
We thank the editor, Simon Mudd, for his careful revision of our work and his thoughtful and constructive comments. 
We included all textual suggestions and shortly comment on his other remarks in the following document. 
 
 
Line 60 
You try to dismiss hillslope metrics here, which I don't agree with. It is true that the hillslope metrics that do work 
(curvature, Hurst et al 2012) or rock exposure (DiBiase et al 2012) require high resolution topographic data that is not 
widely available.  
We agree and changed the sentence to: In such a configuration, hillslope gradients are no longer an indication of 
denudation rates, and hillslope metrics (Hurst et al., 2012) often require high resolution topographic data that are not 
widely available.  
 
Line 62 
Hillslope *gradients*. There are plenty of hillslope metrics that are sensitive to erosion rates (e.g., ridgetop curvature 
or fraction of rock exposure) 
Agreed, adjusted the sentence accordingly  
 
Line 84 
You mean observational records in mountain regions? Clarify. Many lowland rivers have long and complete 
hydrological records. 
Correct, it is now clarified by specifying “in mountain regions” 
 
Line129 
I would be careful here: in the hydrology literature and some of the early geomorphology literature the concavity of 
the profile is measured (for example, see the Chen et al Nature paper that came out recently). This is the concavity 
*index* 
Agreed, adjusted to concavity *index* 
 
 
Line 189 Is it still rising? If so does the model try to account for this? 
We added a sentence: Uplift patterns are assumed to be reflected in the river steepness and not explicitly simulated in 
this paper. 
 
Line 255  
Uncertainties associated to the WaterGAP3 data originate from hydrological model assumptions and spatially 
distributed input data (Beck et al., 2017). We revisit the impact of uncertainties on the climatological data on our 
model runs in the discussion of this paper. 
 
Line 316  
Add reference here.  
Done 
 
I don't understand this. Please clarify. Why would the river incision rate inferred by a nuclide concentration be affected 
by runoff? 
Fair point, this sentence was confusing, and has been rewritten. For the CRN data, one assumes that the catchments 
are in isotopic steady state – that the input of CRN by in-situ production equals the export of CRN by fluvial processes, 
and radioactive decay. For the river incision models, one uses one value of precipitation and runoff data per catchment 
– and assumes that the pattern is rather uniform over the catchment.  
 
Line 374: 
For completeness, I would add the equation for this since you have it for ME and NS 
Agreed, done 
 
Line 413: Interesting. The gasparini and brandon paper shows that thresholding effects in the SPM can be 
approximated by n>1. It is a theoretical result that anticipates your result. I think this can be more clearly explained 
around line 480 (see more comments below). 



Here I suggest referring to the empirical studies that suggest n>1 (the papers you cite in a similar discussion on line 
576). 
Good suggestion to cite the empirical work at this stage.  
The paper of Gasparini and Brandon 2011 mainly focuses on the influence of sediment fluxes on bedrock river 
incision. They do not explicitly simulate the role of thresholds and we feel that the theoretical framework laid out in 
the papers we cite in the introduction paragraphs are providing the right background for evaluating and simulating the 
role of thresholds (e.g. Deal et al., 2018; Lague et al., 2005; Tucker and Bras, 2000) 
 
Line 425: There isn't a figure showing a relationship between E_CRN and k_sn. You are trying to argue that 
lithological heterogeneity is masking a more interesting pattern, but you don't show the data that would allow the 
reader to make this interpretation. In addition, I don't think this paragraph is really true to your results. What I see is 
this: as long as you force n = 1, the fits result in NS = 0.5, R^2 = 0.5. The fit is very slightly better if you use spatially 
heterogeneous lithology, rather than basin averages. But the best way to increase the fit is to let n vary (and when you 
do that, n>1.  
 
We believe there is a small misunderstanding here: 

1. In all model runs, lithological variability is either simulated using a fixed constant value or the average values 
of the individual sub-catchments (𝐿!""" values in Table 2). To clarify this, we added the following lines in the 
methodology, below Eq. 11:  
“Note that, at any point in the paper, lithological heterogeneity within the Paute catchment is represented 
using the average values of LE, for the individual sub-catchments indicated with 𝐿!""" and listed in Table 2. If 
lithological heterogeneity is not considered, 𝐿!""" is fixed to a value of 1. “ 
If lithological heterogeneity is not considered, none of the models with n>1 (scenario 1) or n=1 (scenario 3) 
can successfully predict the E_CRN derived erosion rates. Only when lithological heterogeneity is 
considered, the goodness-of-fit of the models increases. The best fit is then obtained when n is larger than 1, 
i.e. with n =1.64 (scenario 2). This is indeed a key message of the paper, so we tried to clarify this by: 

a) Adjusting the overview plot (Figure 9): By adding the grey bars also for ME, it should be 
clear that none of the models performs well if lithological heterogeneity is not considered  

b) We added the ksn versus ECRN plot and the ksn versus ECRN/LE plot to show the actual 
relationships between E_CRN and ksn (new subplots a and b in Figure 7) 

c) We adjusted this piece of text by removing the reference to the model scenario and now 
refer directly to the subplots showing the ksn -E_CRN relationships  

 
Line 445:  
This is predicted by the gasparini and brandon paper  
We will be careful with referring to the Gasparini and Brandon 2011 paper: they do not take runoff explicitly into 
account in their model simulations (they consider models that include channel gradient, sediment flux, and drainage 
area). We therefore prefer not citing this paper at this stage to avoid confusion.  
 
Line 498 
So basically, you can do a ton of data gathering and make a very fancy runoff/thresholding stream power model, and 
it doesn't do any better than adjusting the n exponent (as predicted by Gasparini and Brandon). Is that right? 
We only partially agree here:  

• We have clearly shown that lithological variability is key to consider. Regardless the value of n, if lithological 
heterogeneity is not considered, n>1 does not help to increase the goodness-of-fit of the models. See also 
previous comments, adjustments to figure 7 and figure 9 

• Including thresholds and spatially variable runoff has a similar effect than a value of n>1. The work of Lague 
2014 summarizes the theory supporting this. So, in terms of fitting measured erosion rates, we agree with the 
editor. However, explicitly incorporating and calibrating the role of thresholds and runoff variability, helps 
to understand and hence predict the role of thresholds and climate variability in landscape evolution.  
 

 
Line 555 
So you argue that the lithological variability is important. But it looks like a basin averaged approach is not worse 
than using the geologic map for A-SPM. Would it be useful to conduct a sort of straw man experiment: run the model 
with a *single* erodibility and optimize for this parameter. My intuition is that this model fit would be terrible. But it 



would go some way to demonstrate that yes, you have to account for lithology. But a basin averaged approach is 
probably good enough. Or have I misinterpreted your results? 
We believe there is a small confusion here. All calculations are performed using a basin average approach. With 
lithological heterogeneity, we actually refer to the use of catchment average values as reported in Table 2. We added 
some words in the methodology and adjusted figures 7 and 9 to clarify this. See also reply to previous suggestions of 
the editor.  
 
Line 607 Was there also not a paper by Ferrier et al in Hawaii that said something like this? 
Indeed, we already cited this work but not at this place. Thanks for the suggestion.  
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 20 
Abstract. Landscape evolution models can be used to assess the impact of rainfall variability on bedrock river incision over 

millennial timescales. However, isolating the role of rainfall variability remains difficult in natural environments, in part 

because environmental controls on river incision such as lithological heterogeneity are poorly constrained. In this study, we 

explore spatial differences in the rate of bedrock river incision in the Ecuadorian Andes using three different stream power 

models. A pronounced rainfall gradient due to orographic precipitation and a high lithological heterogeneity enable us to 25 
explore the relative roles of either these controls. First, we use an area-based stream power model to scrutinize the role of 

lithological heterogeneity on river incision rates. We show that lithological heterogeneity is key to predicting spatial patterns 

of incision rates. Accounting for lithological heterogeneity reveals a non-linear relationship between river steepness, a proxy 

for river incision, and cosmogenic radio nuclide (CRN) derived denudation rates. Second, we explore this nonlinearity using 

runoff-based and stochastic-threshold stream power models, combined with a state-of-the-art hydrological dataset to calculate 30 
spatial and temporal runoff variability. Statistical modelling suggests that the non-linear relationship between river steepness 

and denudation rates can be attributed to a spatial runoff gradient and incision thresholds. Our findings have two main 

implications for the overall interpretation of CRN-derived denudation rates and the use of river incision models : (i) applying 

sophisticated stream power models to explain denudation rates at the landscape scale is only relevant when accounting for the 

confounding role of environmental factors such as lithology and (ii) spatial patterns in runoff due to orographic precipitation 35 
in combination with incision thresholds explain part of the non-linearity between river steepness and CRN-derived denudation 

rates. TheOur methodology that we present can be used as a framework to study the coupling between river incision, 

lithological heterogeneity and climate at regional to continental scales. 

 

 40 
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1. Introduction 

1.1. Background 45 

Research on how climate variability and tectonic forcing interact to make a landscape evolve over time has long been 

limited by the lack of techniques that measure denudation rates over sufficiently long timespans (Coulthard and Van de Wiel, 

2013). Consequently, the relative role of climate variability and tectonic processes could only be deduced from sediment 

archives (e.g. Hay et al., 1988). However, whether sediment archives offer reliable proxies remains contested because 

sediment sources and transfer times to depositional sites are often shroudedobscured by stochastic processes that shred 50 
environmental signals (Bernhardt et al., 2017; Jerolmack and Paola, 2010; Romans et al., 2016; Sadler, 1981).  

Nowadays, cosmogenic radionuclides (CRN) contained in quartz minerals of river sediments provide an alternative 

tool for determining catchment-wide denudation rates on a routine basis (Codilean et al., 2018; Harel et al., 2016; Portenga 

and Bierman, 2011). In sufficiently large catchments, detrital CRN-derived denudation rates (ECRN) integrate over timescales 

that average out the episodic nature of sediment supply (Kirchner et al., 2001). Hence, benchmark or natural denudation rates 55 
can be calculated for disturbed as well as pristine environments (Reusser et al., 2015; Safran et al., 2005; Schaller et al., 2001; 

Vanacker et al., 2007).  

Catchment-wide denudation rates have been found to correlate with a range of topographic metrics including basin 

relief, average basin gradient and elevation (Abbühl et al., 2011; Kober et al., 2007; Riebe et al., 2001; Safran et al., 2005; 

Schaller et al., 2001). However, in tectonically active regimes, hillslopes tend to evolve towards a critical threshold gradient 60 
which is controlled by mechanical rock properties (Anderson, 1994; Roering et al., 1999; Schmidt and Montgomery, 1995). 

Once slopes approach this critical gradient, mass wasting becomes the dominant processes controlling hillslope response to 

changing base levels (Burbank et al., 1996). In such a configuration, hillslope steepness isgradients are no longer an indication 

of denudation rates and topographic metrics based on hillslope relief become poor predictors of catchment wide denudation 

rates (Binnie et al., 2007; Korup et al., 2007; Montgomery and Brandon, 2002)., and hillslope metrics (Hurst et al., 2012) 65 
often require high resolution topographic data that are not widely available.  

Contrary to hillslopeshillslope gradients, rivers and river longitudinal profiles are more sensitive to changes in 

erosion rates (Whipple et al., 1999). Bedrock rivers in mountainous regions mediate the interplay between uplift and erosion 

(Whipple and Tucker, 1999; Wobus et al., 2006). They incise into bedrock and efficiently convey sediments, thus setting the 

base level for hillslopes and controlling the evacuation of hillslope derived sediment. Quantifying the spatial patterns of 70 
natural denudation rates in tectonically active regions therefore requires detailed knowledge of the processes driving fluvial 

incision (Armitage et al., 2018; Castelltort et al., 2012; Finnegan et al., 2008; Gasparini and Whipple, 2014; Goren, 2016; 

Scherler et al., 2017; Tucker and Bras, 2000).  

River morphological indices, such as channel steepness (ksn) (Wobus et al., 2006), have successfully been applied as 

a predictor for catchment denudation and thus ECRN by Safran et al. (2005) and many others, commonly identifying a 75 
monotonically increasing relationship between channel steepness (ksn) (Wobus et al., 2006) and ECRN (Cyr et al., 2010; DiBiase 

et al., 2010; Mandal et al., 2015; Ouimet et al., 2009; Safran et al., 2005; Vanacker et al., 2015). Several authors identified a 

non-linear relationship between ksn and ECRN in both regional (e.g. DiBiase et al., 2010; Ouimet et al., 2009; Scherler et al., 

2014; Vanacker et al., 2015) and global compilation studies (Harel et al., 2016). Theory suggests that this non-linear 
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relationship reflects the dependency of long-term denudation on hydrological variability (Deal et al., 2018; Lague et al., 2005; 80 
Tucker and Bras, 2000). Hydrological variability affects both temporal and spatial variations in river discharge and the effect 

of river discharge on denudation and river incision rates can be approximated by theoretical model derivations. However, the 

impact of hydrological variability on incision rates in natural environments has, until now, only been successfully identified 

in a limited number of case studies (DiBiase and Whipple, 2011; Ferrier et al., 2013; Scherler et al., 2017).  

 85 
We identify two limitations hampering large scale application of river incision models that include hydrological 

variability. First, the necessary high-resolution hydrological data is usually unavailable. Mountain regions are typically 

characterized by large temporal and spatial variation in runoff rates (e.g. Mora et al., 2014). Yet, most of the observational 

records on river discharge in mountain regions are fragmented and/or have limited geographic coverage. Second, large 

catchments are often underlain by variable lithologies. Studies exploring the role of river hydrology in controlling river 90 
incision have hitherto mainly focused on regions underlain by rather uniform lithology (DiBiase and Whipple, 2011; Ferrier 

et al., 2013) or they have considered lithological variations to be of minor importance (Scherler et al., 2017). However, 

tectonically active regions have usually experienced tectonic accretion, subduction, active thrusting, volcanism and 

denudation resulting in a highly variable lithology over >100 km distances (Horton, 2018). Rock strength is known to control 

river incision rates, and is a function of its lithological composition and stratigraphic age (Brocard and van der Beek, 2006; 95 
Lavé and Avouac, 2001; Stock and Montgomery, 1999), as well as its rheology and fracturing (Molnar et al., 2007). If we 

want to use geomorphic models not only to emulate the response of landscapes to climatic and/or tectonic forces but also to 

predict denudation rates, then we need to account for variations in physical rock properties (Attal and Lavé, 2009; Nibourel 

et al., 2015; Stock and Montgomery, 1999). Even more importantly, these variations in rock erodibility can potentially obscure 

the relation between river incision and discharge (Deal et al., 2018). Therefore, the climatic effects on denudation rates can 100 
only be correctly assessed if the geomorphic model accounts for physical rock properties and vice versa. Based on current 

limitations, we formulate two main objectives: we want (i) to assess the impact of lithological heterogeneity on river incision 

and (ii) to unravel the role of allogenic (spatial and/or temporal runoff variability) versus autogenic (incision thresholds) 

controls on river incision. We develop and evaluate our approach in the southern Ecuadorian Andes where detailed lithological 

information is available as well as a database of CRN-derived denudation rates (Vanacker et al., 2007, 2015).  105 
 

1.2. River incision models 

Bedrock rivers are shaped by processes including weathering, abrasion-saltation, plucking, cavitation and debris 

scouring (Whipple et al., 2013). However, explicitly accounting for these processes renders models too complex at spatial 

and temporal scales relevant to understand landscape evolution of entire mountain ranges. Therefore, a broad variety of models 110 
have been proposed to simplify the complex nature of river incision dynamics (Armitage et al., 2018; Lague et al., 2005; 

Shobe et al., 2017; Venditti et al., 2019).(Armitage et al., 2018; Lague et al., 2005; Shobe et al., 2017; Venditti et al., 2019). 

Most river incision models assume a functional dependence of river incision on the shear stress (τ, [Pa]) exerted by the river 

on its bed (Sklar et al., 1998; Whipple and Tucker, 1999).(Sklar and Dietrich, 1998; Whipple and Tucker, 1999). However, 

within the family of shear stress / stream power models, several approaches exist. Most commonly used is the Area-based 115 
Stream Power Model (A-SPM), explicitly representing the universally observed inverse power relation between channel slope 

and drainage area (Howard, 1994; Whipple and Tucker, 1999). Parametrization of the A-SPM is purely empirical and involves 
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calibration of three incision parameters (an erosion efficiency parameter, an area exponent and a slope exponent). Given the 

interdependency of these parameters (e.g. Campforts and Govers, 2015; Croissant and Braun, 2013; Roberts and White, 2010), 

there is an ongoing effort to calibrate river incision models using a process oriented strategy where small scale observations 120 
and physical mechanisms are upscaled to the landscape scale (Venditti et al., 2019).(Venditti et al., 2019). In particular and 

not exclusively, ongoing efforts evaluate how the three incision parameters are affected by (i) the presence of incision 

thresholds (e.g. DiBiase and Whipple, 2011; Lague, 2014), discharge variability (DiBiase and Whipple, 2011; Lague et al., 

2005; Snyder et al., 2003; Tucker and Bras, 2000) and the spatial and temporal distribution of runoff (Deal et al., 2018; Ferrier 

et al., 2013; Lague et al., 2005; Molnar et al., 2006). In this paper, we evaluate how two of such derived models (the Stochastic-125 
Threshold and Runoff-based Stream Power Model, respectively ST-SPM and R-SPM) can be used to explain measured 

variations in denudation rates at the landscape scale.  

1.2.1. Area-based Stream Power Model  

The Area-based Stream Power Model (A-SPM, Howard, 1994) is a first, lumped statistical approach to represent river 

incision: 130 
 𝐸 = 𝐾′𝐴!𝑆" (1) 

in which E is the long term river erosion (L t-1), K’ (L1-2mt-1) is the erosional efficiency as a function of rock erodibility and 

erosivity, A (L2) is the upstream drainage area, S [L L-1] is the channel slope, and m and n are exponents whose values depend 

on lithology, rainfall variability and sediment load. Eq (1) can be rewritten as a function of the channel steepness index, ks: 

 𝐸 = 𝐾′𝑘#
" (2) 

where ks can be written as the upstream area-weighted channel gradient:  

 𝑘# = 𝑆𝐴$ (3) 

In which 𝜃 = 𝑚/𝑛 is the channel concavity index (Snyder et al., 2000; Whipple and Tucker, 1999). In order to compare 135 
steepness indices from different locations, 𝜃 is commonly set to 0.45 and referred to as the normalized steepness index, ksn 

(Wobus et al., 2006). Variations in ksn are often used to infer uplift patterns, by assuming a steady state between uplift and 

erosion (Kirby and Whipple, 2012). In transient settings, where steady state conditions are not necessarily met, the ksn values 

can be used to infer local river incision rates (Harel et al., 2016; Royden and Taylor Perron, 2013). 

When using the A-SPM, the effect of autogenic (caused by intrinsic river dynamics such as incision thresholds and 140 
changes in channel width) and allogenic (originating from the transient response of river dynamics to extrinsic changes such 

as climate variability) controls is assumed to be accounted for in the model parameters (K’, m and n). For example, it has been 

shown that incision thresholds translate into a slope exponent n greater than unity when applying the A-SPM (Lague, 2014). 

Notwithstanding empirical evidence supporting the A-SPM such as the scaling between drainage area and channel slope in 

steady state river profiles (Lague, 2014) or its capability to simulate transient river incision pulses (Campforts and Govers, 145 
2015), the lumped modelling approach of the A-SPM cannot be used to evaluate the role of autogenic or allogenic river 

response. 
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1.2.2. Stochastic-Threshold Stream Power Model  

The Stochastic-Threshold Stream Power Model (ST-SPM, Crave and Davy, 2001; Deal et al., 2018; Lague et al., 

2005; Snyder et al., 2003; Tucker and Bras, 2000) does simulatesimulates the impact of hydrological variability and incision 

thresholds on river incision and thus enables us to evaluate the role of autogenic or allogenic river response. 155 
The ST-SPM is calculated in two consecutive steps. First, instantaneous river incision I, [L t-1] is calculated as:  

 𝐼(𝑄∗) = 𝐾𝑄∗	'𝑘#" − 	𝜓 

𝐾 = 𝑘(𝑘)*𝑘+,*-𝑅
!
; 	𝜓 = 𝑘(𝜏.* 

𝛾 = 𝑎𝛼(1 − 𝜔#); 	𝑚 = 𝑎𝛼(1 − 𝜔/); 	𝑛 = 𝑎𝛽 

(4.a) 

(4.b) 

(4.c) 

in which Q* represents the dimensionless normalized daily discharge calculated by dividing daily discharge Q [L3t-1] by 

mean-annual discharge 𝑄 [L3t-1], ke [L2.5 t2 m-1.5] is the erosional efficiency constant, 𝑅 [L t-1] is the mean annual runoff, a is 

the shear stress exponent reflecting the nature of the incision process (Whipple et al., 2000), 𝜓 is the threshold term [L t-1], 

and kt, kw, α, β, ωa and ωb are channel hydraulic parameters described in Table 1.  160 
In a second step, long term river incision is calculated by multiplying instantaneous river incision, I, calculated for a 

discharge of a given magnitude (Q*) with the probability for that discharge to occur (pdf(Q*)) and subsequently integrating 

this product over the range of possible discharge events specific to the studied timescale (DiBiase and Whipple, 2011; Lague 

et al., 2005; Scherler et al., 2017; Tucker and Bras, 2000; Tucker and Hancock, 2010):  

 
𝐸 = < 𝐼(𝑄∗)

0!∗

0#∗
𝑝𝑑𝑓(𝑄∗)𝑑𝑄∗ (5) 

in which 𝑄.∗ is the minimum normalized discharge which is required to exceed the critical shear stress (τc) and 𝑄!∗  is the 165 
maximum possible normalized discharge over the time considered.  

1.2.3. Runoff-based Stream Power Model  

 A model derived from the ST-SPM, is the The runoff-based SPMStream Power Model (R-SPM).) is a simplified 

version of the Stochastic-Threshold Stream Power Model (ST-SPM). The R-SPM is similar to the ST-SPM, but assumes that 

the incision thresholds are negligible (𝜓 = 0) and that discharge is constant over time (𝑄∗ = 1), simplifying Eq. 5 to:  170 
 𝐸 = 𝐾𝑘#

" (6) 

 

In the following sections, we first describe the study area, characterize the lithological configuration by developing 

a lithological erodibility index and compile a database to represent runoff variability. Second, we present the methods and 

assumptions used for calibrating and simulating river incision. In a third section, the modelling results are presented at the 

catchment scale: we start by evaluating the impact of lithological heterogeneity on river incision rates using an area-based 175 
river incision model (A-SPM). We then evaluate to what extent the variability in denudation rates can be explained by spatial 

and/or temporal runoff variability and the existence of incision thresholds using the R-SPM and ST-SPM. In a final section, 

we discuss our findings, highlight the implications of our work and discuss further perspectives.  
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2. Study area  

2.1. Geology 

2.1.1. Tectonics and geomorphic setting 

The Paute River is a 6530 km2 transverse drainage basin (2.9°S, 79°W): it has its source in the eastern flank of the 185 
Western Cordillera, traverses the Cuenca intramontane basin and cuts through the Eastern Cordillera before joining the 

Santiago river, a tributary of the Amazon (Figure 1; Hungerbühler et al., 2002; Steinmann et al., 1999). The Paute basin has 

a moderate relief with 90% of the slopes having hillslope gradients below 0.30 m m-1 (Vanacker et al., 2007). Where the Paute 

River cuts through the Eastern Cordillera, the topography is rough with steep hillslopes (90th percentile of slope gradients = 

0.40 m m-1) and deeply incised river valleys (Guns and Vanacker, 2013). 190 
Oblique accretion of terranes to the Ecuadorian margin during the Cenozoic, resulted in a diachronous exhumation and 

cooling history along the Ecuadorian Cordillera system (Spikings et al., 2010). South of 1.5°S, where the Paute basin is 

situated, three distinct stages of elevatedperiods with a higher cooling rate have been reported during the Paleogene at 73-55 

Ma, 50-30 Ma and 25-18 Ma, corresponding to a total cooling from ca. 300°C to ca. 60°C (Spikings et al., 2010). In the 

Western Cordillera, no elevated cooling is observed during the Paleogene and extensional subsidence of the Cuenca basin 195 
allowed synsedimentary deposition of marine, lacustrine and terrestrial facies until the Middle to Late Miocene (Hungerbühler 

et al., 2002; Steinmann et al., 1999). The collision between the Carnegie ridge and Ecuadorian trench at some time between 

the Middle to Late Miocene (Spikings et al., 2001) resulted in uplift of the Western Cordillera and caused a tectonic inversion 

of the Cuenca basin (Hungerbühler et al., 2002; Steinmann et al., 1999). Based on a compilation of mineral cooling ages 

available for the Cuenca basin, Steinman et al. (1999) estimated a mean rock uplift rate of ca. 0.7 mm yr-1 and a corresponding 200 
surface uplift of ca. 0.3 mm yr-1 from 9 Ma to present. Uplift patterns are assumed to be reflected in the river steepness and 

not explicitly simulated in this paper.  

The Paute basin is characterized by a tropical mountain climate (Muñoz et al., 2018). Despite the presence of mountain 

peaks up to ca. 4600 m (Figure 1), the region is free of permanent snow and ice (Celleri et al., 2007). The region’s precipitation 

is regulated by its proximity to the Pacific Ocean (ca. 60 km distance), the seasonally shifting of the Intertropical Convergence 205 
Zone (ITCZ), and the advection of continental air masses sourced in the Amazon basin, giving rise to an orographic 

precipitation gradient along the eastern flank of the Eastern Cordillera (Bendix et al., 2006). Total annual precipitation is 

highly variable within the Paute basin and ranges from ca. 800 mm in the centre of the basin up to ca. 3000 mm in the eastern 

parts of the catchment (Celleri et al., 2007; Mora et al., 2014). 

2.1.1.2.1.2. Lithological strength 210 

The erodibility map was developed using an empirical, hybrid classification method : it combines information on the 

lithological composition (Aalto et al., 2006) and the age of non-igneous formations assuming higher degrees of diagenesis 

and increased lithological strength for older formations (cfr. Kober et al., 2015). Adding age information to evaluate 

lithological strength has advantages because lithostratigraphic units are typically composed of different lithologies but mapped 

as a single entity because of their stratigraphic age. The lithological erodibility (LE) is calculated as:  215 
 𝐿1 =

2
7𝐿

2 (7) 



 

7 
 

𝐿2 = D	

(𝐿3 + 𝐿4)
3 , 𝑛𝑜𝑛 − 𝑖𝑔𝑛𝑒𝑜𝑢𝑠	𝑟𝑜𝑐𝑘𝑠
𝐿4
2 , 𝑖𝑔𝑛𝑒𝑜𝑢𝑠	𝑟𝑜𝑐𝑘𝑠

 

With LA a dimensionless erodibility index based on stratigraphic age (Figure 2.a), and LL a dimensionless erodibility 

index based on lithological strength (Table 1), similar to the erodibility indices published by Aalto (2006). Note that LA varies 

between 1 (Carboniferous) to 6 (Quaternary) whereas LL ranges between 2 (e.g. granite) to 12 (e.g. unconsolidated colluvial 

deposits). The lithological strength thus has a double weight, resulting in L’ values ranging between 1 and 6. For igneous 

rocks, only LL is considered assuming that the lithological strength of igneous rocks remains constant over time. For river 220 
incision parameters to be comparable to other published ranges, LE is finally scaled around one by multiplying L’ with 2/7. 

LE therefore ranges between 2/7 and 14/7. A description of the lithological units, the age of the formations and their lithological 

strength (LA, Ll and LE) is provided in Table S3. 

Using Eq. 7 , we developed the erodibility map of Ecuador (Figure S1) and the Paute catchment (Figure 2.c), based 

on the 1M geological map of Ecuador (Egüez et al., 2017). The lithological erodibility values were compared with field 225 
measurements (n = 9) of bedrock rheology by Basabe (1998). An overview of measured lithological strength values is 

provided in Table S4 (e.g. uniaxial compressive strength). Figure 2.b shows good agreement (R2 = 0.77) between the 

lithological erodibility index, LE, and the measured uniaxial compressive strength. 

 

2.2.  CRN-derived denudation rates  230 

Catchment-wide denudation rates are derived from in-situ produced 10Be concentrations in river sand. At the outlet of 30 

sub-catchments (Figure 1, Table 2), fluvial sediments were collected. We refer to Vanacker et al. (2015) for details on sample 

processing and derivation of CRN denudation rates taking into account altitude dependent production, atmospheric scaling 

and topographical shielding (Dunai, 2000; Norton and Vanacker, 2009; Schaller et al., 2002). CRN concentrations are not 

corrected for snow or ice coverage because there is no evidence of glacial activity during the integration time of CRN-derived 235 
denudation rates (Vanacker et al., 2015). Three data points were excluded from model optimization runs: two catchments with 

basin area smaller than 0.5 km² (MA1 and SA), and one catchment with an exceptionally low 10Be concentration that can be 

attributed to recent landslide activity (NG-SD; see Vanacker et al., 2015).  

2.3. River morphology  

Based on a gap-filled SRTM v3 DEM with a 1 arc second resolution (Farr et al., 2007; NASA JPL, 2013), we calculate 240 
river steepness for all channels with drainage areas > 0.5 km2 and average it over 500 m reaches. The optimized concavity 𝜃 

for the Paute catchment (0.42; Text S1), is close to the frequently used value of 0.45, we fix concavity to the reference value 

of 0.45 and report river steepness as normalized river steepness (ksn) in the remainder of this paper. The spatial pattern of ksn 

values (Figure 3) is a result of the transient geomorphic response to river incision initiated at the Andes Amazon transition 

zone (Vanacker et al., 2015). To evaluate the extent to which transient river features influence simulated denudation rates, 245 
chi-plots (χ) for all studied sub catchments are calculated following Royden and Perron, (2013) and given in the supplementary 

materials (Text S1; Figure S4; Royden and Taylor Perron, 2013). 

 To constrain the value of kw, used in the process-based incision models (Eqs. 4 and 6), we calibrate the relationship 

between bankfull river width (Wb) and discharge (Leopold and Maddock, 1953)4 and 6), we calibrate the relationship between 

bankfull river width (Wb) and discharge (Leopold and Maddock, 1953):  250 
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 𝑊/ = 𝑘+𝑄
5$ (8) 

in which kw [𝐿6,75$𝑡5$] and 𝜔/  are scaling parameters regulating the interaction between mean annual discharge 𝑄 and 

incision rates (Eq. 4). We constrain kw by analysing downstream variations in bankfull channel width for a fraction of the river 

network (cfr. Scherler et al., 2017). River sections are selected based on the availability of high-resolution optical imagery in 

Google Earth, and river width was derived using the ChanGeom toolset (Fisher et al., 2013a; figure S5).(Fisher et al., 2013; 

figure S5).  255 
The power-law fit between Q and W yields a value of 0.43 for the scaling exponent, ωb, with an R² of 0.51 (Figure 4). 

ThisThe value of this exponent lies within the range of published values 0.23-0.63 (Fisher et al., 2013b; Kirby and Ouimet, 

2011).(Fisher et al., 2012; Kirby and Ouimet, 2011). To maintain a dimensionally consistent stream power model, ωb was 

fixed to a value of 0.55. When doing so, the fit remains good (R2 = 0.5) and we obtained a kw value of 3.7 m-0.65s0.55 that is 

used in the remainder of the paper. 260 

2.4. Runoff variability 

Evaluating the role of spatial and temporal runoff variability (Eqs. 5 and 6) requires estimates of catchment specific 

runoff (𝑅, spatial variability) and discharge (temporal variability). Although measured runoff data and discharge records are 

available for the Paute basin (Molina et al., 2007; e.g. Mora et al., 2014; Muñoz et al., 2018), the monitoring network of 

existing hydrological stations does not capture the spatial variability present in the different sub catchments of the 6530 km2 265 
Paute basin (Figure 1). To estimate runoff variability for all 30 sub -catchments, we use hydrological data derived in the 

framework of the Earth2Observe Water Resource Reanalysis project (WRR2; Schellekens et al., 2017) available from 1979 

to 2014. Specifically, we use the hydrological data calculated with the global water model WaterGAP3 (Water – Global 

Assessment and Prognosis: Alcamo et al., 2003; Döll et al., 2003) at a spatial resolution of 0.25° and a daily temporal 

resolution (earth2observe.eu). Uncertainties associated to the WaterGAP3 data originate from hydrological model 270 
assumptions and spatially distributed input data (Beck et al., 2017). We revisit the impact of uncertainties on the climatological 

data on our model runs in the discussion of this paper. In the following paragraphs, we explain how we derive (i) a high-

resolution runoff map by spatially downscaling this coarse data and (ii) catchment-specific magnitude frequency distributions 

of discharge (pdf_Q*) characterising the temporal variability of runoff.  

2.4.1. Spatial runoff patterns 275 

A global hydrological reanalysis dataset such as WaterGAP provides daily runoff data over several decades and 

makes our methodology transferable to other regions. However, a spatial resolution of 0.25° is insufficient to represent highly 

variable regional trends in water cycle dynamics over mountainous regions (Mora et al., 2014) and in small catchments. 

Therefore, we downscale the Ecuadorian WaterGAP3 data to a resolution of 2.5 km by amalgamating rain gauge data with 

the reanalysis product. The procedure consisted of the following steps and is presented in Figures 5 and 6:  280 

(i)i. The relationship between precipitation (P) and runoff (R) is constrained from the fit between monthly mean values 

for P and R available for all Ecuadorian WaterGAP 0.25° pixels (Figure 5).  

(ii)ii. A high resolution mean annual precipitation map (PRIDW) is calculated by downscaling the WaterGAP precipitation 

data (P) using a series of rain gauge observations (338 stations, 1990-2013) from the Ecuadorian national 
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meteorological service (INAMHI; available from http://www.serviciometeorologico.gob.ec/biblioteca/). A residual 285 
inverse distance weighting (RIDW) method is applied to amalgamate mean annual gauge data with the mean annual 

WaterGAP3 precipitation map. First, the differences between the gauge and WaterGAP data are interpolated using 

an IDW method (Figure S6). Second, the resulting residual surface is added back to the original P data. A similar 

approach is often applied to integrate gauge data with satellite products and we refer to literature for further details 

on its performance (e.g. Dinku et al., 2014; Manz et al., 2016). Figure 6.a shows P for the Paute region, and Figure 290 
6.c its downscaled equivalent (PRIDW). 

(iii)iii. Daily precipitation data (12784 daily grids between 1979 and 2014) are downscaled to 2.5 km using the ratio between 

PRIDW and P, thereby assuming that the mean annual correction for precipitation also holds for daily precipitation 

patterns.  

(iv)iv. The relationship between P and R (Figure 5) is used to derive daily runoff values from the downscaled precipitation 295 
data for every day between 1979 and 2014.  

The mean annual runoff map for the Paute basin is shown in Figure 6.b and its downscaled equivalent in Figure 6.d. Mean 

annual values are further used to calculate mean catchment runoff (𝑅) and the discharge variability (next paragraph) for every 

sub-catchment described in Table 2. The mean catchment specific runoff averaged for all catchments equals 0.82 ± 0.35 m 

yr-1. 300 

2.4.2. Frequency magnitude distribution of orographic discharges 

Runoff variability is typically casted in terms of spatial runoff variability (section 2.4.1). However, also the temporal 

pattern of runoff might influence river incision and is typically represented by discharge magnitude frequency distributions. 

Constraining the shape of these distributions is important, because the number of large storm events determine the frequency 

by which thresholds for river incision to occur are exceeded (see section 1.2.2 and references therein).  305 
The probability distribution of discharge magnitudes consists of two components: at low discharges, the frequency of 

events increases exponentially with increasing discharge (Lague et al., 2005) whereas at high discharge, the frequency of 

events decreases with increasing discharge following a power law distribution (Molnar et al., 2006). An inverse gamma 

distribution captures this hybrid behaviour and can be written as (Crave and Davy, 2001; Lague et al., 2005):  

 
𝑝𝑑𝑓(𝑄∗) =

𝑘896

Γ(𝑘 + 1) 𝑒
, 8
0∗𝑄∗,(;98) (9) 

in which Γ is the gamma function and k is a discharge variability coefficient, k represents the scale factor of the inverse gamma 310 
distribution and (k+1) the shape factor. Previous studies used a single, average k-value to characterize regional discharge: 

DiBiase and Whipple (2011) use a constant k value for the San Gabriel mountains whereas Scherler et al. (2017) use a constant 

k value for high and low discharge but distinguish between Eastern Tibet and the Himalaya. However, given the strong 

variation in temporal precipitation regimes in the Paute basin (Celleri et al., 2007; Mora et al., 2014), we explicitly evaluated 

the role of temporal runoff variability by calculating catchment-specific discharge distributions from the WRR2 WaterGAP 315 
dataset. 
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Daily variations in discharge at the sub-catchment outlets (Figure 1) were calculated by weighing flow accumulation 

with runoff (RRIDW, see section 5.1.1). For every catchment, the complementary cumulative distribution function (ccdf) of the 

daily discharge was fitted through the observed discharge distribution as:  

 𝑐𝑐𝑑𝑓(𝑄∗) = 𝛤(𝑘/𝑄∗, 𝑘 + 1) (10) 

where Γ is the lower incomplete gamma function. Figure S7 illustrates the fit between the WaterGAP derived discharge 320 
distribution and the optimized ccdf for one of the catchments. Site specific discharge variability values (k) are calculated for 

all catchments and listed in Table 2. Obtained k-values range between 0.8 and 1.2 with a mean of 1.01 ± 0.12. 

3. Methods 

The presented river incision models (A-SPM, R-SPM and ST-SPM in section 1.2) all depend on river steepness, ksn, 

known to correlate well with ECRN (DiBiase et al., 2010; Ouimet et al., 2009; Scherler et al., 2017; Vanacker et al., 2015). 325 
Moreover, ECRN integrate over timespans that average out temporal fluctuations of denudation rates and over spatial extents 

which are sufficient to average out the erratic nature of hillslope processes. Therefore, ECRN can be used to constrain models 

of river incision provided a set of assumptions that we first describe below.  

3.1.  CRN-derived denudation rates to calibrate river incision 

The use of CRN-derived denudation rates to calibrate river incision relies on three main assumptions, summarized 330 
by Scherler et al. (2017). A first assumption is that the catchment wide denudation rates derived from CRN are representative 

for long term fluvial incision. Positive correlations between river steepness, ksn and CRN-derived denudation rates support 

this assumption (Vanacker et al., 2015), except for very small catchments where CRN-derived denudation rates are sensitive 

to the occurrence of deep-seated landslides. A second assumption is that runoff and rock uplift are uniform within the 

individual catchments.Positive correlations between river steepness, ksn and CRN-derived denudation rates support this 335 
assumption (Vanacker et al., 2015), except for very small catchments where CRN-derived denudation rates are sensitive to 

the occurrence of deep-seated landslides where material shielded at depth is supplied to the river (Niemi et al., 2005; Yanites 

et al., 2009). A second assumption when using CRN data to calibrate river incision models is that the sediment cosmogenic 

nuclide budget is at steady state at the catchment scale so that the input of CRN via in-situ production equals the export of 

CRN via sediment export and radio-active decay. Given the size of the studied basins, this assumption seems to be reasonable. 340 
A third assumption, in particular when using the process-based R-SPM and ST-SPM, is that the runoff data, used to calibrate 

the incision parameters is uniform within the sampled sub-catchments, and representative over the time span which CRN data 

integrate (1-100 kyr). This is a challenging assumption, given the contemporaneous nature of thethat available hydrological 

data only covers the recent past. While spatial patterns of runoff, mainly controlled by orographic precipitation, could be 

assumed broadly similar over the integration time of CRN-derived denudation, this is not necessarily true for the temporal 345 
variation in runoff. We will revisit the validity and implications of these three assumptions in the discussion section of this 

paper.  

3.2. River incision models 

In a first set of model runs, we evaluate the performance of the area-based SPM (A-SPM) in predicting ECRN rates. To 

account for rock strength variability Eq. 2 is rewritten as: 350 
 𝐸 = 𝑘*	𝐿1TTT	𝑘#"

" (11) 
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where ka (L1-2mt-1) is the erosional efficiency parameter and 𝐿1TTT is a dimensionless catchment mean lithological erodibility 

value. Given its empirical nature, where the effect of allogenic (e.g. runoff variability) and autogenic (e.g. incision thresholds 

and river width dynamics) controls of fluvial processes is integrated within the empirical scaling parameters (K, m and n), the 

A-SPM does not enable us to identify the role of spatial or temporal runoff variability and incision thresholds. Note that, at 

any point in the paper, lithological heterogeneity within the Paute catchment is represented using the average values of LE, for 355 
the individual sub-catchments indicated with 𝐿1TTT and listed in Table 2. If lithological heterogeneity is not considered, 𝐿1TTT is 

fixed to a value of 1.  
In a second set of model runs, we evaluate to what extent more advanced SPMs can be used to understand the role 

of these allogenic and autogenic processes. We start by evaluating the performance of a runoff-based SPM (R-SPM). To 

account for rock strength variability Eq. 6 is rewritten as: 360 
 𝐸 = 𝐾𝐿1TTT𝑘#"

" (12) 

An overview of the parameter values required to solve the R-SPM is given in Table 1. Only the value of kw is based on a 

regional calibration of the hydraulic geometry scaling (see section 2.3). Other parameters are set to theoretical values (reported 

by Deal et al., 2018; DiBiase and Whipple, 2011; Scherler et al., 2017). Actively incising bedrock channels are often covered 

by a layer of sediment (Shobe et al., 2017). Therefore, we assume that river incision is scaled to the bed shear stress as for 

bedload transport (Meyer-Peter and Müller, 1948) and set a to 3/2 (cfr. DiBiase and Whipple, 2011; Scherler et al., 2017). 365 
We use the Darcy-Weisbach resistance relation and coefficients (α = β = 2/3) to calculate shear stress exerted by the river 

flow on its bed and assume a friction factor of 0.08 resulting in a flow resistance factor kt of 1000 kg m−7/3 s−4/3 (e.g. Tucker, 

2004). The use of Darcy-Weisbach friction coefficients in combination with a = 3/2 results in a value for the slope exponent 

equal to unity (n = 1, see Eq. 4). Based on these theoretical derivations, we fix n to unity when constraining the R-SPM. Note 

that this contrasts to the first set of model runs (application of the A-SPM), where we allow n to vary. By fixing n to unity, 370 
we want to verify whether spatial variations in runoff (incorporated in K from Eq. 12) can explain variations in incision rates 

otherwise ascribed to non-linear river incision. The only parameter not fixed to a constant value is the erosivity coefficient ke, 

which is optimized as described in section 3.3. 

In a final set of model runs, we apply the Stochastic-Threshold SPM (ST-SPM) to evaluate the role of temporal 

precipitation variability and thresholds for incision (Eq. 4). Here, we adjust the ST-SPM to account for rock strength variability 375 
as:  

 𝐼 = 𝐾𝐿1TTT𝑄∗	'𝑘#"
" − 	𝜓 (13) 

To derive long-term erosion rates (E), Eq. 13 is integrated over the probability density function of discharge 

magnitudes (Eq. 5) which requires values for the lower (𝑄.∗) and the upper (𝑄!∗ ) limit of the integration interval. Constraining 

𝑄!∗  is difficult based on observational records alone as they might miss some of the most extreme flooding events. However, 

when simulating incision rates over long time spans and thus considering long return times of 𝑄!∗  (>1000 y), the solution of 380 
Eq. 5 is insensitive to the choice of 𝑄!∗  (Lague et al., 2005). We therefore set 𝑄!∗  to infinity in all our model runs. The critical 

discharge (𝑄.∗) for erosion to occur can be derived from Eq. 13 by setting I equal to 0: 

  
𝑄.∗ = U

𝜓
𝐾#)𝐿1TTT	𝑘#""

V
6
'
 (14) 
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The impact of spatial variations in runoff and discharge variability is evaluated by setting 𝑅 and k respectively to the sub-

catchment specific values or the mean of these values (listed in Table 2, Eq. 4). Parameters left free during optimization are: 

the erosivity coefficient ke and the critical shear stress 𝜏.∗. Parameter values of both variables are optimized as described in 385 
section 3.3. 

 

 

3.3. Optimization of model parameters  

We propose three metrics to evaluate the performance of the different river incision models. A first one is the 390 
commonly used model error (ME):  

 
 

𝑀𝐸 =X YU
(𝑂= −𝑀=)

𝜎=
V
;=>"/

=>6
 (15) 

where nb is the number of ECRN data points, Oi are the catchment specific measured ECRN denudation rates, Mi represents the 

catchment specific modelled river incision and σi represents the catchment specific standard deviation on ECRN. The advantage 

of the ME is that it explicitly incorporates the error on the analytical data (ECRN) by weighing the model error with the 395 
analytical error. However, errors on CRN data are heteroscedastic: they systematically increase with increasing denudation 

rates. Although the ME thus provides a good metric to evaluate overall model performance, the metric is not well suited to 

optimize model parameters in an optimization procedure: too much weight will be given on optimization of the model in the 

lower regime of the denudation spectrum where measured errors on ECRN are low whereas higher measured ECRN data will not 

be approximated well because of large associated errors. To compensate for the effect of heteroscedasticity we rescale values 400 
Oi, Mi and Ei using a logarithm with base 10 when calculating ME (Herman et al., 2015)(Herman et al., 2015). In this paper, 

ME will be used to evaluate model performance, but not to optimize model parameters.  

 A second metric is the coefficient of determination, R2.: 

 
𝑅; = 1 −

∑ (𝑂= − 𝑓=);=>"/
=>6

∑ (𝑂= − 𝑂T);=>"/
=>6

 (16) 

where fi are the fitted ECRN denudation rates. Contrary to ME, R2 evaluates the explained variance of the model giving all 

observations the same weight, regardless their analytical error. However, when model parameters result in an offset between 405 
simulated and observed data (i.e. the intercept of the fit), this can still result in a high R2.  

We therefore use the Nash Sutcliff model efficiency to optimize model parameters (NS, Nash and Sutcliffe, 1970) :  

 
𝑁𝑆 = 1 −

∑ (𝑂= −𝑀=);=>"/
=>6

(𝑂= − 𝑂T);
 (17) 

The NS coefficient ranges between −∞ and 1 where 1 indicates optimal model performance explaining 100 % of the data 

variance. When NS = 0, the model is as good a predictor as the mean of the observed data. When NS <= 0; model performance 

is unacceptably low. The NS-coefficient has been developed in the framework of hydrological modelling but has been applied 410 
in wide range of geomorphologic studies (e.g. Jelinski et al., 2019; Nearing et al., 2011). (e.g. Jelinski et al., 2019; Nearing et 

al., 2011).  
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4. Comparing model results with CRN-derived denudation rates 

In the following sections, we compare simulated erosion rates, obtained with the river incision models presented in 415 
Eq. 11 – Eq. 13 with measured CRN-derived denudation rates. We start with the use of the A-SPM (Eq. 11) to evaluate the 

extent to which lithological variability controls denudation rates. Once the impact of lithological heterogeneity on river 

incision is clarified, we evaluate whether runoff variability and incision thresholds can explain variations in ECRN-derived 

denudation rates. To this end, two process-based river incision models are evaluated (the R-SPM and ST-SPM, presented in 

Eq. 12 and Eq. 13 respectively). Optimized parameters and model performance of all model scenarios are listed in Table 4. 420 
Best fit results of a selected number of model runs are presented in Figure 7 and Figure 8. An overview of model fits for all 

the scenarios listed in Table 4 is given in Figures S8, S9 and S10.  

4.1. Area-based stream power model  

In a first set of model runs we evaluate the use of an Area-Based Stream Power Model (A-SPM) to explain observed 

variations in CRN-derived denudation rates (ECRN). We optimize river incision parameters for four scenarios (Table 4: A-425 
SPM scenario’s 1 – 4): in the first two scenarios, the slope exponent, n is left as a free parameter. In the second two scenarios, 

the slope parameter is fixed to unity (n = 1). Figure 7 illustrates both the ksn-ECRN (Figure 7a and b) and corresponding EMod-

ECRN relationships where EMod represents the simulated river incision (Figure 7c and d). 

In A-SPM scenario 1 (Table 4, Figure 7.ac), we assume a spatially uniform erodibility (𝐿1TTT fixed to 1 in Eq. 11) and leave 

the erosion efficiency coefficient (K’) and the slope parameter n as free parameters during model optimization. The optimized 430 
fit between simulated erosion (E, Eq. 2) and ECRN is shown in Figure 7.ac. The optimized fit is surrounded by a lotstill results 

in a high degree of data scatterscattering resulting in a NS model efficiency of 0.5, a R2 of 0.5, a ME of 3.25 and optimized 

values for K’ and n of respectively 0.57 m0.1s-1 and 1.1207. The fit between ksn and ECRN (Figure 7a) or simulated river incision 

and measured denudation rates (Figure 7c) hints toat the existence of a correlation between ECRN and river incision rates. The 

fit shown in in Figure 7.a, showsc, illustrates that modelled erosion rates for catchments with a low mean erodibility index (= 435 
high resistance to erosion) are mostly overpredicted (plotting below the 1:1 line) whereas modelled erosion rates of catchments 

with a high erodibility index are mostly underpredicted (plotting above the 1:1 line).  

In A-SPM scenario 2 (Table 4, Figure 7.b), we quantify the impact of varying lithology by using catchment specific 

values for the lithological erodibility (𝐿1TTT in Eq. 11) and leaving ka and n as free optimization parameters. The optimized fit 

between simulated erosion (E, Eq. 11) and ECRN is shown in Figure 7.b. Optimization results in a NS model efficiency of 0.73, 440 
a R2 of 0.73, a ME of 2.23 and optimized values for ka and n of respectively 0.07 m0.1s-1 and 1.64. Considering lithological 

erodibility strongly reduces data scatter surrounding the fit. The importance of lithological strength in controlling the A-SPM 

and the ksn-ECRN relation confirms that strong metamorphic and plutonic rocks erode at slower rates than lithologies which are 

less resistant to weathering such as volcaniclastic deposits. The erodibility index appears to provide an appropriate scaling of 

relative rock strength: analysis of residuals did not reveal any significant relation of residuals with lithology. When using 445 
spatially variable, catchment specific lithological erodibility values (𝐿1TTT) (Figure 7.b), the n coefficient of the SPM is 

considerably larger than unity (n = 1.64) and the ksn-ECRN relationship becomes non-linear, corroborating earlier findings 

documented in e.g. Gasparini and Brandon (2011). To evaluate the impact of a variable n exponent on the performance of the 

empirical A-SPM, we executed two more model optimizations.  

 450 
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In A-SPM scenario 2 (Table 4, Figure 7.d), we quantify the impact of varying lithology by using sub-catchment specific 

values for the lithological erodibility (𝐿1TTT in Eq. 11) and leaving ka and n as free optimization parameters. The optimized fit 

between simulated river incision (E, Eq. 11) and ECRN is shown in Figure 7.d. Optimization results in a NS model efficiency 

of 0.73, a R2 of 0.73, a ME of 2.23 and optimized values for ka and n of respectively 0.07 m0.1s-1 and 1.63. Considering 

lithological erodibility strongly reduces data scatter surrounding the fit. The importance of lithological strength in controlling 455 
the A-SPM and the ksn-ECRN relation (Figure 7b) confirms that strong metamorphic and plutonic rocks erode at slower rates 

than lithologies which are less resistant to weathering such as volcaniclastic deposits. The erodibility index appears to provide 

an appropriate scaling of relative rock strength: analysis of residuals did not reveal any significant relation of residuals with 

lithology. When using spatially variable, sub-catchment specific lithological erodibility values (𝐿1TTT) (Figure 7.d), the n 

coefficient of the SPM is considerably larger than unity (n = 1.63) and the ksn-ECRN relationship becomes non-linear (Figure 460 
7.b), corroborating earlier empirical findings (DiBiase et al., 2010; Harel et al., 2016; Lague, 2014; Whittaker and Boulton, 

2012). To evaluate the impact of a variable n exponent on the performance of the empirical A-SPM, we executed two more 

model optimizations.  

In A-SPM scenario 3 (Table 4, Figure S8.c), we assume a spatially uniform lithology and erodibility (𝐿1TTT fixed to 1 in 

Eq. 11), fix n to 1 and only leave K’ to be optimized as a free model parameter. With a NS model efficiency of 0.5, a R2 of 465 
0.5, a ME of 3.2 and an optimized value for K’ of 1.00 m0.1s-1, the model fit and performance is similar to the values obtained 

in scenario 1.  

In A-SPM scenario 4 (shown in Table 4, Figure S8.d), lithological variability is considered (using sub-catchment specific 

values for 𝐿1TTT in Eq. 11), n is fixed to 1, and K’ is a free model parameter. With a NS model efficiency of 0.51, a R2 of 0.56, a 

ME of 3.05 and an optimized value for K’ of 1.4 m0.1s-1, the model performance is much lower than when leaving the slope 470 
exponent n as a free parameter (A-SPM scenario 2). This result shows that the apparent lack of 

The results from the four scenarios show that a non-linear relationship between river steepness (ksn, representing river 

incision rates) and ECRN (scenario 1 and 2) can be explained by is unveiled when the lithological heterogeneity which is 

masking the existence of such is explicitly taken into account (Figure 7b). Likewise, a non-linear relationship. Once river 

incision model (A-SPM scenario 2 (Figure 7d)), where lithological variabilityheterogeneity is considered, a linear relationship 475 
with n =1 between ksn values and ECRN (this scenario, A-SPM  outperforms the other evaluated A-SPM scenarios (Table 4) is 

performing less well than a river incision model where this relationship is non-linear (with n>>1).  

 

4.2. Runoff-based and Stochastic-Threshold Stream Power Models 

The previous analysis shows that the explanatory power of the A-SPM model, and therefore the ksn-ECRN relationship, 480 
strongly improves when considering spatial variations in lithology. Moreover, when considering variations in lithological 

erodibility, river incision is found to be non-linearly dependent on the channel slope (S), with n = 1.63. In a next step we 

evaluate whether this non-linear relation can be explained by spatial and/or temporal rainfall variability and/or the existence 

of thresholds for river incision (Table 4: R-SPM scenarios 1 - 2 and ST-SPM scenarios 1 – 8, Figure 8).  

4.2.1. Runoff-based SPM (R-SPM) 485 
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In a first set of model runs, we evaluate the performance of the runoff-based Stream Power Model (R-SPM Eq. 12) to 

evaluate the role of spatially variable runoff using catchment specific values for mean runoff (R derived from the WaterGAP 

data, reported in Table 2 and shown in Figure 6).  

In R-SPM scenario 1 (Table 4, Figure S9.a), lithological variability is not considered (𝐿1TTT fixed to 1 in Eq. 12). With a 

NS model efficiency of 0.49, a ME of 3.57 and an R2 of 0.51, model performance is comparable to the regular A-SPM under 490 
uniform lithology with n fixed to 1 (NS = 0.5). This illustrates that studying spatial runoff variability is not feasible when 

ignoring the confounding role of lithological erodibility on denudation rates.  

In R-SPM scenario 2 (Table 4, Figure 8a), lithological variability is considered (using sub-catchment specific values for 

𝐿1TTT in Eq. 12). With a NS model efficiency of 0.7, a ME of 2.61 and an R2 of 0.75, model performance is close to that of the 

regular A-SPM under uniform lithology with n >> 1 (NS = 0.72). This model simulation therefore suggests that spatial 495 
variations in runoff can account for the non-linearity in the ksn-ECRN relationship: while slope dependency in the R-SPM is 

fixed to unity (see derivation in Eq. 4a – 4c), the model is capable of explaining the spatial pattern in denudation rates. This 

implies that orographic rainfall and thus runoff gradient as shown in Figure 6 influences the efficiency of river incision. The 

offset between the R² (0.75) and NS (0.70) values can be attributed to the way in which these metrics work: whereas R² 

evaluates the goodness of the linear fit between modelled and measured observations, NS evaluates the absolute differences 500 
between modelled and observed denudation rates. Hence, for the NS model efficiency to be high, observations must fit on the 

1:1 line (Figure 8.a). However, most of the simulated values for low denudation rates are overestimated when using the 

optimized parameter values of the R-SPM and plot below the 1:1 line (Figure 8a). Therefore, we conclude that the R-SPM 

performs well in predicting measured denudation rates albeit low denudation rates are overestimated resulting in a NS and 

ME value which are respectively slightly lower and higher than those of the empirical A-SPM. In the following section we 505 
evaluate whether introducing temporally variable runoff coefficients or/and incision thresholds can further improve the 

performance of a process-based river incision model.  

 

 

4.2.2. Stochastic-Threshold SPM (ST-SPM) 510 

In a final series of model runs, we use the Stochastic-Threshold Stream Power Model (ST-SPM, Eq. 13) to evaluate the 

role of spatially variable runoff (catchment specific R, reported in Table 2 and show in Figure 6) in combination with 

catchment specific runoff variability (k, reported in Table 2) and the presence of incision thresholds (τc in 𝜓 in Eqs. 4 and 10). 

Table 4 reports details on the different model scenarios where ST-SPM is optimized to the observed ECRN data considering 

all possible combinations (4) of uniform or spatially variable catchment mean runoff (R) and uniform or spatially variable 515 
catchment mean runoff variability (k). For reference, the 4 scenarios include both uniform and spatially variable lithological 

erodibility, LE (8 scenarios in total).  

In ST-SPM scenarios 1-4 (Table 4, Figures S10.a-d), the ST-SPM is optimized assuming a constant erodibility (LE fixed 

to 1). Similar to what has been found for the R-SPM, model performance is not any better compared to the use of a simple A-

SPM when not considering lithological variability. This confirms that optimizing more complex river incision models (such 520 
as the ST-SPM) has little added value when the heterogeneity in environmental conditions (lithological heterogeneity) is not 

considered.  
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In ST-SPM scenarios 5 and 6 (Table 4, Figures S10.e-f), catchment mean runoff (𝑅T) is fixed to the average value of all 

catchments (0.82 m yr-1) in order to evaluate the role of (i) variations in observed temporal runoff variability (k) and (ii) 

optimized values for the incision threshold (τc). In scenario 5, k is fixed to the average value for all catchments (k = 1.01) 525 
whereas in scenario 6, k is set to the catchment specific values as listed in Table 2. Both scenarios (5 and 6) perform well with 

an NS value equalling 0.71 indicating that temporal runoff variability (k) is not influencing model performance. Regardless 

the lack of spatially variable runoff (R), both scenarios perform as well as R-SPM scenario 2, where runoff variability was 

considered. The good performance of ST-SPM scenarios 5 and 6 can be attributed to the presence of an incision threshold (𝜓 

> 0 in Eq. 13), where τc is optimized to a value of ca. 30 Pa (Table 4). Given that the use of the ST-SPM with constant runoff 530 
values yields a good model fit suggests that part of the non-linear relationship between river steepness, ksn and ECRN can be 

attributed to the presence of thresholds for river incision to occur (cfr. Gasparini and Brandon, 2011).(Lague, 2014).  

ST-SPM scenarios 7 and 8 (Table 4, Figures S10.e-f and Figure 8b) are similar to scenarios 5 and 6, with the difference 

that spatial runoff variability is considered by using catchment specific values for runoff (𝑅T,	Table 2). Similarly to scenario 5 

and 6, using catchment specific values for k does not improve model performance, resulting in a similar model performance 535 
for scenario 7 and 8. Overall, ST-SPM scenarios 6 and 7, result in the highest model performance of all tested scenarios, with 

a NS model efficiency of 0.75, a ME of 2.22 and 2.21 and an R2 of 0.75. The optimized model fit for ST-SPM scenario 7 is 

shown in Figure 8b and corresponds well with the 1:1 line between modelled and observed denudation rates. Optimized values 

for τc are ca. 14 -15 Pa, being in the range, but at the lower spectrum of earlier documented values for critical shear stress (e.g. 

Shobe et al., 2018 report τc values between 10 – 1000 Pa). Contrary to the R-SPM where low denudation rates are 540 
overestimated (Figure 8a), the ST-SPM does predict low denudation rates better due to the consideration of an incision 

threshold which mainly influences simulated river denudation rates at the lower end of the spectrum.  

ST-SPM scenarios 7 and 8 have a model error (ME is respectively 2.22 and 2.21) similar to the model error of A-SPM 

scenario 2 (ME = 2.23). Hence, we conclude that a ST-SPM considering spatial variations in runoff and simulating a critical 

threshold for river incision performs as well as an A-SPM where the effect of allogenic (runoff variability) and autogenic 545 
(incision thresholds) response is casted in the lumped empirical incision parameters. While the R-SPM and ST-SPM do not 

necessarily predict spatial patterns in observed ECRN rates better than an A-SPM, they do enable one to simulate the effect of 

runoff variability and incision thresholds and therefore provide an operational tool to simulate past and future climate changes. 

Note that differences in model performance between R-SPM scenario 2 and ST-SPM scenarios 5-8 are existent but not very 

pronounced. To evaluate the significance of these differences, our analysis should be repeated on larger datasets capturing a 550 
wider variability in denudation rates and hydrology.  

 

5. Discussion  

5.1. Are CRN-derived denudation rates representative for long term river incision processes?  

5.1.1. Equilibrium between river incision and hillslope denudation 555 

In theory, rates of hillslope denudation equal rates of river incision if landscapes are either in a steady state or if transient 

landscapes are characterized by rapid hillslope response (e.g. threshold hillslopes). Steady state landscapes can only be 

achieved under stable climatic and tectonic settings that prevail over millions of years. Such stability is rarely met in 
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tectonically active regions where landscapes continuously respond to environmental perturbations (Armitage et al., 2018; 

Bishop et al., 2005; Campforts and Govers, 2015).  560 
The downstream reaches of the Paute catchment are a good example of a transient landscape where a major knickzone 

is propagating upstream in the catchment resulting in steep threshold topography downstream of the knickzone (Figure S3 

and Vanacker et al., 2015). Facing a sudden lowering of their base level after river rejuvenation, soil production and linear 

hillslope processes (Campforts et al., 2016) are not any longer in equilibrium with rapidly incising rivers (Fig. 15 in Hurst et 

al., 2012)(Fig. 15 in Hurst et al., 2012). In steep topography, hillslopes may transiently evolve to their mechanically limited 565 
threshold slope where any further perturbation will result in increased sediment delivery through mass wasting processes such 

as rockfall or landsliding (Bennett et al., 2016; Blöthe et al., 2015; Burbank et al., 1996; Larsen et al., 2010; Schwanghart et 

al., 2018). Given the erratic nature of landslides, not all threshold hillslopes will respond simultaneously to base level lowering 

depending on local variations in rock strength, hydrology, land use and seismic activity (Broeckx et al., 2020; Guns and 

Vanacker, 2014). Therefore, catchments in transient landscapes might experience hillslope denudation with highly variable 570 
rates. Therefore, catchments in transient landscapes might experience hillslope denudation with highly variable rates 

(Vanacker et al., 2020). 

We argue that CRN-derived denudation rates in the Paute basin both overestimate and underestimate long term incision 

rates in these catchments. Overestimation may result from the occurrence of recent, deep-seated landslide events, that deliver 

sediments with low CRN concentration to rivers (Tofelde et al., 2018). Underestimation, in turn, may occur if long-term 575 
hillslope lowering is accomplished by rare and large landslides whose return periods exceed the integration time of CRN-

derived denudation rates (Niemi et al., 2005; Yanites and Tucker, 2010).(Niemi et al., 2005; Yanites et al., 2009).  

Longitudinal profiles of rivers draining to the knickzone in the Paute catchment show marked knickpoints. This is 

particularly evident in catchments 9-16 (Figure 1) where ksn values are high (Figure 2) and knickpoints appear in the 

longitudinal profiles (Figures S3 and S4). Simulated erosion rates for some of these catchments deviate from CRN-derived 580 
denudation rates (Figure 8.b, ID’s 13 14 and 16) whereas for others (e.g. ID’s 9 and 11), predictions from the Stochastic-

Threshold river incision model show a good agreement with ECRN data. For catchments with a sufficiently large drainage area, 

modelled incision rates correspond well with ECRN (ID’s 9 and 11 being both ca. 700 km²), most likely because the mechanisms 

that potentially cause overestimation and underestimation cancel each other out at this scale. For smaller catchments (ID’s 

8;13;14 and 16 all being < 12 km²) there is a discrepancy between simulated river incision rates and ECRN.  585 
Although river incision models can be used to simulate denudation patterns in large transient catchments (> 10 km²), 

there is a need to develop alternative approaches including e.g. landslide mechanisms in long term landscape evolution models 

such as TTLEM (Campforts et al., 2017) or Landlab (Hobley et al., 2017). 

5.1.2. Integration timescales of ECRN and ksn  

Our analysis reveals the potential role of temporal and spatial variations of rainfall in long term landscape evolution. 590 
Integration times of CRN-derived denudation rates measured in the Paute basin are in the order of 1.5-175 ky. In contrast, 

response times of longitudinal river profiles generally range from 0.25-2.5 MaMy (Campforts et al., 2017; Goren et al., 2014; 

Snyder et al., 2003; Whipple, 2001; Wobus et al., 2006). During both of theseky to My time scales, it is unlikely that the 

temporal rainfall distribution that we inferred from 35 years of data remaineddistributions remain stationary. Thus, there is 

little reason to believeassume that ourthe hydrometeorological data that we inferred from 35 years of data fully capturecaptures 595 
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rainfall variability over the response times of river profiles and hillslopes. Contrary to temporal variations, the spatial patterns 

in orographic precipitation are characteristic to the formation of a mountain range at geological timescales (Garcia-Castellanos 

and Jiménez-Munt, 2015). In the Southern Ecuadorian Andes, moist air advection via the South American Low-Level flow 

generates pronounced patterns of orographic precipitation (Campetella and Vera, 2002). These patterns likelymight have 

persisted since at least the most recent uplift phase of Andean uplift in the Late Miocene (Spikings et al., 2010; Spikings and 600 
Crowhurst, 2004). Present-day rainfall and runoff spatial gradients (Figure 6) are thus deemed to be representativeinformative 

for times exceeding response times of longitudinal river profiles and integration times of CRN-derived denudation rates, and 

warrant the use of contemporaneous runoff data to represent spatial patterns of discharge at longer time scales (section 3.1). 

Ultimately,The performance of the different stream power models underscores this interpretation. While accounting for spatial 

patterns in runoff improves the performance of a Stochastic-Threshold SPM (Table 4 and section 4.2.2), incorporating proxies 605 
of temporal discharge variability leads to no improvement of model performance (the role of k in section 4.2.2).  

 

5.2. Environmental control on long term river incision rates 

5.2.1. Geology 

In all our simulations, model efficiency improves when incorporating rock strength variability (Table 4), which is 610 
consistent with earlier studies (Lavé and Avouac, 2001; Stock and Montgomery, 1999). In the absence of generally accepted 

metrics of erodibility, we employ an empirically derived lithological erodibility index (LE, Eq. 7) based on age and lithological 

composition of stratigraphic units. Owing to its simplicity, this or a similar index can potentially be applied at continental to 

global scales where information on rock physical properties are usually lacking the detail available at smaller spatial scales 

(Attal and Lavé, 2009; Nibourel et al., 2015). Notwithstanding, river incision also depends on other rock properties such as 615 
the density of bedrock fractures, joints and other discontinuities (Whipple et al., 2000). Fracture density has in turn been 

linked to spatial patterns of seismic activity (Molnar et al., 2007). Given the limited variability of seismic activity within the 

Paute basin (Petersen et al., 2018 Figure S2), seismicity was not considered in our statistical regional analysis but could be 

considered when applying our approach to other regions characterized by more spatial seismic variability.  

Incorporating spatial patterns of rock strength not only reduces the scatter surrounding the modelled river incision 620 
versus ECRN-derived denudation rates, but also controls the degree of the nonlinearitynon-linearity between river steepness 

(ksn) and denudation rates, expressed by the slope exponent n in the A-SPM (Figure 7). Omitting rock strength variability 

results in a ksn-ECRN relation that is close to linear in the Paute catchment (with n =1.07). This contradicts other studies where 

lithology was assumed to be uniform and n has been reported to be larger than 1 (e.g. DiBiase et al., 2010; Lague, 2014; 

Whittaker and Boulton, 2012). We argue that, in the Paute basin, lithological variability obscures a non-linear relationship 625 
between river incision and channel steepness.  

 

5.2.2. Rainfall 

The A-SPM performs well in explaining ECRN when lithology is considered and n>>1 (Figure 9, high NS model 

efficiency, low ME). For n = 1, the performance of the A-SPM is low. The result is consistent with earlier studies reporting n 630 
>> 1 (e.g. DiBiase et al., 2010; Harel et al., 2016; Ouimet et al., 2009; Scherler et al., 2014), which Lague (2014) attributes 
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to discharge variability and incision thresholds. We tested this hypothesis using the R-SPM and ST-SPM. Our results 

underscore that the non-linear relationship between ksn and ECRN is largely duecan be attributed to the spatial variability of 

mean annual runoff. Figure 9 shows that the R-SPM (where n is fixed to the theoretically obtained value of 1) performs better 

than an A-SPM when n is fixed to 1. This suggests that part of the frequently reported, non-linear relationship between ksn and 635 
ECRN can be attributed to the spatial variability of mean annual runoff. In tectonically active regions, steep river reaches often 

spatially coincide with the edge of the mountain range where mean annual rainfall rates are highest. Accordingly, if variations 

in runoff are not considered, the effects of orographic precipitation will be partly accommodated for by a non-linear 

relationship between river steepness and denudation rates. The R-SPM accounts for this effect but results in an 

underestimation of low river incision rates (Figure 8.a). Moreover, the model error (Figure 9.b), shows that the R-SPM does 640 
not perform as well as the A-SPM. In a final set of model runs, we apply the ST-SPM where the explicit simulation of a 

threshold improves model performance, especially for low denudation rates, resulting in an overall model error which is equal 

to the one obtained with the A-SPM with n >> 1 (Figure 9). This finding points to the potentially important role of thresholds 

for river incision to occur.  

 645 
Model performance of the ST-SPM equals the performance of an empirical A-SPM with a slope exponent >>1 (Figure 

9). Our interpretation is that (i) spatial variations in runoff and (ii) the incision thresholds are the causes of an observed non-

linear relation between ksn and ECRN. With a seemingly equal model performance, one could wonder what the benefit of the 

more complex ST-SPM model is over a simple, non-linear A-SPM. The aim of using a ST-SPM is however beyond fitting 

observed denudation rates: we want to identify to what extent the system is forced by internal allogenic dynamics such as the 650 
presence of incision thresholds or external autogenic forces such as runoff variability. Use of the ST-SPM illustrated that both 

processes can be accounted for in a quantitative way so that future studies can explicitly consider their role when 

reconstructing past landscape response to external perturbations (e.g. climate change).  

 

To further explore the interdependency between incision thresholds and spatial runoff variability, our approach can be 655 
applied to CRN datasets, covering regions characterized by more pronounced rainfall gradients (e.g. in Chile: Carretier et al., 

2018). Accounting for spatial variations in temporal discharge distributions (with k characterizing the stochastic flood 

occurrence), did not further improve neither deteriorate model performance (ST-SPM Scenario 8 in Table 4). This is likely 

due to data limitations: the necessary data to characterize temporal variations in discharge within a given catchment over a 

timescale that is relevant for CRN-derived denudation rates are, at present, not available.  660 
 

Our finding that spatial patterns in precipitation control river incision patterns corroborate findings in are related to river 

incision patterns corroborate findings in Hawaii (Ferrier et al., 2013),the Himalaya (Scherler et al., 2017) and in the Andes 

(Sorensen and Yanites, 2019). Sorensen and Yanites (2019) evaluated the role of latitudinal rainfall variability in the Andes 

on erosional efficiency using a set of numerical landscape evolution model runs. They show that erosion efficiency in tropical 665 
climates at low latitudes, where the Paute basin is located, is well captured by the spatial pattern of mean annual precipitation 

and thus runoff. At higher latitudes (25-50°) where storms are less frequent but still very intense, mean annual precipitation 

decreases but erosivity is still high due to the intensity of storms (Sorensen and Yanites, 2019). At these latitudes,, the river 

erosivity is likely better captured by spatial variationspatterns in storm magnitude are therefore more likely to be reflected in 

river erosivity and thus catchment mean denudation rates than in the Ecuadorian Andesfrequency. 670 
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6. Conclusions  

Numerous studies report a non-linear relationship between channel steepness and CRN-derived denudation rates. Based 

on the growing mechanistic understanding of river incision processes, this nonlinear relationship is often attributed to incision 

thresholds. Rainfall variability controls the frequency of river discharges that exceed incision thresholds. Although the 675 
dynamic interplay between stochastic runoff and incision thresholds theoretically results in a non-linear relationship between 

channel steepness and denudation rates, coupling theory with field data has been challenging. We address this issue in the 

Paute basin where we scrutinize the relationship between CRN-derived denudation rates and river incision using three 

different stream power models. We show that lithological variability obscures the relationship between channel steepness-

based river incision and CRN-derived denudation rates.  680 
In order to account for rock strength variability, which is for the Paute basin mainly ascribed to variations in lithological 

strength in the study area, we propose the use of an empirical lithological strength index that is based on lithology and age of 

lithostratigraphic units. Including lithological variability in the models increases the correlation between river steepness and 

denudation rates and reveals a non-linear relation, which we seek to explain using a stochastic-threshold SPM (ST-SPM). 

Using a downscaled version of a state-of-the-art hydrological reanalysis dataset, we show that the combination of spatially 685 
varying runoff and incision thresholds explains the observed, non-linear relationship. We do not detect, however, an impact 

of temporal discharge distributionspatterns on river incision. We attribute this lack to the integration time of CRN data 

and response times of river longitudinal profiles which extend beyond timescales at which discharge distributions can be 

assumed to be stationary.  

Our study shows the potential of a ST-SPM to infer regional and, potentially, continental to global differences in rainfall 690 

variability. However, we emphasize that its application needs to account for otherconfounding environmental variables such 

as rock strength. Simplified process representation of stream power-based incision models (e.g., lack of sediment-bedrock 

interactions) potentially might explain part of the remaining scatter between predicted and measured denudation rates. 

However, residual analysis showedshows that most of the remaining scatter occurs in small transient catchments (up to 10 

km²) where sporadic mass wasting processes on hillslopes likely obscure the relation between our measurements and 695 
predictions. Elucidating this relation further is potentially fostered by dynamic numerical landscape evolutions models which 

explicitly simulate the coupling between transient river adjustment and hillslope response. 
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Figure 1. Geomorphic setting of the Paute catchment. The numbered dots indicate the sampling locations for the CRN-1045 
derived erosion rates and their corresponding watersheds (Table 2). Full black lines indicate the major faults with PF = the 

Peltetec Fault, CF = the Cosanga Fault and SA = the Sub-Andean thrust fault. Concealed faults separating major stratigraphical 

units are indicated with dashed lines. The location of Quaternary faults is derived from the international lithosphere program 

(http:/geology.cr.usgs.gov). Major knickpoints are indicated as red diamonds. The colour scale indicates elevations, which 

were derived from the 30 m SRTM v3 DEM (NASA JPL, 2013). Main map is produced with TopoToolbox (Schwanghart 1050 
and Scherler, 2014). Inset map is made in QGis 3©.  
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Figure 2: Development of empirical lithological erodibility index (LE) and its application to the Paute catchment. (a) 

Proposed lithological erodibility index based on lithological age (LA). Detailed sub-classifications per lithology can be found 1055 
in Table S1. (b) Field measurements of uniaxial compressive strength (Basabe R, 1998; Table S4) versus the empirical 

erodibility index calculated using Eq. 7. Note that two of the nine observations overlap on this plot. (c) Spatial distribution of 

LE in the Paute catchment. The underlying topographic map is based on the 30 m SRTM v3 DEM (NASA JPL, 2013). The 

lithological erodibility map for Ecuador was used to delineate different lithostratigraphic units and is based on the 1M 
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geological map of Ecuador (Egüez et al., 2017 see also Figure S1 )(Egüez et al., 2017 see also Figure S1 ). The map is 1060 
produced with TopoToolbox (Schwanghart and Scherler, 2014).  
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Figure 3: Normalized steepness (ksn) for the Paute basin. Calculated ksn–values for the Paute basin are overlain with a 

hillshade map (based on the 30 m SRTM v3 DEM; NASA JPL, 2013). The highest values can be observed in two major knick 1065 
zones, located in the lower part of the Paute basin. In these zones, topographic rejuvenation started and a transient incision 

pulse has propagated from East to West (see also Figure S3). The map is produced with TopoToolbox (Schwanghart and 

Scherler, 2014). 
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 1070 
Figure 4. River width (W) as a function of the mean annual discharge (Q). W represents bankfull channel width for a 

selected number of river sections. These were digitized in Google Earth, using the ChanGeom toolset (Fisher et al., 2013a; 

figure S5).(Fisher et al., 2013; figure S5). Mean annual water discharges (Q) were derived from the downscaled RRIDW WRR2 

WaterGAP3 data (available from earth2observe.eu; see section 2.4). 

 1075 
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Figure 5: Calibration of the precipitation (P) versus runoff curve (R). Mean annual runoff versus the mean annual 

precipitation for all WaterGAP3 pixels in Ecuador (0.25°; 1979-2014; WaterGAP3 data available from earth2observe.eu).  1080 
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Figure 6. Downscaling of WRR2 WaterGAP3 rainfall and runoff products to high resolution regional maps. (a) WRR2 

WaterGAP3 precipitation (P) at the original resolution of 0.25°. (b) Corresponding runoff (R) at the original resolution of 

0.25°, (c) Downscaled precipitation (PRIDW) at a resolution of 2500 m, (d) corresponding downscaled runoff (RRIDW) at a 1085 
resolution of 2500 m. WaterGAP3 data were derived from earth2observe.eu.  The underlying hillshade maps are based on the 

30 m SRTM v3 DEM (NASA JPL, 2013). The maps are produced with TopoToolbox (Schwanghart and Scherler, 2014).  
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Figure 7 Best fit between CRN-derived erosion rates (ECRN) and river steepness index (ksn) or modelled river 1090 
incision (EMod) using the area-based Stream Power Model (A-SPM). (a) A-SPM, scenario 1 (cf. Measured ECRN versus ksn 

(Table 4) assuming a uniform lithology.2). Observations are coloured according to the average lithological erodibility of the 

sub-catchment (𝐿1TTT). Low values for 𝐿1TTT represent strong rocks, resistant to erosion. High values for 𝐿1TTT	represent weak rocks, 

susceptible to erosion. (b) Measured ECRN divided by LE versus ksn values (Table 2). By correcting the ECRN values for 

lithological heterogeneity, the ksn-ECRN relationship becomes significantly nonlinear (n=1.63±0.5) (c) A-SPM, scenario 1 (cf. 1095 
Table 4). Modelled erosion rates for catchments consisting of strong rocks (blue colours) are mostly over predicted and plot 

below the 1:1 line. Modelled erosion rates for catchments consisting of weak rocks (red colours) are mostly under predicted 

and plot above the 1:1 line. (bd) A-SPM, scenario 2 (Table 4) where spatially variable lithological erodibility is explicitly 
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accounted for in the A-SPM. Catchment specific values for 𝐿1TTT are listed in Table 2, while the model parameters are listed in 

Table 4. A complete overview of all best model fits for A-SPM scenarios 1to - 4 is given in Figure S8. 1100 
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Figure 8 Best fit between CRN-derived erosion rates (ECRN) and modelled river incision (EMod) using Runoff-based and 

Stochastic-Threshold Stream Power Models. (a) R-SPM, scenario 2 (Table 4) assumingusing the average catchment 

lithological erodibility (𝐿1TTT) and runoff 𝑅T values per sub-catchment (both listed in Table 2). (b) ST-SPM, scenario 7 (Table 4) 1105 
assumingusing the average catchment lithological erodibility (𝐿1TTT) and runoff (𝑅T) values, as well as considering a threshold 

before river incision occurs (τc = 14Pa14 Pa). Numbered observations in (b) correspond to catchment IDs as listed in Table 2 

(see also the discussion in section 5). A complete overview of all best model fits for R-SPM scenarios 1 - 2 and ST-SPM 

scenarios 1 - 8 is given in respectively Figure S9 and Figure S10. 

  1110 
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Figure 9: Comparison of model performance of four selected river incision models. (a) Nash Sutcliffe model efficiency 

(NS) for different model scenarios, without (grey bars) or with (red bars) considering lithological heterogeneity. (b) shows 

the corresponding Model Error (ME). The A-SPM model scenario corresponds to the Area-Based Stream Power Model (cf. 1115 
Figure 7). It performs well when lithological heterogeneity is considered and all parameters are freely calibrated, resulting in 

a slope-steepness exponent (n; cf. Eq. 1) of 1.6263 (for a full overview of model parameters, see Table 4). However, forIn an 
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A-SPM scenario where n is fixed to the theoretically derived value of 11, the model performance strongly deteriorates (see 

main text). . In the R-SPM represents aand ST-SPM models, n is fixed to the theoretically derived value of 1. The R-SPM 

model scenario that explicitly incorporates runoff variability (cf. Figure 8a). The), and the ST-SPM scenariomodel also 1120 
includes an incision threshold (cf. Figure 8b). Both scenariosmodels perform well when n is fixed to 1 and when considering 

lithological heterogeneity is accounted for. Overall, the best model performance (highest NS and smallest ME) is obtained 

under the ST-SPM scenario where lithological and runoff variability, as well as river incision thresholds are considered. 

 

  1125 
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Table 1: Constant model parameters 

Parameter Model Description Value Unit 

a R-SPM/ST-SPM 
Bed shear stress exponent,  
with τa representing unit 
stream power if a= 3/2 

3/2 dimensionless 

kt R-SPM/ST-SPM Flow resistance factor 1000 kg m−7/3 s−4/3 

kw R-SPM/ST-SPM 
Scaling parameter between 

bankfull river width and 
discharge 

3.7 m−0.65 s0.55 

α R-SPM/ST-SPM Flow resistance exponent  
(Darcy–Weisbach) 2/3 dimensionless 

β R-SPM/ST-SPM Flow resistance exponent  
(Darcy–Weisbach) 2/3 dimensionless 

θref R-SPM/ST-SPM Reference concavity 0.45 dimensionless 
ρs ST-SPM Sediment particle density 2.7 g cm−3 
ρw ST-SPM Fluid density 1 g cm−3 
τc* ST-SPM Shield's number 0.045 dimensionless 

ωb ST-SPM downstream channel width 
variation exponent 0.55 dimensionless 

ωs ST-SPM At‐a‐station channel width 
variation exponent 0.25 dimensionless 
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Table 2: Characteristics of the sub-catchments studied in this paper. IDs correspond to the numbers indicated on Figure 1. 

The 10Be cosmogenic nuclide derived erosion rates were derived from Vanacker et al. (2015)a. Coordinates are given in 1130 
decimal degrees in the WGS84 datum, 𝐿1TTT is the average lithological index for the catchment, ksn is the normalized catchment 

average steepness, PRIDW and RRIDW are respectively the downscaled catchment average precipitation and runoff and k is the 

optimized discharge variability coefficient (cf. Eq. 9). 

ID Sample Latitude  
° 

Longitude  
° 

Area 
km² 

10Be erosion 
mm ka-1 

 𝑳𝑬TTT ∗	 ksn*  
m0.9 

PRIDW* m 
yr-1 

RRIDW*m 
yr-1 

k 

1 BQ -2,94 -78,93 186,3 53 ± 4 1,44 41,78 1,06 0,55 1,18 
2 CH -3,22 -78,74 86 88 ± 8 0,34 187,79 1,59 0,87 0,87 
3 CJ -2,92 -78,88 19,5 95 ± 11 1,43 60,45 1,02 0,54 1,04 
4 DE2 -2,77 -78,93 39,1 105 ± 9 1,61 80,96 1,14 0,58 1,04 
5 JA21 -2,89 -78,89 276 50 ± 4.5 1,45 48,96 1,05 0,55 1,19 
6 MAR -3,04 -78,95 49,8 30 ± 2 1,43 35,97 1,07 0,56 1,08 
7 NA1 -2,70 -78,92 57,1 142 ± 18 1,54 96,36 1,04 0,53 1,05 
8 NA4 -2,67 -78,90 4,9 222 ± 33 1,69 69,19 0,87 0,44 1,11 
9 NG-DW -2,73 -78,40 686,8 163 ± 16 0,57 184,21 2,25 1,33 0,92 
10 NG-SDb -2,73 -78,39 3,3 3959 ± 3801 0,89 231,84 2,62 1,60 0,91 
11 NG-UP -2,78 -78,46 679,1 179 ± 16 0,55 176,77 2,21 1,31 0,91 
12 PA -2,52 -78,56 424,4 229 ± 26 1,13 142,61 1,14 0,60 1,16 
13 PAL -2,65 -78,61 6,2 318 ± 32 0,69 192,24 1,89 1,11 0,88 
14 PT-BM -2,65 -78,46 6,8 219 ± 22 0,60 236,09 2,50 1,51 0,91 
15 PT-QP -2,61 -78,57 3,4 216 ± 20 0,52 231,77 2,01 1,16 0,94 
16 PT-SD -2,61 -78,46 11,1 399 ± 53 0,60 210,28 2,52 1,51 0,93 
17 QU -2,99 -78,92 16,7 77 ± 8 1,43 55,32 1,02 0,53 1,17 
19 RG1_2 -2,96 -78,89 0,9 26.5 ± 2 1,43 48,87 1,01 0,53 1,13 
20 RG2 -2,94 -78,91 29,2 61 ± 6 1,44 53,96 1,01 0,53 1,12 
21 RGD1 -2,94 -78,80 2,2 30 ± 3 0,64 105,63 1,03 0,55 1,14 
18 RGST -2,97 -78,90 20,2 28 ± 2 1,42 45,55 1,00 0,52 1,08 
22 SAb -2,96 -78,93 0,5 152 ± 19 1,49 0,04 1,05 0,55 1,16 
23 SF1_2 -2,89 -78,77 84 72 ± 7 0,56 110,46 1,42 0,78 0,83 
24 SF2 -2,98 -78,69 1,3 118 ± 9 0,50 147,45 1,60 0,89 0,80 
25 SI1b -3,16 -78,81 0,6 10 ± 1 0,29 57,09 1,34 0,72 0,95 
26 SI2 -3,14 -78,81 18,3 30 ± 3 0,58 70,42 1,38 0,74 0,99 
27 SI3 -3,14 -78,81 49,2 88 ± 11 1,30 43,63 1,28 0,68 1,03 
28 SI5 -3,00 -78,81 6 3.4 ± 0.3 0,90 86,62 0,99 0,53 1,09 
29 TI11 -3,01 -78,57 62,1 125 ± 11 0,33 142,87 1,97 1,13 0,84 
30 TI2 -3,01 -78,61 21 57 ± 7 0,33 151,34 1,86 1,06 0,83 

a Catchment MA1 from Vanacker et al. 2015 is not listed because its area (< 0.1km²) did not allow to accurately calculate the 

catchment properties listed here.  1135 
b Catchments excluded from model optimization runs (see text)  
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Table 3: Lithological erodibility index values based on the lithological strength (LL). Detailed sub-classifications per lithology 

can be found in Table S2. 

  LL 

Igneous 2 - 3 

Metamorphic (Igneous) 2 

Metasedimentary 2 - 4 

Strong sedimentary 4 

Weak sedimentary 10 - 12 

Unconsolidated 12 

 1140 
  



 

47 
 

Table 4: Overview of the best-fit model results 
Model Nb. Scenario Fig.* Erosional 

efficiency 
Slope 

exponentd 
Erosional 
efficiency 

Discharge 
variability 

Critical 
Shear 
stress 

Runoff R² ME NS 

K' ka n ke k τc R    

m0.1s-1 m0.1s-1   m2.5 s2 kg-1.5   Pa m yr-1      

A-SPM 

1 𝐿"""" fixeda 12.a 0.73 - 1.07 - - - - 0.5 3.25 0.5 

2 𝐿"""" variablea 12.b - 0.07 1.63 - - - - 0.73 2.23 0.73 

3 𝐿"""" fixeda  1.00 - 1 - - - - 0.5 3.2 0.5 

4 𝐿"""" variablea  - 1.4 1 - - - - 0.56 3.05 0.51 

R-SPM 
1 𝐿"""" fixeda - - - 1 8.86 × 10-15 - -   0.51 3.57 0.49 

2 𝐿"""" variablea 14.a - - 1 1.43 × 10-14 - -   0.75 2.61 0.70 

ST-SPM 

1 
𝐿"""" fixeda 
𝑅" fixedb 
k fixedc 

- - - 1 1.13 × 10-14 1.01 4.08 0.82 0.50 3.22 0.50 

2 
𝐿"""" fixeda 
𝑅" fixedb 
k variablec 

- - - 1 1.16 × 10-14 variable  6.31 0.82 0.50 3.2 0.50 

3 
𝐿"""" fixeda 
𝑅" variableb 
k fixedc  

- - - 1 9.76 × 10-15 1.01 0.00 variable 0.51 3.75 0.49 

4 
𝐿"""" fixeda 
𝑅" variableb 
k variablec 

- - - 1 9.88 × 10-15 variable 0.00 variable 0.52 3.53 0.50 

5 
𝐿"""" variablea 
𝑅" fixedb 
k fixedc 

- - - 1 2.88 × 10-14 1.01 30.74 0.82 0.72 2.44 0.71 

6 
𝐿"""" variablea 
𝑅" fixedb 
k variablec 

- - - 1 2.90 × 10-14 variable 31.06 0.82 0.71 2.48 0.71 

7 
𝐿"""" variablea 
𝑅" variableb 
k fixedc 

14.b - - 1 1.86 × 10-14 1.01 14.21 variable 0.75 2.22 0.75 

8 
𝐿"""" variablea 
𝑅" variableb 
k variablec 

- - - 1 1.88 × 10-14 variable 14.66 variable 0.75 2.21 0.75 

a If 𝐿1TTT is fixed, a uniform value of 1 is used for all catchments. If 𝐿1TTT is variable, catchment specific values for LE are used 
(Table 2) 
b If R is fixed, a uniform mean runoff value of 0.8 m yr-1 is used for all catchments. If R is variable, catchment specific 1145 
values are used (Table 2) 
c If k is fixed, a uniform mean discharge variability value of 1.01 is used for all catchments. If k is variable, catchment 
specific values are used (Table 2) 
d The slope exponent (n) is optimized as a free parameter in A-SPM 1-2. It is fixed to 1 in A-SPM 3-4 (see text) 


