
Reviewer  #1 

We thank the reviewer for the thoughtful and constructive comments. In the following we 

address the comments and suggestions.  

General comments 

 

Overall, I found the manuscript scientifically interesting, well written and structured. The topic is 

of interested for the geomorphological community, however its acceptance could be 

strengthened after minor corrections (see details below). 

We are pleased that the reviewer appreciates our work and sees it as a contribution to the 

community. In the following, we address his specific comments.  

 

1. I would suggest that the authors use a different misfit function for calculating the fit of the 

model to the data (see details in technical corrections).  

We think it is an interesting suggestion to calculate a model performance metric which considers 

the analytical uncertainty on the observed data (ECRN). However, errors on CRN data are 

heteroscedastic: they systematically increase with increasing erosion rates. Although the ME thus 

provides a good metric to evaluate overall model performance, the metric is not well suited to 

optimize model parameters in an optimization procedure: during the optimization of the model, 

too much weight will be given on the lower regime of the erosion spectrum where the analytical 

errors on ECRN are low whereas the higher ECRN data will not be approximated well because of 

their large associated errors. To compensate for the effect of heteroscedasticity we rescale 

values of Oi, Mi and Ei using a logarithm with base 10 when calculating ME. In the revised version 

of the paper, the ME will be reported as a metric to evaluate model performance, but not to 

optimize model parameters. Model optimization is done using the Nash Sutcliff model efficiency, 

and we will explain this in the revised version of the manuscript.   

2. It is not clear if the gained conclusions are applicable or transferable to other settings and 

therefore how much impact the manuscript will have in the community. The scientific 

relevance could be significantly strengthened if other available datasets are compared to the 

presented study (e.g. from DiBiase or Carritier in the the San Gabriel Mountains and the 

Andes). I hope you find my comments and suggestions helpful. 

We propose a methodology for studying the spatial variability of river incision rates which can be 

used as a framework to study the coupling between river incision, lithological heterogeneity and 

climate at larger continental to global scales. However, developing a regional erodibility index 

and compiling hydrological datasets for regions others than the one studied here would be a 

project on its own and is therefore beyond the scope of this paper. In the revised version of the 



paper, we do stress that our findings are based on a study case and that the significance of our 

results should be tested by applying a similar methodology to continental or global scales.  

 

Technical corrections 

Line 16-27: Since there is not word limit on the Abstract youshould give some more details here. 

For instance, what are the erosion rates and howthey differ in different lithologies/rainfall? Would 

be nice to have some absolute or rel-ative values on erosion/incision depending on 

lithology/rainfall.  

We will follow the suggestion of the reviewer to extend the abstract. However, since reviewer 2 

requested more clarification on the main objectives and conclusions of our paper, we will 

elaborate the abstract along those lines rather than giving specific values.  

 

Line 38: I would notgive a fixed minimum catchment area since this is site-to-site depending, e.g. 

Koberet al. (2012) or West et al. (2014) found that nuclide concentrations of larger catch-ments 

are perturbed by single mass-wasting events.  

We will remove the minimum catchment area as suggested 

 

Line 42: Change to ‘. . .have been found to correlate with a. . .’.  

Noted, we will revise. 

 

Line 55: Delete ‘external’.  

Noted, we will revise. 

 

Line 58-62: Pleaserewrite/reorder this sentence.  

Noted, we will revise. 

 

Line 144: I would suggest to use a different misfit func-tion, since the result is depending on the 

distribution of measured erosion rates and does not take into account the analytical uncertainties. 

Use a simple misfit function such as: Misfit=∑_(I= 1...nb)√(((O_i-M_i)/E_i )ˆ2 ) A misfit of nb or 

smaller would indicate that you predict the observations within the e.g. 1 standard deviations of 

all observations (if E is the standard deviation) and a value of 2*nb would mean you are within 2 

standard deviations. . . 

∑ √
(O_i − M_i)

E_i

2nb

I= 1

 

See reply general comment 1.  

  



Equation (10): Not sure, but have you explained whatKst is?  

Thanks for pointing this out, should be K. We will revise. 

 

 

Equation (11): I guess it should be ksn and not ks.  

Thanks for pointing this out, should be ksn. We will revise. 

 

 

Line 182: Please refer to the corresponding equations (4).  

Noted, we will revise. 

 

Line 184: Please make sure that all local names of locations, mountain ranges, basins. . .. are 

shown in a figure for those reader that are not familiar with the geological/geographic setting. 

Noted, we will adjust Figure 1. 

 

Line 216: A recent paper (DiBiaseet al. 2018) showed that TCN do not need to be corrected for 

topographic shielding because of deep non-vertical attenuation paths.  

Thanks for pointing us to this paper. Since our paper uses the data as processed in Vanacker et 

al. 2015 (where a correction was applied), we will keep this section as it is.  

 

 

Line 378: Would be nice to show that the fits to your data are statistically different for your 

different complex models. Visually they are look very similar and if I take the confidence intervals 

shown that overlap. 

We agree: the fits for the different scenarios are similar. We feel that our sample size does not 

warrant a thorough statistical analysis. However, we will add the following sentences to the 

revised version of the paper:  

“Note that differences in model performance between R-SPM scenario 2 and ST-SPM scenarios 5-

8 are existent but not very pronounced. To evaluate the significance of these differences, our 

analysis should be repeated on larger datasets capturing a wider variability in erosion rates and 

hydrology” 

 

Line 384: I would not use a chapter heading without text.  

Given the different topics covered in the discussion section, we feel the use of subsections is 

warranted here to structure the flow of the paper and to keep the overview.  

 

Line 391: In addition to the supplementary figure please add the position of knickpoints in one of 

your maps.  



Good suggestions, we will adjust the figure.  

 

Line393: Is the baselevel lowering or the uplift increasing, please clarify!  

Here we refer to the effect of propagating pulses of river incision. We will clarify: “Facing a sudden 

lowering of their base level after river rejuvenation, …” 

 

Line 430: Why do you assume that hydrological/climate changes occurred more likely on Myr-

time scale compared to timescales erosion rates are averaging over? Please explain this.  

We do not know for sure, but given that ksn values integrate over several thousands to millions 

of years, and CRN data only over 100-100k years, it is more likely that the climate has changed 

over the integration time captured in river steepness than over the time represented by CRN 

data. We will clarify as such in the text.  

 

Line432: Add ‘. . .timespan of ECRN and ksn measurements.’ 

Noted, we will revise. 

 

Table 1: Change to ‘Flow resistance. . .’ 

Noted, we will revise. 

 

Figure 1: The faults and labelling of faults isdifficult to see. Larger line width and fonts, maybe 

even colour would help. Please show the main streams as lines.  

Good suggestions, we will adjust the figure.  

 

Figure 5: Add coordinates. 

Figure will be moved to the SI in the new version of the paper.  

 

  



Reviewer  #2 

We thank the reviewer for the thoughtful and constructive comments.  

General comments 

Given the focus on rainfall variability in the introduction text, I expected a paper that would 

advance our knowledge on the impact of rainfall variability on long term incision rates. Essentially 

what I read was a paper that concludes that lithological strength variability is very important in 

correctly predicting erosion rates and that accounting for rainfall variability also helps some 

(results in table 5, especially).  

The reviewer her/his main concern is on the role of lithology versus rainfall variability in 

controlling erosion rates. The reviewer concludes that lithology dominantly controls erosion and 

that rainfall helps some in explaining spatial patterns of erosion. In fact, that is indeed one way 

of looking at the problem: The Area-Based Stream Power Model (A-SPM) does a good job in 

predicting spatial pattern of erosion rates after correcting for lithological heterogeneity. 

However, the goal of this paper is not only to come up with just a model that describes the spatial 

variation in erosion rates. What we aim to do, is to explain the spatial pattern of erosion rates 

and to identify the factors controlling it. Therefore, we do not propose to use the R-SPM and ST-

SPM erosion models as tools to ‘better’ predict incision, rather we use them as tools to get 

additional insights in the existence of a non-linear relationship between CRN-derived erosion 

rates and river steepness (ksn). That said, we agree with the reviewer that we were not entirely 

clear in passing on that message to the reader, which is why we will rewrite those parts of the 

manuscript where we justify the use of the different incision models. In the abstract, for example, 

we will add the following lines to clarify this:  

“ … First, we use an area-based stream power model to scrutinize the role of lithological 

heterogeneity on river incision rates. We show that lithological heterogeneity is key to predicting 

spatial patterns of incision rates. Accounting for lithological heterogeneity reveals a non-linear 

relationship between river steepness, a proxy for river incision, and cosmogenic radio nuclide 

(CRN) derived denudation rates. Second, we explore this nonlinearity using runoff-based and 

stochastic-threshold stream power models, combined with a state-of-the-art hydrological dataset 

to calculate spatial and temporal runoff variability. Statistical modelling suggests that the non-

linear relationship between river steepness and denudation rates can be attributed to a spatial 

runoff gradient and incision thresholds. Our findings have two main implications for the overall 

interpretation of CRN-derived denudation rates and the use of river incision models : (i) applying 

sophisticated stream power models to explain denudation rates at the landscape scale is only 

relevant when accounting for the confounding role of environmental factors such as lithology and 

(ii) spatial patterns in runoff due to orographic precipitation in combination with incision 

thresholds explain part of the non-linearity between river steepness and CRN-derived denudation 



rates. The methodology that we present can be used as a framework to study the coupling 

between river incision, lithological heterogeneity and climate at regional to continental scales. “  

We will also add the following paragraph to clarify the objectives of the paper:  

“Based on current limitations, we formulate two main objectives for this paper: we want 

(i) to assess the impact of lithological heterogeneity on river incision and (ii) to unravel the role of 

allogenic (spatial and/or temporal runoff variability) versus autogenic (incision thresholds) 

controls on river incision. We develop and evaluate our approach in the southern Ecuadorian 

Andes where detailed lithological information is available as well as a database of CRN-derived 

denudation rates (Vanacker et al., 2007, 2015)..  

… 

In the following sections, we first describe the study area, characterize the lithological 

configuration by developing a lithological erodibility index and compile a database to represent 

runoff variability. Second, we present the methods and assumptions used for calibrating and 

simulating river incision. In a third section, the modelling results are presented: we start by 

evaluating the impact of lithological heterogeneity on river incision rates using an area-based 

river incision model (A-SPM). We then evaluate to what extent the variability in denudation rates 

can be explained by spatial and/or temporal runoff variability and the existence of incision 

thresholds using the R-SPM and ST-SPM. Note that the goal of using R-SPM and ST-SPM models 

is not to improve the statistical explanatory power of the A-SPM but rather to get insights in the 

potential drivers of incision variability which are otherwise lumped in the parameters of the A-

SPM. In a final section, we discuss our findings, highlight the implications of our work and discuss 

further perspectives. “ 

 

In the discussion, we added:  

“Model performance of the ST-SPM equals the performance of an empirical A-SPM with a slope 

exponent >>1 (Figure 9). Our interpretation is that (i) spatial variations in runoff and (ii) the 

incision thresholds are the causes of an observed non-linear relation between ksn and ECRN. 

With a seemingly equal model performance, one could wonder what the benefit of the more 

complex ST-SPM model is over a simple, non-linear A-SPM. The aim of using a ST-SPM is however 

beyond fitting observed denudation rates: we want to identify to what extent the system is 

forced by internal allogenic dynamics such as the presence of incision thresholds or external 

autogenic forces such as runoff variability. Use of the ST-SPM illustrated that both processes can 

be accounted for in a quantitative way so that future studies can explicitly consider their role 

when reconstructing past landscape response to external perturbations (e.g. climate change).” 

To Further clarify and stress this, we also adjusted the tile:  



“Parameterization of river incision models requires accounting for environmental heterogeneity: 

insights from the tropical Andes” 

 I think the introduction needs to be revised somewhat to better reflect the results presented in 

the paper. The abstract does a better job of communicating the essence of the paper. Generally, 

the manuscript is very heavy on the methodology and too light on the discussion of the results 

and why these results matter.  

We agree with the reviewer that we can organize our introduction somewhat better. As 

suggested in the line specific comments, we will also add some additional sentences throughout 

the manuscript to guide the reader better through the paper and to maintain a good flow in 

general. Our updated paper will be reorganised using the following section headers: 1.  

1. Introduction  
1.1. Background  
1.2. River incision models  
1.2.1. Area-based Stream Power Model  
1.2.2. Stochastic-Threshold Stream Power Model  
1.2.3. Runoff-based Stream Power Model  
2. Study area  
2.1. Geology  
2.1.1. Tectonics and geomorphic setting  
2.1.1. Lithological strength  
2.2. CRN-derived denudation rates  
2.3. River morphology  
2.4. Runoff variability  
2.4.1. Spatial runoff patterns  
2.4.2. Frequency magnitude distribution of orographic discharges 
3. Methods  
3.1. CRN-derived denudation rates to calibrate river incision  
3.2. River incision models  
3.3. Optimization of model parameters  
4. Comparing model results with CRN-derived denudation rates  
4.1. Area-based stream power model  
4.2. Runoff-based and Stochastic-Threshold Stream Power Models 
4.2.1. Runoff-based SPM (R-SPM)  
4.2.2. Stochastic-Threshold SPM (ST-SPM)  
5. Discussion  
5.1. Are CRN-derived denudation rates representative for long term river incision processes?  
5.1.1. Equilibrium between river incision and hillslope denudation  
5.1.2. Integration timescales of ECRN and ksn  
5.2. Environmental control on long term river incision rates  
5.2.1. Geology  
5.2.2. Rainfall  
6. Conclusions  
7. References  
 

We will also expand the result section and remove some of the methodology sections where 

possible. We will keep the section on the lithology since we think this part is necessary for the 

paper.  



I also think the authors sometimes overreach on the significance of some results. 

In the context of the clarified focus of the paper, discussed before, we will frame the results more 

clearly and mention the limitations explicitly.    

It seemed like a long slog through the methodology section with many figures that did not seem 

terribly relevant OR were uninterpretable (Figures 3,5,7,8,9,11,13).  Not all of these need to be 

relegated to Supplementary Material, but it would be helpful if some of them were and the 

important figures referenced more prominently in the text.  

We will reduce the number of figures to 9, by merging some and moving others to the SI. We will 

remove the figure on PGA as suggested by the reviewer. In the updated version of the 

manuscript, we will also provide more details in the subscripts of the figures to make them 

understandable and readable as stand-alone objects.  

I often felt like I had to hunt down the authors motivation for a methodology or intuit the reasons 

why results were significant. The authors need to be clearer throughout the manuscript on both 

of these points.  

Noted, we will revise. 

With some substantial improvements to this manuscript, particularly in cutting down the 

methodology section and refining and expanding the results section, I think it can be published as 

a valuable contribution to the geomorphology community.  

We appreciate that the reviewer sees our work as a valuable contribution to the community. As 

mentioned before, we will try to cut down the methodology section where possible. Two 

essential parts of this paper – the high-resolution hydrological product and the lithological 

erodibility index will be kept in the main part of the manuscript, although we will cut down the 

text and move non-essential methodological aspects to the supplementary materials.   

We will streamline the results section by consistently documenting all model parameters in one 

table (Table 4 rather than table 4 and 5) and will consistently refer to the scenarios as 

documented in the table. For the sake of clarity, we will present the model fits of all the scenarios 

in the supplementary information. Moreover, we realized that the discussion section could 

benefit from an additional graph reporting the overall model performance of the different 

models and will include this new figure (see below) in the revised document.  



 

Additional figure: Comparison of model performance of four selected river incision models. (a) Nash Sutcliffe 

model efficiency (NS) for different model scenarios, without (grey bars) or with (red bars) considering lithological 

heterogeneity. (b) shows the corresponding Model Error (ME). The A-SPM model scenario corresponds to the Area-

Based Stream Power Model (cf. Figure 7). It performs well when lithological heterogeneity is considered and all 

parameters are freely calibrated, resulting in an slope-steepness exponent (n; cf. Eq. 1) of 1.62 (for a full overview of 

model parameters, see Table 4). However, for an A-SPM scenario where n is fixed to the theoretically derived value 

of 1, the model performance strongly deteriorates (see main text). R-SPM represents a model scenario that explicitly 

incorporating runoff variability (cf. Figure 8a). The ST-SPM scenario also includes an incision threshold (cf. Figure 

8b). Both scenarios perform well when n is fixed to 1 and when considering lithological heterogeneity. Overall, the 

best model performance (highest NS and smallest ME) is obtained under the ST-SPM scenario where lithological and 

runoff variability, as well as river incision thresholds are considered.I have many specific comments on 

science issues and several technical corrections that are included in an annotated PDF that I will 

attach.  

We will address all the specific comments in the revised version of the manuscript.  

Line specific comments 

Line 16: ‘enable to assess’: typo 

Where is the typo? Sentence rephrased.  

Line 18 ‘variability of rock strength and its resistance to incision’: wc 

Isolating the role of rainfall variability remains difficult in natural environments, in part because 

environmental controls on river incision such as lithological heterogeneity are poorly constrained 

Line 22 ‘Using 10Be catchment-wide erosion rates, meteorological and hydrological data, as well 

as data on bedrock erodibility, we provide quantitative constraints on the importance of rainfall 

variability and lithological variations’: main point of the paper 



That is right… 

Line 29 wc (word choice, reconsider) 

Research on how rainfall variability and tectonic forcing interact to make a landscape evolve over 

time has long been limited by the lack of techniques that measure erosion rates over sufficiently 

long timespans 

 

Line 64 several small grammar mistakes: subject verb agreement 

Noted, we will revise. 

 

Line 88: spelling 

We will write a new ‘objectives’ paragraph (see above) 

 

Line 124 this needs to broken up into completely separate equations or at least labeled 4a, 4b, 

4c. Psi is not defined in words and needs to be, as the threshold parameter. 

Noted, we will revise. 

 

Line 127 a little confusing here as I was looking for the second component in equation 4. starting 

new paragraph should solve the problem 

Noted, we will revise. 

 

 

Line 142. this is a big assumption. What needs to happen to make this true? some additional info 

from discussion can be moved up here. 

Good suggestion, we will add a paragraph with assumptions and revisit them in the discussion.   

 

Line 152 model set 1: trad stream power 

That’s right. We will name this one A-SPM consistently 

 

Line156 second set of model runs with R-SPM. Above, should describe sets of model runs in the 

same order as incision models 

In the theoretical section we first describe the ST-SPM because the R-SPM is a simplification of 

the ST-SPM. In the result section however, we believe it makes more sense to first present the R-

SPM because it assumes constant k values and no thresholds. By presenting R-SPM first and then 

moving on to ST-SPM we gradually add layers of complexity which we find easier to navigate the 

reader through the result section.  

 



Line 179: I see values of k (little k, no subscript) in table 2, but I don't see where it comes into the 

incision models. This needs to explained and clarifed. There are many parameters that are some 

version of big or little k with subscripts, superscripts, exponents, etc. 

Noted, we will revise. 

 

Line 184: I think the paper would flow better if the organization was like this: 

1. Introduction 

2. all study area section  

3. Explanation of River Incision models 

4.1 Model runs using river incision models 

4.2 Optimization of model parameters. 

Good suggestion, see structure of updated manuscript as a response to general remark before.  

 

Line 191 It doesn't seem like all of this information is necessary to arrive at the critical information 

in the final sentence of the paragraph. 

We removed part of this section.  

 

Line 206 possible to include a MAP map of the study area? That would be useful given the focus 

on characterizing the impacts of rainfall variability. If not feasible, at least give a value for MAP 

on the western slopes as well. 

MAP is represented in Figure 6 of the updated manuscript, we will clarify.  

 

Line 212 At some point in the paper (and maybe it's coming later), I would like to see a summary 

of the catchment erosion rates from these 30 sub-basins. 

The erosion rates are given in Table 2. We will increase the size of the labels in Figure 1 to enhance 

clarity.  

 

Line 227 Are these important for supporting the results/interpretations of this paper? Seems out 

of place to mention them here. 

We suggest keeping the reference to these plots as they are key to understand the discussion on 

transient incision pulses (in the discussion section of the paper). We will however, move these 

lines to the new section ‘River morphology’ where they will be better in place.  

 

Line 239 it would be helpful to readers to explain at the beginning of section 4.4 that the reason 

you do all of this is to get this regional kw value. 

Noted, we will revise. 

 

Line 244 why is 45 stations with 10 years of data not enough? are they all clustered together? 



Indeed, most of them are in the centre of the basin and do not cover the catchments where CRN 

derived erosion is measured (shown on Figure 1). We will clarify.  

 

Line 248 this is bout 28 km resolution. pretty coarse.  

While daily temporal resolution is really fine resolution to drive models that evolve over 

thousands of years.  

That is right, therefore we develop a HR product by downscaling the 0.25° WaterGAP3 data. See 

also next reply.  

 

Line 252 I don't easily grasp the relevance of this section, especially the second half of the 

paragraph, starting on line 248. What needs to happen in this paragraph is a more succinct 

explanation of the data sets used to get a pdf of daily runoff and more importantly, why using 

these data sets is an improvement on the data from the monitoring networks on the ground.  

We will shorten and rephrase this paragraph as:  

“To estimate runoff variability for all 30 sub catchments, we use hydrological data derived in the 

framework of the Earth2Observe Water Resource Reanalysis project (WRR2; Schellekens et al., 

2017) available from 1979 to 2014. Specifically, we use the hydrological data calculated with the 

global water model WaterGAP3 (Water – Global Assessment and Prognosis: Alcamo et al., 2003; 

Döll et al., 2003) at a spatial resolution of 0.25° and a daily temporal resolution 

(earth2observe.eu). In the following paragraphs, we explain how we derive (i) a high-resolution 

runoff map by spatially downscaling this coarse data and (ii) catchment-specific magnitude 

frequency distributions of discharge (pdf_Q*) characterising the temporal variability of runoff.” 

 

Line 255 nice intro and motivation for methodology here. But, before you get into the detailed 

explanation of methods, refer readers to figure 6 so they get a visualization of where you're going 

and why you do this. 

Thanks.  

We will point the readers to figures 5 and 6: 

“The procedure consisted of the following steps and is presented in Figures 5 and 6:” 

 

Line 281 This sentence unnecessarily confusing. Use more words to explain. this section needs 

an introductory sentence to orient readers. 

We will resolve by adding the following text:  

“Runoff variability is typically casted in terms of spatial runoff variability (section 2.4.1). 

However, also the temporal pattern of runoff might influence river incision and is typically 

represented by discharge magnitude frequency distributions. Constraining the shape of these 

distributions is important, because the number of large storm events determine the frequency by 

which thresholds for river incision to occur are exceeded (see section 1.2.2 and references therein). 



 

Line 285 here little k is finally defined. this needs to happen earlier where it is first mentioned. 

Noted, we will revise. 

 

Line 294 how important are daily variations in discharge over 9 million years of uplift and erosion? 

Good point, we will mention this earlier in the assumption section coming with the river incision 

models and revisit the issue in the discussion section of the paper.  

 

Line 297 this is all fine and good, thorough work, but the summary/motivation of why you do this 

needs to be at the beginning of the paragraph. otherwise makes for very heavy reading. 

Agreed, see reply above.  

 

 

Line 300 is this section necessary? Does it really contribute to the main goal of the paper, which 

I understand to be evaluating the role of rainfall variability on incision rates. this sections feels 

like overkill. I recommend moving to supplementary materials.  

As explained earlier, we do believe this section is critical given the importance of lithological 

heterogeneity in controlling river incision rates. Therefore, we will keep it in the methodology 

section.  

 

Or at least the seismicity section can go to supp mat.  

Agreed, we kicked it out.  

 

the lithological strength section should actually stay as it's very important later in the paper. 

Indeed… Should now also be clear to the readers when they arrive at this point, given the 

enhanced focus on lithology in the abstract/intro  

 

 

Line 317 where are these data of measured uniaxial compression strength? OK, I have found it 

now, but this section is confusing. it needs to be more clear and use more words to explain 

We will explicitly mention that the uniaxial compressive strength data can be found in Table S4 

to enhance clarity.  

 

Line 319 this part definitely seems irrelevant to the main focus of the paper. There are so many 

other things already going on, this just feels like a distraction. Unless seismic activity is really 

playing a huge role, in which case maybe the focus of the paper should be on that.  

 

Agreed, we kicked it out.  



 

Line 327 reference figure 12, not table 4. 

We will redo the figure numbers in the revised version of the paper and point the reader to both 

the table and the figure.  

 

Line 331 more explanation and description of figure 12 would be helpful here before launching 

into another lengthy description of another methodology. 

Agreed, we describe all scenarios now in more detail.  

 

 

Line 336 what about Bayes factors of 1.06 vs 1400 tells us that the data fit a model with variable 

erodibility better? Needs more explanation. 

See comment before.  

 

Line 346 coming back to an earlier comment from near the beginning of the manuscript, it seems 

the focus of this paper is equally on the effects of spatial variation in both erodibility and runoff. 

this is not clear/emphasized in the abstract and introduction. 

Agreed, we will resolve this by rewriting the abstract, and objectives of the paper. See comments 

before.  

 

Line 351 spell out model names for section title. 

Noted, we will resolve. To clarify, we will also break up this section in two subsections:  

4.2. Runoff-based and Stochastic-Threshold Stream Power Models 

4.2.1. Runoff-based SPM (R-SPM)  

4.2.2. Stochastic-Threshold SPM (ST-SPM)  

 

 

Line 353 nice explanation of what just happened and what will happen next. manuscript needs 

more of this in places. 

Thanks, and agreed, we will resolve.  

 

Line 360 also good emphasis. 

Thanks 

 

Line 362 this under prediction/over prediction trend is not obvious to me. Looks to me like the 

observational data is scattered somewhat evenly about the modeled data line. If the Nash Sutcliff 

number tells us that there is under/over prediction, then explain how that happens. Otherwise, 

I think such a claim is not supported.  



We will rewrite this paragraph  

 

Line 369 these two scenarios evaluate role of little k. 

True, we will clarify.  

 

Line 372 little k apparently not so important. 

Correct, we will stress this as: “In scenario 5, k is fixed to the average value for all catchments (k 

= 1.01) whereas in scenario 6, k is set to the catchment specific values as listed in Table 2. Both 

scenarios (5 and 6) perform well with an NS value equalling 0.71 indicating that temporal runoff 

variability (k) is not influencing model performance.” 

 

Line 375 here finally runoff variability is evaluated. 

No runoff is evaluated before. This will be clearer in the revised result section.  

 

Line 378 this is misleading, as scenario 7 performs equally well! 

We will explicitly mention that both scenarios perform equally well.   

 

 

Line 379 what's the significance of these lower threshold values? 

We will explain and frame it with some data from literature.  

 

Line 380 I agree that the model vs. measured erosion rates look better in 14b compared to 14a. 

But it's an over-reach to say that ST-SPM "correctly" predicts low erosion rates. There's still a 

good bit of scatter and error in model vs. measured ero rates. Just modulate the word choice a 

little here.  

Noted, we will revise. 

 

Line 386 some of this context would be helpful earlier in the paper, e.g. near line 142 or section 

4.2 

Noted, we will revise by pointing the readers to this section  

 

Line 401 how does this relate to the data presented? where do you suspect over/under 

estimation of ero rates from Be10? 

This will be discussed in the next paragraph.  

 

Line 406 these ids are hard to see and find. note that they are in teh northern section of field 

area and also refer readers to figure 2, can see these areas are steeper. 

All good suggestions, we will do so.  



 

Line 409 confusing. is the variability in agreement due to differences in drainage area in each 

catchment or to over/under estimation of CRN erosion rates? This needs to be more precisely 

worded, as the following sentences make clear. 

We rewrote this paragraph:  

“Longitudinal profiles of rivers draining to the knickzone in the Paute catchment show marked 

knickpoints. This is particularly evident in catchments 9-16 (Figure 1) where ksn values are high 

(Figure 2) and knickpoints appear in the longitudinal profiles (Figures S3 and S4). Simulated 

erosion rates for some of these catchments deviate from CRN-derived denudation rates (Figure 

8.b, ID’s 13 14 and 16) whereas for others (e.g. ID’s 9 and 11), predictions from the Stochastic-

Threshold river incision model show a good agreement with ECRN data. For catchments with a 

sufficiently large drainage area, modelled incision rates correspond well with ECRN (ID’s 9 and 11 

being both ca. 700 km²), most likely because the mechanisms that potentially cause 

overestimation and underestimation cancel each other out at this scale. For smaller catchments 

(ID’s 8;13;14 and 16 all being < 12 km²) there is a discrepancy between simulated river incision 

rates and ECRN.” 

 

Line 427 good point that will have been on the mind of many readers through out the paper. 

maybe acknowledge this timescale mismatch earlier. 

Good suggestion, we will do so by adding a paragraph to the methods section: (3.1) 

“The use of CRN-derived denudation rates to calibrate river incision relies on three main 

assumptions, summarized by Scherler et al. (2017). A first assumption is that the catchment wide 

denudation rates derived from CRN are representative for long term fluvial incision. Positive 

correlations between river steepness, ksn and CRN-derived denudation rates support this 

assumption (Vanacker et al., 2015), except for very small catchments where CRN-derived 

denudation rates are sensitive to the occurrence of deep-seated landslides. A second assumption 

is that runoff and rock uplift are uniform within the individual catchments. Given the size of the 

studied basins, this assumption seems to be reasonable. A third assumption, in particular when 

using the process-based R-SPM and ST-SPM, is that the runoff data, used to calibrate the incision 

parameters is representative over the time span which CRN data integrate (1-100 kyr). This is a 

challenging assumption, given the contemporaneous nature of the available hydrological data. 

While spatial patterns of runoff, mainly controlled by orographic precipitation, could be assumed 

broadly similar over the integration time of CRN-derived denudation, this is not necessarily true 

for the temporal variation in runoff. We will revisit the validity and implications of these three 

assumptions in the discussion section of this paper. “ 

 

Line 437 a bit much detail at this point. 

Agreed, we removed part of this paragraph.  



 

Line 444 I must have completely missed this point. Refer readers back to the relevant model 

runs/figures. 

Noted, we will revise. 

 

Line 447 allowed us 

Noted, we will revise. 

 

 

Line 449 given what you just said, now useful are more advanced methods likely to be? where 

would they be useful? 

We will discuss this by adding a sentence.  

 

Line 456 this seems to be the major, clear finding of this work. 

We will revise the text to clarify the main findings (and also updated the title of the paper) 

 

Line 467 if this is your conclusion, recommend removing earlier discussion of seismicity. 

Agreed, we will revise. 

 

Line 475 this is also a good and significant point that could be highlighted more prominently. 

We will do so and mention it in the abstract of the paper.  

 

Line 484 enables us 

Noted, we will revise. 

 

Line 485 am i missing something? this scenario does NOT include variation in runoff. 

Hmm, we do not exactly know what the reviewer means here. But we will rephrase the sentence 

and the paragraph in general.  

 

Line 486 above error/confusion makes it hard to evaluate this very important claim. 

Agreed, we will rephrase this sentence and the paragraph in general.  

 

Line 494 OK, good point here. 

 

Line 495 yes, but the numbers are only slightly higher for scenario 6 vs scenario 4. How significant 

is this seemingly small difference? 



We will rewrite this paragraph, as well as the paragraph in the results section dealing with 

these scenarios. In the results section we will add a sentence explicitly mentioning the similarity 

between these scenarios: 

“Note that differences in model performance between R-SPM scenario 2 and ST-SPM 

scenarios 5-8 are existent but not very pronounced. To evaluate the significance of these 

differences, our analysis should be repeated on larger datasets capturing a wider variability in 

denudation rates and hydrology. 

 

Line 503 i would say that mainly spatial variation in rock erodibility controls river incision 

patterns. I have to say, I'm not convinced of that rainfall variability matters a huge amount from 

the data presented here. 

We rephrased this paragraph. See also replies above.  

“Our finding that spatial patterns in precipitation control river incision patterns corroborate 

findings in the Himalaya (Scherler et al., 2017) and in the Andes (Sorensen and Yanites, 2019). 

Sorensen and Yanites (2019) evaluated the role of latitudinal rainfall variability in the Andes on 

erosional efficiency using a set of numerical landscape evolution model runs. They show that 

erosion efficiency in tropical climates at low latitudes, where the Paute basin is located, is well 

captured by the spatial pattern of mean annual precipitation and thus runoff. At higher latitudes 

(25-50°) where storms are less frequent but still very intense, mean annual precipitation 

decreases but erosivity is still high due to the intensity of storms (Sorensen and Yanites, 2019). At 

these latitudes, the spatial variations in storm magnitude are therefore more likely to be reflected 

in river erosivity and thus catchment mean denudation rates than in the Ecuadorian Andes.” 

 

Line 518 medium? anyway, medium is not a great word choice to describe basin size. 

Noted, we will revise. 

 

Line 527 But the simplest version of the model, A-SPM does almost as good of a job! R^2=0.73, 

NS=0.73! You must explain this and justify why variable R actually matters! 

See comments before. We rephrased this paragraph as:  

“In order to account for rock strength variability, which is for the Paute basin mainly ascribed to 

variations in lithological strength in the study area, we propose the use of an empirical lithological 

strength index that is based on lithology and age of lithostratigraphic units. Including lithological 

variability in the models increases the correlation between river steepness and denudation rates 

and reveals a non-linear relation, which we seek to explain using a stochastic-threshold SPM (ST-

SPM). Using a downscaled version of a state-of-the-art hydrological reanalysis dataset, we show 

that the combination of spatially varying runoff and incision thresholds explains the observed, 

non-linear relationship. We do not detect, however, an impact of temporal discharge distributions 



on river incision. We attribute this lack to the integration time of CRN data and response times of 

river longitudinal profiles which extend beyond timescales at which discharge distributions can be 

assumed to be stationary.” 

 

Line 535 I think this conclusion is fair that this study shows potential, but more research is still 

needed for definitive answers about R variability. 

 

We will keep this message in the revised version of the paper.  
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Abstract. Process-based geomorphic transport laws enable Landscape evolution models can be used to assess the impact of 

rainfall variability on bedrock river incision over geologicalmillennial timescales. However, isolating the role of rainfall 

variability on erosion remains difficult in natural environments, in part because the variability of rock strength and its 

resistance to incisionenvironmental controls on river incision such as lithological heterogeneity are poorly constrained. HereIn 25 

this study, we explore spatial differences in the rate of bedrock river incision in the tropical Andes. The Ecuadorian Andes 

are characterized by strongusing three different stream power models. A pronounced rainfall gradientsgradient due to 

orographic precipitation sourced in the Amazon basin. In addition, the tectonic configuration has generatedand a profoundhigh 

lithological heterogeneity. The  enable us to explore the relative roleroles of either these controls in modulating river incision 

on millennial time scales, however, remains unclear. Using 10Be catchment-wide erosion rates, meteorological and 30 

hydrological data, as well as data on bedrock erodibility, we provide quantitative constraints on. First, we use an area-based 

stream power model to scrutinize the role of lithological heterogeneity on river incision rates. We show that lithological 

heterogeneity is key to predicting spatial patterns of incision rates. Accounting for lithological heterogeneity reveals a non-

linear relationship between river steepness, a proxy for river incision, and cosmogenic radio nuclide (CRN) derived 

denudation rates. Second, we explore this nonlinearity using runoff-based and stochastic-threshold stream power models, 35 

combined with a state-of-the-art hydrological dataset to calculate spatial and temporal runoff variability. Statistical modelling 

suggests that the importance of rainfall variability and lithological variations. Explicit incorporation of rock erodibility in 

river incision models predicated onnon-linear relationship between river steepness and denudation rates can be attributed to a 

spatial runoff gradient and incision thresholds. Our findings have two main implications for the stream power equation enables 
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us to identify a first order controloverall interpretation of CRN-derived denudation rates and the use of river incision models 40 

: (i) applying sophisticated stream power models to explain denudation rates at the landscape scale is only relevant when 

accounting for the confounding role of environmental factors such as lithology on river incision rates. Rainfall variability 

based on a spatially and temporally explicit hydrological dataset and a stochastic-threshold river incision model explain and 

(ii) spatial patterns in runoff due to orographic precipitation in combination with incision thresholds explain part of the non-

linearity between river steepness and CRN-derived denudation rates. The methodology that we present can be used as a 45 

framework to study the coupling between river incision, lithological heterogeneity and climate at regional differences in river 

incision that cannot be attributed to topographical and/or lithological variability. 
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to continental scales. 

 

 50 

 

 

1. Introduction 

1.1. Background 

Research on how rainfallclimate variability and tectonic forcing interact to make a landscape evolve over time was, 55 

for ahas long time,been limited by the lack of techniques that measure erosiondenudation rates over sufficiently long 

timespans (Coulthard and Van de Wiel, 2013). As a consequenceConsequently, the relative role of rainfallclimate variability 

and tectonic processes had tocould only be deduced from sediment archives (e.g. Hay et al., 1988). However, whether 

sediment archives offer reliable proxies remains an open research questioncontested because sediment sources and transfer 

times to depositional sites remain largely unknownare often shrouded (Bernhardt et al., 2017; Romans et al., 2016). Moreover, 60 

estimates from sediment archives have been contested due to potential observation biases (Jerolmack and Paola, 2010; Sadler, 

1981)(Bernhardt et al., 2017; Jerolmack and Paola, 2010; Romans et al., 2016; Sadler, 1981).  

CosmogenicNowadays, cosmogenic radionuclides (CRN) contained in quartz minerals of river sediments provide 

an alternative tool for determining catchment-wide erosiondenudation rates on a routine basis (Codilean et al., 2018; Harel et 

al., 2016; Portenga and Bierman, 2011). In sufficiently large catchments (> 10-50 km²),, detrital CRN -derived 65 

erosiondenudation rates (ECRN) integrate over timescales that average out the episodic nature of sediment supply (Kirchner et 

al., 2001). Hence, benchmark or natural erosiondenudation rates can be calculated for human disturbed as well as pristine 

environments (Reusser et al., 2015; Safran et al., 2005; Schaller et al., 2001; Vanacker et al., 2007).  

Catchment-wide erosiondenudation rates have been correlatedfound to correlate with a range of topographic metrics 

including basin relief, average basin gradient and elevation (Abbühl et al., 2011; Kober et al., 2007; Riebe et al., 2001; Safran 70 

et al., 2005; Schaller et al., 2001). However, in tectonically active regimes, hillslopes tend to evolve towards a critical threshold 

gradient which is controlled by mechanical rock properties (Anderson, 1994; Roering et al., 1999; Schmidt and Montgomery, 

1995) .. Once slopes approach this critical gradient, mass wasting becomes the dominant processes controlling hillslope 

response to changing base levels (Burbank et al., 1996). In such a configuration, hillslope steepness is no longer an indication 

of erosiondenudation rates and topographic metrics based on hillslope relief become poor predictors of catchment wide 75 

erosiondenudation rates (Binnie et al., 2007; Korup et al., 2007; Montgomery and Brandon, 2002).(Binnie et al., 2007; Korup 

et al., 2007; Montgomery and Brandon, 2002).  

Contrary to hillslopes, rivers and river longitudinal profiles do captureare more sensitive to changes in erosion rates 

(Whipple et al., 1999). Bedrock rivers in mountainous regions mediate the interplay between uplift and erosion (Whipple and 

Tucker, 1999; Wobus et al., 2006)(Whipple and Tucker, 1999; Wobus et al., 2006). They incise into bedrock and efficiently 80 

convey sediments, thus setting the base level for hillslopes and controlling the evacuation of hillslope derived sediment. 

Quantifying the spatial patterns of natural erosiondenudation rates in tectonically active regions therefore requires detailed 

knowledge of the processes driving fluvial incision. One of the major outstanding research questions is to understand and 
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quantify how fluvial systems respond to external rainfall variability or tectonic forcing (Armitage et al., 2018; Castelltort et 

al., 2012; Finnegan et al., 2008; Gasparini and Whipple, 2014; Goren, 2016; Scherler et al., 2017; Tucker and Bras, 2000).  85 

The use of riverRiver morphological proxiesindices, such as channel steepness (ksn) (Wobus et al., 2006)(Wobus et 

al., 2006), have successfully been applied as a predictor for catchment denudation and thus ECRN has successfully been applied 

by Safran et al. (2005) and since being applied by many others, commonly identifying a monotonically increasing relationship 

between channel steepness (ksn) (Wobus et al., 2006)(Wobus et al., 2006) and ECRN (Cyr et al., 2010; DiBiase et al., 2010; 

Mandal et al., 2015; Ouimet et al., 2009; Safran et al., 2005; Vanacker et al., 2015). Several authors identified a non-linear 90 

relationship between ksn and ECRN in both regional (e.g. DiBiase et al., 2010; Ouimet et al., 2009; Scherler et al., 2014; 

Vanacker et al., 2015) and global compilation studies (Harel et al., 2016). Theoretical models suggestTheory suggests that 

this non-linear relationship reflectreflects the dependency of long-term river incisiondenudation on hydrological and, hence, 

rainfall variability (Deal et al., 2018; Lague et al., 2005; Tucker and Bras, 2000). Hydrological variability affects both temporal 

and spatial variations in river discharge and the effect of river discharge on denudation and river incision rates can be 95 

approximated by theoretical model derivations. However, identifying the impact of rainfallhydrological variability on incision 

rates in natural environments has, until now, only been successful forsuccessfully identified in a limited number of case studies 

(DiBiase and Whipple, 2011; Ferrier et al., 2013; Scherler et al., 2017).  

 

We identify two outstanding limitations hampering widelarge scale application of river incision models that include 100 

rainfallhydrological variability. First, the necessary high-resolution hydrological data at high temporal and spatial resolutions 

is usually not available, but required because mountainunavailable. Mountain regions are typically characterized by large 

temporal and spatial variation in runoff rates (e.g. Mora et al., 2014). Yet, most of the observational records on river discharge 

are fragmented and/or have poorlimited geographic covercoverage. Second, large catchments are often underlain by variable 

lithologies. Studies exploring the role of river hydrology in controlling river incision have hitherto mainly focused on regions 105 

underlain by rather uniform lithology (DiBiase and Whipple, 2011; Ferrier et al., 2013) or they have considered lithological 

variations to be of minor importance (Scherler et al., 2017). However, tectonically active regions such as the Andes range, 

haveusually experienced tectonic accretion, subduction, active thrusting, volcanism and denudation resulting in a highly 

variable litho-stratigraphic compositionlithology over >100 km distances (Horton, 2018). Rock strength is known to control 

river incision rates, and is a function of its lithological composition and lithologystratigraphic age (Brocard and van der Beek, 110 

2006; Lavé and Avouac, 2001; Stock and Montgomery, 1999), as well as its rheology and fracturing due to tectonic activity 

(Molnar et al., 2007). If we want to use geomorphic models not only to emulate the response of landscapes to climatically 

regulated rainfallclimatic and/or tectonic forces but also to predict absolute erosiondenudation rates, then we need to account 

for variations in physical rock properties need to be accounted for (Attal and Lavé, 2009; Nibourel et al., 2015; Stock and 

Montgomery, 1999). FurthermoreEven more importantly, these variations in rock erodibility can potentially obscure the 115 

relation between river incision and rainfall variability and more specifically the relation between long-term erosion and rainfall 

ratesdischarge (Deal et al., 2018). Therefore, we posit that the climatic effects on erosiondenudation rates can only be correctly 

assessed if the geomorphic model accounts for physical rock properties and vice versa. Based on current limitations, we 

formulate two main objectives: we want (i) to assess the impact of lithological heterogeneity on river incision and (ii) to 

unravel the role of allogenic (spatial and/or temporal runoff variability) versus autogenic (incision thresholds) controls on 120 

river incision. We develop and evaluate our approach in the southern Ecuadorian Andes where detailed lithological 

information is available as well as a database of CRN-derived denudation rates (Vanacker et al., 2007, 2015).  
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In this study, we assess the influence of lithological heterogeneity and rainfall variability on erosion rates in an active 

tectonic setting in the tropical Andes. We apply different, stream-power based models to the Paute River basin in the 

Ecuadorian Andes, and subsequently evaluate model performance by comparing modelled river incision rates and CRN 125 

derived erosion rates. Thereby, we aim two answer two research questions: First, do spatial variations in lithology correlate 

with rates of river incision? Second, are rates of river incision further modulated by rainfall variability?  

 

2.1.2. River incision models 

Bedrock rivers are shaped by several processes including weathering, abrasion-saltation, plucking, cavitation and debris 130 

scouring (Whipple et al., 2013). Explicitly accounting for all these processes would render models too complex for simulations 

over timescales relevant to understand the uplift-climate-lithology-erosion conundrum. Therefore, river incision is typically 

simulated by assuming a functional dependence of river incision on the shear stress (τ, [Pa]) exerted by the river on its bed. 

Several models have been proposed to simulate the dependence of long term river incision on shear stress (Dietrich et al., 

2003) where the drainage Area based Stream Power Model (A-SPM) is the most commonly used (Howard, 1994; Lague, 135 

2014):  

. However, explicitly accounting for these processes renders models too complex at spatial and temporal scales relevant 

to understand landscape evolution of entire mountain ranges. Therefore, a broad variety of models have been proposed to 

simplify the complex nature of river incision dynamics (Armitage et al., 2018; Lague et al., 2005; Shobe et al., 2017; Venditti 

et al., 2019). Most river incision models assume a functional dependence of river incision on the shear stress (τ, [Pa]) exerted 140 

by the river on its bed (Sklar et al., 1998; Whipple and Tucker, 1999). However, within the family of shear stress / stream 

power models, several approaches exist. Most commonly used is the Area-based Stream Power Model (A-SPM), explicitly 

representing the universally observed inverse power relation between channel slope and drainage area (Howard, 1994; 

Whipple and Tucker, 1999). Parametrization of the A-SPM is purely empirical and involves calibration of three incision 

parameters (an erosion efficiency parameter, an area exponent and a slope exponent). Given the interdependency of these 145 

parameters (e.g. Campforts and Govers, 2015; Croissant and Braun, 2013; Roberts and White, 2010), there is an ongoing 

effort to calibrate river incision models using a process oriented strategy where small scale observations and physical 

mechanisms are upscaled to the landscape scale (Venditti et al., 2019). In particular and not exclusively, ongoing efforts 

evaluate how the three incision parameters are affected by (i) the presence incision thresholds (e.g. DiBiase and Whipple, 

2011; Lague, 2014), discharge variability (DiBiase and Whipple, 2011; Lague et al., 2005; Snyder et al., 2003; Tucker and 150 

Bras, 2000) and the spatial and temporal distribution of runoff (Deal et al., 2018; Ferrier et al., 2013; Lague et al., 2005; 

Molnar et al., 2006). In this paper, we evaluate how two of such derived models (the Stochastic-Threshold and Runoff-based 

Stream Power Model, respectively ST-SPM and R-SPM) can be used to explain measured variations in denudation rates at 

the landscape scale.  

1.2.1. Area-based Stream Power Model  155 

The Area-based Stream Power Model (A-SPM, Howard, 1994) is a first, lumped statistical approach to represent river 

incision: 
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 𝐸 = 𝐾′𝐴𝑚𝑆𝑛 (1) 

in which E is the long term river erosion (L t-1), K’ (L1-2mt-1) quantifiesis the erosional efficiency as a function of rock 

erodibility and erosivity, A (L2) is the upstream drainage area, S [L L-1] is the channel slope, and m and n are exponents whose 

values depend on lithology, rainfall variability and sediment load.  160 

Eq (1)Eq (1) can be rewritten as a function of the channel steepness, ks: 

 𝐸 = 𝐾′𝑘𝑠
𝑛

 (2) 

where ks can be written as the upstream area -weighted channel gradient:  

 𝑘𝑠 = 𝑆𝐴𝜃  (3) 

In which 𝜃 = 𝑚/𝑛 is the channel concavity (Snyder et al., 2000; Whipple and Tucker, 1999). In order to compare steepness 

indices from different locations, 𝜃 is commonly set to 0.45 and the channel steepness is referred to as the normalized steepness 

index, ksn (Wobus et al., 2006)(Wobus et al., 2006). Variations in ksn are often used to infer uplift patterns, by assuming a 165 

steady state between uplift and erosion (Kirby and Whipple, 2012). In transient settings, where steady state conditions are not 

necessarily met, the ksn values can be used to infer local river incision rates (Harel et al., 2016; Royden and Taylor Perron, 

2013). 

 Notwithstanding empirical evidence supporting the A-SPM such as the scaling between drainage area and channel 

slope in steady state river profiles (Lague, 2014) or its capability to simulate transient river incision pulses (Campforts and 170 

Govers, 2015), the A-SPM is a semi-empirical geomorphic ‘law’ with several shortcomings reviewed in Lague (2014). Most 

notably, the A-SPM  does not explicitly simulate the effect of incision thresholds for river incision to occur (Lague, 2014), 

albeit numerical simulations have shown that the use of a slope exponent n (Eq. (1)) greater than unity can reproduce erosion 

rates obtained with models explicitly accounting for incision thresholds  (Gasparini and Brandon, 2011).  

A state-of-the-art river incision model to simulate the impact of hydrological variability on river incision efficiency 175 

is the Stochastic-Threshold Stream Power Model (ST-SPM) (Crave and Davy, 2001; Deal et al., 2018; Lague et al., 2005; 

Snyder et al., 2003; Tucker and Bras, 2000). The ST-SPM explicitly acknowledges the existence of a shear stress threshold 

(τc) which must be overcome to entrain sediment and bedrock. By incorporating stochasticity of the river discharge in the 

equation, the ST-SPM enables to simulate the frequency of erosive events and their impact on long term river incision. We 

refer to literature for a full derivation of the ST-SPM (Crave and Davy, 2001; Deal et al., 2018; Lague et al., 2005; Snyder et 180 

al., 2003; Tucker and Bras, 2000).  

The ST-SPM hasWhen using the A-SPM, the effect of autogenic (caused by intrinsic river dynamics such as incision 

thresholds and changes in channel width) and allogenic (originating from the transient response of river dynamics to extrinsic 

changes such as climate variability) controls is assumed to be accounted for in the model parameters (K’, m and n). For 

example, it has been shown that incision thresholds translate into a slope exponent n greater than unity when applying the A-185 

SPM (Lague, 2014). Notwithstanding empirical evidence supporting the A-SPM such as the scaling between drainage area 

and channel slope in steady state river profiles (Lague, 2014) or its capability to simulate transient river incision pulses 
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(Campforts and Govers, 2015), the lumped modelling approach of the A-SPM cannot be used to evaluate the role of autogenic 

or allogenic river response. 

 190 

1.2.2. Stochastic-Threshold Stream Power Model  

The Stochastic-Threshold Stream Power Model (ST-SPM, Crave and Davy, 2001; Deal et al., 2018; Lague et al., 

2005; Snyder et al., 2003; Tucker and Bras, 2000) does simulate the impact of hydrological variability and incision thresholds 

on river incision and thus enables us to evaluate the role of autogenic or allogenic river response. 

The ST-SPM is calculated in two components. The first component involves the formulation to calculateconsecutive 195 

steps. First, instantaneous river incision (I, [L t-1]):] is calculated as:  

 𝐼(𝑄∗) = 𝐾𝑄∗ 𝛾𝑘𝑠
𝑛 −  𝜓 

𝐾 = 𝑘𝑒𝑘𝑡
𝑎𝑘𝑤

−𝑎𝛼𝑅
𝑚

;  𝜓 = 𝑘𝑒𝜏𝑐
𝑎 

𝛾 = 𝑎𝛼(1 − 𝜔𝑠);  𝑚 = 𝑎𝛼(1 − 𝜔𝑏);  𝑛 = 𝑎𝛽 

(4).a) 

(4.b) 

(4.c) 

in which Q* represents the dimensionless normalized daily discharge calculated by dividing daily discharge Q [L3t-1] by 

mean-annual discharge 𝑄 [L3t-1], ke [L2.5 T2t2 m-1.5] is the erosional efficiency constant, 𝑅 [L t-1] is the mean annual runoff, a 

is the shear stress exponent reflecting the nature of the incision process (Whipple et al., 2000), 𝜓 is the threshold term [L t-1], 

and kt, kw, α, β, ωa and ωb are channel hydraulic parameters described in Table 1. TheTable 1.  200 

In a second component derivesstep, long term river erosionincision is calculated by multiplying the instantaneous 

river incision, I, calculated for a discharge of a given magnitude (Q*) with the probability for that discharge to occur (pdf(Q*), 

see section 5.1.2)*)) and subsequently integrating this product over the range of possible discharge events specific to the 

studied timescale (DiBiase and Whipple, 2011; Lague et al., 2005; Scherler et al., 2017; Tucker and Bras, 2000; Tucker and 

Hancock, 2010):  205 

 
𝐸 = ∫ 𝐼(𝑄∗)

𝑄𝑚
∗

𝑄𝑐
∗

𝑝𝑑𝑓(𝑄∗)𝑑𝑄∗ (5) 

in which 𝑄𝑐
∗ is the minimum normalized discharge which is required to exceed the critical shear stress (τc) and 𝑄𝑚

∗  is the 

maximum possible normalized discharge over the time considered.  

1.2.3. Runoff-based Stream Power Model  

 A third river incision model further discussed inderived from the paperST-SPM, is the Runoffrunoff-based SPM (R-

SPM). The R-SPM shares its derivation withis similar to the ST-SPM, but assumes riverthat the incision thresholds to beare 210 

negligible (𝜓 = 0) and that discharge to beis constant over time (𝑄∗ = 1), simplifying Eq. (5)5 to:  
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 𝐸 = 𝐾𝑘𝑠
𝑛

 (6) 

  

In the following sections, we first describe the study area, characterize the lithological configuration by developing 

a lithological erodibility index and compile a database to represent runoff variability. Second, we present the methods and 

assumptions used for calibrating and simulating river incision. In a third section, the modelling results are presented: we start 215 

by evaluating the impact of lithological heterogeneity on river incision rates using an area-based river incision model (A-

SPM). We then evaluate to what extent the variability in denudation rates can be explained by spatial and/or temporal runoff 

variability and the existence of incision thresholds using the R-SPM and ST-SPM. In a final section, we discuss our findings, 

highlight the implications of our work and discuss further perspectives.  

3.1. Methods 220 

3.1.1.1. Optimization of model parameters  

The presented forms of the stream power model all depend on river steepness, ksn, known to correlate well with ECRN 

(DiBiase et al., 2010; Ouimet et al., 2009; Scherler et al., 2017; Vanacker et al., 2015). Moreover, ECRN integrate over 

timespans that average out the episodic nature of erosion and over spatial extents large enough to average out the stochastic 

nature of hillslope processes. Moreover, if we assume that river incision occurs at rates of catchment-wide denudation, ECRN 225 

can be used to constrain models of river incision (cfr. DiBiase and Whipple, 2011; Scherler et al., 2017).  

To optimize model parameters, we maximize the Nash Sutcliff model efficiency (NS, Nash and Sutcliffe, 1970) 

between observed erosion (O) and modelled river incision (M):  

 
𝑁𝑆 = 1 −

∑ (𝑂𝑖 − 𝑀𝑖)2𝑖=𝑛𝑏
𝑖=1

(𝑂𝑖 − �̅�)2
 (7) 

where nb is the number of ECRN samples. The NS coefficient ranges between −∞ and 1 where 1 indicates optimal model 

performance explaining 100 % of the data variance. When NS = 0, the model is as good a predictor as the mean of the observed 230 

data. When NS <= 0; model performance is unacceptably low. The NS-coefficient has been developed in the framework of 

hydrological modelling but has been applied in wide range of geomorphologic studies (e.g. Jelinski et al., 2019; Nearing et 

al., 2011).  

3.2. River incision models 

In a first set of model runs, we evaluate the performance of the A-SPM in predicting ECRN rates. To account for rock 235 

strength variability Eq. (2) is rewritten as: 

 𝐸 = 𝑘𝑎  𝐿𝐸
̅̅ ̅ 𝑘𝑠𝑛

𝑛
 (8) 

where ka (L1-2mt-1) is the erosional efficiency parameter and 𝐿𝐸
̅̅ ̅

 is a dimensionless catchment mean lithological erodibility 

value. 

In a second set of model runs, we evaluate whether the R-SPM can explain regional differences in river incision that 

cannot be attributed to topographical and/or lithological variations. To account for rock strength variability Eq. (6) is rewritten 240 

as: 
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 𝐸 = 𝐾𝐿𝐸
̅̅ ̅𝑘𝑠𝑛

𝑛
 (9) 

An overview of the parameter values required to solve the R-SPM is given in Table 1. Only the value of kw is based on a 

regional calibration of the hydraulic geometry scaling (see section 4.4). Other parameters are set to commonly used values 

(Deal et al., 2018; DiBiase and Whipple, 2011; Scherler et al., 2017). Actively incising bedrock channels are often covered 

by a layer of sediment. Therefore, we assume that river incision is scaled to the bed shear stress similar to bedload transport 245 

(Meyer-Peter and Müller, 1948) and set a to 3/2 (cfr. DiBiase and Whipple, 2011; Scherler et al., 2017). We use the Darcy-

Weisbach resistance relation and coefficients ( α = β = 2/3) to calculate shear stress exerted by the river flow on its bed and 

assume a friction factor of 0.08 resulting in a flow resistance factor kt of 1000 kg m−7/3 s−4/3 (e.g. Tucker, 2004). The use of 

Darcy-Weisbach friction coefficients in combination with a = 3/2 results in a value for the slope exponent equal to unity (n = 

1, see Eq. (4)). Based on these theoretical derivations, we fix n to unity when constraining the R-SPM. Note that this contrasts 250 

to the first set of model runs (application of the A-SPM), where we allow n to vary. By fixing n to unity, we want to verify 

whether spatial variations in runoff (incorporated in K from Eq. 9) can explain variations in incision rates otherwise ascribed 

to non-linear river incision. The only parameter not fixed to a constant value is the erosivity coefficient ke, which is optimized 

by maximizing the NS-coefficient (see section 3.1). 

In a final set of model runs, we apply the ST-SPM (Eq. (4)) which is adjusted to account for rock strength variability as:  255 

 𝐼 = 𝐾𝑠𝑡𝐿𝐸
̅̅ ̅𝑄∗ 𝛾𝑘𝑠𝑛

𝑛 −  𝜓 (10) 

To derive long-term erosion rates (E), Eq. (10) is integrated over the probability density function of discharge 

magnitudes (Eq. (5)) which requires values for the lower (𝑄𝑐
∗) and the upper (𝑄𝑚

∗ ) limit of the integration interval. Constraining 

𝑄𝑚
∗  is difficult based on observational records alone as they might miss some of the most extreme flooding events. However, 

when simulating incision rates over long time spans and thus considering long return times of 𝑄𝑚
∗  (>1000 y), the solution of 

Eq. (5) is insensitive to the choice of 𝑄𝑚
∗  (Lague et al., 2005). We therefore set 𝑄𝑚

∗  to infinity in all our model runs. The critical 260 

discharge (𝑄𝑐
∗) for erosion to occur can be derived from Eq. (10) by setting I equal to 0: 

  

𝑄𝑐
∗ = (

𝜓

𝐾𝑠𝑡𝐿𝐸
̅̅ ̅ 𝑘𝑠

𝑛)

1
𝛾
 (11) 

The impact of spatial variations in runoff and discharge variability is evaluated by setting 𝑅 and k respectively to the 

catchments specific values or the mean of these values (listed in Table 2). Parameters left free during optimization are the 

erosivity coefficient ke and the critical shear stress 𝜏𝑐
∗. Parameter values of both variables are optimized by maximizing the 

NS-coefficient (see section 3.1). 265 

4.2. Study area  

2.1. Geology 

4.1.2.1.1. Tectonics and geomorphic setting 
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The Paute River is a 6530 km2 transverse drainage basin: (2.9°S, 79°W): it has its source in the eastern flank of the 

Western Cordillera, traverses the Cuenca intramontane basin and cuts through the Eastern Cordillera before joining the 270 

Santiago river, a tributary of the Amazon (Figure 1; Hungerbühler et al., 2002; Steinmann et al., 1999). The Paute basin has 

a moderate relief with 90% of the slopes having hillslope gradients below 0.30 m m-1 (Vanacker et al., 2007). Where the Paute 

River cuts through the Eastern Cordillera, the topography is rough with steep hillslopes (90th percentile of slope gradients = 

0.40 m m-1) and deeply incised river valleys (Guns and Vanacker, 2013). 

Oblique accretion of terranes to the Ecuadorian margin during the Cenozoic, resulted in a diachronous exhumation and 275 

cooling history along the Ecuadorian CordilleranCordillera system (Spikings et al., 2010). South of 1°30’.5°S, where the 

Paute basin is situated, three distinct stages of elevated cooling have been reported during the Paleogene at 73-55 Ma, 50-30 

Ma and 25-18 Ma, corresponding to a total cooling from ca. 300°C to ca. 60°C (Spikings et al., 2010). In the Western 

Cordillera, no elevated cooling is observed during the Paleogene and extensional subsidence of the Cuenca basin allowed 

synsedimentary deposition of marine, lacustrine and terrestrial facies until the Middle to Late Miocene (Hungerbühler et al., 280 

2002; Steinmann et al., 1999). The collision between the Carnegie ridge and Ecuadorian trench at some time between the 

Middle to Late Miocene (Spikings et al., 2001) resulted in uplift of the Western Cordillera and caused a tectonic inversion of 

the Cuenca basin (Hungerbühler et al., 2002; Steinmann et al., 1999). Based on a compilation of mineral cooling ages available 

for the Cuenca basin, Steinman et al. (1999) estimated a mean rock uplift rate of ca. 0.7 mm yr-1 and a corresponding surface 

uplift of ca. 0.3 mm yr-1 from 9 Ma to present.  285 

The Paute basin is characterized by a tropical mountain climate (Muñoz et al., 2018). Despite the presence of mountain 

peaks up to ca. 4600 m (Figure 1),4600 m (Figure 1), the region is free of permanent snow and ice (Celleri et al., 2007). The 

region’s precipitation is regulated by its proximity to the pacificPacific Ocean (ca. 60 km distance);), the seasonally shifting 

of the Intertropical Convergence Zone (ITCZ);), and the advection of continental air masses sourced in the Amazon basin, 

giving rise to an orographic precipitation gradient along the eastern flank of the Eastern Cordillera (Bendix et al., 2006). Total 290 

annual precipitation is highly variable within the Paute basin and ranges from ca. 800 mm in the centercentre of the basin, at 

the center of the Inter Andean valley, up to ca. 3000 mm in the eastern parts of the catchment (Celleri et al., 2007; Mora et 

al., 2014). 

2.1.1. Lithological strength 

The erodibility map was developed using an empirical, hybrid classification method : it combines information on the 295 

lithological composition (Aalto et al., 2006) and the age of non-igneous formations assuming higher degrees of diagenesis 

and increased lithological strength for older formations (cfr. Kober et al., 2015). Adding age information to evaluate 

lithological strength has advantages because lithostratigraphic units are typically composed of different lithologies but mapped 

as a single entity because of their stratigraphic age. The lithological erodibility (LE) is calculated as:  

 
𝐿𝐸 =

2

7
𝐿′ 

𝐿′ = { 

(𝐿𝐴 + 𝐿𝐿)

3
, 𝑛𝑜𝑛 − 𝑖𝑔𝑛𝑒𝑜𝑢𝑠 𝑟𝑜𝑐𝑘𝑠

𝐿𝐿

2
, 𝑖𝑔𝑛𝑒𝑜𝑢𝑠 𝑟𝑜𝑐𝑘𝑠

 

(7) 
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With LA a dimensionless erodibility index based on stratigraphic age (Figure 2.a), and LL a dimensionless erodibility 300 

index based on lithological strength (Table 1), similar to the erodibility indices published by Aalto (2006). Note that LA varies 

between 1 (Carboniferous) to 6 (Quaternary) whereas LL ranges between 2 (e.g. granite) to 12 (e.g. unconsolidated colluvial 

deposits). The lithological strength thus has a double weight, resulting in L’ values ranging between 1 and 6. For igneous 

rocks, only LL is considered assuming that the lithological strength of igneous rocks remains constant over time. For river 

incision parameters to be comparable to other published ranges, LE is finally scaled around one by multiplying L’ with 2/7. 305 

LE therefore ranges between 2/7 and 14/7. A description of the lithological units, the age of the formations and their lithological 

strength (LA, Ll and LE) is provided in Table S3. 

Using Eq. 7 , we developed the erodibility map of Ecuador (Figure S1) and the Paute catchment (Figure 2.c), based 

on the 1M geological map of Ecuador (Egüez et al., 2017). The lithological erodibility values were compared with field 

measurements (n = 9) of bedrock rheology by Basabe (1998). An overview of measured lithological strength values is 310 

provided in Table S4 (e.g. uniaxial compressive strength). Figure 2.b shows good agreement (R2 = 0.77) between the 

lithological erodibility index, LE, and the measured uniaxial compressive strength. 

 

4.2.2.2.  CRN -derived erosiondenudation rates  

Catchment-wide denudation rates are derived from in-situ produced 10Be concentrations in river sand. At the outlet of 30 315 

sub-catchments (Figure 1, Table 2), fluvial sediments were collected. We refer to Vanacker et al. (2015) for details on sample 

processing and derivation of CRN denudation rates taking into account altitude dependent production, atmospheric scaling 

and topographical shielding (Dunai, 2000; Norton and Vanacker, 2009; Schaller et al., 2002). CRN concentrations are not 

corrected for snow or ice coverage because there is no evidence of glacial activity during the integration time of CRN-derived 

denudation rates (Vanacker et al., 2015). Three data points were excluded from model optimization runs: two catchments with 320 

basin area smaller than 0.5 km² (MA1 and SA), and one catchment with an exceptionally low 10Be concentration that can be 

attributed to recent landslide activity (NG-SD; see Vanacker et al., 2015).  

 mean erosion rates are derived from in-situ produced 10Be concentrations in river sand. At the outlet of 30 sub-catchments 

indicated in Figure 1 and Table 2 (dataset published in Vanacker et al., 2015), fluvial sediments were collected. For the 10Be 

analysis, pure quartz was extracted from the 0.25–2.5 mm grain size fraction of the alluvial material. The 10Be was extracted 325 

from purified sand using standard methods described in von Blanckenburg et al. (1996, 2004) and the 10Be/9Be ratios were 

measured in BeO targets with accelerator mass spectrometry at ETH Zürich. We refer to Vanacker et al. (2015) for details on 

sample processing and derivation of CRN erosion rates taking into account altitude dependent production, atmospheric scaling 

and topographical shielding (Dunai, 2000; Norton and Vanacker, 2009; Schaller et al., 2002). CRN concentrations are not 

corrected for snow or ice coverage because there is no evidence of glacial activity during the integration time of CRN-derived 330 

erosion rates (Vanacker et al., 2015). Note that three data points were excluded from model optimization runs : two catchments 

with basin area smaller than 0.5 km² (MA1 and SA), and one catchment with an exceptionally low 10Be concentration that 

can be attributed to recent landslide activity (NG-SD; see Vanacker et al., 2015).  

4.3. River steepness  

2.3. River steepness is calculatedmorphology  335 
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Based on a gap-filled SRTM v3 DEM with a 1 arc second resolution (Farr et al., 2007; NASA JPL, 2013), we calculate 

river steepness for all channels havingwith drainage areas of more than> 0.5 km2 and is averagedaverage it over 500 m reaches, 

based on a gap-filled SRTM v3 DEM with a 1 arc second resolution (Farr et al., 2007; NASA JPL, 2013). Because the. The 

optimized concavity 𝜃 for the Paute catchment (0.42; Text S1), is close to the frequently used value of 0.45, we fix concavity 

to the reference value of 0.45 and report river steepness as normalized river steepness (ksn) in the remainder of this paper. The 340 

spatial pattern of ksn values (Figure 3) is a result of the transient geomorphic response to river incision initiated at the Andes 

Amazon transition zone (Vanacker et al., 2015). 2) is a result of the transient geomorphic response to river incision initiated 

at the Andes Amazon transition zone (Vanacker et al., 2015). To evaluate the extent to which transient river features influence 

simulated erosiondenudation rates, chi-plots (χ) for all studied sub catchments are calculated following Royden and Perron, 

(2013) and given in the supplementary materials (Text S1; Figure S4; Royden and Taylor Perron, 2013). 345 

 To constrain the value of kw, used in the process-based incision models (Eqs. 4 and 6), we calibrate the relationship 

between bankfull river width (Wb) and discharge (Leopold and Maddock, 1953):  

 𝑊𝑏 = 𝑘𝑤𝑄
𝜔𝑏

 (8) 

in which kw [𝐿1−3𝜔𝑏𝑡𝜔𝑏 ] and 𝜔𝑏  are scaling parameters regulating the interaction between mean annual discharge 𝑄 and 

incision rates (Eq. 4). We constrain kw by analysing downstream variations in bankfull channel width for a fraction of the river 

network (cfr. Scherler et al., 2017). River sections are selected based on the availability of high-resolution optical imagery in 350 

Google Earth, and river width was derived using the ChanGeom toolset (Fisher et al., 2013a; figure S5).  

The power-law fit between Q and W yields a value of 0.43 for the scaling exponent, ωb, with an R² of 0.51 (Figure 4). This 

value lies within the range of published values 0.23-0.63 (Fisher et al., 2013b; Kirby and Ouimet, 2011). To maintain a 

dimensionally consistent stream power model, ωb was fixed to a value of 0.55. When doing so, the fit remains good (R2 = 0.5) 

and we obtained a kw value of 3.7 m-0.65s0.55 that is used in the remainder of the paper. 355 

4.4. River channel width 

Bankfull river width (Wb) varies with discharge as (Leopold and Maddock, 1953):  

 𝑊𝑏 = 𝑘𝑤𝑄
𝜔𝑏

 (12) 

In which kw [𝐿1−3𝜔𝑏𝑡𝜔𝑏 ] and 𝜔𝑏  are scaling parameters regulating the interaction between mean annual discharge 𝑄 and 

incision rates (Eq. (4)). We constrain kw by analysing downstream variations in bankfull channel width for a fraction of the 

river network (cfr. Scherler et al., 2017). River sections are selected based on the availability of high-resolution optical 360 

imagery in Google Earth, and river width was derived using the ChanGeom toolset (Fisher et al., 2013a; figure S5).  

The power-law fit between Q and W yields a value of 0.43 for the scaling exponent, ωb, with an R² of 0.51 (Figure 3). This 

value lies within the range of published values 0.23-0.63 (Fisher et al., 2013b; Kirby and Ouimet, 2011). To maintain a 

dimensionally consistent stream power model, ωb was fixed to a value of 0.55. When doing so, the fit remains good (R2 = 0.5) 

and we obtained a kw value of 3.7 m-0.65s0.55 that is used in the remainder of the paper. 365 

5. Environmental drivers 
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5.1.1.1.1. Rainfall 

2.4. The mean catchmentRunoff variability 

Evaluating the role of spatial and temporal runoff variability (Eqs. 5 and 6) requires estimates of catchment specific 

runoff (𝑅) and the probability density function of daily discharge (pdf_Q*) are required to simulate long term river incision 370 

with the ST-SPM., spatial variability) and discharge (temporal variability). Although measured runoff data and discharge 

records are available for the Paute basin (Molina et al., 2007; e.g. Mora et al., 2014; Muñoz et al., 2018), the monitoring 

network of about 20 meteorological and 25existing hydrological stations having at least 10 years of data does not allow to 

capture the spatial variability present in the different sub catchments of the 6530 km2 basin (Figure 1). We thereforePaute 

basin (Figure 1). To estimate runoff variability for all 30 sub catchments, we use hydrological data derived in the framework 375 

of the Earth2Observe Water Resource Reanalysis project (WRR2; Schellekens et al., 2017) available from 1979 to 2014. 

Specifically, we use the hydrological data calculated with the global water model WaterGAP3 (Water – Global Assessment 

and Prognosis: Alcamo et al., 2003; Döll et al., 2003) at a spatial resolution of 0.25° and a daily temporal resolution 

(earth2observe.eu). In the following paragraphs, we explain how we derive (i) a high-resolution runoff map by spatially 

downscaling this coarse data and (ii) catchment-specific magnitude frequency distributions of discharge (pdf_Q*) 380 

characterising the temporal variability of runoff.  

2.4.1. Spatial runoff patterns 

More specifically, we use the hydrological data calculated with the global water model WaterGAP3 (Water – Global 

Assessment and Prognosis: Alcamo et al., 2003; Döll et al., 2003). Through a sequence of storage equations, WaterGAP3 

simulates the terrestrial part of theA global hydrological cycle.reanalysis dataset such as WaterGAP has been calibrated 385 

against data from 1319 river discharge stations monitored by the Global Runoff Data Centre (GRDC) (Schmied et al., 2014), 

of which 10 stations are situated in the Ecuadorian Andes. In the framework of WRR2, the WaterGAP3 is forced with ERA-

Interim data and the Multi-Source Weighted-Ensemble precipitation (MSWEP) product (Beck et al., 2017).  

5.1.1.1.1.1. Spatial runoff patterns 

Using a global hydrological reanalysis dataset such as WaterGAP has the advantage of providingprovides daily 390 

runoff data over several decades and makes our methodology transferable to other regions. However, a spatial resolution of 

0.25° is not always sufficientinsufficient to represent highly variable regional trends in water cycle dynamics over 

mountainous regions (Mora et al., 2014). and in small catchments. Therefore, we downscaleddownscale the Ecuadorian 

WaterGAP3 data to a resolution of 2.5 km by amalgamating rain gauge data with the reanalysis product. The procedure 

consisted of the following steps: and is presented in Figures 5 and 6:  395 

(i) The relationship between precipitation (P) and runoff (R) is constrained from the fit between monthly mean values 

for P and R available for all Ecuadorian WaterGAP 0.25° pixels (Figure 4).(Figure 5).  

(ii) A high resolution mean annual precipitation map (PRIDW) is calculated by downscaling the WaterGAP precipitation 

data (P) using a series of rain gauge observations (338 stations, 1990-2013) from the Ecuadorian national 

meteorological service (INAMHI; available from http://www.serviciometeorologico.gob.ec/biblioteca/). A residual 400 

http://www.earth2observe.eu/
http://www.earth2observe.eu/
http://www.serviciometeorologico.gob.ec/biblioteca/
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inverse distance weighting (RIDW) method is applied to amalgamate mean annual gauge data with the mean annual 

WaterGAP3 precipitation map. First, the differences between the gauge and WaterGAP data are interpolated using 

an IDW method (Figure S6). Second, the resulting residual surface is added back to the original P data. A similar 

approach is often applied to integrate gauge data with satellite products and we refer to literature for further details 

on its performance (e.g. Dinku et al., 2014; Manz et al., 2016). A high resolution mean annual precipitation map 405 

(PRIDW) is calculated by downscaling the WaterGAP precipitation data (P) using a series of rain gauge observations 

(338 stations, 1990-2013) collected by the Ecuadorian national meteorological service (INAMHI; available from 

http://www.serviciometeorologico.gob.ec/biblioteca/). A residual inverse distance weighting (RIDW) method is 

applied to amalgamate mean annual gauge data with the mean annual WaterGAP3 precipitation map. First, the 

differences between the gauge and WaterGAP data are interpolated using an IDW method (Figure 5). Second, the 410 

resulting residual surface is added back to the original P data. A similar approach is often applied to integrate gauge 

data with satellite products and we refer to literature for further details on its performance (e.g. Dinku et al., 2014; 

Manz et al., 2016). Figure 6.a shows P for the Paute region, and Figure 6.c its downscaled equivalent (PRIDW). 

(ii) All dailyFigure 6.a shows P for the Paute region, and Figure 6.c its downscaled equivalent (PRIDW). 

(iii) Daily precipitation data (12784 daily grids between 1979 and 2014) are downscaled to 2.5 km using the ratio between 415 

PRIDW and P, thereby assuming that the mean annual correction for precipitation also holds for daily precipitation 

patterns.  

(iv) The relationship between P and R (Figure 4)(Figure 5) is used to derive downscaled daily runoff values from the 

downscaled precipitation data for every day between 1979 and 2014.  

The mean annual runoff map for the Paute basin is shown in Figure 6.Figure 6.b and its downscaled equivalent in Figure 6.d. 420 

Mean annual values are further used to calculate mean catchment runoff (𝑅) and the discharge variability (next paragraph) 

for every sub-catchment described in Table 2. The mean catchment specific runoff averaged for all catchments equals 0.82 ± 

0.35 m yr-1. 

2.4.2. Frequency magnitude distribution of orographic discharges 

Figure 6.d. Mean annual values are further used to calculate mean catchment runoff (𝑅) and the discharge variability (next 425 

paragraph) for every sub-catchment described in Table 2. The mean catchment specific runoff averaged for all catchments 

equals 0.82 ± 0.35 m yr-1. 

5.1.2.1.1.1. Frequency magnitude distribution of orographic discharges 

Runoff variability is typically casted in terms of spatial runoff variability (section 2.4.1). However, also the temporal 

pattern of runoff might influence river incision and is typically represented by discharge magnitude frequency distributions. 430 

Constraining the shape of these distributions is important, because the number of large storm events determine the frequency 

by which thresholds for river incision to occur are exceeded (see section 1.2.2 and references therein).  

The probability distribution of discharge magnitudes consists of two components: at low discharges, the frequency of 

events increases exponentially with increasing discharge (Lague et al., 2005) whereas at high discharge, the frequency of 
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events decreases with increasing discharge following a power law distribution (Molnar et al., 2006). An inverse gamma 435 

distribution captures this hybrid behaviour and can be written as (Crave and Davy, 2001; Lague et al., 2005):  

 
𝑝𝑑𝑓(𝑄∗) =

𝑘𝑘+1

Γ(𝑘 + 1)
𝑒

−
𝑘

𝑄∗𝑄∗−(2+𝑘)
 (9) 

in which Γ is the gamma function and k is a discharge variability coefficient, k represents the scale factor of the inverse gamma 

distribution and (k+1) the shape factor. Previous studies used a single, average k-value to characterize regional discharge: 

DiBiase and Whipple (2011) use a constant k value for the San Gabriel mountains whereas Scherler et al. (2017) use a constant 

k value for high and low discharge but distinguish between Eastern Tibet and the Himalaya. However, given the strong 440 

variation in temporal precipitation regimes in the Paute basin (Celleri et al., 2007; Mora et al., 2014) and the recently 

recognized role of spatial hydrological variability on river incision rates (Deal et al., 2018), we explicitly evaluated the role 

of temporal runoff variability by calculating catchment-specific discharge distributions from the WRR2 WaterGAP dataset. 

Daily variations in discharge at the sub-catchment outlets (Figure 1)(Figure 1) were calculated by weighing flow 

accumulation with runoff (RRIDW, see section 5.1.1).5.1.1). For every catchment, the complementary cumulative distribution 445 

function (ccdf) of the daily discharge was fitted through the observed discharge distribution as:  

 𝑐𝑐𝑑𝑓(𝑄∗) = 𝛤(𝑘/𝑄∗, 𝑘 + 1) (10) 

where Γ is the lower incomplete gamma function. Figure 7Figure S7 illustrates the fit between the WaterGAP derived 

discharge distribution and the optimized ccdf for one of the catchments. Site specific discharge variability values (k) are 

calculated for all catchments and listed in Table 2.Table 2. Obtained k-values range between 0.8 and 1.2 with a mean of 1.01 

± 0.12. 450 

3. Methods 

5.1. The presented river incision models (A-SPM, R-SPM and ST-SPM in section 1.2)Geology: seismic activity 

and lithological strength 

We aim to develop a new erodibility map for Ecuador, using an empirical, hybrid classification method. Therefore, 

we combine all depend on river steepness, ksn, known to correlate well with ECRN (DiBiase et al., 2010; Ouimet et al., 2009; 455 

Scherler et al., 2017; Vanacker et al., 2015).  information on the lithological composition (Aalto et al., 2006) and the age of 

non-igneous formations assuming higher degrees of diagenesis and increased lithological strength for older formations (cfr. 

Kober et al., 2015). Adding age information to evaluate lithological strength has advantages because lithostratigraphic units 

are typically composed of different lithologies but mapped as a single entity because of their stratigraphic age. The lithological 

erodibility (LE) is calculated as:  460 

 
𝐿𝐸 =

2

7
𝐿′ 

𝐿′ = { 

(𝐿𝐴 + 𝐿𝐿)

3
, 𝑛𝑜𝑛 − 𝑖𝑔𝑛𝑒𝑜𝑢𝑠 𝑟𝑜𝑐𝑘𝑠

𝐿𝐿

2
, 𝑖𝑔𝑛𝑒𝑜𝑢𝑠 𝑟𝑜𝑐𝑘𝑠

 

(15) 
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With LA a dimensionless erodibility index based on stratigraphic age (Figure 7), and LL a dimensionless erodibility 

index based on lithological strength (Table 1), similar to the erodibility indices published by Aalto (2006). Note that LA varies 

between 1 (Carboniferous) to 6 (Quaternary) whereas LL ranges between 2 (e.g. granite) to 12 (e.g. unconsolidated colluvial 

deposits). The lithological strength thus has a double weight, resulting in L’ values ranging between 1 and 6. For igneous 

rocks, only LL is considered assuming that the lithological strength of igneous rocks remains constant over time. For river 465 

incision parameters to be comparable to other published ranges, LE is finally scaled around one by multiplying L’ with 2/7. 

LE therefore ranges between 2/7 and 14/7. A description of the lithological units, the age of the formations and their lithological 

strength (LA, Ll and LE) is provided in Table S3. 

Using Eq. (15) , we developed a detailed erodibility map of Ecuador (Figure S1), based on the 1M geological map of 

Ecuador (Egüez et al., 2017). The erodibility map was validated by comparing the LE valuesMoreover, ECRN integrate over 470 

timespans that average out temporal fluctuations of denudation rates and over spatial extents which are sufficient to average 

out the erratic nature of hillslope processes. Therefore, ECRN can be used to constrain models of river incision provided a set 

of assumptions that we first describe below.  

3.1.  CRN-derived denudation rates to calibrate river incision 

The use of CRN-derived denudation rates to calibrate river incision relies on three main assumptions, summarized 475 

by Scherler et al. (2017). A first assumption is that the catchment wide denudation rates derived from CRN are representative 

for long term fluvial incision. Positive correlations between river steepness, ksn and CRN-derived denudation rates support 

this assumption (Vanacker et al., 2015), except for very small catchments where CRN-derived denudation rates are sensitive 

to the occurrence of deep-seated landslides. A second assumption is that runoff and rock uplift are uniform within the 

individual catchments. Given the size of the studied basins, this assumption seems to be reasonable. A third assumption, in 480 

particular when using the process-based R-SPM and ST-SPM, is that the runoff data, used to calibrate the incision parameters 

is representative over the time span which CRN data integrate (1-100 kyr). This is a challenging assumption, given the 

contemporaneous nature of the available hydrological data. While spatial patterns of runoff, mainly controlled by orographic 

precipitation, could be assumed broadly similar over the integration time of CRN-derived denudation, this is not necessarily 

true for the temporal variation in runoff. We will revisit the validity and implications of these three assumptions in the 485 

discussion section of this paper.  

3.2. River incision models 

 with field measurements (n = 9) of bedrock rheology by Basabe (1998). An overview of measured lithological 

strength values is provided in Table S4. Figure 9 shows good agreement (R2 = 0.77) between the lithological erodibility index, 

LE, and the measured uniaxial compressive strength confirming the validity of the classification method.  490 

To evaluate whether seismic activity could explain differences in river incision rates, we calculated catchment mean 

Peak Ground Acceleration (PGA) with an exceedance probability of 10% in 50 years. PGA values are derived from a recently 

published hazard assessment for South America (Petersen et al., 2018) combing assembled catalogues of earthquake frequency 

and size, fault geometries, seismicity rate models and ground motion models all integrated in the Global Earthquake Model 

(GEM; Pagani et al., 2014). PGA (g) only varies marginally within the study area (Figure 11, Table 2). Therefore, we did not 495 
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consider seismic activity in the remainder of this paper although its influence should be evaluated when simulating river 

incision rates at larger spatial scales characterized by a stronger variability in PGA.  

6. Results 

6.1. Empirical river incision model (A-SPM) 

In a first set of model runs (Table 4),, we evaluate the performance of the area-based SPM (A-SPM () in predicting ECRN 500 

rates. To account for rock strength variability Eq. 2 is rewritten as: 

 𝐸 = 𝑘𝑎  𝐿𝐸
̅̅ ̅ 𝑘𝑠𝑛

𝑛
 (11) 

where ka (L1-2mt-1) is the erosional efficiency parameter and 𝐿𝐸
̅̅ ̅

 is a dimensionless catchment mean lithological erodibility 

value.(8)) Given its empirical nature, where the effect of allogenic (e.g. runoff variability) and autogenic (e.g. incision 

thresholds and river width dynamics) controls of fluvial processes is integrated within the empirical scaling parameters (K, m 

and n), the A-SPM does not enable to identify the role of spatial or temporal runoff variability and incision thresholds. 505 

In a second set of model runs, we evaluate to what extent more advanced SPMs can be used to understand the role 

of these allogenic and autogenic processes. We start by evaluating the performance of a runoff-based SPM (R-SPM). To 

account for rock strength variability Eq. 6 is rewritten as: 

 𝐸 = 𝐾𝐿𝐸
̅̅ ̅𝑘𝑠𝑛

𝑛
 (12) 

An overview of the parameter values required to solve the R-SPM is given in Table 1. Only the value of kw is based on a 

regional calibration of the hydraulic geometry scaling (see section 2.3). Other parameters are set to theoretical values (reported 510 

by Deal et al., 2018; DiBiase and Whipple, 2011; Scherler et al., 2017). Actively incising bedrock channels are often covered 

by a layer of sediment (Shobe et al., 2017). Therefore, we assume that river incision is scaled to the bed shear stress as for 

bedload transport (Meyer-Peter and Müller, 1948) and set a to 3/2 (cfr. DiBiase and Whipple, 2011; Scherler et al., 2017). 

We use the Darcy-Weisbach resistance relation and coefficients (α = β = 2/3) to calculate shear stress exerted by the river 

flow on its bed and assume a friction factor of 0.08 resulting in a flow resistance factor kt of 1000 kg m−7/3 s−4/3 (e.g. Tucker, 515 

2004). The use of Darcy-Weisbach friction coefficients in combination with a = 3/2 results in a value for the slope exponent 

equal to unity (n = 1, see Eq. 4). Based on these theoretical derivations, we fix n to unity when constraining the R-SPM. Note 

that this contrasts to the first set of model runs (application of the A-SPM), where we allow n to vary. By fixing n to unity, 

we want to verify whether spatial variations in runoff (incorporated in K from Eq. 12) can explain variations in incision rates 

otherwise ascribed to non-linear river incision. The only parameter not fixed to a constant value is the erosivity coefficient ke, 520 

which is optimized as described in section 3.3. 

In a final set of model runs, we apply the Stochastic-Threshold SPM (ST-SPM) to evaluate the role of temporal 

precipitation variability and thresholds for incision (Eq. 4). Here, we adjust the ST-SPM to account for rock strength variability 

as:  

 𝐼 = 𝐾𝐿𝐸
̅̅ ̅𝑄∗ 𝛾𝑘𝑠𝑛

𝑛 −  𝜓 (13) 

Formatted: Font: Italic



 

18 
 

To derive long-term erosion rates (E), Eq. 13 is integrated over the probability density function of discharge 525 

magnitudes (Eq. 5) which requires values for the lower (𝑄𝑐
∗) and the upper (𝑄𝑚

∗ ) limit of the integration interval. Constraining 

𝑄𝑚
∗  is difficult based on observational records alone as they might miss some of the most extreme flooding events. However, 

when simulating incision rates over long time spans and thus considering long return times of 𝑄𝑚
∗  (>1000 y), the solution of 

Eq. 5 is insensitive to the choice of 𝑄𝑚
∗  (Lague et al., 2005). We therefore set 𝑄𝑚

∗  to infinity in all our model runs. The critical 

discharge (𝑄𝑐
∗) for erosion to occur can be derived from Eq. 13 by setting I equal to 0: 530 

  

𝑄𝑐
∗ = (

𝜓

𝐾𝑠𝑡𝐿𝐸
̅̅ ̅ 𝑘𝑠𝑛

𝑛 )

1
𝛾
 (14) 

The impact of spatial variations in runoff and discharge variability is evaluated by setting 𝑅 and k respectively to the 

catchment specific values or the mean of these values (listed in Table 2, Eq. 4). Parameters left free during optimization are: 

the erosivity coefficient ke and the critical shear stress 𝜏𝑐
∗. Parameter values of both variables are optimized as described in 

section 3.3. 

3.3. Optimization of model parameters  535 

predictWe propose three metrics to evaluate the performance of the different river incision models. A first one is the 

commonly used model error (ME):  

 

 

𝑀𝐸 = ∑ √(
(𝑂𝑖 − 𝑀𝑖)

𝜎𝑖
)

2𝑖=𝑛𝑏

𝑖=1
 (15) 

where nb is the number of ECRN data points, Oi are the catchment specific measured ECRN denudation rates, Mi represents the 

catchment specific modelled river incision and σi represents the catchment specific standard deviation on ECRN. The advantage 540 

of the ME is that it explicitly incorporates the error on the analytical data (ECRN) by weighing the model error with the 

analytical error. However, errors on CRN data are heteroscedastic: they systematically increase with increasing denudation 

rates. Although the ME thus provides a good metric to evaluate overall model performance, the metric is not well suited to 

optimize model parameters in an optimization procedure: too much weight will be given on optimization of the model in the 

lower regime of the denudation spectrum where measured errors on ECRN are low whereas higher measured ECRN data will not 545 

be approximated well because of large associated errors. To compensate for the effect of heteroscedasticity we rescale values 

Oi, Mi and Ei using a logarithm with base 10 when calculating ME (Herman et al., 2015). In this paper, ME will be used to 

evaluate model performance, but not to optimize model parameters.  

 A second metric is the coefficient of determination, R2. Contrary to ME, R2 evaluates the explained variance of the 

model giving all observations the same weight, regardless their analytical error. However, when model parameters result in 550 

an offset between simulated and observed data (i.e. the intercept of the fit), this can still result in a high R2.  

We therefore use the Nash Sutcliff model efficiency to optimize model parameters (NS, Nash and Sutcliffe, 1970) :  
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𝑁𝑆 = 1 −

∑ (𝑂𝑖 − 𝑀𝑖)2𝑖=𝑛𝑏
𝑖=1

(𝑂𝑖 − �̅�)2
 (16) 

The NS coefficient ranges between −∞ and 1 where 1 indicates optimal model performance explaining 100 % of the data 

variance. When NS = 0, the model is as good a predictor as the mean of the observed data. When NS <= 0; model performance 

is unacceptably low. The NS-coefficient has been developed in the framework of hydrological modelling but has been applied 555 

in wide range of geomorphologic studies (e.g. Jelinski et al., 2019; Nearing et al., 2011).  

4. derived erosion rates (ECRN). When erodibility isComparing model results with CRN-derived denudation rates 

In the following sections, we compare simulated erosion rates, obtained with the river incision models presented in 

Eq. 11 – Eq. 13 with measured CRN-derived denudation rates. We start with the use of the A-SPM (Eq. 11) to evaluate the 

extent to which lithological variability controls denudation rates. Once the impact of lithological heterogeneity on river 560 

incision is clarified, we evaluate whether runoff variability and incision thresholds can explain variations in ECRN-derived 

denudation rates. To this end, two process-based river incision models are evaluated (the R-SPM and ST-SPM, presented in 

Eq. 12 and Eq. 13 respectively). Optimized parameters and model performance of all model scenarios are listed in Table 4. 

Best fit results of a selected number of model runs are presented in Figure 7 and Figure 8. An overview of model fits for all 

the scenarios listed in Table 4 is given in Figures S8, S9 and S10.  565 

4.1. Area-based stream power model  

In a first set of model runs we evaluate the use of an Area-Based Stream Power Model (A-SPM) to explain observed 

variations in CRN-derived denudation rates (ECRN). We optimize river incision parameters for four scenarios (Table 4: A-

SPM scenario’s 1 – 4): in the first two scenarios, the slope exponent, n is left as a free parameter. In the second two scenarios, 

the slope parameter is fixed to unity (n = 1).  570 

In A-SPM scenario 1 (Table 4, Figure 7.a), we assume a spatially uniform, long term river incision (E) is a power 

function of the normalized river steepness ksn, scaled by an erodibility (𝐿𝐸
̅̅ ̅ fixed to 1 in Eq. 11) and leave the erosion efficiency 

coefficient (K’). By optimizing ) and the slope parameter n as free parameters during model optimization. The optimized fit 

between Esimulated erosion (E, Eq. 2) and ECRN, K’ and n are constrained is shown in Figure 7.a. The fit is surrounded by a 

lot of data scatter resulting in a NS model efficiency of 0.5, a R2 of 0.5, a ME of 3.25 and an optimized value for n of 1.06 575 

(Figure 12.a, Table 4). When includingoptimized values for K’ and n of respectively 0.57 m0.1s-1 and 1.12. The fit between 

simulated and measured denudation rates hints to the existence of a correlation between ECRN and river incision rates. The fit 

shown in in Figure 7.a, shows that modelled erosion rates for catchments with a low mean erodibility index (= high resistance 

to erosion) are mostly overpredicted (plotting below the 1:1 line) whereas modelled erosion rates of catchments with a high 

erodibility index are mostly underpredicted (plotting above the 1:1 line).  580 

In A-SPM scenario 2 (Table 4, Figure 7.b), we quantify the impact of varying lithology by using catchment specific 

mean values for the lithological erodibility values (𝐿𝐸
̅̅ ̅), in Eq. 11) and leaving ka and n as free optimization parameters. The 

optimized fit between simulated erosion (E, Eq. 11) and ECRN is shown in Figure 7.b. Optimization results in a NS model 

efficiency of 0.73, a R2 of 0.73, a ME of 2.23 and optimized values for ka and n of respectively 0.07 m0.1s-1 and 1.64. 

Considering lithological erodibility strongly increases (NS = 0.73) and the optimized value of n equals 1.63.  585 

To evaluate whether including spatially varying erodibility values also increases the predictive power of the river 

incision model, we performed a linear Bayesian regression analysis between ECRN and the simulated long-term river erosion 
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E. Figure 13 shows that the posterior probability of linear regression coefficients close to one is higher and with less spread 

when considering spatially varying lithological erodibility values. Moreover, when E is only a function of ksn, the Bayes factor 

equals 1.06, in comparison to a value of ca. 1400 when E is a function of both ksn and 𝐿𝐸
̅̅ ̅ (Table 4). This implies that a river 590 

incision model accounting for variable erodibility values is supported by the data (Jeffreys, 1998). 

reduces data scatter surrounding the fit. The importance of lithological strength in controlling the A-SPM and the ksn-

ECRN relation confirms that strong metamorphic and plutonic rocks erode at significantly slower rates than lithologies which 

are less resistant to weathering such as sedimentaryvolcaniclastic deposits of loose volcanic mixtures.. The empirical rock 

strength classificationerodibility index we developed appears to beprovide an appropriate scaling of relative rock strength: 595 

analysis of residuals did not reveal any significant relation of residuals with lithology.  

When using spatially variable, catchment specific lithological erodibility values (𝐿𝐸
̅̅ ̅) (Figure 12.(Figure 7.b), the n 

coefficient of the SPM is considerably larger than unity (n = 1.6364) and the ksn-ECRN relationship becomes non-linear, 

corroborating earlier findings documented in e.g. Gasparini and Brandon (2011). While this may be due to the fundamental 

properties of river incision and erosion processes, the shape of the relation may also be affected by spatial covariates other 600 

than lithology. In the following sections, we will investigate whether this nonlinear ksn-ECRN relationship can be explained by 

the presence of incision thresholds, variations in runoff, or a combination of bothTo evaluate the impact of a variable n 

exponent on the performance of the empirical A-SPM, we executed two more model optimizations.  

 

6.2. R-SPM and ST-SPM 605 

In A-SPM scenario 3 (Table 4, Figure S8.c), we assume a spatially uniform lithology and erodibility (𝐿𝐸
̅̅ ̅ fixed to 1 in 

Eq. 11), fix n to 1 and only leave K’ to be optimized as a free model parameter. With a NS model efficiency of 0.5, a R2 of 

0.5, a ME of 3.2 and an optimized value for K’ of 1.00 m0.1s-1, the model fit and performance is similar to the values obtained 

in scenario 1.  

In A-SPM scenario 4 (shown in Table 4, Figure S8.d), lithological variability is considered (using catchment specific 610 

values for 𝐿𝐸
̅̅ ̅ in Eq. 11), n is fixed to 1 K’ is a free model parameter. With a NS model efficiency of 0.51, a R2 of 0.56, a ME 

of 3.05 and an optimized value for K’ of 1.4 m0.1s-1, model performance is much lower than when leaving the slope exponent 

n as a free parameter (A-SPM scenario 2). This result shows that the apparent lack of a non-linear relationship between river 

steepness (ksn, representing river incision rates) and ECRN (scenario 1 and 2) can be explained by lithological heterogeneity 

which is masking the existence of such non-linear relationship. Once lithological variability is considered, a linear relationship 615 

with n =1 between ksn values and ECRN (this scenario, A-SPM 4) is performing less well than a river incision model where this 

relationship is non-linear (with n>>1).  

 

4.2. Runoff-based and Stochastic-Threshold Stream Power Models 

The previous analysis shows that the explanatory power of the A-SPM model, and therefore the ksn-ECRN relationship, 620 

strongly improves when considering spatial variations in lithological erodibility.lithology. Moreover, when considering 

variations in lithological erodibility, river incision is found to be non-linearly dependent on the channel slope (S), with n = 

1.63. In a next step we evaluate whether this non-linear relation can be explained by spatial and/or temporal rainfall variability 

and/or the existence of thresholds for river incision (Table 5).(Table 4: R-SPM scenarios 1 - 2 and ST-SPM scenarios 1 – 8, 

Figure 8).  625 
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4.2.1. Runoff-based SPM (R-SPM) 

In a first set of model runs, we evaluate the performance of the runoff-based Stream Power Model (R-SPM in 

combination withEq. 12) to evaluate the role of spatially variable runoff using catchment specific values for mean runoff 

(Table 2). When(R derived from the WaterGAP data, reported in Table 2 and shown in Figure 6).  

In R-SPM scenario 1 (Table 4, Figure S9.a), lithological variability is not considered (𝐿𝐸
̅̅ ̅ fixed to 1, R-SPM-Scenario 1  630 

in Table 5), the R-SPM does not perform better (Eq. 12). With a NS =model efficiency of 0.49) than a , a ME of 3.57 and an 

R2 of 0.51, model performance is comparable to the regular A-SPM under uniform lithology with n fixed to 1 (NS = 0.50; 

Table 4).5). This illustrates that studying spatial runoff variability is not feasible when ignoring the confounding role of 

lithological erodibility on erosiondenudation rates. When 

In R-SPM scenario 2 (Table 4, Figure 8a), lithological erodibilityvariability is considered (R-SPM-Scenario 2 in Table 635 

5), the use of the R-SPM results in a good fit between modelled river erosion and observed ECRN rates (Figure 14.a). Although 

including catchment mean runoff improves the model fit (R²=0.75), the R-SPM model overpredicts low erosion rates and 

underpredicts high erosion rates (Figure 14.a), resulting in a Nash Sutcliffusing catchment specific values for 𝐿𝐸
̅̅ ̅ in Eq. 12). 

With a NS model efficiency of 0.70 which is lower than the R².7, a ME of 2.61 and an R2 of 0.75, model performance is close 

to that of the regular A-SPM under uniform lithology with n >> 1 (NS = 0.72). This model simulation therefore suggests that 640 

spatial variations in runoff can account for the non-linearity in the ksn-ECRN relationship: while slope dependency in the R-

SPM is fixed to unity (see derivation in Eq. 4a – 4c), the model is capable of explaining the spatial pattern in denudation rates. 

This implies that orographic rainfall and thus runoff gradient as shown in Figure 6 influences the efficiency of river incision. 

The offset between the R² (0.75) and NS (0.70) values can be attributed to the way in which these metrics work: whereas R² 

evaluates the goodness of the linear fit between modelled and measured observations, NS evaluates the absolute differences 645 

between modelled and observed denudation rates. Hence, for the NS model efficiency to be high, observations must fit on the 

1:1 line (Figure 8.a). However, most of the simulated values for low denudation rates are overestimated when using the 

optimized parameter values of the R-SPM and plot below the 1:1 line (Figure 8a). Therefore, we conclude that the R-SPM 

performs well in predicting measured denudation rates albeit low denudation rates are overestimated resulting in a NS and 

ME value which are respectively slightly lower and higher than those of the empirical A-SPM. In the following section we 650 

evaluate whether introducing temporally variable runoff coefficients or/and incision thresholds can further improve the 

performance of a process-based river incision model.  

4.2.2. Stochastic-Threshold SPM (ST-SPM) 

In a secondfinal series of model runs, we evaluated the performance of the ST-SPM. Table 5 providesuse the Stochastic-

Threshold Stream Power Model (ST-SPM, Eq. 13) to evaluate the role of spatially variable runoff (catchment specific R, 655 

reported in Table 2 and show in Figure 6) in combination with catchment specific runoff variability (k, reported in Table 2) 

and the presence of incision thresholds (τc in 𝜓 in Eqs. 4 and 10). Table 4 reports details on the different model set-ups. In the 

first three scenarios, where ST-SPM is optimized to the observed ECRN data considering all possible combinations (4) of 

uniform or spatially variable catchment mean runoff (R) and uniform or spatially variable catchment mean runoff variability 

(k). For reference, the 4 scenarios include both uniform and spatially variable lithological erodibility, LE (8 scenarios in total).  660 
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In ST-SPM scenarios 1-4 (Table 4, Figures S10.a-d), the ST-SPM is optimized assuming a constant erodibility (LE fixed 

to 1). Optimized values for τc are close to zero in the first three scenarios, suggesting the lack of a critical incision threshold. 

Similar to what has been found for the R-SPM, model performance is not any better compared to the use of a simple A-SPM 

when not considering lithological variability. This confirms that optimizing more complex river incision models (such as the 

ST-SPM) has little added value when the heterogeneity in environmental conditions (lithological heterogeneity) is not 665 

considered.  

In scenario 4ST-SPM scenarios 5 and 5,6 (Table 4, Figures S10.e-f), catchment mean runoff (�̅�) is fixed to the average 

value of all catchments (0.82 m yr-1).) in order to evaluate the role of (i) variations in observed temporal runoff variability (k) 

and (ii) optimized values for the incision threshold (τc). In scenario 45, k is fixed to the average value for all catchments (k = 

1.01) whereas in scenario 56, k is set to the catchment specific values as listed in Table 2.Table 2. Both scenario 4 and 670 

scenarios (5 and 6) perform well with aan NS value equalling 0.71 indicating. Optimized values for τc are ca. 30 Pa. Scenarios 

4 and 5 suggest that considering the spatialtemporal runoff variability of (k does) is not improve nor decrease theinfluencing 

model performance of the ST-SPM in the Paute basin.. Regardless the lack of spatially variable runoff (R), both scenarios 

perform as well as R-SPM scenario 2, where runoff variability was considered. The good performance of ST-SPM scenarios 

5 and 6 can be attributed to the presence of an incision threshold (𝜓 > 0 in Eq. 13), where τc is optimized to a value of ca. 30 675 

Pa (Table 4). Given that the use of the ST-SPM with constant runoff values yields a good model fit suggests that part of the 

non-linear relationship between river incision andsteepness, ksn as reported in section 6.1and ECRN can be attributed to the 

presence of thresholds for river incision to occur (cfr. Gasparini and Brandon, 2011). In Scenario 6 and 7, �̅� is set to the 

catchment specific values derived from the WaterGAP data (Table 2). Similarly to scenario 4 and 5, using catchment specific 

values for k does not improve model performance. Using an average k value (1.01) in combination with catchment specific 680 

values for runoff results in the highest model performance of all tested scenarios (Scenario 6, NS=0.75). Optimized values 

for τc of ca. 14 -15 Pa are lower compared to scenarios 4 and 5. Figure 14.b shows the result of Scenario 6. Contrary to the R-

SPM where low erosion rates are overestimated, the ST-SPM does allow to correctly predict low erosion rates due to the 

consideration of an incision threshold which mainly influences simulated river erosion rates at the lower end of the spectrum.  

ST-SPM scenarios 7 and 8 (Table 4, Figures S10.e-f and Figure 8b) are similar to scenarios 5 and 6, with the difference 685 

that spatial runoff variability is considered by using catchment specific values for runoff (�̅�, Table 2). Similarly to scenario 5 

and 6, using catchment specific values for k does not improve model performance, resulting in a similar model performance 

for scenario 7 and 8. Overall, ST-SPM scenarios 6 and 7, result in the highest model performance of all tested scenarios, with 

a NS model efficiency of 0.75, a ME of 2.22 and 2.21 and an R2 of 0.75. The optimized model fit for ST-SPM scenario 7 is 

shown in Figure 8b and corresponds well with the 1:1 line between modelled and observed denudation rates. Optimized values 690 

for τc are ca. 14 -15 Pa, being in the range, but at the lower spectrum of earlier documented values for critical shear stress (e.g. 

Shobe et al., 2018 report τc values between 10 – 1000 Pa). Contrary to the R-SPM where low denudation rates are 

overestimated (Figure 8a), the ST-SPM does predict low denudation rates better due to the consideration of an incision 

threshold which mainly influences simulated river denudation rates at the lower end of the spectrum.  

ST-SPM scenarios 7 and 8 have a model error (ME is respectively 2.22 and 2.21) similar to the model error of A-SPM 695 

scenario 2 (ME = 2.23). Hence, we conclude that a ST-SPM considering spatial variations in runoff and simulating a critical 

threshold for river incision performs as well as an A-SPM where the effect of allogenic (runoff variability) and autogenic 
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(incision thresholds) response is casted in the lumped empirical incision parameters. While the R-SPM and ST-SPM do not 

necessarily predict spatial patterns in observed ECRN rates better than an A-SPM, they do enable to simulate the effect of runoff 

variability and incision thresholds and therefore provide an operational tool to simulate past and future climate changes. Note 700 

that differences in model performance between R-SPM scenario 2 and ST-SPM scenarios 5-8 are existent but not very 

pronounced. To evaluate the significance of these differences, our analysis should be repeated on larger datasets capturing a 

wider variability in denudation rates and hydrology.  

7.5. Discussion  

7.1.5.1. Are CRN -derived erosiondenudation rates representative for long term river incision processes?  705 

7.1.1.5.1.1. Equilibrium between river incision and hillslope denudation 

Assuming an equilibrium betweenIn theory, rates of hillslope denudation equal rates of river incision and hillslope 

erosion theoretically holds forif landscapes which are either in a steady state or forif transient landscapes are characterized by 

rapid hillslope response (e.g. threshold hillslopes). Steady state landscapes can only be achieved under stable 

precipitationclimatic and tectonic settings that prevail over timescales exceeding several millions of years. Such 710 

configurationstability is rarely met in tectonically active regions where riverslandscapes continuously transmit newrespond 

to environmental perturbations to the upper parts of the catchment (Armitage et al., 2018; Bishop et al., 2005; Campforts and 

Govers, 2015).  

The downstream reaches of the Paute catchment are a good example of a transient landscape where a major knickzone 

is propagating upstream in the catchment resulting in steep threshold topography downstream of the knickzone (Figure S3 715 

and Vanacker et al., 2015). Facing a sudden lowering of their base level after river rejuvenation, soil production and linear 

hillslope processes such as soil creep (Campforts et al., 2016; Vanacker et al., 2019) are not any longer able to catch 

up(Campforts et al., 2016) are not any longer in equilibrium with rapidly incising rivers (Fig. 15 in Hurst et al., 2012). In 

transient regionssteep topography, hillslopes may transiently evolve to their mechanically limited threshold slope where any 

further perturbation of threshold hillslopes will result in increased sediment delivery through mass wasting processes such as 720 

rockfall or landsliding (Bennett et al., 2016; Blöthe et al., 2015; Burbank et al., 1996; Larsen et al., 2010; Schwanghart et al., 

2018). Given the stochasticerratic nature of landslides, not all threshold hillslopes will respond simultaneously to base level 

lowering depending on local variations in rock strength, hydrology and seismic activity (Broeckx et al., 2019). Therefore, 

catchments in transient regions might experience erosion in a broad range from moderate to high rates with similar 

probabilities, land use and seismic activity (Broeckx et al., 2020; Guns and Vanacker, 2014). Therefore, catchments in 725 

transient landscapes might experience hillslope denudation with highly variable rates.  

Thus,We argue that CRN-derived erosiondenudation rates mightin the Paute basin both overestimate and underestimate 

long term incision rates in these catchments. Overestimation resultsmay result from the occurrence of recent, deep-seated 

landslide events, that deliver sediments with low CRN concentration to rivers (Tofelde et al., 2018). Underestimation might, 

in turn, may occur if long-term hillslope lowering is accomplished by rare and large landslides characterized by the occurrence 730 

of rare, large events with awhose return period exceedingperiods exceed the integration time of CRN-derived 

erosiondenudation rates, (Niemi et al., 2005; Yanites and Tucker, 2010).  

Longitudinal profiles of rivers draining to the knickzone in the Paute catchment show marked knickpoints (ID’s . This 

is particularly evident in catchments 9-16 on Figure 1; (Figure 1) where ksn values are high (Figure 2) and knickpoints appear 
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in the longitudinal profiles (Figures S3 and S4). Figure 14.b shows that simulatedSimulated erosion rates for some of these 735 

catchments deviate from CRN -derived erosiondenudation rates (Figure 8.b, ID’s 13 14 and 16) whereas for others (e.g. ID’s 

9 and 11), predictions from the stochastic thresholdStochastic-Threshold river incision model show a good agreement with 

ECRN data. We attribute this variability to differences in drainage area between these catchments. For catchments with a 

sufficiently large drainage area, modelled incision rates correspond well with ECRN (ID’s 9 and 11 being both ca. 700 km²), 

most likely because the mechanisms that potentially cause overestimation and underestimation cancel each other out at this 740 

scale. For smaller catchments (ID’s  8;13;14 and 16 all being < 12 km²) there is a discrepancy between simulated river incision 

rates and ECRN.  

Although river incision ratesmodels can be used to estimate general erosionsimulate denudation patterns in large 

transient catchments (>>(> 10 km²), there is a need to develop alternative approaches to simulate erosion rates in transient 

regions over different spatial scales. One such approach could be the explicit integration ofincluding e.g. landslide 745 

mechanisms in long term landscape evolution models such as TTLEM (Campforts et al., 2017) or Landlab (Hobley et al., 

2017) to capture the stochastic nature of these processes (Niemi et al., 2005; Yanites et al., 2009)(Hobley et al., 2017). 

 

7.1.2.5.1.2. Integration timescales of ECRN and ksn  

CRN concentrations in detrital sediments integrate over timescales dependent on the erosion rate of the catchment. For 750 

a rock density of 2.7 g cm-3, the integration time corresponds to the time required to erode ca. 60 cm of rock (Kirchner et al., 

2001). ECRN in the Paute basin varies between 5 to 399 mm yr-1 implying integration times ranging from ca. 1.5 to 175 ky. 

Topographical river profiles on the other hand are the outcome of the dynamic interplay between tectonics, lithology, rainfall 

variability and internal drainage reorganization over timescales well exceeding one million yearsOur analysis reveals the 

potential role of temporal and spatial variations of rainfall in long term landscape evolution. Integration times of CRN-derived 755 

denudation rates measured in the Paute basin are in the order of 1.5-175 ky. In contrast, response times of longitudinal river 

profiles generally range from 0.25-2.5 Ma (Campforts et al., 2017; Goren et al., 2014; Wobus et al., 2006).  

Thus, successful identification of a rainfall variability signal is only possible if the signal has been present during the 

integration timescale of both ECRN and ksn. Given the high sensitivity of extreme precipitation events to climate change 

(Gorman, 2012), rainfall variability over the last 10-100 ky might be well represented in ECRN rates but not in ksn values which 760 

potentially integrate over longer timespans which are most likely characterized by important variations in hydrology. 

Moreover, we use hydrological data integrating over “only” 35 years to constrain the distribution of river discharge: these 

data are unlikely to fully capture rainfall variability over the integration timespan of ECRN measurements. Different integration 

timespans of river profile response, ECRN rates and hydrological data can be expected to affect model performance.  

While our dataset does not enable us to fully capture rainfall variability, a distinction can be made between temporal 765 

and spatial variations. Contrary to temporal variations controlling frequency and magnitude of discharge events, the spatial 

gradient in orographic precipitation is(Campforts et al., 2017; Goren et al., 2014; Snyder et al., 2003; Whipple, 2001; Wobus 

et al., 2006). During both of these time scales it is unlikely that the temporal rainfall distribution that we inferred from 35 

years of data remained stationary. Thus, there is little reason to believe that our data fully capture rainfall variability over the 

response times of river profiles and hillslopes. Contrary to temporal variations, spatial patterns in orographic precipitation are 770 

characteristic to the formation of a mountain range at geological timescales (Garcia-Castellanos and Jiménez-Munt, 2015). In 



 

25 
 

the case of the Southern Ecuadorian Andes, orographic precipitation results from moist air advection via the South American 

Low-Level flow generates pronounced patterns of orographic precipitation (Campetella and Vera, 2002). The air is lifted as 

it passes over the eastern flanks of the Andes, resulting in moist convection fuelled by adiabatic decompression. Onset of 

Andean uplift in Ecuador has been reported to be asynchronous from south to north with the onset of the most recent uplift 775 

phase dated back toThese patterns likely persisted since at least the most recent uplift phase of Andean uplift in the Late 

Miocene (Spikings et al., 2010; Spikings and Crowhurst, 2004). Climate changes over the Miocene-Pliocene probably altered 

absolute amounts of precipitation in the Ecuadorian Andes (Goddard and Carrapa, 2018) challenging the use of present day- 

runoff and discharge distribution to predict long term river incision. However, the orographically induced gradients in 

precipitation must have been present for timescales exceeding those represented by both ksn and ECRN. This partly explains 780 

why accounting for spatial variations in precipitation does improve the performance of a stochastic threshold SPM contrary 

to the use of catchment specific discharge distributions representing temporal discharge variability.Present-day rainfall and 

runoff gradients (Figure 6) are thus deemed to be representative for times exceeding response times of longitudinal river 

profiles and integration times of CRN-derived denudation rates, and warrant the use of contemporaneous runoff data to 

represent spatial patterns of discharge (section 3.1). Ultimately, performance of the different stream power models underscores 785 

this interpretation. While accounting for spatial patterns in runoff improves the performance of a Stochastic-Threshold SPM 

(Table 4 and section 4.2.2), incorporating proxies of temporal discharge variability leads to no improvement of model 

performance (the role of k in section 4.2.2).  

Downscaling the WRR2 WaterGAP reanalysis dataset by amalgamating regional rain gauge data, allowed to obtain a 

runoff dataset at a resolution suitable for use in our study. However, to further improve the accuracy of hydrological data, the 790 

use of more advanced methods might be considered. A possible approach is the application of regional climate models (e.g. 

Thiery et al., 2015) in regions with pronounced topographic and climatological gradients. Regional climate models have been 

shown to simulate rainfall variability more realistically than global re-analysis datasets in mountainous areas (Thiery et al., 

2015) and have been successfully used to explain geomorphic response in such areas (Jacobs et al., 2016). 

 795 

7.2.5.2. Environmental control on long term river incision rates 

7.2.1.5.2.1. Geology 

Incorporating rock strength variability when simulating river incision improves model efficiency for all evaluated SPMs 

(Table 4 and Table 5). Our results corroborate earlier findings that established functional dependencies between river incision 

and rock physical properties to successfully determine river incision ratesIn all our simulations, model efficiency improves 800 

when incorporating rock strength variability (Table 4), which is consistent with earlier studies (Lavé and Avouac, 2001; Stock 

and Montgomery, 1999). In this study, rock strength is represented bythe absence of generally accepted metrics of erodibility, 

we employ an empirically derived lithological erodibility index (LE, Eq. (15))7) based on the age and the lithological 

composition of stratigraphic units. Because ofOwing to its simplicity, our empirical approach holds potential tothis or a similar 

index can potentially be applied at continental to global scales where detailed information on rock physical properties are not 805 

alwaysusually lacking the detail available. However, at smaller spatial scales, studies evaluating the role of rock strength 

heterogeneity on specific river incision processes such as fluvial abrasion will benefit from a more mechanistic approach to 

quantify rock strength (Attal and Lavé, 2009; Nibourel et al., 2015). MoreoverNotwithstanding, river incision efficacy might 

also dependdepends on other rock properties such as the density of bedrock fractures, joints and other discontinuities (Whipple 



 

26 
 

et al., 2000). Fracture density has in turn bebeen linked to spatial patterns of seismic activity (Molnar et al., 2007). Given the 810 

limited variability of seismic activity within the Paute basin (Petersen et al., 2018), seismicity was not considered in our 

statistical regional analysis but should be considered when applying our approach to other regions prone to more(Petersen et 

al., 2018 Figure S2), seismicity was not considered in our statistical regional analysis but could be considered when applying 

our approach to other regions characterized by more spatial seismic variability.  

We show that consideringIncorporating spatial patterns of rock strength variability not only reduces the scatter 815 

surrounding the modelled river incision versus ECRN -derived erosiondenudation rates, but also controls the degree of the 

nonlinearity between river steepness (ksn) and erosiondenudation rates, expressed by the slope exponent n coefficient in the 

A-SPM (Figure 12). When not considering(Figure 7). Omitting rock strength variability, the results in a ksn-ECRN relationship 

relation that is close to being a linear one forin the Paute catchmentscatchment (with n =1.0607). This opposes to findings 

from regionalcontradicts other studies where lithology can bewas assumed to be uniform and n has been reported to be larger 820 

than 1 (e.g. DiBiase et al., 2010; Lague, 2014; Whittaker and Boulton, 2012). In We argue that, in the Paute basin, the 

confounding role of lithologylithological variability obscures a non-linear relationship between river incision and channel 

steepness. Applying advanced process-based river incision models (R-SPM and ST-SPM, Table 5) without correction for this 

confounding role of lithology has proven to be of no added value in comparison to the application of a simple, purely empirical 

A-SPM (Table 4 and Table 5).  825 

 

5.2.2. Rainfall 

7.2.2. Rainfall 

After correction for lithological strength variability, a non-linear relationship between ksn and ECRN emerges (similar to 

n > 1 in the A-SPM, Figure 12.b). With theory predicting river incision to be linearly dependent on ksn (Eq. (4) when using 830 

Darcy Weisbach friction coefficients), we evaluated whether (i) spatial variation in runoff, (ii) the existence of incision 

thresholds or (iii) a combination of both can explain this nonlinearity.  

Application of the R-SPM enables to include regional variations in runoff and results in a good fit and model efficiency 

(R²=0.75, NS=0.7, R-SPM Scenario 2 in Table 5). This suggests that part of the frequently reported, non-linear relationship 

between ksn and ECRN can be attributed to the spatial variability of mean annual rainfall. In tectonically active regions, steep 835 

river reaches often appear at the edge of the mountain range where mean annual rainfall rates are high due to orographic 

precipitation. Therefore, if variations in runoff are not considered, the confounding role of orographic precipitation will be 

accommodated for by a non-linear relationship between river steepness and erosion rates. Application of the R-SPM does 

allow to account for this effect but results in underestimation of low river incision rates (deviation from the 1:1 line on Figure 

14.a). This artefact is overcome when applying the ST-SPM where the explicit simulation of a threshold improves model 840 

performance, especially for low erosion rates.  

Application of the ST-SPM assuming a constant runoff (ST-SPM Scenario 4 in Table 5), results in a slightly better 

model efficiency in comparison to the R-SPM scenario with variable runoff (NS = The A-SPM performs well in explaining 

ECRN when lithology is considered and n>>1 (Figure 9, high NS model efficiency, low ME). For n = 1, the performance of the 

A-SPM is low. The result is consistent with earlier studies reporting n >> 1 (e.g. DiBiase et al., 2010; Harel et al., 2016; 845 

Ouimet et al., 2009; Scherler et al., 2014), which Lague (2014) attributes to discharge variability and incision thresholds. We 

tested this hypothesis using the R-SPM and ST-SPM. Our results underscore that the non-linear relationship between ksn and 
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ECRN is largely due to the spatial variability of mean annual runoff. Figure 9 shows that the R-SPM (where n is fixed to the 

theoretically obtained value of 1) performs better than an A-SPM when n is fixed to 1. This suggests that part of the frequently 

reported, non-linear relationship between ksn and ECRN can be attributed to the spatial variability of mean annual runoff. In 850 

tectonically active regions, steep river reaches often spatially coincide with the edge of the mountain range where mean annual 

rainfall rates are highest. Accordingly, if variations in runoff are not considered, the effects of orographic precipitation will 

be partly accommodated for by a non-linear relationship between river steepness and denudation rates. The R-SPM accounts 

for this effect but results in an underestimation of low river incision rates (Figure 8.a). Moreover, the model error (Figure 9.b), 

shows that the R-SPM does not perform as well as the A-SPM. In a final set of model runs, we apply the ST-SPM where the 855 

explicit simulation of a threshold improves model performance, especially for low denudation rates, resulting in an overall 

model error which is equal to the one obtained with the A-SPM with n >> 1 (Figure 9). This finding points to the potentially 

important role of thresholds for river incision to occur.  

 

Model performance of the ST-SPM equals the performance of an empirical A-SPM with a slope exponent >>1 (Figure 860 

9). Our interpretation is that (i) spatial variations in runoff and (ii) the incision thresholds are the causes of an observed non-

linear relation between ksn and ECRN. With a seemingly equal model performance, one could wonder what the benefit of the 

more complex ST-SPM model is over a simple, non-linear A-SPM. The aim of using a ST-SPM is however beyond fitting 

observed denudation rates: we want to identify to what extent the system is forced by internal allogenic dynamics such as the 

presence of incision thresholds or external autogenic forces such as runoff variability. Use of the ST-SPM illustrated that both 865 

processes can be accounted for in a quantitative way so that future studies can explicitly consider their role when 

reconstructing past landscape response to external perturbations (e.g. climate change).  

 

To further explore the interdependency between incision thresholds and spatial runoff variability, our approach can0.71). 

The latter hints at the important role of thresholds for river incision to occur. Ultimately, the use of spatially variable runoff 870 

values in combination with the ST-SPM, results in the best model fit and efficiency (ST-SPM Scenario 6 in Table 5, with R² 

=0.75 and NS = 0.75). To further explore the interdependency between incision thresholds and spatial runoff variability, our 

approach can potentially be applied to CRN datasets, covering regions characterized by more pronounced rainfall gradients 

(e.g. in Chile: Carretier et al., 2018). Accounting for spatial variations in temporal discharge distributions (with k 

characterizing the stochastic flood occurrence), did not further improve neither deteriorate model performance (ST-SPM 875 

Scenario 7 in Table 5).8 in Table 4). This is likely due to data limitations: the necessary data to characterize temporal variations 

in discharge within a given catchment over a timescale that is relevant for CRN-derived erosiondenudation rates are, at present, 

not available.  

 

Our finding that mainly spatial patterns in precipitation control river incision patterns corroborate findings in the 880 

Himalaya (Scherler et al., 2017) and in the Andes (Sorensen and Yanites, 2019). Sorensen and Yanites (2019) evaluated the 

role of latitudinal rainfall variability in the Andes on erosional efficiency using a set of numerical landscape evolution model 

runs. They show that erosion efficiency in tropical climates at low latitudes, where the Paute basin is located, is well captured 

by the spatial pattern of mean annual precipitation and thus runoff. At higher latitudes (25-50°) where storms are less frequent 

but still very intense, mean annual precipitation decreases but erosivity is still high due to the intensity of storms (Sorensen 885 
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and Yanites, 2019). At these latitudes, the spatial variations in storm magnitude are therefore more likely to be reflected in 

river erosivity and thus catchment mean erosiondenudation rates than in the Ecuadorian Andes. 

 

8.6. Conclusions and Implications for landscape evolution 

An increasing number ofNumerous studies and global compilations report a non-linear relationship between channel 890 

steepness and CRN -derived erosiondenudation rates. Based on the growing mechanistic understanding of river incision 

processes, this nonlinear relationship is often attributed to the existence of incision thresholds. Rainfall variability, which is 

stochastic in nature, controls the frequency of river discharges large enough in magnitude tothat exceed theseincision 

thresholds. Although the dynamic interplay between stochastic runoff and incision thresholds theoretically results in a non-

linear relationship between channel steepness and erosiondenudation rates, coupling theory with field data has been proven 895 

challenging. We address this issue for a median sizedin the Paute basin in the Southern Ecuadorian Andes where we scrutinize 

the relationship between CRN -derived erosiondenudation rates and river incision, simulated with using three different Stream 

Power Modelsstream power models. We show that lithological variability obscures the relationship between channel 

steepness-based river incision and CRN derived erosion rates. When not accounting for lithological variability, a process 

based Stochastic Threshold SPM was not performing any better than a simple, empirical, drainage area-based stream power 900 

model. Neither could the impact of rainfall variability on river incision rates be assessed-derived denudation rates.  

In order to account for the confounding role of rock strength variability, which is for the Paute basin mainly ascribed to 

variations in lithological strength in the study area, we propose the use of an empirical lithological strength index, that is based 

on the lithology and age of lithostratigraphic units. When consideringIncluding lithological variability, in the models increases 

the relationshipcorrelation between river steepness and erosiondenudation rates becomes and reveals a non-linear. After 905 

integrating the empirical lithological erodibility index into the erosion efficiency coefficient of the ST-SPM, the model is 

capable relation, which we seek to explain differences in subcatchment erosion rates. Considering river incision thresholds 

improves modelled erosion rates for slowly eroding catchments characterized by low to moderate relief.using a stochastic-

threshold SPM (ST-SPM). Using a downscaled version of a state-of-the-art hydrological reanalysis dataset, we furthermore 

show that spatial variations in the combination of spatially varying runoff explain part of the variability of and incision 910 

thresholds explains the observed erosion rates. The, non-linear relationship. We do not detect, however, an impact on river 

incision of temporal variations in discharge, controlling the magnitude and frequency of fluvial discharge, could not be 

identified within the studied catchments. distributions on river incision. We attribute this partly to the limited CRN dataset 

but mainly to the lack to the integration time of rainfallCRN data which integrate over sufficiently longand response times of 

river longitudinal profiles which extend beyond timescales at which discharge distributions can be assumed to be recorded in 915 

the CRN derived erosion rates.stationary.  

Our study shows the potential of a stochastic threshold stream power model as a tool to explainST-SPM to infer regional 

and, potentially, continental to global differences in rainfall variability. However, the latter will only be successful after 

elucidating the confounding role ofwe emphasize that its application needs to account for other environmental variables such 

as rock strength on river incision rates. Simplifications involved with the use of any Stream Power . Simplified process 920 

representation of stream power-based incision model such as themodels (e.g., lack of sediment-bedrock interactions or 

dynamic channel width adjustments) potentially might explain part of the remaining scatter surroundingbetween predicted 

versusand measured erosiondenudation rates. However, residual analysis showed that most of the remaining scatter occurs in 

small transient catchments (up to 10 km²). To²) where sporadic mass wasting processes on hillslopes likely obscure the relation 
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between our measurements and predictions. Elucidating this relation further our understanding of landscape evolution over 925 

different spatial scales in such transient regions, we propose the development of process-basedis potentially fostered by 

dynamic numerical landscape evolutions models which explicitly simulatingsimulate the coupling between transient river 

adjustment and stochastic hillslope response. 

 

 930 
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Figure 1. Geomorphic setting of the study area. NumberedPaute catchment. The numbered dots and corresponding 

watersheds indicate the sampling locations for the CRN -derived erosion rates (Table 2). Majorand their corresponding 

watersheds (Table 2). Full black lines indicate the major faults are drawn with a full black line; PF: = the Peltetec Fault, CF: 

= the Cosanga Fault, and SA: = the Sub-Andean thrust fault. Concealed faults separating major stratigraphical units are 1295 

indicated with dashed lines. Elevations areMajor knickpoints are indicated as red diamonds. The colour scale indicates 

elevations, which were derived from the 30 m SRTM v3 DEM (NASA JPL, 2013).   
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Figure 2: The spatial pattern of normalized steepness (ksn) for the Paute basin overlain on hillshade map based on the 30 m 1300 

SRTM v3 DEM (NASA JPL, 2013). Highest values are observed in two major knick zones in the lower part of the Paute 
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basin where topographic rejuvenation started and a transient incision pulse has propagated from East to West, see also Figure 

S3.  
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 1305 

Figure 3. River width (W) as a function of the mean annual discharge (Q), derived from the downscaled RRIDW WRR2 

WaterGAP3 data (available from earth2observe.eu).  
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Figure 4: Mean monthly runoff versus mean monthly precipitation for all Ecuadorian WaterGAP3 pixels (0.25°; 1310 

1979-2014; WaterGAP3 data available from earth2observe.eu). 
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Figure 5: Inverse Distance Weighting (IDW) interpolation between rain gauge data (INAMHI, available from 1315 
http://www.serviciometeorologico.gob.ec/biblioteca/) and WRR2-WaterGAP3 mean annual precipitation overlain on 

hillshade map based on the 30 m SRTM v3 DEM (NASA JPL, 2013). WaterGAP3 data available from earth2observe.eu. 
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Figure 6. Mean annual rainfall and runoff based on WRR2 WaterGAP3 data overlain on hillshade map based on the 30 m 1320 

SRTM v3 DEM (NASA JPL, 2013). (a) Precipitation (P, 0.25°), (b) runoff (R, 0.25°), (c) downscaled precipitation (PRIDW, 

2500 m), (d) downscaled runoff (RRIDW, 2500 m). WaterGAP3 data available from earth2observe.eu.  
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Figure 7: Daily discharge distribution (blue dots) derived at the outlet of one basin (NG-DW) using the downscaled 

WaterGAP data. The red curve depicts the fitted ccdf function (Eq. (14)) and its corresponding discharge variability coefficient 1325 

(k). An overview of k-values for all sub-catchments is provided in Table 2.  
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Figure 8: Lithological: Development of empirical lithological erodibility index (LE) and its application to the Paute 

catchment. (a) Proposed lithological erodibility index based on lithological age (LA). Detailed sub-classifications per 1330 

lithology can be found in Table S1.  
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Figure 9:(b) Field measurements of uniaxial compressive strength (Basabe R, 1998; Table S4) versus the empirical erodibility 

index calculated using Eq. (15).7. Note that two out of the nine observations overlap on thethis plot. 1335 
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Figure 10: Lithological erodibility index ( (c) Spatial distribution of LE) overlain on hillshade in the Paute catchment. The 

underlying topographic map is based on the 30 m SRTM v3 DEM (NASA JPL, 2013). TheThe lithological erodibility map 

for Ecuador is shown in Figure S1. 1340 
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Figure 3: Peak Ground Acceleration (PGA, g) for a 10% probability of exceedance in a 50-year hazard level (Petersen et al., 

2018) overlain on hillshade map: Normalized steepness (ksn) for the Paute basin. Calculated ksn–values for the Paute basin 1345 

are overlain with a hillshade map (based on the 30 m SRTM v3 DEM; NASA JPL, 2013). The highest values can be observed 

in two major knick zones, located in the lower part of the Paute basin. In these zones, topographic rejuvenation started and a 

transient incision pulse has propagated from East to West (see also Figure S3). 
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 1350 

Figure 4. River width (W) as a function of the mean annual discharge (Q). W represents bankfull channel width for a 

selected number of river sections. These were digitized in Google Earth, using the ChanGeom toolset (Fisher et al., 2013a; 

figure S5). Mean annual water discharges (Q) were derived from the downscaled RRIDW WRR2 WaterGAP3 data (available 

from earth2observe.eu; see section 2.4). 

 1355 
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Figure 5: Calibration of the precipitation (P) versus runoff curve (R). Mean annual runoff versus the mean annual 

precipitation for all WaterGAP3 pixels in Ecuador (0.25°; 1979-2014; WaterGAP3 data available from earth2observe.eu).  1360 

http://www.earth2observe.eu/
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Figure 6. Downscaling of WRR2 WaterGAP3 rainfall and runoff products to high resolution regional maps. (a) WRR2 

WaterGAP3 precipitation (P) at the original resolution of 0.25°. (b) Corresponding runoff (R) at the original resolution of 

0.25°, (c) Downscaled precipitation (PRIDW) at a resolution of 2500 m, (d) corresponding downscaled runoff (RRIDW) at a 1365 

resolution of 2500 m. WaterGAP3 data were derived from earth2observe.eu.  The underlying hillshade maps are based on the 

30 m SRTM v3 DEM (NASA JPL, 2013).  The map for Ecuador is shown in Figure S2.  

http://www.earth2observe.eu/
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 1370 

Figure 7 Best fit between CRN-derived erosion rates (ECRN) and modelled river incision (EMod) simulated using the 

drainage Area-area-based Stream Power Model (A-SPM; Eq. (8)):). (a) A-SPM, scenario 1 (cf. Table 4) assuming a uniform 

lithology. Observations are coloured according to the average lithological erodibility of the catchment (𝐿𝐸
̅̅ ̅ = 1);). Low values 

for 𝐿𝐸
̅̅ ̅ represent strong rocks, resistant to erosion. High values for 𝐿𝐸

̅̅ ̅ represent weak rocks, susceptible to erosion. Modelled 

erosion rates for catchments consisting of strong rocks (blue colours) are mostly over predicted and plot below the 1:1 line. 1375 

Modelled erosion rates for catchments consisting of weak rocks (red colours) are mostly under predicted and plot above the 

1:1 line. (b) A-SPM, scenario 2 (Table 4) where spatially variable lithological erodibility (𝐿𝐸
̅̅ ̅ values listedis explicitly 

accounted for in Table 2). the A-SPM. Catchment specific values for 𝐿𝐸
̅̅ ̅ are listed in Table 2, while the model parameters are 

listed in Table 4. A complete overview of all best model fits for A-SPM scenarios 1 - 4 is given in Figure S8. 
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Figure 8 Posterior probability distributions of the coefficients obtained from a linear Bayesian regression between ECRN and 

EMod. Bayesian regression was calculated with standardized (z-transformed) variables to enable comparison between the 

models.  1385 
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Figure 14 Best fit between CRN-derived erosion rates (ECRN) and modelled river incision (EMod) simulated using (a) the 

Runoff -based Stream Power Model (R-SPM) and (b) the and Stochastic -Threshold Stream Power Model (ST-SPM). 

Constant model parameters are listed in Table 1 Free parameters are Models. (a) R-SPM, scenario 2 (Table 4) assuming 1390 

average catchment lithological erodibility (𝐿𝐸
̅̅ ̅) and runoff �̅� values (both listed in Table 5: (Table 2). (b) ST-SPM, scenario 

7 (Table 4) assuming average catchment lithological erodibility (𝐿𝐸
̅̅ ̅) and runoff (�̅�)  values, as well as considering a) 

corresponds to R-SPM Scenario 1 and (b) to ST-SPM Scenario 6. threshold before river incision occurs (τc = 14Pa). Numbered 

observations in (b) correspond to catchment ID’s as listed in Table 2 and discussed in section 7.1. IDs as listed in Table 2 (see 

also the discussion in section 5). A complete overview of all best model fits for R-SPM scenarios 1 - 2 and ST-SPM scenarios 1395 

1 - 8 is given in respectively Figure S9 and Figure S10. 
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Figure 9: Comparison of model performance of four selected river incision models. (a) Nash Sutcliffe model efficiency 

(NS) for different model scenarios, without (grey bars) or with (red bars) considering lithological heterogeneity. (b) shows 1400 

the corresponding Model Error (ME). The A-SPM model scenario corresponds to the Area-Based Stream Power Model (cf. 

Figure 7). It performs well when lithological heterogeneity is considered and all parameters are freely calibrated, resulting in 

a slope-steepness exponent (n; cf. Eq. 1) of 1.62 (for a full overview of model parameters, see Table 4). However, for an A-

SPM scenario where n is fixed to the theoretically derived value of 1, the model performance strongly deteriorates (see main 

text). R-SPM represents a model scenario that explicitly incorporates runoff variability (cf. Figure 8a). The ST-SPM scenario 1405 

also includes an incision threshold (cf. Figure 8b). Both scenarios perform well when n is fixed to 1 and when considering 

lithological heterogeneity. Overall, the best model performance (highest NS and smallest ME) is obtained under the ST-SPM 

scenario where lithological and runoff variability, as well as river incision thresholds are considered. 

 

  1410 
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Table 1: Constant parameter values used when solving the R-SPM and ST-SPMmodel parameters 

Parameter Model Description Value Unit 

a R-SPM/ST-SPM 

Bed shear stress 

exponent,  

with τa representing unit 

stream power if a= 3/2 

3/2 dimensionless 

kt R-SPM/ST-SPM Flow resistance factor 1000 kg  m−7/3  s−4/3 

kw R-SPM/ST-SPM 

Scaling 

paramterparameter 

between bankfull river 

width and discharge 

3.7 m−0.65  s0.55 

α R-SPM/ST-SPM 

Flow resistaenceresistance 

exponent  

(Darcy–Weisbach) 

2/3 dimensionless 

β R-SPM/ST-SPM 

Flow resistaenceresistance 

exponent  

(Darcy–Weisbach) 

2/3 dimensionless 

θref R-SPM/ST-SPM Reference concavity 0.45 dimensionless 

ρs ST-SPM Sediment particle density 2.7 g  cm−3 

ρw ST-SPM Fluid density 1 g  cm−3 

τc* ST-SPM Shield's number 0.045 dimensionless 

ωb 
ST-SPM downstream channel 

width variation exponent 
0.55 dimensionless 

ωs 
ST-SPM At‐a‐station channel 

width variation exponent 
0.25 dimensionless 
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Table 2: PropertiesCharacteristics of the sub-catchments studied in this paper. ID’sIDs correspond to the numbers indicated 

on Figure 1.Figure 1. The 10Be cosmogenic nuclide derived erosion rates arewere derived from Vanacker et al. (2015)a. 1415 

Coordinates are given in decimal degrees in the WGS84 datum, 𝐿𝐸
̅̅ ̅ is the catchment average lithological index, 𝑃𝐺𝐴̅̅ ̅̅ ̅̅  is for 

the catchment average seismicity, ksn is the normalized catchment average steepness, PRIDW and RRIDW are respectively the 

catchment average downscaled catchment average precipitation and runoff and k is the optimized discharge variability 

coefficient.  

ID Sample Lat,  

° 

Lon,  

° 

Area,  

km² 

10Be erosion,  

mm ka-1 
LE
̅̅ ̅ PGA̅̅ ̅̅ ̅̅ ,  

g 

ksn,  

m0.9 

PRIDW, 

m yr-

1 

RRIDW, 

m yr-1 

k 

1 BQ -2.94 -78.93 186.3 53 ± 4 1.44 0.44 41.78 1.06 0.55 1.18 

2 CH -3.22 -78.74 86 88 ± 8 0.34 0.42 187.79 1.59 0.87 0.87 

3 CJ -2.92 -78.88 19.5 95 ± 11 1.43 0.44 60.45 1.02 0.54 1.04 

4 DE2 -2.77 -78.93 39.1 105 ± 9 1.61 0.45 80.96 1.14 0.58 1.04 

5 JA21 -2.89 -78.89 276 50 ± 4.5 1.45 0.44 48.96 1.05 0.55 1.19 

6 MAR -3.04 -78.95 49.8 30 ± 2 1.43 0.43 35.97 1.07 0.56 1.08 

7 NA1 -2.70 -78.92 57.1 142 ± 18 1.54 0.45 96.36 1.04 0.53 1.05 

8 NA4 -2.67 -78.90 4.9 222 ± 33 1.69 0.45 69.19 0.87 0.44 1.11 

9 NG-DW -2.73 -78.40 686.8 163 ± 16 0.57 0.45 184.21 2.25 1.33 0.92 

10 NG-SD -2.73 -78.39 3.3 3959 ± 3801 0.89 0.46 231.84 2.62 1.60 0.91 

11 NG-UP -2.78 -78.46 679.1 179 ± 16 0.55 0.44 176.77 2.21 1.31 0.91 

12 PA -2.52 -78.56 424.4 229 ± 26 1.13 0.45 142.61 1.14 0.60 1.16 

13 PAL -2.65 -78.61 6.2 318 ± 32 0.69 0.45 192.24 1.89 1.11 0.88 

14 PT-BM -2.65 -78.46 6.8 219 ± 22 0.60 0.45 236.09 2.50 1.51 0.91 

15 PT-QP -2.61 -78.57 3.4 216 ± 20 0.52 0.45 231.77 2.01 1.16 0.94 

16 PT-SD -2.61 -78.46 11.1 399 ± 53 0.60 0.45 210.28 2.52 1.51 0.93 

17 QU -2.99 -78.92 16.7 77 ± 8 1.43 0.44 55.32 1.02 0.53 1.17 

19 RG1_2 -2.96 -78.89 0.9 26.5 ± 2 1.43 0.44 48.87 1.01 0.53 1.13 

20 RG2 -2.94 -78.91 29.2 61 ± 6 1.44 0.44 53.96 1.01 0.53 1.12 

21 RGD1 -2.94 -78.80 2.2 30 ± 3 0.64 0.44 105.63 1.03 0.55 1.14 

18 RGST -2.97 -78.90 20.2 28 ± 2 1.42 0.44 45.55 1.00 0.52 1.08 

22 SA -2.96 -78.93 0.5 152 ± 19 1.49 0.44 0.04 1.05 0.55 1.16 

23 SF1_2 -2.89 -78.77 84 72 ± 7 0.56 0.44 110.46 1.42 0.78 0.83 

24 SF2 -2.98 -78.69 1.3 118 ± 9 0.50 0.44 147.45 1.60 0.89 0.80 

25 SI1 -3.16 -78.81 0.6 10 ± 1 0.29 0.42 57.09 1.34 0.72 0.95 

26 SI2 -3.14 -78.81 18.3 30 ± 3 0.58 0.42 70.42 1.38 0.74 0.99 

27 SI3 -3.14 -78.81 49.2 88 ± 11 1.30 0.42 43.63 1.28 0.68 1.03 

28 SI5 -3.00 -78.81 6 3.4 ± 0.3 0.90 0.43 86.62 0.99 0.53 1.09 

29 TI11 -3.01 -78.57 62.1 125 ± 11 0.33 0.43 142.87 1.97 1.13 0.84 

30 TI2 -3.01 -78.61 21 57 ± 7 0.33 0.43 151.34 1.86 1.06 0.83 

 (cf. Eq. 9). 1420 

ID Sample Latitude  

° 

Longitude  

° 

Area 

km² 

10Be erosion 

mm ka-1 

 𝑳𝑬
̅̅ ̅ ∗ ksn*  

m0.9 

PRIDW* 

m yr-1 

RRIDW*

m yr-1 

k 

1 BQ -2,94 -78,93 186,3 53 ± 4 1,44 41,78 1,06 0,55 1,18 

2 CH -3,22 -78,74 86 88 ± 8 0,34 187,79 1,59 0,87 0,87 

3 CJ -2,92 -78,88 19,5 95 ± 11 1,43 60,45 1,02 0,54 1,04 

4 DE2 -2,77 -78,93 39,1 105 ± 9 1,61 80,96 1,14 0,58 1,04 

5 JA21 -2,89 -78,89 276 50 ± 4.5 1,45 48,96 1,05 0,55 1,19 

6 MAR -3,04 -78,95 49,8 30 ± 2 1,43 35,97 1,07 0,56 1,08 

7 NA1 -2,70 -78,92 57,1 142 ± 18 1,54 96,36 1,04 0,53 1,05 

8 NA4 -2,67 -78,90 4,9 222 ± 33 1,69 69,19 0,87 0,44 1,11 

9 NG-DW -2,73 -78,40 686,8 163 ± 16 0,57 184,21 2,25 1,33 0,92 

10 NG-SDb -2,73 -78,39 3,3 3959 ± 3801 0,89 231,84 2,62 1,60 0,91 

11 NG-UP -2,78 -78,46 679,1 179 ± 16 0,55 176,77 2,21 1,31 0,91 

12 PA -2,52 -78,56 424,4 229 ± 26 1,13 142,61 1,14 0,60 1,16 

13 PAL -2,65 -78,61 6,2 318 ± 32 0,69 192,24 1,89 1,11 0,88 

14 PT-BM -2,65 -78,46 6,8 219 ± 22 0,60 236,09 2,50 1,51 0,91 
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15 PT-QP -2,61 -78,57 3,4 216 ± 20 0,52 231,77 2,01 1,16 0,94 

16 PT-SD -2,61 -78,46 11,1 399 ± 53 0,60 210,28 2,52 1,51 0,93 

17 QU -2,99 -78,92 16,7 77 ± 8 1,43 55,32 1,02 0,53 1,17 

19 RG1_2 -2,96 -78,89 0,9 26.5 ± 2 1,43 48,87 1,01 0,53 1,13 

20 RG2 -2,94 -78,91 29,2 61 ± 6 1,44 53,96 1,01 0,53 1,12 

21 RGD1 -2,94 -78,80 2,2 30 ± 3 0,64 105,63 1,03 0,55 1,14 

18 RGST -2,97 -78,90 20,2 28 ± 2 1,42 45,55 1,00 0,52 1,08 

22 SAb -2,96 -78,93 0,5 152 ± 19 1,49 0,04 1,05 0,55 1,16 

23 SF1_2 -2,89 -78,77 84 72 ± 7 0,56 110,46 1,42 0,78 0,83 

24 SF2 -2,98 -78,69 1,3 118 ± 9 0,50 147,45 1,60 0,89 0,80 

25 SI1b -3,16 -78,81 0,6 10 ± 1 0,29 57,09 1,34 0,72 0,95 

26 SI2 -3,14 -78,81 18,3 30 ± 3 0,58 70,42 1,38 0,74 0,99 

27 SI3 -3,14 -78,81 49,2 88 ± 11 1,30 43,63 1,28 0,68 1,03 

28 SI5 -3,00 -78,81 6 3.4 ± 0.3 0,90 86,62 0,99 0,53 1,09 

29 TI11 -3,01 -78,57 62,1 125 ± 11 0,33 142,87 1,97 1,13 0,84 

30 TI2 -3,01 -78,61 21 57 ± 7 0,33 151,34 1,86 1,06 0,83 
a Catchment MA1 from Vanacker et al. 2015 is not listed because its area (< 0.1km²) doesdid not allow to accurately calculate 

basin the catchment properties listed here.  

b Catchments excluded from model optimization runs (see text)  
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Table 3: Lithological erodibility index values based on the lithological strength (LL). Detailed sub-classifications per lithology 1425 

can be found in Table S2.  

   LL 

Igneous 2 - 3 

Metamorphic (Igneous) 2 

Metasedimentary 2 - 4 

Strong sedimentary 4 

Weak sedimentary 10 - 12 

Unconsolidated 12 
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Table 4: Best Fit Model Results: A-SPMOverview of the best-fit model results 

Model Nb. Scenario Figur

eFig.

* 

Erosional 

efficiency 

Slope 

exponentd 

Erosional 

efficiency 

Slope 

exponentDi

scharge 

variability 

Bayes 

factorC

ritical 

Shear 

stress 

Runoff R² Nash 

Suttc

liffM

E 

NS 

K' ka n ke k NSτc R    

m0.1s-1 m0.1s-1    
 m2.5 s2 kg-

1.5 
   Pa m yr-1   

  

 

A-SPM 

Con

stan

t 

rock 

erod

ibili

ty 

(𝐿𝐸
̅̅ ̅  

= 

1)1 

𝐿𝐸
̅̅ ̅ fixeda 12.a 0.7573 - 1.0607 1.06- - - - 

0.50

5 
3.25 0.505 

Vari

able 

rock 

erod

ibili

ty2 

𝐿𝐸
̅̅ ̅ variablea 12.b - 

0.0690

7 
1.63 1457- - - - 0.73 2.23 0.73 

3 𝐿𝐸
̅̅ ̅ fixeda  1.00 - 1 - - - - 0.5 3.2 0.5 

4 𝐿𝐸
̅̅ ̅ variablea  - 1.4 1 - - - - 0.56 3.05 0.51 

R-SPM 
1 𝐿𝐸

̅̅ ̅ fixeda - - - 1 8.86 × 10-15 - -   0.51 3.57 0.49 

2 𝐿𝐸
̅̅ ̅ variablea 14.a - - 1 1.43 × 10-14 - -   0.75 2.61 0.70 

ST-SPM 

1 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� fixedb 

k fixedc 

- - - 1 1.13 × 10-14 1.01 4.08 0.82 0.50 3.22 0.50 

2 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� fixedb 

k variablec 

- - - 1 1.16 × 10-14 variable  6.31 0.82 0.50 3.2 0.50 

3 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� variableb 

k fixedc  

- - - 1 9.76 × 10-15 1.01 0.00 
variabl

e 
0.51 3.75 0.49 

4 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� variableb 

k variablec 

- - - 1 9.88 × 10-15 variable 0.00 
variabl

e 
0.52 3.53 0.50 

5 

𝐿𝐸
̅̅ ̅ variablea 

�̅� fixedb 

k fixedc 

- - - 1 2.88 × 10-14 1.01 30.74 0.82 0.72 2.44 0.71 

6 

𝐿𝐸
̅̅ ̅ variablea 

�̅� fixedb 

k variablec 

- - - 1 2.90 × 10-14 variable 31.06 0.82 0.71 2.48 0.71 

7 

𝐿𝐸
̅̅ ̅ variablea 

�̅� variableb 

k fixedc 

14.b - - 1 1.86 × 10-14 1.01 14.21 
variabl

e 
0.75 2.22 0.75 

8 

𝐿𝐸
̅̅ ̅ variablea 

�̅� variableb 

k variablec 

- - - 1 1.88 × 10-14 variable 14.66 
variabl

e 
0.75 2.21 0.75 

 1430 
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Table 5 Best Fit Model Results: R-SPM and ST-SPM 

Model Scenario 

nb. 

Description Figur

e 

Erosional 

efficiency 

Discharge 

variability 

Critical 

Shear 

stress 

Runoff R² Nash 

Suttcliff 

ke k τc R  NS 

m2.5 s2 kg-1.5   Pa m yr-1     

R-SPM 

1 𝐿𝐸
̅̅ ̅ fixeda - 8.86 × 10-15 - -   0.51 0.49 

2 𝐿𝐸
̅̅ ̅ variablea 14.a 1.43 × 10-14 - -   0.75 0.70 

ST-SPM 

1 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� fixedb 

k fixedc 

- 1.14 × 10-14 1.01 4.89 0.82 0.50 0.50 

2 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� variableb 

k fixedc  

- 9.76 × 10-15 1.01 0.00 variable 0.51 0.49 

3 

𝐿𝐸
̅̅ ̅ fixeda 

�̅� variableb 

k variablec 

- 9.88 × 10-15 variable 0.00 variable 0.52 0.50 

4 

𝐿𝐸
̅̅ ̅ variablea 

�̅� fixedb 

k fixedc 

- 2.86 × 10-14 1.01 30.74 0.82 0.72 0.71 

5 

𝐿𝐸
̅̅ ̅ variablea 

�̅� fixedb 

k variablec 

- 2.90 × 10-14 variable 30.87 0.82 0.71 0.71 

6 

𝐿𝐸
̅̅ ̅ variablea 

�̅� variableb 

k fixedc 

14.b 1.86 × 10-14 1.01 14.21 variable 0.75 0.75 

7 

𝐿𝐸
̅̅ ̅ variablea 

�̅� variableb 

k variablec 

- 1.88 × 10-14 variable 14.66 variable 0.75 0.75 

a If 𝐿𝐸
̅̅ ̅

 is fixed, a uniform value of 1 is used for all catchments. If 𝐿𝐸
̅̅ ̅

 is variable, catchment specific values for LE are used 

(Table 2)(Table 2) 
b If R is fixed, a uniform mean runoff value of 0.8 m yr-1 is used for all catchments. If R is variable, catchment specific 1435 
values are used (Table 2)(Table 2) 
c If k is fixed, a uniform mean discharge variability value of 1.01 is used for all catchments. If k is variable, catchment 

specific values are used (Table 2)(Table 2) 
d The slope exponent (n) is optimized as a free parameter in A-SPM 1-2. It is fixed to 1 in A-SPM 3-4 (see text) Formatted: Font: Not Bold


