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Abstract. TS1We propose a novel way to measure and analyze networks of drainage divides from digital ele-
vation models. We developed an algorithm that extracts drainage divides based on the drainage basin boundaries
defined by a stream network. In contrast to streams, there is no straightforward approach to order and classify
divides, although it is intuitive that some divides are more important than others. A meaningful way of ordering
divides is the average distance one would have to travel down on either side of a divide to reach a common
stream location. However, because measuring these distances is computationally expensive and prone to edge
effects, we instead sort divide segments based on their tree-like network structure, starting from endpoints at
river confluences. The sorted nature of the network allows for assigning distances to points along the divides,
which can be shown to scale with the average distance downslope to the common stream location. Furthermore,
because divide segments tend to have characteristic lengths, an ordering scheme in which divide orders increase
by 1 at junctions mimics these distances. We applied our new algorithm to the Big Tujunga catchment in the
San Gabriel Mountains of southern California and studied the morphology of the drainage divide network. Our
results show that topographic metrics, like the downstream flow distance to a stream, and hillslope relief attain
characteristic values that depend on the drainage area threshold used to derive the stream network. Portions along
the divide network that have lower than average relief or are closer than average to streams are often distinctly
asymmetric in shape, suggesting that these divides are unstable. Our new and automated approach thus helps to
objectively extract and analyze divide networks from digital elevation models.

1 Introduction

Drainage divides are fundamental elements of the Earth’s
surface. They define the boundaries of drainage basins and
thus form barriers for the transport of solutes and solids by
rivers. It has long been recognized that drainage divides are5

not static through time but that they are mobile and migrate
laterally (e.g., Gilbert, 1877). The lateral migration of divides
is a consequence of spatial gradients in surface uplift (posi-
tive or negative) and stream captures. These frequently ac-
company tectonic deformation due to shearing, stretching,10

and rotating stream networks (Bonnet, 2009; Castelltort et
al., 2012; Goren et al., 2015; Forte et al., 2015; Guerit et

al., 2018), but recent studies have shown that even in tec-
tonically inactive landscapes, drainage divides migrate over
prolonged periods of time (Beeson et al., 2017). Such behav- 15

ior is consistent with the notion that small and local perturba-
tions can trigger nonlocal responses with potentially large ef-
fects on drainage form and area (Fehr et al., 2011; O’Hara et
al., 2018TS2 ). At regional scales, mobile divides can lead to
profound changes in drainage configurations and subsequent 20

alterations of base-level CE1 and sediment dispersal to sedi-
mentary basins. For example, Cenozoic building of the east-
ern Tibetan Plateau margin has been proposed to account for
major reorganization of large East Asian river systems and
associated changes in sediment delivery to marginal basins 25
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(Clark et al., 2004; Clift et al., 2006). Moreover, changes in
drainage area that are associated with migrating divides af-
fect river incision rates (Willett et al., 2014) and thus the to-
pographic development of landscapes, which potentially con-
founds their interpretation in the context of climatic and tec-5

tonic changes (Yang et al., 2015).
Recent studies of the causes and effects of mobile drainage

divides have focused on topographic differences across sev-
eral specific, manually selected drainage divides (e.g., Willett
et al., 2014; Goren et al., 2015; Whipple et al., 2017; Buscher10

et al., 2017; Beeson et al., 2017; Gallen, 2018; Guerit et
al., 2018; Forte and Whipple, 2018). Even if appropriate in
these studies, such a procedure introduces unwanted subjec-
tivity, both in the selection of divides and how any across-
divide comparison is done. This choice of procedure may15

be attributed to the fact that, so far, no there has been no
straightforward approach to reliably extract the drainage di-
vide network from a digital elevation model (DEM). Func-
tions that classify topographic ridges (the common shape
of drainage divides) based on local surface characteristics20

and a threshold value (e.g., Little and Shi, 2001; Koka et
al., 2011) are prone to misclassifications. The gray-weighted
skeletonization method by Ranwez and Soille (2002) (homo-
topic thinning) requires the determination of topographic an-
chors (e.g., regional maxima), which makes it sensitive to25

DEM errors. The approach by Lindsay and Seibert (2013),
who identified pixels belonging to drainage divides based on
confluent flow paths from adjacent DEM pixels and a thresh-
old value, is computationally expensive and sensitive to edge
effects that depend on DEM size. Furthermore, drainage di-30

vides that coincide with pixel centers are inconsistent with
the commonly used D8 flow-routing algorithm (O’Callaghan
and Mark, 1984), in which each pixel belongs to a specific
drainage basin. A probabilistic approach based on multiple
flow directions exists (Schwanghart and Heckmann, 2012),35

but computation is expensive and thus restricted to a few
drainage basin outlets. Finally, all of these approaches merely
yield a classified grid but no information about the tree-like
network structure of drainage divides, which requires the or-
dering of the divide pixels into a network (Fig. 1).40

Although divide networks might be thought of as mir-
rors of stream networks, there are fundamental differences
between the two. Starting at channel heads, i.e., the tips of
stream networks, streams always flow downhill and the up-
stream area monotonically increases. Stream networks are45

therefore directed networks that have a tree-like structure and
a natural order, which has been quantified in different ways
(e.g., Horton, 1945; Strahler, 1954; Shreve, 1966). Divide
networks, however, are neither directed nor rooted, and they
may even contain cycles. They do not obey any monotonic50

trends in elevation or other topographic properties that could
be easily measured. As a consequence, their ordering is less
straightforward. Nevertheless, it is intuitive that some divides
(e.g., a continental divide) should have a different order than
others. In addition, the structure of divide networks could be55

Figure 1. The Big Tujunga catchment, San Gabriel Mountains,
United States, with the stream network (blue) and drainage divide
network (red) draped over hillshade image. The drainage divide net-
work is obtained with the approach developed in this study. The
thickness of the stream and divide lines is related to upstream area
and divide order, respectively. Divide orders are based on the Topo
ordering scheme, which we describe in the main text. The map pro-
jection is UTM zone 11. North is up.

important in their susceptibility to drainage captures. For ex-
ample, higher-order divides may record perturbations longer,
as they are farther away from the base level and thus can-
not adjust as quickly as lower-order divides. Furthermore,
where higher-order divides are close to higher-order streams, 60

drainage-capture events would result in profound changes in
drainage area and thus a greater impact on stream discharge
and power (e.g., Willett et al., 2014).

In this study, we propose measuring and analyzing net-
works of drainage divides to address questions like the fol- 65

lowing. How is the geometry of a divide network related
to that of a stream network? Do similar scaling relation-
ships apply? And can the divide network be used to infer
catchment–drainage dynamics? Empirically driven answers
to these questions require tools to study drainage divides, 70

most efficiently from DEMs. We present our study in two
separate papers. In the following, part 1, we present a new
approach that allows for the identification and ordering of
drainage divides in a DEM. We investigate ways of order-
ing drainage divide networks and analyze basic statistical and 75

topographic properties with a natural example from the Big
Tujunga catchment in the San Gabriel Mountains in southern
California. In part 2 of this study (Scherler and Schwang-
hart, 2020), we present the results from numerical experi-
ments with a landscape evolution model that we conducted 80

to examine the response of drainage divide networks to per-
turbations.

2 Theoretical considerations

2.1 Drainage divides in digital elevation models

Drainage divides are the boundaries between adjacent 85

drainage basins, and thus their determination is based on the
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definition of drainage basins. In a gridded DEM, drainage
basins are generally defined through the use of flow direction
algorithms. The D8 flow direction algorithm (O’Callaghan
and Mark, 1984) assigns flow from each pixel in a DEM
to one of its eight neighbors in the direction of the steep-5

est descent. As a result, each pixel is associated with a dis-
tinct upstream, or uphill, drainage basin. In contrast, mul-
tiple flow direction algorithms, such as the D∞ flow direc-
tion algorithm (Tarboton, 1997), split the flow from one pixel
to several others, which results in some pixels contributing10

to more than one drainage basin (Schwanghart and Heck-
mann, 2012). In the following, we only consider drainage
basins derived from the D8 flow direction algorithm. In grid-
ded DEMs, flow paths derived from this algorithm run along
pixel centers (Armitage, 2019), and there is the possibility15

that two flow paths run parallel to each other in neighbor-
ing pixels. As a consequence, drainage basin boundaries, and
thus divides, must be located between DEM pixels and have
infinitesimal width (Fehr et al., 2009). Another important
consequence is that divides will have only two possible ori-20

entations that are parallel to pixel boundaries. Our definition
of divides is different from one in which divides are linked to
the highest points (pixels) on interfluves (Haralick, 1983). In
the case of multiple flow directions, for example, a meaning-
ful position of a drainage divide would be the place within a25

pixel that partitions the pixel area according to the flow con-
tributions to adjacent drainage basins.

For a given point in a channel network, its drainage basin
is uniquely defined to be the upstream area of that point.
The drainage divide of that basin, however, does not inter-30

sect the channel itself. We thus define drainage divides as
lines (or graphs) that mark the margin of drainage basins and
that do not cross rivers (Fig. 2). When derived from a DEM,
these graphs consist of nodes and edges: nodes are located
on pixel corners and edges follow pixel boundaries. A mean-35

ingful property of divide nodes and edges is that they should
not coincide with nodes or edges of the drainage network.
When applying the D8 flow-routing algorithm to a gridded
DEM with square elevation cells; however, this requirement
poses a problem due to the different pixel connectivity of di-40

vides and rivers. Whereas divide nodes can be connected to
only four cardinal neighbors, river nodes can be connected to
eight different neighbors. In consequence, divide nodes may
exist that coincide with diagonal edges of drainage networks
(Fig. 2). In a gridded DEM this issue could be resolved with45

a D4 flow direction algorithm; or, more generally, this issue
could be avoided if flow is only allowed orthogonal to cell
boundaries. In our approach, we nonetheless adopt the D8
flow direction algorithm and allow for spatial congruence of
streams and divides. In practice, such issues mainly arise near50

confluences (Fig. 2).

Figure 2. Definition of drainage divides in a digital elevation
model. Note the point where a drainage divide (red) coincides with
a river channel (blue). See text for details.

2.2 Drainage divide networks

Analogous to streams, drainage divides are typically orga-
nized into tree-like networks (Fig. 1), although cycles that
correspond to internally drained basins may exist. Because of 55

the directed flow of water, stream networks can be regarded
as directed graphs that start at channel heads (the leaves of
the tree) and end at an outlet or a river mouth (the root of
the tree). Flow directions in stream networks can be easily
derived from node elevations (e.g., O’Callaghan and Mark, 60

1984), and the hierarchy of streams can be related to their up-
stream area, for example. In contrast, drainage divides have
no inherent direction, and there is no terrain property, like
elevation, that could be used to assign a direction to them.
A meaningful metric for ordering divides may be the aver- 65

age branch length (Lindsay and Seibert, 2013), i.e., the aver-
age distance 3 (m) one would have to travel down on either
side of a divide to reach a common stream location (Fig. 3).
However, measuring this distance requires that the common
stream location and the entire path leading to it be contained 70

in the DEM. Because this may not be true for a significant
part of the divide network in a DEM and because measur-
ing this distance is computationally expensive (Lindsay and
Seibert, 2013), it is not very practical.

Instead, we suggest that directions can be derived from the 75

tree-like structure of drainage divide networks. Analogous to
a parcel of water that travels down a river from its source to
its mouth, we propose starting at the leaves of the tree, which
we call the endpoints of the divide network (Fig. 2), and in-
crementally move down the branches (Fig. 4). Note that the 80

term “move down” does not refer to elevation but to the hi-
erarchy of the divide network. Where two or more drainage
divides meet, they form a junction. We call individual parts of
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Figure 3. Ordering of divides based on the average distance to
a common stream location, 3. Numbered circles are places on
drainage divides (black lines), and blue lines indicate the flow path
to their common stream location (red circle). The resulting order of
the drainage divide places is 1< 2< 3. The landscape shown is part
of the Big Tujunga drainage basin.

drainage divides that link endpoints and junctions, junctions
and junctions, or endpoints and endpoints the drainage divide
segments, and we refer to the ends of divide segments as seg-
ment termini to avoid confusion with endpoints. At junctions
with more than one unsorted divide segment, the sorting pro-5

cess pauses because it is not obvious in which direction the
sorting shall continue. However, in the absence of cycles (in-
ternally drained basins), each junction will reach a point in
the sorting loop when there is only one unsorted divide seg-
ment left so that the sorting can continue (Fig. 4). This con-10

dition ensures that the divide segments are correctly sorted in
a tree-like manner, but it fails when encountering a cycle. As
we will show later, the average branch length 3 scales lin-
early with the maximum distance from an endpoint along the
sorted divide network and the maximum number of divide15

segments (or junctions), both of which are more easily com-
puted. We thus propose ordering the nodes and edges of the
divide network by their maximum distance from divide end-
points, measured either in map units or in the number of di-
vide segments. From now on, we call the distance measured20

in map units along the directed divide network the divide dis-
tance (dd).

3 Materials and methods

3.1 Divide algorithm

We implemented the above-described way of extracting and25

ordering drainage divides from a DEM in the TopoTool-
box v2 (Schwanghart and Scherler, 2014), a MATLAB-based
software for topographic analysis. Figure 5 shows the work-
flow of our approach, which consists of the following steps.

Figure 4. Iterative sorting and ordering of the divide network. The
divide network is assembled starting with divide segments that con-
tain endpoints (green) and which are then removed from the collec-
tion of divide segments. Former junctions (red) that have only one
segment remaining become endpoints, and the iteration continues
until no more endpoints exist.

1. For a given DEM, we first define a stream network 30

based on the D8 flow direction algorithm and a thresh-
old drainage area (Fig. 5a, b). The lower the threshold,
the more detailed the stream and divide networks will
be.

2. We extract drainage divides based on drainage basin 35

boundaries that we obtained for drainage areas at trib-
utary junctions and drainage outlets (Fig. 5c). Initially,
each drainage basin boundary is composed of one divide
segment that connects two endpoints, and junctions do
not yet exist. These divide segments do not cross any 40

rivers but their nodes may coincide with stream edges
(Fig. 2). We remove redundant divide segments in the
collection of divides, which arise from nested and ad-
joining drainage basins. As a result, we are left with
a set of unique divide segments, which, however, may 45

be continuous across junctions or terminate where they
should be continuous (Fig. 6).

3. We next organize the collection of divide segments into
a drainage divide network (Fig. 5d). This is the core
of the algorithm, in which we identify endpoints and 50

junctions, merge broken divide segments, and split di-
vide segments at junctions (Fig. 6). Our algorithm dis-
tinguishes between junctions, endpoints, and broken di-
vide segments by computing for each node of the di-
vide network the number of edges linked to it, the num- 55

ber of segment termini linked to it, and the existence
and direction of a diagonal flow direction. For exam-
ple, most nodes with two edges and two segment ter-
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mini correspond to a broken segment and need to be
merged, unless they coincide with a stream and merging
them would make the resulting divide cross that stream
(Fig. 6). See the Appendix for more details.

4. Finally, we sort the drainage divide segments within the5

network (Fig. 5e). The algorithm iteratively identifies
segments that are connected to endpoints and removes
them from the list of unsorted divide segments until no
divide segments are left (Fig. 4). This step assigns a di-
rection to each divide segment and transforms the divide10

network into a directed acyclic graph. For the sorted
divide network, we then compute the divide distance,
i.e., the maximum distance from an endpoint along the
sorted divide network (Fig. 5f).

After the sorting, we also assign orders to divide segments15

based on the ordering of stream networks, first introduced
by Horton (1945). We adopted both the Strahler (1954) and
Shreve (1966) rules of stream ordering and added a third rule
that we call Topo. All ordering schemes start with a value
of 1 at endpoints and progressively update divide orders at20

junctions based on the following rules:

Strahler: ωk =max(min{ωi}+ 1;ωi) (1)

Shreve: ωk =
∑n

i=1
ωi (2)

Topo: ωk =max(ωi)+ 1 (3)

where ωi represents the divide orders of the n joining di-25

vide segments, and ωk is the divide order of the following
divide segment. In the Strahler ordering scheme, the order
increases by 1 if the joining divide segments have the same
order; otherwise, it remains at their maximum order. In the
Shreve ordering scheme, the resulting divide order is the sum30

of those of the joining divide segments, and in the Topo or-
dering scheme, divide orders increase by 1 at each junction.
Junctions typically link three different divide segments, but
up to four can occur (Fig. 6). Based on the Strahler ordering
scheme, the bifurcation ratio Rb can be derived from (Hor-35

ton, 1945)

Rb =
Nω

Nω−1
, (4)

where Nω is the number of divide segments of order ω.
As previously mentioned, our divide algorithm currently

does not handle internally drained basins. Whereas the di-40

vides of internally drained basins are easy to identify, they
are not easily sorted in a meaningful manner. In fact, the
distance to a common stream location (3) is undefined for
a divide of an internally drained basin. At the moment, the
sorting procedure (Fig. 4) stops at such divides because the45

divide segments cannot be assigned a direction. In conse-
quence, parts of the divide network that potentially lie be-
yond an internally drained basin, and for which the distance
to a common stream location is defined, can also no longer

be reached. While we are working on a solution to this issue, 50

our algorithm is currently best applied to acyclic drainage
divide networks.

3.2 Topographic data and analysis

We investigated basic characteristics of drainage divide net-
works using a 30 m resolution DEM from the 1 arcsec Shuttle 55

Radar Topography Mission data set (Farr et al., 2007). We fo-
cused on the catchment of the Big Tujunga River in the San
Gabriel Mountains, USA. The catchment is a good example
of a transient landscape with active drainage basin reorgani-
zation and landscape rejuvenation as the river incises into a 60

relict pre-uplift landscape (DiBiase et al., 2015). We prepro-
cessed the DEM by carving through local sinks (Soille et al.,
2003) to avoid artificial internally drained basins, and we ob-
tained a stream network based on a minimum upstream area
of 0.1 km2. We note that this threshold is likely well within 65

the zone of debris flow instead of fluvial incision (Stock and
Dietrich, 2003), but for the purpose of our analysis, this is
irrelevant.

We analyzed the divide network, its planform geometry,
and its relation to topography. Planform geometry is stud- 70

ied using statistical analysis of the number and length of di-
vide segments of different orders. Topographic analyses are
based on metrics that we determined for the entire DEM and
that we subsequently associated, or mapped, to divide edges
and entire divide segments. As topographic metrics, we fo- 75

cus on hillslope relief (HR) and horizontal flow distance to
the stream network (FD). HR was defined to be the elevation
difference between a point on the divide and the point on the
river that it flows to. To quantify the morphologic asymmetry
of a divide, we propose using the across-divide difference in 80

hillslope relief (1HR), normalized by the across-divide sum
in hillslope relief (

∑
HR), and call its absolute value the di-

vide asymmetry index (DAI):

DAI=
∣∣∣∣ 1HR∑

HR

∣∣∣∣ . (5)

The DAI ranges between 0 for entirely symmetric divides 85

and 1 for the most asymmetric divides. Note that this index
is based only on values of hillslope relief (HR). Theoreti-
cally, a divide with equal amounts of HR on either side of a
divide, but contrasts in flow distance (FD) and thus slope an-
gle, would yield a DAI of zero. However, due to the definition 90

of streams by a minimum drainage area, this hardly ever oc-
curs. In addition, such cases can be identified by cross-divide
differences in FD.

4 Results

4.1 Basic divide statistics 95

We applied our divide algorithm to the Big Tujunga catch-
ment, and the resulting divide network for different ordering

www.earth-surf-dynam.net/8/1/2020/ Earth Surf. Dynam., 8, 1–15, 2020



6 D. Scherler and W. Schwanghart: Drainage divide networks – Part 1

Figure 5. Workflow of identifying and ordering drainage divides in digital elevation models. (a) Digital elevation model of the Big Tu-
junga catchment, San Gabriel Mountains, California. (b) Drainage network based on a minimum upstream area of 1000 pixels (0.81 km2).
(c) Drainage divides of all drainage basins upstream of confluences in panel (b). (d) Drainage divide network with endpoints (red) and junc-
tions (green). (e) Sorted drainage divide network. Line thickness indicates divide order from low (thin) to high (thick). (f) Drainage divide
network color-coded by divide distance (blue: low, yellow: high). Note that only divides at a distance > 1 km are shown.

Figure 6. Transformation of a collection of drainage divide seg-
ments (a) into a drainage divide network with endpoints and junc-
tions (b). Black lines are drainage divides, blue lines are streams,
and flow directions are shown as light gray lines. Note that we used
a minimum upstream area of only 10 pixels to define the stream
network for illustration purposes.

schemes is shown in Fig. 7. Because the Shreve and Topo
ordering schemes yield larger ranges in divide orders, their
visualization allows for greater differentiation compared to
the Strahler ordering scheme. Differences in the visual ap-
pearance of the divide network due to the ordering scheme 5

are also apparent at the root node, i.e., the junction that is
encountered last in the ordering process (black arrows in
Fig. 7). In the Topo ordering scheme, divide orders increase
by 1 during each sorting cycle so that the last divide segments
will have orders that are different by not more than 1. In con- 10

trast, the ordering rules of the Strahler and Shreve schemes
(see Eqs. 1 and 2) may yield unequal orders during the sort-
ing so that the divide orders of the last divide segments may
be different by more than 1. In the Big Tujunga catchment,
the basin area, and thus the number of divide segments, is 15

larger north of the Big Tujunga River compared to south of
it. As a consequence, both the Strahler and Shreve divide or-
ders increase more rapidly along the northern perimeter com-

Earth Surf. Dynam., 8, 1–15, 2020 www.earth-surf-dynam.net/8/1/2020/
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pared to the southern, and the junction encountered last dur-
ing the sorting process (at the root of the tree) opposes divide
segments with orders of 7 and 6 for Strahler and 1463 and
772 for Shreve in the north and south, respectively (Fig. 7).
For the Strahler ordering scheme, the frequency distribution5

of divide segments decreases exponentially with divide order
(ω), which is consistent with Horton’s law of stream num-
bers (Horton, 1945), and corresponds to a bifurcation ratio
of Rb = 3.89±0.30 (standard error). The bifurcation ratio of
the associated stream network is 5.39± 0.87.10

We computed divide-segment lengths for different
drainage area thresholds (Amin) and show the associated
empirical distribution functions in Fig. 8a. Divide-segment
lengths are not normally distributed but can be reasonably
fitted with a gamma distribution. However, the fitted gamma15

distributions predict systematically higher probabilities for
shorter divide segments and lower probabilities for longer di-
vide segments compared to the actual data. For the different
drainage area thresholds that we tested, the shape parameter
of the fitted gamma distribution (k) attains values that range20

between 0.87 and 1.75. In general, the average length of all
divide segments increases with the drainage area threshold
used for deriving the stream network simply because both
the stream and the divide network extend to finer branches.
For a drainage area threshold of 0.1 km2, the average length25

across all divide orders is 442± 323 m (±1σ ) compared to
an expected value (kθ ) of ∼ 442 from the fitted gamma dis-
tribution. The average length for different divide orders tends
to be slightly lower at ω <∼ 40 (based on the Topo ordering
scheme) compared to ω ≥∼ 40 (Fig. 8b).30

We quantified the average branch length, i.e., the average
distance one would have to travel down on either side of a
divide to reach a common stream location (3), for 100 ran-
domly chosen divide edges per divide order in the Topo or-
dering scheme. Although the maximum order for which 335

can be determined (because of the size of our DEM) is lim-
ited to ω ≤ 55, results demonstrate that3 (km) increases lin-
early as 0.36× divide order (ω) and 1.11× divide distance
(dd) (Fig. 9). The linear scaling of these two relationships is a
consequence of the similarity of segment lengths for different40

divide orders (Fig. 8b). Whereas the Topo ordering scheme
can be approximated by dividing the divide distance by the
expected divide-segment length, this does not hold true for
the Strahler and Shreve ordering schemes, which yield rela-
tionships between 3 and divide order that are nonlinear (not45

shown).

4.2 Drainage divide network morphology of the Big
Tujunga catchment

We next studied the morphology of the drainage divide net-
work from the Big Tujunga catchment. Because the divide50

morphology consists of parts that lie within the catchment
and parts that lie outside it, we analyzed the entire drainage
divide network from the DEM as shown in Fig. 5. Although

the drainage divide network is truncated along the DEM
edges, the following analysis is insensitive to this issue. Fig- 55

ure 10 shows the drainage divide morphology of the Big
Tujunga catchment based on a stream network that was de-
rived from a drainage area threshold of 1 km2. Topographic
metrics are shown for each divide edge (Fig. 1). Whereas
across-divide mean flow distance (FD) varies between 0 and 60

∼ 3000 m, mean hillslope relief (HR) varies between 0 and
∼ 800 m. It is notable that the biggest range in values oc-
curs at divide distances < 10 km, whereas divides at higher
distances appear to hover around characteristic values that
are controlled by the drainage area threshold used to derive 65

the stream network (Fig. 10e). It should be noted that divide
edges at low divide distances are much more abundant com-
pared to those at higher distances or, equivalently, at higher
divide orders (Fig. 7). At increasingly higher drainage area
thresholds, however, the frequency of divides at low order 70

and distance decreases more rapidly compared to the fre-
quency of high orders and distances. The average (±1σ )
FD and HR values for a drainage area threshold of 1 km2

are 1325± 350 and 341± 129 m, respectively. The empiri-
cally determined average FD values for all tested drainage 75

area thresholds are consistent with Hack’s law (Hack, 1957),
which relates the length L of the longest stream in a catch-
ment to its drainage area A according to L= kaAh. Values
of ka and h are∼ 1.6 and∼ 0.5, respectively, which are sim-
ilar to values observed elsewhere (Hack, 1957). Combining 80

HR and FD yields average slope values that vary between
∼ 20 and ∼ 8◦ for drainage area thresholds between 0.1 and
10 km2. The mean slope value of the entire DEM is ∼ 21.5◦,
which suggests that the lower drainage area threshold better
confines the divides to hillslopes compared to lower-sloping 85

channels.
Based on the observation of characteristic values of FD

and HR, we sought to identify parts of the divide network
that have anomalously low relief or are anomalously close to
a stream. Instead of mean values, we turned towards across- 90

divide minimum values of flow distance (FDmin) and hills-
lope relief (HRmin), as these would be more sensitive to de-
viations on either side of a divide. In addition, we compared
these values with the divide asymmetry index (DAI), as we
expected that anomalous divides may also be topographically 95

asymmetric (e.g., Whipple et al., 2017). Figure 11 shows
how HRmin, FDmin, and DAI vary with distance along the
divide network of the Big Tujunga catchment. Notable devi-
ations from average values (Fig. 10) occur at∼ 22–25,∼ 41–
45, and > 54 km divide distance and are typically associated 100

with asymmetric divides (Fig. 11). Highly asymmetric di-
vides are furthermore found at low divide distances (< 5 km)
and typically coincide with low values of HR, whereas FD
could be high or low. The systematic decrease in FD and
HR, concurrent with an increase in the DAI at higher divide 105

distances, prompted us to query the geographic position of
these divides and how they compare to the surrounding land-
scape. We thus imposed thresholds to identify anomalously
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Figure 7. Divide network of the Big Tujunga catchment in the western San Gabriel Mountains, California, USA. Panels (a)–(c) show the
divide network, with line thickness indicating the divide order. Arrow marks the last divide segment encountered in the sorting process or,
equivalently, the root of the tree-like network. Panels (d)–(f) show the number of divide segments as a function of divide order.

Figure 8. Divide-segment statistics. (a) Empirical distribution functions of divide-segment lengths for different drainage area thresholds
(Amin) and fitted cumulative gamma distribution functions. (b) Average length (±1σ ) of drainage divide segments by order (Topo ordering
scheme). The number of observations per divide order drops below 10 at an order of 25.

Earth Surf. Dynam., 8, 1–15, 2020 www.earth-surf-dynam.net/8/1/2020/
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Figure 9. Distance to common stream location by (a) divide order
and (b) divide distance for 100 randomly chosen divide edges per
divide order within the Big Tujunga catchment.

low (HRmin < 200 m) and asymmetric divides (DAI> 0.5),
which are less than 1000 m from a stream (FDmin < 1000 m)
(Fig. 12). Beheaded streams as well as sharp-crested and
shortened hillslopes identified in high-resolution satellite im-
agery (Fig. 12b–e) support the impression that these divides5

are mobile and migrating in the direction of lower HR and
sometimes shorter FD. Most of these divides can be seen
to border regions of contrasting local relief (Fig. 12a), and
many cluster along the eastern edge of the catchment. The
predicted migration direction indicated in Fig. 12a is de-10

rived from the orientation of the divide segments and their
mean DAI magnitude. If correct, most of the divide migra-
tion along the southern and eastern edge of the catchment,
from higher to lower relief, would result in area loss for the
Big Tujunga catchment.15

5 Discussion

5.1 Extraction and ordering of drainage divide networks

Our new approach allows for routinely extracting drainage
divides from any DEM without internally drained basins.
We have shown that the maximum divide distance dd, cal-20

culated as the maximum distance along the (directed) divide
network from an endpoint, is a meaningful metric for or-
dering drainage divide networks, as it scales linearly with
the average branch length 3, i.e., the average distance one
would have to travel down on either side of a divide to reach25

a common stream location (Fig. 9). In contrast to the av-
erage branch length, however, the divide distance is more
easily and rapidly calculated and is less prone to edge ef-
fects that inhibit the ordering of divides (Lindsay and Seib-
ert, 2013). However, whenever a drainage basin intersects the30

edge of a DEM, its truncation will likely produce a spuri-
ous drainage divide. Furthermore, calculated divide distances
are most likely lower than they would be for a larger DEM,
similar to the reduction of upstream area along a stream net-
work. Truncated drainage basin boundaries should therefore35

be avoided or discarded from analyses that rely on correct
divide distances.

The proposed sorting procedure (Fig. 4) recovers the tree-
like structure of the divide network and allows for the deriva-
tion of divide orders, analogous to the well-known stream 40

orders. Because divide segments have similar mean lengths
across all divide orders (Fig. 8), divide orders derived with
the Topo ordering scheme can serve a similar purpose as
divide distance. Shreve (1966TS3 ) studied link lengths in
stream networks and concluded that their distribution is bet- 45

ter described with a gamma distribution compared to an ex-
ponential or lognormal distribution. Results from the Big
Tujunga catchment support this conclusion with respect to
divide-segment lengths, although systematic deviations can
be observed (Fig. 8a). It needs to be tested with more ob- 50

servations whether these deviations are inherent to drainage
divide networks in general and whether they could hold clues
about the dynamic state of a landscape.

An advantage of characterizing the divide network by dis-
tance instead of orders is that the divide distance is invariant 55

with respect to the chosen drainage area threshold, whereas
divide orders are not because they depend on the total num-
ber of divide segments and junctions. Further differences are
apparent at the root node, which may oppose divide segments
with orders that differ by more than 1 (Fig. 7). In the case of 60

the Big Tujunga catchment, Strahler orders are not that dif-
ferent across the root node, but in a different landscape that
could well be the case. This issue is more prevalent in the
case of Shreve ordering, but it is avoided with the Topo or-
dering scheme. Furthermore, the nonuniform distribution of 65

divide-segment lengths (Fig. 8) influences how similar or dis-
similar the divide distances of the meeting divide segments
are at the root node. If the average divide-segment length of
trees that meet at the root node are different, divide distances
will make a jump, even if divide orders are similar. In the Big 70

Tujunga catchment, the divide distance jump at the root node
is 5400 m.

Divide orders derived with the Strahler ordering scheme
can be used to investigate how the divide network conforms
to the Horton (1945) laws of network composition. In the 75

Big Tujunga catchment, for example, the bifurcation ratio
of the divide network (Rb ∼ 3.9) is lower than that of the
stream network (Rb ∼ 5.4). This may in part be due to the
fact that we analyzed only a part of the divide network; di-
vide segments that originate from the main catchment bound- 80

ary and extend outwards are not included in the statistics.
Including those in the calculation yields Rb ∼ 4.6 for the di-
vide network, which is still lower than the bifurcation ratio
of the stream network. Nevertheless, these bifurcation ratios
are similar to published bifurcation ratios of different natural 85

stream networks (e.g., Tarboton et al., 1988), supporting the
expected similarity of the stream and divide network topol-
ogy. However, more observations from different landscapes
are needed to assess systematic differences and commonali-
ties between divide and stream networks. 90
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Figure 10. Drainage divide morphology of the Big Tujunga catchment based on a stream network that was derived from a drainage area
threshold of 1 km2. (a) Drainage divide network (DDN) colored by mean flow distance. Line thickness scales with divide distance. (b) DDN
colored by mean hillslope relief. (c) Relationship between mean flow distance and divide distance of all divide edges in panel (a). The red
line shows a 1000 m moving average. (d) Relationship between mean hillslope relief and divide distance of all divide edges in panel (b). The
blue line shows a 1000 m moving average. (e) Average (±1σ ) values of mean flow distance (red) and mean hillslope relief (blue) for different
drainage area thresholds. Average values were determined from all divide edges at a divide distance > 5 km to minimize the influence of
divides that are close to streams simply due to their proximity to confluences.

Figure 11. Minimum hillslope relief (a) and minimum flow distance (b) along the divide network of the Big Tujunga catchment. Colors
denote the divide asymmetry index (DAI). Black stippled lines indicate the thresholds used to identify anomalous divides in Fig. 12. Gray-
shaded areas highlight regions with anomalously low hillslope relief and flow distance.

Earth Surf. Dynam., 8, 1–15, 2020 www.earth-surf-dynam.net/8/1/2020/
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Figure 12. Anomalous divides in the Big Tujunga catchment. (a) A 1000 m radius local relief map draped over the hillshade image. White
lines show the divide network, and red lines depict asymmetric (DAI> 0.4) divide edges with minimum hillslope relief < 200 m and min-
imum flow distance < 1000 m. Black arrows indicate the direction and magnitude of the DAI, with the arrow pointing in the direction of
lower relief, i.e., the inferred direction of divide migration. (b–e) Oblique Google Earth© views of asymmetric divides shown in panel (a).
CF: Chilao Flats.

5.2 Drainage divide mobility in the Big Tujunga
catchment

Based on the observation of characteristic values of mini-
mum hillslope relief (300–500 m) and minimum flow dis-
tance (1000–1800 m), we identified drainage divides in the5

Big Tujunga catchment that are anomalously low, close to
a stream, and asymmetric (Figs. 11, 12). These geometric
properties suggest the existence of wind gaps, hillslope un-
dercutting by rivers, and spatial anomalies in erosion rates,
which are diagnostic for past or ongoing mobility of drainage10

divides. Anomalous drainage divides are particularly fre-
quent along the eastern edge of the catchment, where an area
of low hillslope angles and local relief (Fig. 12), the so-called
Chilao Flats, is bordering a steep catchment to the south and
east of it. This high-elevation low-relief area is thought to 15

represent a relict peneplain surface that was uplifted during
the growth of the San Gabriel Mountains and is currently be-
ing destroyed by the headward incision of rivers (Spotila et
al., 2002; DiBiase et al., 2015). Cosmogenic 10Be-derived
erosion rates confirm lower erosion rates in the Chilao Flats 20

area compared to the surrounding steeper catchments (DiB-
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iase et al., 2010), which ought to drive divide migration
and drainage area loss in the headwaters of the Big Tujunga
catchment, consistent with our results.

We identified another stretch of anomalous divides along
the southern margin of the Big Tujunga catchment (Fig. 12a,5

d), part of which is coincident with the trace of the San
Gabriel Fault, which follows the orientation of the valley
(Morton and Miller, 2006). Reduced relief in a ∼ 1 km wide
zone around this fault is also observed farther to the east
along the West Fork of the San Gabriel River (Scherler et10

al., 2016), suggesting weaker rocks closer to the fault (e.g.,
Roy et al., 2015). Other anomalous divides in this area, as
well as along the northern margin of the Big Tujunga catch-
ment, show signs of mobility by one-side-shortened hill-
slopes and beheaded valleys (Fig. 12b, d). We thus suggest15

that most, if not all, of the anomalous divides we identified
based on hillslope relief, flow distance, and divide asymme-
try are in fact unstable and migrating with time. Because
most of the peripheral divides indicate drainage area loss of
the Big Tujunga catchment, these area changes ought to re-20

sult in changes in stream power (Willett et al., 2014), which
complicate the interpretation of stream profile knickpoints in
a tectonic framework (DiBiase et al., 2015).

6 Conclusions

In this study, we presented an approach to objectively ex-25

tract and analyze drainage divides from DEMs. We argued
that divides can be ordered in a meaningful way based on
the average distance one would have to travel down on either
side of a divide to reach a common stream location, and we
have shown that this distance can be well approximated by30

the maximum along-divide distance from endpoints of the
divide network, which we termed the divide distance. We
have also shown that the tree-like structure of divide net-
works lends itself to topological analysis similar to stream
networks, and we introduced an ordering scheme (Topo), in35

which divide orders increase by 1 at divide junctions. Be-
cause divide segments tend to have characteristic lengths,
the Topo ordering scheme mimics the divide distance. To-
pographic analysis of the drainage divide network of the Big
Tujunga catchment yielded characteristic values of flow dis-40

tance and hillslope relief that can be shown to depend on the
drainage area threshold, with which the stream network was
derived. Based on these characteristic values and a minimum
divide distance of ∼ 5 km, below which we observed large
scatter, we identified divides that have anomalously low hill-45

slope relief, are close to rivers, and are asymmetric in shape.
We interpret these divides to be mobile and indicating be-
headed valleys or future capture events.
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Appendix A: Classification of divide network nodes

Once the drainage divides are defined based on the outline of
drainage basins and redundant divide segments are removed,
they compose a network D = (V,E), which is defined by a
set of vertices V (or nodes) and a set of edges E, each of5

which is associated with two distinct vertices. However, D
may contain some divide segments that do not end at junc-
tions or that terminate at nodes that are neither junctions nor
endpoints. To create the divide network, we have to identify
divide endpoints and junctions, as well as divide segments10

that need to be merged or parted. We achieve this by com-
puting for each node xi the number of edges (1 to 4) and
divide-segment termini (0 to 4) that exist in D and identi-
fying whether the node coincides with a stream edge (0/1)
(Table A1). Based on these criteria, we classify nodes to be15

an endpoint (EP), junction (J), or broken segment (BS). In
the case of nodes with three edges, three segment termini,
and the presence of a stream edge, we also check which of
these edges, if connected, would cross a stream to distinguish
the EP from the BS. After this classification, we are able to20

merge broken segments, split segments at junctions, and thus
update D, which now contains all the divide segments that
compose the drainage divide network.

Table A1. Divide node classification matrixTS4 .

Edges Segment Stream (0/1) Stream Class∗

(no.) termini (no.) (0/1) crossing (0/1)

1 1 0 0 EP
1 1 1 0 EP
2 2 0 0 BS
2 2 1 0 BS
2 2 1 1 EP
3 1 0 0 EP
3 1 1 0 EP
3 3 0 0 J
3 3 1 0 BS
3 3 1 1 EP
4 4 0 0 J
4 4 1 0 BS
4 2 0 0 J
4 2 1 0 BS

∗ EP: endpoint, BS: broken segment, J: junction.
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Code availability. The divide algorithm developed CE2 in this
study has been implemented in the TopoToolbox v2TS5 (Schwang-
hart and Scherler, 2014). The codes will be made available with the
next TopoToolbox release and shall be accessible at https://github.
com/wschwanghart/topotoolboxTS6 .5
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