.1

: :::
76.9

: :::
82.8

:

::
85

:::
78.4

: :::
90.2

: :::
80.5

: :::
88.8

: :::
81.4

: :::
88.2

: :::
81.9

: :::
87.8

: :::
82.2

: :::
87.5

:

::
90

:::
84.3

: :::
94.2

: :::
86.1

: :::
93.1

: :::
86.9

: :::
92.6

: :::
87.3

: :::
92.3

: :::
87.6

: :::
92.1

:

27



Table B3.
::::
Upper

:::
and

:::::
lower

:::::::
percentile

:::::::::
confidence

:::::
interval

::::::
bounds

:::
for

:::::::
↵= 0.20

::::
(80%

::::::::
confidence

:::::
level)

n = 100 n = 200 n = 300 n = 400 n = 500

:
P

:::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper:

::
10

::
5.7

: :::
13.5

: ::
7.1

: :::
12.5

: ::
7.6

: :::
12.1

: ::
8.0

: :::
11.8

: ::
8.2

: :::
11.6

:

::
15

:::
10.0

: :::
19.2

: :::
11.5

: :::
18.0

: :::
12.2

: :::
17.5

: :::
12.6

: :::
17.2

: :::
12.9

: :::
17.0

:

::
20

:::
14.4

: :::
24.7

: :::
16.1

: :::
23.4

: :::
16.9

: :::
22.8

: :::
17.3

: :::
22.5

: :::
17.6

: :::
22.2

:

::
25

:::
19.0

: :::
30.1

: :::
20.8

: :::
28.7

: :::
21.6

: :::
28.1

: :::
22.1

: :::
27.7

: :::
22.4

: :::
27.4

:

::
30

:::
23.6

: :::
35.4

: :::
25.6

: :::
33.9

: :::
26.5

: :::
33.2

: :::
26.9

: :::
32.8

: :::
27.3

: :::
32.5

:

::
35

:::
28.4

: :::
40.7

: :::
30.4

: :::
39.1

: :::
31.3

: :::
38.4

: :::
31.8

: :::
37.9

: :::
32.2

: :::
37.6

:

::
40

:::
33.2

: :::
45.8

: :::
35.3

: :::
44.2

: :::
36.2

: :::
43.5

: :::
36.7

: :::
43.0

: :::
37.1

: :::
42.7

:

::
45

:::
38.1

: :::
50.9

: :::
40.2

: :::
49.3

: :::
41.2

: :::
48.5

: :::
41.7

: :::
48.1

: :::
42.0

: :::
47.8

:

::
50

:::
43.1

: :::
55.9

: :::
45.2

: :::
54.3

: :::
46.1

: :::
53.5

: :::
46.7

: :::
53.1

: :::
47.0

: :::
52.8

:

::
55

:::
48.1

: :::
60.9

: :::
50.2

: :::
59.3

: :::
51.1

: :::
58.5

: :::
51.7

: :::
58.1

: :::
52.0

: :::
57.8

:

::
60

:::
53.2

: :::
65.8

: :::
55.3

: :::
64.2

: :::
56.2

: :::
63.5

: :::
56.7

: :::
63.0

: :::
57.1

: :::
62.7

:

::
65

:::
58.3

: :::
70.6

: :::
60.4

: :::
69.1

: :::
61.3

: :::
68.4

: :::
61.8

: :::
67.9

: :::
62.2

: :::
67.6

:

::
70

:::
63.6

: :::
75.4

: :::
65.6

: :::
73.9

: :::
66.4

: :::
73.2

: :::
66.9

: :::
72.8

: :::
67.3

: :::
72.5

:

::
75

:::
68.9

: :::
80.0

: :::
70.8

: :::
78.7

: :::
71.6

: :::
78.0

: :::
72.1

: :::
77.6

: :::
72.4

: :::
77.4

:

::
80

:::
74.3

: :::
84.6

: :::
76.1

: :::
83.4

: :::
76.8

: :::
82.8

: :::
77.3

: :::
82.4

: :::
77.6

: :::
82.2

:

::
85

:::
79.8

: :::
89.0

: :::
81.5

: :::
88.0

: :::
82.2

: :::
87.5

: :::
82.6

: :::
87.1

: :::
82.8

: :::
86.9

:

::
90

:::
85.5

: :::
93.3

: :::
87.0

: :::
92.4

: :::
87.6

: :::
92.0

: :::
87.9

: :::
91.8

: :::
88.2

: :::
91.6

:

28



Table B4.
::::
Upper

:::
and

:::::
lower

:::::::
percentile

:::::::::
confidence

:::::
interval

::::::
bounds

:::
for

:::::::
↵= 0.33

::::
(67%

::::::::
confidence

:::::
level)

n = 100 n = 200 n = 300 n = 400 n = 500

:
P

:::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper: :::::
Plower: :::::

Pupper:

::
10

::
6.5

: :::
12.4

: ::
7.7

: :::
11.8

: ::
8.1

: :::
11.5

: ::
8.4

: :::
11.3

: ::
8.6

: :::
11.2

:

::
15

:::
11.0

: :::
18.0

: :::
12.3

: :::
17.2

: :::
12.8

: :::
16.8

: :::
13.1

: :::
16.6

: :::
13.3

: :::
16.5

:

::
20

:::
15.6

: :::
23.4

: :::
17.0

: :::
22.5

: :::
17.6

: :::
22.1

: :::
17.9

: :::
21.8

: :::
18.2

: :::
21.6

:

::
25

:::
20.3

: :::
28.7

: :::
21.8

: :::
27.7

: :::
22.4

: :::
27.3

: :::
22.8

: :::
27.0

: :::
23.0

: :::
26.8

:

::
30

:::
25.0

: :::
34.0

: :::
26.6

: :::
32.9

: :::
27.3

: :::
32.4

: :::
27.6

: :::
32.1

: :::
27.9

: :::
31.9

:

::
35

:::
29.8

: :::
39.2

: :::
31.5

: :::
38.0

: :::
32.1

: :::
37.5

: :::
32.5

: :::
37.2

: :::
32.8

: :::
37.0

:

::
40

:::
34.7

: :::
44.3

: :::
36.4

: :::
43.1

: :::
37.1

: :::
42.6

: :::
37.5

: :::
42.3

: :::
37.8

: :::
42.0

:

::
45

:::
39.6

: :::
49.4

: :::
41.3

: :::
48.2

: :::
42.0

: :::
47.6

: :::
42.4

: :::
47.3

: :::
42.7

: :::
47.1

:

::
50

:::
44.6

: :::
54.4

: :::
46.3

: :::
53.2

: :::
47.0

: :::
52.6

: :::
47.4

: :::
52.3

: :::
47.7

: :::
52.1

:

::
55

:::
49.6

: :::
59.4

: :::
51.3

: :::
58.2

: :::
52.0

: :::
57.6

: :::
52.5

: :::
57.3

: :::
52.7

: :::
57.1

:

::
60

:::
54.7

: :::
64.3

: :::
56.4

: :::
63.1

: :::
57.1

: :::
62.6

: :::
57.5

: :::
62.3

: :::
57.8

: :::
62.0

:

::
65

:::
59.8

: :::
69.2

: :::
61.5

: :::
68.0

: :::
62.1

: :::
67.5

: :::
62.6

: :::
67.2

: :::
62.8

: :::
67.0

:

::
70

:::
65.0

: :::
74.0

: :::
66.6

: :::
72.9

: :::
67.3

: :::
72.4

: :::
67.6

: :::
72.1

: :::
67.9

: :::
71.9

:

::
75

:::
70.3

: :::
78.7

: :::
71.8

: :::
77.7

: :::
72.4

: :::
77.3

: :::
72.8

: :::
77.0

: :::
73.0

: :::
76.8

:

::
80

:::
75.6

: :::
83.4

: :::
77.0

: :::
82.5

: :::
77.6

: :::
82.1

: :::
77.9

: :::
81.8

: :::
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