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Abstract 

Submarine Groundwater Discharge (SGD) influences ocean chemistry, circulation, spreading of nutrients and pollutants, and 

shapes seafloor morphology. In the Baltic Sea, SGD was linked to the development of terraces and semi-circular depressions 

mapped in an area of the southern Stockholm Archipelago, Sweden, in the 1990s. We mapped additional parts of the Stockholm 

Archipelago, areas in Blekinge, southern Sweden, and southern Finland using high-resolution multibeam sonars and sub-20 

bottom profilers to investigate if the seafloor morphological features discovered in the 1990s are widespread and to further 

address the hypothesis linking their formation to SGD. Sediment coring and seafloor photography conducted with a Remote 

Operated Vehicle (ROV) and divers add additional information to the geophysical mapping results. We find that terraces, with 

general bathymetric expressions of about 1 m and lateral extents of sometimes >100 m, are widespread in the surveyed areas 

of the Baltic Sea and are consistently formed in glacial clay. Semi-circular depressions, however, are only found in a limited 25 

part of a surveyed area east of the island Askö, southern Stockholm Archipelago. While submarine terraces can be produced 

by several processes, we interpret our results to be in support of the basic hypothesis of terrace formation initially proposed in 

the 1990s, i.e. groundwater flows through siltier, more permeable, layers in glacial clay to discharge at the seafloor, leading to 

the formation of a sharp terrace when the clay layers above seepage zones are undermined enough to collapse. By linking the 

terraces to a specific geologic setting, our study further refines the formation hypothesis and thereby forms the foundation for 30 

a future assessment of SGD in the Baltic Sea that may use marine geological mapping as a starting point. We propose that 

SGD through the sub-marine seafloor terraces is plausible and could be intermittent and linked to periods of higher 



2 
 

groundwater levels, implying that to quantify the contribution of freshwater to the Baltic Sea through this potential mechanism, 

more complex hydrogeological studies are required.   

 

1 Introduction 

The influence of groundwater on seafloor morphology has been discussed for more than 80 years within the geoscientific 5 

community (Robb, 1990). Early examples include Stetson (1936), who suggested that the formation of submarine canyons in 

the southern flank of Georges Bank off the north eastern U.S. coast were related to groundwater seeping aided by currents. 

Submarine canyons are today linked to a combination of geological processes including erosion by turbidity currents, 

slumping, and mass wasting (Harris and Whiteway, 2011;Shepard, 1981). However, groundwater as a shaping agent of seafloor 

morphology appears in several other marine geological settings (Robb, 1990). For example, mapped terraced walls and 10 

irregular courses of valleys in the continental slope off New Jersey have been interpreted to be formed by groundwater seeping 

during periods of lower sea level (Robb, 1984). Other examples of seafloor morphological expressions related to groundwater 

are depressions formed around submarine fresh/brackish springs in the Mediterranean, where extensive nearshore carbonate 

formations caused the development of submarine karstic aquifers (Rousakis et al., 2014). Depressions, which are similar in 

appearance to pockmarks formed by gas seeps, have also been found where freshwater escapes through the seafloor (Whiticar 15 

and Werner, 1981;Khandriche and Werner, 1995;Virtasalo et al., 2019). Groundwater discharge into the ocean is recognized 

as a widely occurring process and is commonly referred to as Submarine Groundwater Discharge (SGD) (Moore, 2010). SGD 

is estimated to contribute about 6-7% of the total hydrological discharges to the world oceans (Zektser, 2000), although 

different quantification methods have yielded varying results at specific localities (Prieto and Destouni, 2011). In the 

Mediterranean Sea, SGD has been shown to be a major source of nutrients (Rodellas et al., 2015) and the process has generally 20 

been raised as a potentially underestimated provider of chemical elements, including pollutants and nutrients, from land to 

coastal waters (Destouni et al., 2008).  

 

In Sweden, terraces and semi-circular depressions in the Baltic seafloor were mapped in the 1990s along some islands in the 

southern Stockholm Archipelago (Söderberg and Flodén, 1995) (Fig. 1). These features were interpreted to be formed by 25 

processes related to SGD (Söderberg and Flodén, 1995). The proposed mechanism was groundwater flowing through siltier 

permeable layers in glacial varved clay, and where the clay outcropped at the seafloor, the escaping fresh water lead to the 

development of a terrace when the above layers of clay were undermined and collapsed. With respect to the semi-circular 

depressions, Söderberg and Flodén (1995) found morphological similarities with seafloor features mapped near Kiel in 
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Eckernförde Bay, southwestern Baltic Sea (Khandriche and Werner, 1995), where SGD is documented to occur from 

geochemical analyses of seafloor sediment and the water column (Schlüter et al., 2004).   

 

More recently, about 1 m high seafloor terraces, extending from few meters to >100 m in length, and semi-circular depressions 

10-30 m wide and about 1 m deep were mapped using high-resolution multibeam echo sounder and sub-bottom profiler east 5 

of the island Askö in the southern Stockholm Archipelago (Jakobsson et al., 2016). Both the terraces and depressions closely 

fit the descriptions by Söderberg and Flodén (1995), suggesting that these kind of  seafloor features may be widespread along 

the Swedish coast. Here we show from extended high-resolution geophysical surveys in Stockholm Archipelago and in 

Blekinge, southern Sweden, as well as in southern Finland, that seafloor morphological features in the form of terraces and 

semi-circular depressions are widespread in the Baltic Sea. Sediment cores and bottom inspection with ROV and divers reveal 10 

that the terraces consistently form in near identical geological settings, permitting prediction of their occurrence if information 

on the seafloor geology is available. In order to further test the formation hypothesis involving groundwater seeping, we 

performed geochemical analyses of a carbonate concretion found in the glacial clay unit of a submarine terrace. This study 

provides a framework for continued investigations involving in situ observations of potential groundwater seeping at selected 

terraces and semi-circular depressions along Baltic Sea coasts. The widespread occurrence of these features suggests that SGD 15 

in the Baltic Sea could potentially be an important influence on the chemical composition of its waters with implications for 

circulation and the spread of nutrients and pollutants.      

 

2 Material and Methods 

2.1. Survey areas 20 

Results are presented from four different regions in the Baltic Sea: (1) east of the island Askö in Southern Stockholm 

Archipelago; (2) west of the island Kastellholmen in Stockholm Harbour; (3) southern Blekinge Archipelago; (4) south east 

of Tvärminne Zoological Station in Southern Finland Archipelago (Fig. 1). Only a small subset of the acquired multibeam 

bathymetry is shown from the surveyed area in southern Blekinge Archipelago, and without geographic coordinates, due to 

military restrictions of revealing detailed depth information. Geophysical mapping results from all other surveyed areas in this 25 

study are granted permission to be shown in their full extent and resolution.  
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2.2 Geophysical mapping, processing and analyses 

The high-resolution multibeam bathymetric data shown here were acquired using Stockholm University research vessels RV 

Electra (24.3×7.2 m) and RV Skidbladner (6.4×2.4 m). A Kongsberg EM2040 0.4°×0.7°, 200-400 kHz, multibeam echo-

sounder is hull mounted in RV Electra while RV Skidbladner has a pole-mounted Kongsberg EM2040 0.7°×0.7°, 200-400 

kHz multibeam. Both RV Electra and RV Skidbladner receive position, heading and attitude data from Kongsberg-Seatex 5 

Seapath 330+ navigation units with attached MRU5+ motion and reference sensors. The Seapath 330+ uses both GPS and 

GLONASS satellites and is capable of applying real-Time Kinematic (RTK) corrections, which for all surveys in Swedish 

waters were received from SWEPOS (https://swepos.lantmateriet.se/) over the internet. In Finland, RTK corrections were 

provided over the internet by the Finnish equivalent, FinnRef (https://www.maanmittauslaitos.fi/en/node/1881). The Seapath-

systems on both vessels generally indicate positions with horizontal accuracies better than ±5 cm and slightly coarser vertical 10 

accuracies. A Valeport MiniSVP sound velocity probe was used at discrete stations to acquire sound speed profiles in all 

surveyed areas for processing of the multibeam bathymetry. In addition, both RV Electra and RV Skidbladner have AML 

sound velocity probes mounted near the transducers for continuous reading of surface sound speed.   

 

Sub-bottom profiles were acquired with RV Electra using the hull-mounted Kongsberg Topas PS40, 24 channel, parametric 15 

sub-bottom profiler operating with primary and secondary frequencies of 35-45 kHz and 1-10 kHz respectively. The sub-

bottom profile shown from the eastern part of surveyed area east of the island Askö was acquired using the system in chirp 

mode with a 4 ms long 4-10 kHz pulse. This system receives positions from the Seapath 330+. The second sub-bottom profile 

shown from the Askö area, located along the island, was collected in 2009 with a towed Edgetech SB-216S chirp sonar operated 

with a 1 ms long 3-9 kHz pulse. Positions were received from a Hemisphere VS100 GPS augmented with SBAS, yielding 20 

horizontal accuracies better than ±2 m. However, since the SB-216S was towed at about 3 m water depth, georeferencing of 

the profile is considerably less accurate. The sub-bottom profile shown from Stockholm Harbour was acquired using a 

Kongsberg EA640 and a towed surface device, where an Air15-17 transducer with a centre frequency of 15 kHz was mounted 

20 cm below the water surface. A 13-17 kHz, 1.024 ms long, chirp pulse was used. Positions were received from a Hemisphere 

VS100 GPS with the antenna mounted on the towing device directly above the transducer to avoid offsets. There were no sub-25 

bottom profiles collected from the area in Blekinge, southern Sweden, surveyed with RV Skidbladner in 2012. The terraces 

shown from the area east of Tvärminne in southern Finland were not captured properly with sub-bottom profiles during the 

two RV Electra field campaigns 2017 and 2018 because they are located close to shoals, which prevented a profile from being 

captured perpendicular to the terraces’ extensions.  

 30 

https://swepos.lantmateriet.se/
https://www.maanmittauslaitos.fi/en/node/1881
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In 2013, we towed a Klein 3000 100/500 kHz side-scan sonar over a stretch of seafloor with identified terraces east of the 

island Askö. Positions were received from a Hemisphere VS100 GPS augmented with SBAS, i.e. a navigation setup similar 

to the SB-216S sub-bottom profiles described above.     

 

Post processing of the multibeam bathymetry was done using the QIMERA software by QPS, version 1.7.2 5 

(https://www.qps.nl/). Bathymetric grids were produced in QIMERA with resolutions ranging from 1×1 m to 0.25×0.25 m. 

These grids were subsequently imported to the Open Source Geographic Information System QGIS, version 3.6.0-Noosa 

(QGIS Development Team, 2018), for further analyses and map making. The sub-bottom profiles were analyzed using the 

Open Source software OpendTect, version 6.2.0 by dGB Earth Sciences (https://www.dgbes.com/). However, the sub-bottom 

profile images shown in this article were produced using software tools provided by the Geological Survey of Canada, courtesy 10 

Bob Courtney. Seeps, sometimes called “seep flares”, were identified in the multibeam midwater data, logged in the area east 

of Askö, using the FMMidwater suite of Fledermaus software. The "flare hunter" plug-in was used to batch process the data 

from individual days and identified flares were manually spot checked and subsequently exported as a series of geo-referenced 

points for production of maps in QGIS.  

2.2 Bottom inspection and photography 15 

In the Askö and Tvärminne areas, terraces were photographed and filmed using two different Remotely Operated Vehicles 

(ROVs): (1) Saab Seaeye Falcon; (2) BlueROV2 by Blue Robotics. The photos shown from Stockholm Harbour and Blekinge 

were captured by divers. A 3D-model over an approximately 6 m long stretch of the terrace in Stockholm Harbour was 

assembled using the Agisoft Metashape software (https://www.agisoft.com/).  

2.3 Sediment coring, measurements and analyses 20 

Numerous sediment cores have been retrieved east of Askö from the areas with terraces during a field component of a 

Stockholm University course in marine geophysical mapping. This course has used Askö yearly for field work from 2009 to 

2018. In Tvärminne, the mapped terraces were cored in 2017 and 2018. We present analyses of core Asko2018HT-2GC, 

retrieved at 58°50.76’N 17°41.94’E in 16 m water depth east of Askö, because it illustrates the characteristic sediment of the 

terraces we cored. The core was taken with Stockholm University piston/gravity coring system adapted for RV Electra. This 25 

corer is capable of handling a core head with a maximum weight of 563 kg. The 6 m long core barrel is loaded with PVC liners 

having outer/inner diameter of 110/98.5 mm. Core Asko2018HT-2GC was retrieved with the corer rigged in gravity mode.  

 

2.4 Sediment physical properties  

https://www.qps.nl/
https://www.dgbes.com/
https://www.agisoft.com/
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Core Asko2018HT-2GC was subjected to high-resolution (1 cm) logging of sediment physical properties, including bulk 

density, magnetic susceptibility and p-wave velocity, using a Geotek Multi-Sensor Core Logger (MSCL). The 4.3 m long core 

was cut into 1.5 m long sections that were logged before being split, described and digitally imaged. Sediment grain size (0.2 

µm–2 mm) was measured on 29 samples using a Malvern Mastersizer 3000 laser diffraction particle size analyzer. Wet samples 

were immersed in a dispersing agent (<10% sodium hexametaphosphate solution) and placed in an ultrasonic bath to facilitate 5 

particle disaggregation before analyses. Particle classes were defined using the European Standard EN ISO 14688-1:2018 

where clay is the 0–2 µm fraction, silt 2–63 µm and sand >63 µm. 

2.5 Geochemical analyses 

A carbonate concretion found in core Asko2018HT-2GC was subjected to geochemical analyses at the Stable Isotope Lab of 

the Department of Geological Sciences, Stockholm University, for determining the water source(s) during its formation. Two 10 

pieces of the concretion were analysed: one from the centre and one from the outer edge. The samples were milled to a powder 

and analyzed for total carbon using a Termo Delta V mass spectrometer and for phosphoric acid reactive carbon with a 

Gasbench II-MAT253 mass spectrometer. The elemental analysis provides δ13C of the total carbon while the Gasbench II 

provides δ13C and δ18O of the carbonate. Paired t-tests were applied to address if the two methods provided the same δ13C 

results, while t-tests were used to test if there were significant differences between the results from analysing samples from 15 

the inner respective outer parts of the concretion. A confidence interval of 95 % were applied in all t-tests. The δ13C and δ18O 

are reported with respect to the Vienna Pee Dee Belemnite (VPDB) standard (Coplen, 1996). 

 

 

 20 

3 Results 

3.1 Geophysical mapping  

Terraces in the seafloor were mapped by Jakobsson et al. (2016) using a multibeam echo-sounder in the vicinity of the island 

Skåren, located east of Askö (Fig. 2). The terraces were identified in shaded relief images of the processed multibeam 

bathymetry. These terraces have steps of about 1 m high, extend from a few meters to >100 m in length, and are most abundant 25 

in water depths shallower than 15 m. In addition, a few semi-circular depressions were mapped that resemble pockmarks with 

about 1 m bathymetric expression, although with an opening towards the down-sloping seafloor (Jakobsson et al., 2016). Their 

semi-major axes are between 10 and 30 m. Here we have expanded the mapped area east of Askö considerably east- and 

northward and derived descriptive statistics of the terraces’ depth distribution (Fig. 2). Most terraces are located in 12 m water 
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depth while the mean and median depths are 16 m and 15 m respectively. The shallowest depth of a mapped terrace is 4 m 

while the deepest is 28 m. However, it should be noted that our mapping did not extend much shallower than about 4 m water 

depth. Many of the terraces extend laterally in rather systematic winding sinusoidal patterns, although there are some that take 

the form of a single hyperbola (Figs. 2c and d). The height of the terrace steps varies, but is generally <1 m (Fig. 2e).  

 5 

The multibeam bathymetry shows that the seafloor morphology of the terraces in the area east of Askö, Tvärminne and southern 

Blekinge Archipelago closely resemble one another (Figs. 3 and 4). There are only a couple of mapped terraces in the latter 

two areas preventing a meaningful statistical comparison of their depth distribution. However, the terraces we mapped outside 

of the area of Askö occur in the deeper depth range: (1) Tvärminne 15-20 m; (2) Blekinge Southern Archipelago 23-25 m. The 

terrace in Blekinge is the longest we mapped, it is possible to trace continuously for >550 m (Fig. 4a). We do not have 10 

multibeam bathymetry of the terrace found in Stockholm Harbour preventing a comparison of its morphology and spatial 

extent to the terraces in the other three areas.  

 

Multibeam water column information was logged and analyzed for two-thirds of the surveyed area east of Askö. Seeps from 

the seafloor were found to be a common feature (Fig. 2a), and the question immediately arose if the seeps were related to either 15 

terraces or depressions in the seafloor. There is an abundance of seeps in the northern part where no terraces are identified. 

East and southeast of the island Skåren, seeps begin to occur at about 20 m water depth, i.e. with a few exceptions this is from 

where the deepest terraces occur (Fig. 2b). The mean and median depths of the seeps are 21 and 20 m respectively, while the 

shallowest is located in a water depth of 3 m and the deepest in 40 m. The multibeam backscatter shows that the terraces in the 

area east of Askö systematically appear in a relatively harder seafloor characterized by high backscatter while the seeps 20 

generally occur in a softer seabed represented by lower backscatter (Fig. S1 in the Supplement). The side-scan data acquired 

in 2013 show high-resolution imagery of the terraces, with no apparent difference in signal intensity across them, but with 

clear shadows present due to the bathymetric expressions (Fig. S2 in the Supplement).     

 

There is a semi-regular grid of sub-bottom profiles covering the entire area east of Askö (Fig. S3 in the Supplement). These 25 

profiles were acquired during the field component of a Stockholm University course in marine geophysical mapping held 

yearly in this area since 2009. From this database two sub-bottom profiles, extending across terraces identified in the multibeam 

bathymetry are shown in Figures 5a and b. The terrace west of the island Kastellholmen in Stockholm Harbour was mapped 

by a sub-bottom profile perpendicular to its extent (Fig. 5c). Common for all terraces imaged by sub-bottom profiles is that 

the acoustic stratigraphy indicates well-stratified sediments that outcrop at the seafloor where the terrace is formed. This is 30 

particularly clear in the profile from Stockholm Harbour (Fig. 5c). In the area east of Askö, where the sub-bottom profile 
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coverage is most comprehensive, an acoustically semi-transparent surface unit with few internal noticeable reflections is 

commonly found in sections with water depths deeper than the general occurrence of terraces (Fig. 5b).        

 

3.2 Bottom photography 

The bottom photos confirm that distinct terraces are formed in the seafloor in all mapped areas (Figs. 5d-f, 6a-f.). It is also 5 

possible to identify that the terraces developed in stratified sediments outcropping at the seafloor, which was particularly 

evident in the acoustic stratigraphy of the sub-bottom profile from Stockholm Harbour (compare Fig 5c with Figs 5e-f). Holes 

with diameters between about 1 to 2 centimetres are abundant in the near vertical terrace walls in Stockholm Harbour and 

Tvärminne (Figs. 5d,e and 6c,d). Some of these holes appear to be cavities from stones that were embedded in the sediments 

and eventually fell out during the erosional process forming the terrace. However, we cannot confirm if this is always the case 10 

because the holes sometimes appear to extend rather deep into the terrace walls. Hence they may be zones of piping and erosion 

that developed in response to focused groundwater flow. 

 

3.2 Sediment stratigraphy and physical properties 

The 4.3 m long core Asko2018HT-2GC, retrieved from a terrace in a water depth of 16 m in the area east of Askö, consists of 15 

rhythmically alternating 0.5-2.5 cm thick silty-clay layers (Fig. 7). The upper 3.5 m is composed of inclined (~10-16°) 

rhythmites with a gradual transition into the lower 0.8 m thick interval with near horizontal rhythmites. Micro-faults offsetting 

some rhythmites by ∼0.5 cm appear in the core from about 1.5 m core depth and are present to the bottom of the core. The silt 

content within the 0.5-2.5 cm thick rhythmites varies as well as the colour, which changes from greyish brown (Munsell: 5/2 

10YR) to reddish brown (Munsell: 5/3 5YR). Over the interval where grain size measurements were obtained (2.80-4.20 mbsf) 20 

the sediments are composed almost exclusively of fine-grained material (>95% is <20 µm) (Fig. 8). At about 3.5 m, p-wave 

velocity, bulk density and magnetic susceptibility all transition towards slightly higher values, with peak values occurring in 

zones slightly enriched in silt (Fig. 7). Sediment porosity, calculated from the bulk density logs by assuming a grain density 

of 2.71 g/cm3, also decreases from ~60-70% to ~55-60% below 3.5 m. No disconformity is recognised across this transition. 

The porosity reduction does not appear to be driven by normal downhole compaction, but may be related to the slight 25 

coarsening of the sediments.  

 

Two carbonate concretions were found at core depths of 1.77 m (diameter 1 cm) and 2.64 m (diameter 5.3 cm) (Fig. 7).  The 

lowermost one has a disc-shaped appearance, displaying a series of concentric rings growing outwards from a central spherical 
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concretion. It is a classic Marleka, a.k.a.  ‘fairy-stone’ or ‘imatra stone’, which form in Quaternary clay-rich sediments as 

calcium carbonate precipitates around a small pebble or organic matter (Neuendorf et al., 2011). 

3.4 Geochemistry 

The results from the geochemical analyses on the concretion are shown in Table 1 (δ13C and δ18O are reported in ‰ versus 

VPDB). The elemental analyses of the outer edge of the concretion give an average δ13C of -20.23 ‰ (SD=0.11), while the 5 

Gasbench-II yields and average of -19.87 ‰ (SD=0.02). A paired t-test (p=0.04) indicates a significant difference between the 

two methods for the outer edge samples considering a 95 % confidence interval (alpha=0.05). From the central sample, an 

average of -19.35 ‰ (SD 0=22) and -19.32 ‰ (SD=0.03) were provided by the elemental analyses and Gasbench-II methods 

respectively. A paired t-test (p=0.88) suggests that there is no significant difference between the measured centre samples 

using the two different approaches. If we compare the average of all measurements made on the samples from the edge of the 10 

concretion (M=-20.05 SD=0.21) with the average of all measurements made on the samples from the centre (M=-19.33 SD= 

0.14), a t-test suggests a significant difference (p=0.00) in δ13C, albeit small. The average δ18O from the central sample is -

10.54 ‰ (SD=0.19) and the edge -8.02 ‰ (SD=0.14), and a t-test suggesting a significant difference (p=0.00) between the 

central and outer edge of the concretion with respect to δ18O. The total carbon has an average of 6.98 % (SD=0.36) at the edge 

and 10.46 % (SD=0.32) in the centre. A t-test (p=0.00) gives that these means are significantly different from each other.  15 

 

4 Discussion and Conclusions 

The first discoveries of terraces formed in the seafloor along the Swedish coast were made in the 1990s with a conventional 

30 kHz echosounder and a 100/500 kHz side-scan sonar (Fig. 1; Söderberg and Flodén, 1995). Our detailed surveys east of the 

island Askö showed that for a terrace to be identified with a single beam echo sounder, the profiling direction cannot deviate 20 

much from being perpendicular to the orientation of the terrace. The main reason for this is that the bathymetric expressions 

of the terraces rarely exceed 1 meter. They are easier to map with side-scan sonar, although as no bathymetric information is 

provided by a conventional side-scan sonar, they may also be misinterpreted as other surface patterns in the seafloor (Fig. S2 

in the Supplement). It is only with the latest generation of shallow water high-resolution multibeam echo sounders, that the 

terraces are irrefutably recognized as prominent bathymetric features in the seafloor (Figs. 2-4). This may explain why it took 25 

around two decades to realize how common the type of terraces mapped by Söderberg and Flodén (1995) are along the Swedish 

coast, as well as elsewhere along the coasts of the Baltic Sea. Recognizing that the features are widespread, the hypothesized 

formation mechanism involving SGD makes them important from an environmental point of view. The terraces could comprise 

focal points where groundwater enters the Baltic Sea to influence its brackish waters by providing, not only freshwater, but 
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potentially pollutants and nutrients. If this is the case, quantification and chemical analyses of the SGD from the terraces will 

provide new information for assessments of the nutrient budget of the Baltic Sea.   

 

Our study generally supports the hypothesis put forward by Söderberg and Flodén (1995) on the terrace formation mechanism. 

They argued that groundwater flows through siltier layers in glacial clay to eventually escape at the seafloor. Erosion from the 5 

flowing water undermines the overlying layers causing them to collapse and form a sharp terrace in the seafloor (Fig. 9). 

Underwater photos in Figure 6 include examples where we believe that this process can be readily envisioned. It is possible to 

see how cavities are formed in the varved clay at the bottom of some of the terraces as well as blocks of the overlying clay that 

have collapsed from being undermined. However, we cannot exclude that mechanisms other than SGD could produce terraces 

in the seafloor similar to those we mapped in this study and, therefore, alternative formation mechanisms are discussed below. 10 

 

We have also found from our geophysical mapping and coring results that the terraces are systematically formed in glacial 

clay throughout the studied areas. Glacial clay in the Baltic Sea sediment stratigraphy is commonly found draped on top of till 

or glaciofluvial material, or in some cases, rests directly on bedrock (Andrén et al., 2011;Andrén et al., 2015) (Fig. 9). This 

type of clay was for the most part deposited during the last deglaciation in front of the retreating Scandinavian Ice Sheet. 15 

Glacial clays left from previous older glaciations are extremely rare and found only at a few locations (e.g. Björck et al., 1990). 

Swedish geologist Gerard De Geer discovered that glacial clay is comprised of rhythmites, where the layers composed of 

varying proportions of clay and silt are annual depositions of erosional material from the retreating ice sheet (De Geer, 1912). 

He introduced the term “varve” for one annual layer of glacial clay and noted that its thickness and silt content varied depending 

on the proximity to the retreating ice margin, i.e. thicker and siltier varves were deposited close to the ice margin. He further 20 

proposed that there would be a higher degree of silt content in the part of the varve representing the meltwater rich summer 

period. Thus, grain size variations in the glacial clays are found on a number of scales, from mm to cm scale variations across 

rythmites, to longer (decimetre) scale variations related to climatically driven variations in subglacial discharge, to even longer 

(> meter) scale variations related to the proximity of the ice margin. The use of glacial varved clay as a record documenting 

the ice retreat was adopted early also on the Finnish side of the Baltic Basin (Sauramo, 1926). From the knowledge gained 25 

from these studies, it follows that there is a higher chance of finding more silt-rich layers in the older sections of glacial clay 

deposited close to the ice margin. This would be in the lower sections of the glacial clay units. In the case of Asko2018HT-

2GC, this larger scale variation appears to be captured in the coarsening of the grain size below 3.5 m depth, which has length-

scales that exceed the duration of individual rhythmites (Fig. 7). Although fine-grained glacial clays are not commonly 

considered to be highly transmissible sediments, variations in the silt content of clay-rich sediments has a dominant effect on 30 

their permeability (Schneider et al., 2011). Experimentally, it has been shown that at a given porosity for silt/clay mixtures, 
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increasing the clay content (<2 µm) from 36 % to 57 % decreased the permeability by an order of magnitude (Schneider et al., 

2011).  

 

 

It should be noted that the glacial clay sequences are time transgressive throughout the Baltic basin, with older clay in the 5 

south and younger in the north because the Baltic basin was deglaciated from south to north (Hughes et al., 2016;Stroeven et 

al., 2016). The first small freshwater body in which glacial clay could be deposited during the last deglaciation, formed in front 

of the ice margin around eastern Denmark and the northern coasts of Germany and Poland at about 16-15 ka BP (Houmark-

Nielsen and Henrik Kjær, 2003). This water body grew as the ice sheet retreated northward to become the Baltic Ice Lake, 

which appears to have lasted until the end of the Younger Dryas Cold period at about 11.7 ka BP, when it catastrophically 10 

drained westward north of Mount Billingen in south central Sweden (Björck and Digerfeldt, 1986;Andrén et al., 2002;Swärd 

et al., 2015). Mapping of preserved paleo-shorelines in the 1920s showed that the drainage occurred when the ice sheet margin 

reached north of the damming high terrain in the west (Lunqvist, 1921). A brackish water phase called the Yoldia Sea, likely 

constrained to the central Swedish side of the Baltic (Schoning, 2001), followed the Baltic Ice Lake (Björck, 1995), however 

it would take several hundred years for the Baltic to become brackish after the drainage and deposition of varved glacial clay 15 

continued close to the retreating ice margin (Andrén et al., 2011).  The Baltic Sea basin was completely ice free at about 10 ka 

BP (Hughes et al., 2016). As the ice retreated (Stroeven et al., 2016), conditions may have developed for terrace formation at 

different places around the Baltic Sea depending on local sea level in relation to glacial clay deposits. The mapped terraces in 

the different regions may therefore be of different ages, some may be inactive while others are active today. 

 20 

The geochemical analyses of the concretion from core Asko2018HT-2GC, do not irrefutably determine whether or not 

groundwater flow occurred through the glacial clays, but provide valuable insights into the formation environment. The δ13C 

carbonate isotope values of the concretion between about -19 and -20 ‰ are low compared to Baltic Sea δ13C  DIC (Dissolve 

Inorganic Carbon), which is usually between 0 and 1 ‰ (Filipsson et al., 2017). Carbonates formed from Baltic Sea water 

should thus have similar values. Therefore the most plausible explanation for the observed isotope values is that the carbon 25 

source is respired organic matter in the sediments. Organic matter in the Baltic Sea is usually in the range -23 to -28 ‰ 

depending on if it is coming from terrestrial sources or from primary production in the Baltic Sea (Alling et al., 2008;Deutsch 

et al., 2012). The small difference in isotope values between the concretion and organic matter in the Baltic Sea could be due 

to mixing with DIC from Baltic Sea water during formation.  

 30 
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The δ18O values of samples taken from the edge and the centre of the concretion are significantly different from one another 

by about 2.5 ‰. Here we investigate possible causes for the isotopic differences between these samples using the Shackleton 

(1974) equation for relating temperature with δ18Oc and δ18Ow 

𝑡𝑡 = 16.9 − 4.0(𝛿𝛿 O𝑐𝑐 − 𝛿𝛿 O𝑤𝑤
1818 )     (1) 

 5 

where t is temperature, Oc is from carbon dioxide extracted from carbonate and Ow is from carbon dioxide equilibrated with 

water. From Equation 1 follows that the δ18Ow could be different in the samples from the edge compared to the samples from 

the middle if the formation temperatures were different. However, the difference between the middle and the centre is too large 

to be explained only by a change in temperature during the formation. It more likely indicates a change in composition of the 

water source, perhaps in a combination with a temperature change.  10 

 

Precipitation in the Stockholm area has a yearly mean δ18O of about -10 ‰ (the Global Network of Isotopes in Precipitation, 

GNIP database, IAEA/WMO). The Baltic Sea has currently a δ18O value between about -8 and -9‰ at the salinity where the 

core is taken, east of the Island Askö (Deutsch et al., 2012). However, the Baltic Sea stages during which glacial clay were 

deposited had most likely much lower values considering the influence from the meltwater of the Scandinavian Ice Sheet. For 15 

example, isotopic δ18O values of the Greenland Ice Sheet are in the order of -35 to -40 ‰ (Andersen et al., 2004). This is in 

line with isotopic measurements made on pore water from a sediment core retrieved in Lake Vättern, which show a prominent 

down-core progression to δ18O values of less than -35 to -40 ‰ in the sections of the core representing the Baltic Ice Lake 

(Fig. S4 in the Supplement). This 74 m long sediment record captured the Baltic Sea stages from the Baltic Ice Lake to the 

time Lake Vättern was isolated 9530 ±50 cal years BP (Swärd et al., 2018). The generally low δ18O values from the concretion 20 

(-7.93 to -10.70 ‰) are much less negative than modern Baltic Sea water, and even further removed from the inferred δ18O 

composition of the Baltic Ice Lake (< -35 to -40 ‰). This suggests that groundwater took part in the formation of the 

concretion, because if it would have been water from a Baltic Sea stage heavily influenced by meltwater, lower δ18O values 

should be expected.   

 25 

Isostasy plays an important role in estimating the potential hydrogeological connection in the Baltic region between land and 

sea through glacial clay. The Swedish terrain was isostatically depressed by the several kilometres thick Scandinavian Ice 

Sheet (Lambeck et al., 2010) and the highest coastline is therefore found in several areas far inland of the present coast 

(Björck, 1995). Isostatic rebound eventually caused glacial clay sequences to be lifted above the level of the Baltic Sea, 

thereby creating a hydraulic head between the landward end of permeable glacial clay layers and their seaward continuation 30 

(Fig. 9).  To estimate SGD into the Baltic Sea through these permeable layers one could apply Darcy’s law according to 

𝑄𝑄 = −𝐾𝐾𝐾𝐾 𝑑𝑑ℎ
𝑑𝑑𝑑𝑑

     (2) 
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where Q is the water flow (m3/s) in a saturated porous material, K is the hydraulic conductivity (m/s), A cross section area 

(m2), and dh and dL the difference in height (pressure drop) with respect to distance over which the water flows. Future 

estimates of the SGD rates into the Baltic Sea from permeable layers in glacial clays, will require knowledge on where terraces 

occur on the seafloor, the hydraulic head, i.e. dh and dL, and the hydraulic conductivity K of the permeable siltier layers, which 

is governed by their composition. Such estimates will require high resolution mapping efforts to identify potential locations of 5 

SGD, cross-sectional areas, and emission depth.  

 

The SGD through the terraces will most likely be intermittent considering the relatively large variation of the seasonal ground 

water table around the Baltic Sea, as shown by the geological surveys’ monitoring on land. Looking at data from monitoring 

stations provided by the Swedish Geological Survey in the vicinity of the Stockholm Archipelago, we note that the seasonal 10 

variation in the groundwater table of some locations exceeds 3 m and the highest groundwater table is generally found from 

the late fall to late spring (Fig. S5 in the Supplement). Groundwater discharges to the Baltic Sea through the seafloor are known 

to occur through geological formations other than the terrace formations discussed here, in particular where glaciofluvial 

aquifers on land connects with the seafloor (Peltonen, 2002). However, the prevalence of the potentially SGD-related terraces 

in the mapped regions suggests that SGD to the Baltic Sea is likely underestimated and remains an unconstrained source of 15 

pollutants and nutrients, as previously argued by (Destouni et al., 2008). The ecological influences of the terraces is therefore 

unknown. It is also clear that there is a general lack of data and understanding of SGD emission mechanisms for proper 

assessments of emission rates and/or volumes (Taniguchi et al., 2002).  

 

There are other mechanisms that potentially could have played a role in the formation of the seafloor terraces mapped in this 20 

study. For example, sliding and slumping of glacial varved clays has been suggested to occur due to liquefaction of layers 

during palaeoseismic events (Hutri and Kotilainen, 2007;Virtasalo et al., 2007). This could leave behind terraces at the seafloor 

formed in glacial clay. However, we do not observe any morphological evidence of sliding and most of the terraces we mapped 

occur in areas where the seafloor slopes at <1° and the terraces have nearly flat bases, as evident in the bathymetric profiles in 

Figures 2e, 3c and 4c. We also note that the terraces we mapped are widespread across the Baltic and systematically appear in 25 

glacial varved clay. It seems unlikely that slides would occur over such spatially large areas in several regions. Finally, the 

processes responsible for the formation of some of the terraces seems to be ongoing judging from the bottom photographs 

showing that small blocks of clay are presently falling down to form sharp terraces (Fig. 6). While we cannot exclude that 

other processes formed the terraces mapped in this study, we interpret our results to be in support of the formation mechanism 

proposed by Söderberg and Flodén (1995). Our study provides a geological and morphological framework for further research 30 

involving longer-term monitoring of potential SGD from the terraces.  
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Table 1: Geochemical analyses of the concretion found in the glacial clay unit of core Asko2018HT-2GC. See Figure 2a for core location 10 
and Figure 7 for an image of the concretion. The upper section are elemental analyses made using the Termo Delta V mass spectrometer and 
the lower analyses made on phosphoric reactive carbon with a Gasbench II-MAT253 mass spectrometer (see methods for further details).  

Figure 1: Overview map showing the locations of the studied areas in this work with white dots. Corresponding figures for each area are 
shown with white text. The locations of previous studies showing SGD discussed here are shown with black dots. I/II=Söderberg and Flodén 
(1995); III=Schlüter et al. (2004); IV=Virtasalo et al. (2019). The bathymetry is from EMODnet 2018 (EMODnet Bathymetry Consortium, 15 
2018)   

Figure 2. Multibeam bathymetry of the studied area east of the island Askö, southern Stockholm Archipelago. (a) Overview map with brown 
lines representing digitized terraces in the seafloor and blue dots showing locations where seeps were identified in the multibeam water 
column data. Black heavier lines show the locations of the sub-bottom profiles in Figures 5a (SBP1) and 5b (SBP2). The sub-bottom profiles 
in Figure 5 are portrayed between the two dots, with the profile running from left (black dot) to right (white dot). The location of core 20 
Asko2018HT-2GC is marked by a yellow star (abbreviation 02GC used on the map). (b) Depth statistic of the occurrence of terraces and 
seeps. (c) Detailed view of the terraces in the seafloor around the island Skåren. (d) The location of the bathymetric profile across two 
terraces from X to X´ shown in (e).   

Figure 3. Multibeam bathymetry of the studied area east of Tvärminne Zoological Station in Southern Finland Archipelago. (a) Overview 
of the seafloor bathymetry in the vicinity of the only set of terraces mapped in this area, shown in (b). (c) Bathymetric profile from Y to Y’ 25 
across two terraces. The profile location is shown in (c).   

Figure 4. Multibeam bathymetry of a terrace mapped in southern Blekinge Archipelago. (a) Only a smaller part of the full survey is shown 
and without coordinates, because detailed bathymetric information from this area is under military restrictions. (b) Detail of the >500 m long 
terrace with the location of the bathymetric profile from Z-Z’ shown in (c).  

Figure 5. Sub-bottom profiles and bottom photographs portraying seafloor terraces. (a,b) Sub-bottom profiles SBP1 (a) and SBP2 (b) from 30 
the area east of Askö. The locations of terraces clearly identified in the multibeam bathymetry are marked T1-T9 (see Figure 2a). The site 
of core Asko2018HT-2GC (02GC on profile SBP1) is shown with a black arrow. Note that it is located on top of terrace T1. (c) Sub-bottom 
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profile across the terrace mapped west of the island Kastellholmen in Stockholm Harbour. Bottom photographs are shown in (d-e) and a 3D-
photo mosaic of this terrace in (f).   

 Figure 6. Bottom photographs of seafloor terraces in the studied areas. (a,b) East of the island Askö, (c,d) east of Tvärminne Zoological 
Station in Southern Finland Archipelago, (e,f) near Boön, Blekinge Archipelago.   

Figure 7. Lithology and sedimentology of sediment core Asko2018HT-2GC. Image includes a lithologic log (a), sediment physical 5 
properties measured on the MSCL (b), and results from grain size analyses showing variations in clay and silt content across the zone where 
the overall porosity reduction is seen (~ 3.5 m). Characteristic images from four different depths are shown (d), including the 2 cm diameter 
concretion recovered at 2.64 m and the smaller concretion at 1.77 m. 

 

Figure 8. Cumulative grain size distributions for the laminated glacial clays in Asko2018HT-2GC. Sediments are exclusively composed of 10 
fine fraction material, with 50-80% of the sediments being <4 μm. 

Figure 9. Schematic illustration showing how siltier layers in glacial clay could act as conduit for ground water, eventually escaping at the 
seafloor as SGD, leading to the formation of a bathymetric terrace. The critical parameters dh and dL in Darcy’s law (Eq. 2) are illustrated 
in the sketch as they dictate the hydraulic head that would drive the flow.  

  15 
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Table 1. 

Elemental Analyses (Termo Delta V) 
 

Sample 
δ13Ctot vs 
VPDB (‰) 

average 
δ13Ctot SD % Ctot 

average % 
Ctot SD 

Edge 1 -20.30 -20.23 0.11 7.04 6.97 0.36 
Edge 2 -20.11     7.30     

Edge 3 -20.29     6.59     

Centre 1 -19.54 -19.35 0.22 10.19 10.46 0.32 
Centre 2 -19.39     10.37     

Centre 3 -19.10     10.81     

       
Acid reaction analyses of carbonate (Gasbench II-Mat253) 

Sample 
δ13C vs VPDB 

(‰) 
δ13C 

average SD 
δ18O vs 

VPDB (‰) 
δ18O 

average SD 

Edge 1 -19.86 -19.87 0.02 -7.93 -8.02 0.14 
Edge 2 -19.89     -8.18     

Edge 3 -19.84     -7.94     

Centre 1 -19.35 -19.32 0.03 -10.32 -10.54 0.19 
Centre 2 -19.28     -10.60     

Centre 3 -19.34     -10.70     
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Figure 1.  
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Figure 2.  
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Figure 3.  
 
  5 



25 
 

 
 
Figure 4.  
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Figure 5.   
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Figure 6.  5 
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Figure 7.  
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Figure 8.  
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