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Abstract. The way in which sediment is transported (creep, saltation, suspension), is traditionally interpreted from grain size 10 

distribution characteristics. However, the grain size range associated with transitions from one transport mode to the other is 

highly variable because it depends on the amount of transport energy available. In this study we present a novel methodology 

for determination of the sediment transport mode based on grain size and shape data from dynamic image analysis. The data 

are integrated into grain size-shape distributions and primary components are determined using end-member modelling. In 

real-world datasets, primary components can be interpreted in terms of different transport mechanisms and/or sediment 15 

sources. Accuracy of the method is assessed using artificial datasets with known primary components that are mixed in known 

proportions. The results show that the proposed technique accurately identifies primary components with the exception of 

those primary components that only form minor contributions to the samples (highly mixed components). 

 

The new method is also tested on sediment samples from an active aeolian system in the Dutch coastal dunes. Aeolian transport 20 

processes and geomorphology of these type of systems are well known and can therefore be linked to the spatial distribution 

of end members to assess the physical significance of the method’s output. The grain size-shape distributions of the dune 

dataset are unmixed into three primary components. The spatial distribution of these components is constrained by 

geomorphology and reflects the three dominant aeolian transport processes known to occur along a beach-dune transect: 

bedload on the beach and in notches that were dug by man through the shore-parallel foredune ridge, modified saltation on the 25 

windward and leeward slope of the intact foredune, and suspension in the vegetated hinterland. The three transport modes are 

characterised by distinctly different trends in grain shape with grain size: with increasing size, bedload shows a constant grain 

regularity, modified saltation a minor decrease in grain regularity and suspension a strong decrease in grain regularity. These 

trends, or in other words, the shape of the grain size-shape distributions, can be used to determine the transport mode 

responsible for a sediment deposit. Results of the method are therefore less ambiguous than those of traditional grain-size 30 

distribution end-member modelling, especially if multiple transport modes occur or if primary components overlap in terms 

of grain size but differ in grain shape.  
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1 Introduction  

Clastic sediment records are generally complex mixtures of grains due to variability in provenance, conditions in the source 

and sink areas (climate, tectonics) and sorting during entrainment, transport and deposition. One of the greatest challenges in 5 

sedimentology is to reconstruct signals of climate, tectonics and provenance from the sedimentary record (e.g. Garzanti et al., 

2007; Métivier et al., 1998; Prins and Weltje, 1999a; Zhang et al., 2016). These reconstructions are improved when the mixed 

sedimentary record is unmixed into its primary constituent components (Weltje and Prins, 2007), a procedure which is also 

termed end-member modelling. Various end-member modelling algorithms are used in sedimentology (e.g. Dietze et al., 2012; 

Heslop et al., 2007; Paterson and Heslop, 2015; Weltje, 1997; Yu et al., 2016; Zhang et al., 2018). Although the algorithms 10 

are capable of unmixing different types of data, they are commonly used on grain size distribution data (e.g. Dietze et al., 2014; 

Liu et al., 2016; Stuut et al., 2002) and mineralogical data (Itambi et al., 2009; Weltje, 1995).  

 

There are however at least two issues that complicate inferences based on single-property (size or mineralogy) end-member 

modelling. First, sediment behaviour during uptake, transport and deposition is dictated by three grain properties: size, shape 15 

and density (mineralogy) (Winkelmolen, 1971). Therefore, single-property end-member modelling results are prone to noise 

from variability in the other two grain properties. The second issue is that the characterisation of sediment transport modes by 

their grain size-distribution alone produces ambiguous results: the grain size range associated with the transitions between 

transport modes (surface creep, saltation and suspension) depends on the amount of transport energy available and is therefore 

highly variable (Visher, 1969). However, accurate identification of the transport mode is essential to a valid interpretation of 20 

sedimentary records since the transport modes sort sediment grains differently during transport and are associated with 

different transport velocities and distances.  

 

In addition to sorting on grain size, sediment transport modes also sort shape in different ways. Studies on the influence of 

particle shape on surface creep are sparse. Eisma (1965) inferred that it is likely that surface creep favours spherical grains 25 

because these roll more easily. There are contradicting views regarding shape sorting during saltation:  spherical grains bounce 

higher (Eisma, 1965) and further (McCarthy and Huddle, 1938) and thus travel faster than non-spherical grains. However, they 

are also more difficult to entrain (Winkelmolen, 1971). Likewise, studies on shape sorting in saltating transport under natural 

conditions obtained contradictive results: some publications observed an increase in sphericity with transport distance 

(MacCarthy and Huddle, 1938; Mazzullo et al., 1986), others a decrease (Eisma, 1965; Winkelmolen, 1971). This is further 30 

complicated by the fact that inter-grain collision during (aeolian) saltation effectively rounds grains over longer distances 

(Kuenen, 1960). During transport in suspension, settling velocity is the dominant sorting parameter (McCave, 2008; Pye, 
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1994). Settling velocity is higher for more spherical and regularly-shaped grains (e.g. Dietrich, 1982; Komar and Reimers, 

1978; Wadell, 1934). Hence, in a suspended population of grains, larger grains are expected to be more irregularly shaped than 

smaller ones to remain below the fall velocity threshold for suspended transport. For example, Shang et al. (2018) observed 

that elongation increases with increasing size in Chinese loess. This decrease in grain regularity with increasing size should 

lead to a characteristic size-shape trend of suspended sediment that is different from that of sediment transported as bedload; 5 

using grain shape in addition to grain size is therefore a promising approach to determine transport modes with less ambiguity. 

 

In this study we outline a new method for determination of sediment transport processes involving 1) the integration of grain 

size and shape data into size-shape distributions (e.g. Itoh and Wanibe, 1991) and 2) end-member modelling on these 

distributions. To determine the accuracy of the method, it is first tested on artificial grain size-shape datasets with known end 10 

members and known end-member mixing proportions. Subsequently, the method is applied to an active aeolian system in the 

Dutch coastal dunes (Ruessink et al., 2018). Aeolian transport processes and geomorphology of these type of systems are 

relatively well constrained (Arens et al., 2002) and can therefore be linked to the spatial distribution of end members to assess 

the physical significance of the method’s output. The real-world dataset is also used to compare results of unmixing of size-

shape distributions to results of traditional unmixing based on grain-size distributions. 15 

2 Material and methods  

2.1 Dune dataset 

The fieldwork area for our dataset is situated south of the town IJmuiden in a coastal dune region named National Park Zuid-

Kennemerland (Appendix Fig. 1A and 1BA1 and A2). In 2013, five notches were dug through the shore-parallel foredune 

ridge to promote aeolian activity and dune migration (Appendix A2Fig. 1B). The notches are roughly orientated along the 20 

dominant wind direction: west-southwest to east-northeast. Parabolic dunes have developed at the downwind end of the 

notches and large volumes of sand have been blown land-inward. From 2013 to 2016, approximately 87*103 m3 of sand was 

transported land-inward, 55% of which derived from the beach and 45% from erosion of the notches (Ruessink et al., 2018). 

Further land inward, vegetation has been removed from fossil parabolic dunes to stimulate reactivation of dunes (Appendix 

Fig. 1BA2).  25 

 

In order to assess the physical meaning of results from the new method, we divided the study area into its five main 

geomorphologic features (Appendix A3Fig 1C): 1) The beach, which acts as a sediment source for aeolian transport when dry. 

2) The foredune, on which marram grass (partly) impedes bedload transport. Near the crest, aeolian suspension and modified 

saltation are stimulated through increased wind velocities and high turbulence (Arens et al., 2002). 3) The notches, which 30 

enable bedload transport towards the sand lobes that prograde into the vegetated hinterland (Ruessink et al., 2018). 4) The 

vegetated hinterland, where lower wind velocities and vegetation prevent bedload transport (Arens et al., 2002). And 5), the 
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parabolic dunes that were reactivated by removal of the vegetation cover. These dunes may form an additional source for the 

sediment flux in the hinterland (Arens et al., 2013). 

 

 

Fig. 1. Fieldwork area in the coastal dunes of the National Park Zuid-Kennemerland. Figure 1A shows the general location of 5 
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the study area. Figure 1B displays the locations of surface samples and sediment traps. Figure 1C covers the same area and 

shows subregions based on geomorphologic features. Aerial photograph © PDOK.nl, 2017. 

 

In April 2017, shallow surface samples were obtained from one of the bare notches (n = 12) and from an undisturbed part of 

the foredune ridge (n= 18) (Appendix Fig. 1BA2). Based on available flux data from sediment traps (not shown here), 5 

deposition rates land inward from sediment-trap row A (or perhaps B) are insufficient to sample recently transported material 

from the surface (Appendix Fig. 1BA2). Samples from sediment traps (n = 23) are therefore used to study the land inward 

area. The traps are based on a design by Leatherman (1978) and consist of an 80 cm pvc pipe with a mid-height of 

approximately 1.5 m above ground level (Appendix BA). Their opening is oriented into the dominant southwestern wind 

direction. At the back of the pipe a mesh with openings of 106 μm lets air and smaller particles through while trapping particles 10 

larger than 106 μm. Three  time intervals characterised by high flux rates (‘storm events’) were sampled from the sediment 

traps (Table 1). Together, the sediment trap samples and surface samples form the dune dataset (Van Hateren et al., 2019). 

 

Table 1. Wind conditions and sampling periods of the sediment trap samples. Sediment trap names are in reference to Appendix 

A2Fig. 1B. Meteorological data were obtained from weather station IJmuiden, 3.5 km north of the fieldwork area.  15 

 

2.2 Dynamic image analysis  

Sediment samples of approximately 2 grams are pre-treated with 5 ml H2O2 to remove organics, 5 ml HCl (10 ml if shell 

fragments are abundant) to remove carbonates and 300 mg Na4P2O7 ˖10H2O to disperse charged particles (Konert and 

Vandenberghe, 1997). Size and shape data are based on images of the grains obtained using a Sympatec Qicpic dynamic image 20 

analyser (Fig. 1A2A). The image analyser is set-up using a cuvette with 2 mm aperture. Pre-treated samples are sieved through 

a 1.6 mm mesh to protect the glass walls of this cuvette, thus limiting the maximum measurable grain size to 1600 μm. This is 

not of concern for the dune sands studied here, which show a maximum grain size of approximately 700 μm. The sediment 

samples are subsequently suspended in degassed water using a stirrer and pumped repeatedly through the cuvette for 10 

minutes while being filmed at 25 frames per second, resulting in 15 thousand frames per sample. The frames measure 1024 by 25 

1024 pixels with a pixel size of approximately 5 μm.  

Sampling 

period 

Number 

of 

samples 

Sediment traps 

that were 

sampled 

Mean daily 

wind speed 

(m/s) 

Maximum 

daily wind 

speed (ms-1)  

Vector averaged 

wind direction 

(degrees) 

27/10/2015 - 

17/11/2015 

4 A1, B1, C3 

D3 

8.5 15.5 214 

17-11-2015 - 

01-12-2015 

15  All 11.8 17.1 255 

01-12-2015 - 

15-12-2015 

4 A1, B1, C3, 

D2 

10.2 17.5 215 
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Image processing is carried out using a Matlab script written by the first author, for which Appendix BC shows a workflow 

diagram. The particle size and shape characteristics that form the output of this script are described in Table 2 and an example 

is given in Fig. 1B2B. In the first step of the script some limitations and conditions are set. Subsequently, the script iterates 

over each video, over each frame in the video and over each particle found in the frames. For each particle, the length of its 5 

outer edge (perimeter) is computed, as well as its area and the length of its convex hull (a polygon drawn around the particle 

without taking into account the concave areas). These basic parameters are stored for each particle. Particle size, volume, 

aspect ratio, convexity and Cox circularity are subsequently computed from these basic parameters. It is important to note that 

the major and minor grain diameters, which are used to compute the aspect ratio, are based on the diameters of a fitted ellipse. 

These diameters are less sensitive to small scale particle roughness than the traditional Feret diameters (Feret, 1930). “The” 10 

grain size of the particle is given in the form of an area equivalent diameter (Table 2), essentially the average particle diameter 

of the two-dimensional image of the grain. Because the two-dimensional shape of the particle is known, grain size obtained 

by image analysis is more robust than traditional size measurements (e.g. sieving, laser diffraction and settling) where an 

assumption has to be made of particle shape before computing size (Konert and Vandenberghe, 1997). For the same reason, 

“the” diameter of the particle is given in the robust form of an area equivalent diameter (Table 2). We use ranges of interest in 15 

the graphs of size and shape distributions to focus on those size and shape classes that contain significant amounts of volume 

for the given dataset (Table 2).  

 

Table 2. Summary of particle characteristics and derived size and shape variables. The table shows lower and upper limits for 

the variables as well as the size of the respective size or shape classes. The range of interest designates the range over which 20 

the sediments studied here contain significant volume for a given variable. The φ unit refers to Krumbein’s log base 2 grain-

size scale (Krumbein, 1938). 

Variable Name Description Equation Lower 

limit 

Upper 

limit 

Size  Number 

of classes 

Range of 

interest 

Pp Perimeter Length along 

particle boundary 

- - - - - - 

Pch Convex 

hull 

Length along 

convex points on 

boundary 

- - - - - - 

A Area Surface area of the 

particle 

- - - - - - 
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DA  Major 

diameter 

Major diameter of 

ellipse fitted to 

particle 

- - - - - - 

DB Minor 

diameter 

Minor diameter of 

fitted ellipse 

- - - - - - 

D2d Area 

equivalent 

diameter 

Diameter of circle 

with area equal to A 2√
𝐴

𝜋
 

13 µm 2828 µm 1

8
 φ 62 105-707 µm 

Con Convexity Ratio between 

convex hull length 

and perimeter 

length 

𝑃𝑐ℎ
𝑃𝑝

 
0 1 0.01 100 0.8-1 

Cc Cox 

circularity 

(Cox, 

1927) 

Ratio that describes 

extent to which the 

area of a particle 

approximates that 

of a circle with the 

same perimeter 

4𝜋
𝐴

𝑃𝑝
2
 

0 1 0.01 100 0.4-1 

Ar Aspect 

ratio 

Ratio of the major 

and minor diameter 

𝐷𝐵
𝐷𝐴

 
0 1 0.01 100 0.3-1 

         

VA - Volume 

approximated from 

A, assuming a 

spherical particle 

shape 

4

3
𝜋−0.5𝐴1.5 

- - - - - 

 

 

2.3 Construction and unmixing of size-shape distributions 

We explore the applicability of three shape parameters that are known to affect particle transport behaviour: convexity, Cox 

circularity (Cox, 1927) and aspect ratio (Table 2; Beal and Shepard, 1956; Dietrich, 1982; MacCarthy and Huddle, 1938; 5 

Winkelmolen, 1971; Shang et al., 2018). These parameters relate to different aspects of a particle’s shape: aspect ratio describes 
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the overall shape of a particle. In contrast, convexity is primarily affected by a particle’s surface irregularity whereas Cox 

circularity is affected by both. 

 

Grain size-shape distributions (SSDs) are constructed from grain size (D2d, Table 2) and the three shape variables, resulting 

in the distributions named ArD2d, ConD2d and CcD2d. The SSDs are created by assigning individual particles to their 5 

respective size-shape classes (Fig. 1C2C; Table 2). Next, the volume of the grains in each size-shape class is summed, and the 

distribution is normalised to a sum of 100% using the total volume. This procedure gives rise to three-dimensional distributions 

(X = size, Y = shape, Z = volume) (Fig. 1D2D) that can be visualised as a combination of a grain size (X –Z) and a grain shape 

(Y-Z) distribution (Fig. 1E2E).   

10 

Fig. 12. A: Binary image of sediment grains. B: Computation of particle characteristics (note inversed black-white scale). C: 

Assignment of grains to size-shape classes. D: Grain size-shape distribution (ConD2d in the example, star marker designates 

the mode of the distribution). E: grain size (upper panel) and grain shape (lower panel) cross-sections through the SSD along 

respectively A-A’ and B-B’. 

 15 

End-member modelling algorithm AnalySize (Paterson and Heslop, 2015) is used to unmix the SSD datasets because it 

produces the most accurate results of the algorithms currently available (Van Hateren et al., 2017). The computed end members 

are hereafter referred to as end member EMx-y where x denotes the end member number from coarse to fine and y denotes the 
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total number of end members in the given end-member modelling solution. For example, the coarsest EM of a dataset with 

four EMs is referred to as EM1-4.  

 

The fit of end-member modelling solutions to the data is used to infer the most likely number of end members. The fit is 

described by variance squared, also termed the coefficient of determination (R2). We define two types of R2: 1). class-wise R2, 5 

denoting the fit per grain size class (grain-size distributions) or grain size-shape class (SSDs), and 2) sample-wise R2, denoting 

the fit per sample (Van Hateren et al., 2017). By increasing the number of end members, R2 will increase. However, at a certain 

point the increase in fit is not due to geologically significant end members but due to fitting of noise. We therefore seek the 

minimum number of end members sufficient to explain most of the variation in the dataset. In grain-size data analysis, this 

minimum number of end members is traditionally estimated by a flattening off of the curve of average R2 versus the number 10 

of end members, also known as the inflection point (Prins and Weltje, 1999b; Weltje, 1997). However, tests with artificial 

grain size data have pointed out that this method sometimes yields an incorrect number of end members (Van Hateren et al., 

2017). Rather than taking the average, we therefore use the full distribution of class-wise R2 to obtain more detailed information 

on the most likely number of end-members (Prins and Weltje, 1999b; Van Hateren et al., 2017). In addition, we use the 

distribution of sample-wise R2. 15 

2.4 Artificial datasets for testing and validation of the method 

Artificial datasets with known end members and end-member abundances (Van Hateren et al., 2019) are used to evaluate 1) 

the accuracy of unmixing of SSDs under different mixing scenarios and 2) the potential of, and difference between, class-wise 

and sample-wise R2 for identification of the most likely number of end members in a SSD dataset. The known end members 

of the artificial datasets are hereafter referred to as input end members IEMx-y similar to the notation for modelled end 20 

members. 

 

Following an approach similar to Van Hateren et al. (2017), three datasets are created with increasingly complex mixing 

scenarios: The least complex dataset, 3EM_nonoise, is created using as IEMs three samples of the dune dataset with markedly 

different size-shape distributions (Appendix DC). Two-hundred sets of three random numbers are generated with a uniform 25 

distribution between 0 and 1 using a random number generator. Each set of three numbers is subsequently normalised to sum-

to-one. The two-hundred sets represent the contributions of the IEMs to each artificial sample (end-member abundances). By 

multiplying each set of three random numbers with the three IEM SSDs, two-hundred artificial samples are generated.  

 

The second dataset, 4EM_noise, is used to test accuracy of the method in the presence of noise and an additional end member. 30 

Addition of noise decreases accuracy of unmixing results in grain size distribution datasets (Van Hateren et al., 2017). The 

IEMS of the 4EM_noise dataset are the same as those of the 3EM_nonoise dataset except for an additional end member that, 

in terms of its grain size, is between the coarsest and intermediate IEM of the 3EM_nonoise dataset (Appendix ED). Noise is 
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included in the dataset by multiplying the volume in each size-shape class of the artificial samples by a random number with 

a normal distribution characterised by a mean of 1 and a standard deviation of 0.05.  

 

The third and most complex dataset, 4EM_noise_highmix, is similar to 4EM_noise (Appendix E) but has different end-member 

abundances. This dataset is used to test the accuracy of the output for highly mixed datasets. In such datasets, one or more of 5 

the primary components do not form a dominant contribution to any of the samples. Highly mixed data significantly deteriorate 

accuracy of unmixing (Heslop, 2015; Van Hateren et al., 2017). We use the following mixing scenario: IEM1-4 occurs in only 

5 samples at abundances between 0.2 and 1 (20 and 100%). IEM2-4, the highly mixed end member, occurs in 100 samples at 

low abundance between 0.05 and 0.2 (5% and 20%). IEM3-4 and IEM4-4 occur in all two-hundred samples at randomly varying 

abundance.  10 

 

Because the number of end members, the end-member abundances and the end-member SSDs are known, the precision of the 

unmixing procedure can be deduced determined from 1) the correlation between IEM SSDs and modelled end-member SSDs, 

2) the correlation between the input and modelled end-member abundances and 3) the correlation between the input and 

modelled data expressed as class-wise and sample-wise R2. Furthermore, the applicability can be assessed of class-wise and 15 

sample-wise R2 for identification of the most likely number of end members, which is an unknown in real-world datasets.  

3 Results  

3.1 End-member-modelling results for the artificial datasets 

3.1.1 End-member-modelling results for the 3EM_nonoise dataset 

Due to absence of noise in the 3EM_nonoise dataset, explained variance of the end-member modelling outcome reaches 100 20 

percent at three end members. Because model fit cannot be improved further, the AnalySize algorithm aborts at three end 

members (the algorithm fits a maximum of 10 end members for real-world datasets that naturally include noise). Figure 2 3 

therefore displays class-wise R2 distributions for results with one to three end members (1EM to 3EM solutions). The ‘average’ 

SSD of the dataset as well as the modelled end-members are shown as contours to indicate the relevant size-shape classes. The 

1EM solution fits the input data poorly while the 2EM output increases model fit significantly but lacks explanatory power in 25 

the size-shape region that coincides with the missing third end member (Fig. 23, Appendix DC). Using three end members 

increases goodness of fit of all size-shape classes to an R2 of 1. Appendix G1 F1 shows median sample-wise and class-wise 

R2 versus the number of end members. Class-wise R2 shows a near linear increase from one to three end members whereas the 

curve of sample-wise R2 inflects at two end members. In other words, the improvement in sample-wise R2 is significantly 

higher from 1 to 2 end members than it is from 2 to 3 end members. 30 
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Fig. 23. Class-wise R2 distributions for end-member modelling results of the ConD2d 3EM_nonoise dataset from a 1EM up 

to a 3EM solution. Solid black lines denote end-member contours: lines drawn along those size-shape classes where the volume 

of the end-member SSD equals 0.5%. The median SSD of the dataset (average SSD) is represented by a dashed line at 0.2% 5 

volume. White stars denote the modes of the end-member size-shape distributions. 

 

Since the 3EM_nonoise dataset is noise-free and consists of three IEMs, an accurate 3EM solution should be identical to the 

input data, which is nearly the case (Fig. 34). The abundances show 100% explained variance; however, linear trends between 

the original and determined abundances reveal a slope slightly higher than one, meaning that high input abundances are 10 

calculated too high and that low input abundances are calculated too low (below input abundances of approximately three 

percent, determined abundances go to zero) (Appendix H1G1). Thus, the computed end members are to a minor degree still 

mixtures of the IEMs.   

 

 15 

Fig. 34. Input end members (top) and determined end members (bottom) for the ConD2d 3EM_nonoise dataset, with R2 values 

denoting the fit between them (lower right corners). The first R2 value indicates the correlation of the determined end member 

with IEM1-3, the second with IEM2-3 etcetera. White stars mark the modes of the SSDs. 
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3.1.2 End-member modelling results for the 4EM_noise dataset 

Figure 4 5 shows class-wise R2 distributions of solutions for the 4EM_noise dataset. Similar to results for the 3EM_nonoise 

dataset, a 1EM solution fits the data poorly and a 2EM solution increases the fit significantly but lacks explanatory power in 

the intermediate and coarse size-shape regions. A 3EM solution fits the intermediate region significantly better but still lacks 

explanatory power in the coarse region. Compared to that of the 3EM solution, the class-wise R2 distribution of the 4EM 5 

solution displays an increase in R2 in the coarse range because EM1-4 more closely resembles IEM1-4 than does EM1-3 (Fig. 

45; Appendix ED). The increase in median class-wise R2 is small because the improvement occurs in relatively few size-shape 

classes (Appendix G2F2). Median sample-wise R2 similarly increases by a low amount. The increase in sample-wise R2 

diminishes from four end members onwards (Appendix G2BF2B). Class-wise R2 even displays a minor decrease of fit. In 

contrast to results for the 3EM_nonoise dataset, the explained variance does not reach 100%.  10 

 

 

Fig. 45. Class-wise R2 distributions for end-member modelling results of the ConD2d 4EM_noise dataset. Solutions up to eight 

end members are shown. Solid black lines denote end-member contours: lines drawn along those size-shape classes where the 

volume of the end-member SSD equals 0.5%. The median SSD of the dataset (average SSD) is represented by a dashed line 15 

at 0.2% volume. White stars denote the modes of the end-member size-shape distributions. 

 

Figure 5 6 compares the input and determined end-member SSDs. In spite of the noise added to this dataset, the determined 

end members are very similar to the IEMs. Calculated abundances fit the input abundances well, although a minor scattering 

is present (Appendix H2G2). Similar to the results for the noise-free dataset, linear trends have a slope higher than one, 20 

indicating that the determined end members are, to a minor extent, mixtures of the IEMs. 
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Fig. 56. End members determined for the ConD2d 4EM_noise dataset. Input end members (top) are compared to determined 

end members (bottom) including R2 values. The first R2 value indicates the correlation of the end member with IEM1-4, the 

second with IEM2-4 etcetera. White stars mark the modes of the SSDs. 

3.1.3 End-member modelling results for the 4EM_noise_highmix dataset  5 

Similar to the results in sect. 3.1.1 and 3.1.2, the 1EM solution modelled for the 4EM_noise_highmix dataset fits the dataset 

poorly (Fig. 67). The 2EM class-wise R2 distribution is notably different from that of the 4EM_noise dataset: the entire coarse 

range (>350 μm) is not well reproduced. The reason for this disparity is that IEM1-4 and IEM2-4 are not represented in this 

solution and thus the coarse range is underrepresented (Appendix FE; Fig. 7).  

A 3EM solution covers the coarser range, invoking a strong increase in class-wise R2 to a level comparable to that of the 4EM 10 

solution of the 4EM_noise dataset (Fig. 76; Appendix FG2 and G3F3). In contrast to the results for the 4EM_noise dataset, 

addition of a fourth end member does not result in a significant improvement of class-wise and sample-wise R2. 
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Fig. 67. Class-wise R2 distributions for end-member modelling results of the ConD2d 4EM_noise_highmix dataset. All 

solutions up to eight end members are shown. Solid black lines denote end-member contours: lines drawn along those size-

shape classes where the volume of the end-member SSD equals 0.5%. The median SSD of the dataset (average SSD) is 

represented by a dashed line at 0.2% volume. White stars denote the modes of the end-member size-shape distributions. 5 

 

Size-shape distributions of the end members and IEMs are shown in Fig. 78. The 4EM solution computed for the 

4EM_noise_highmix dataset differs in one notable aspect from that calculated for the 4EM_noise dataset: IEM2-4 is not 

identified as a primary component of the dataset. Rather, the SSD of EM2-4 more closely resembles IEM3-4 leading to 

overestimated abundances of EM2-4 and underestimated abundances of EM3-4 in the 4EM solution (Appendix H3G3). 10 

However, the SSDs and the relative abundances of the 3EM solution show a good fit to the SSDs and abundances of the three 

non-highly mixed IEMs (Appendix FE; Appendix GH4).  

 

 

Fig. 78. End members determined for the ConD2d 4EM_noise_highmix dataset. Input end members (top) are compared to 15 
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determined end members (bottom) including R2 values. The first R2 value indicates the correlation of the determined end 

member with IEM1-4, the second with IEM2-4, etcetera. White stars mark the modes of the SSDs. 

 

3.2 Results for the dune dataset 

End-member-modelling results for the dune dataset are presented in three subsections: statistics for the ConD2d dataset are 5 

shown first to derive the number of end members necessary to explain size-shape variability of the dataset. End-member SSDs 

and abundances of the robust solution are presented in the second subsection. The third subsection compares results of 

unmixing based on SSDs to results of unmixing based on grain size distributions (D2d). 

3.2.1 Unmixing of the size-shape distributions 

Appendix I H displays the trend of median class-wise and sample-wise R2 against the number of end members. Class-wise R2 10 

reaches a plateau at three end members whereas sample-wise R2 inflects gradually between two and four end members. This 

gives a first indication that the likely number of end members is between two and four.  

 

Two methods are employed to visualise the fit of the end-member solutions to the dataset in more detail. Class-wise R2 

distributions show the fit per size-shape class (fig. 89). The spatial distribution of sample-wise R2 is shown by plotting it on 15 

top of an aerial photograph of the study area (Appendix J1I1). The goodness of fit of the samples is compared to the subregions 

based on geomorphology as shown in Appendix A3Fig. 1C, shown in simplified form in appendix J1 I1 and described in Sect. 

2.1. If the unmixing result fits poorly to samples from a specific subregion it is likely that an additional end member is needed 

to explain the data in that region.  

 20 

One end member is insufficient to capture the size shape variability of the dataset: the class-wise R2 distribution shows low 

values across all size-shape classes (Fig.8 9). The 1EM solution does not fit well to the samples either, as expressed by low 

sample-wise R2 (Appendix IH). The spatial distribution of sample-wise R2 for the 2EM solution shows a good fit to the 

sediment trap samples of the hinterland. However, the fit to samples of the notch and foredune ridge is poor. The 3EM solution 

drastically improves fit in these subregions (Appendix J1I1). Regarding the class-wise R2 distribution, the 2EM solution 25 

performs poorly in the range where its EM1-2 and EM2-2 overlap, indicating that an additional end member is required to fit 

these classes (Fig. 89). A 3EM solution represents this intermediate size-shape range much better. Furthermore, comparison 

of the class-wise R2 distribution to the median data contour shows that this unmixing result performs well in the entire size-

shape range where significant volume is present in the data (Fig. 89).  

 30 

Although the 3EM solution displays high and evenly spread sample-wise R2, there are two regions that stand out: first, slightly 

lower explained variance occurs at those inland samples that are positioned downwind of fossil dunes that had their vegetation 
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cover removed (Appendix J1I1; Appendix A2 and A3Fig. 1B and Fig. 1C). A 4EM solution does not improve explained 

variance of these samples significantly (Appendix J1I1). Second, the 3EM solution displays low sample-wise R2 on the 

northern foredune sampling transect, in a small region near the crest (Appendix J1I1). This is improved by component EM2-4 

of the 4EM solution which occurs specifically in this region (Appendix LK). The specific geographical location of the 

component indicates that it has some geological significance. Furthermore, it is also determined in the 5EM and 6EM solutions 5 

(Appendix KJ) and therefore is a robust component. However, it is of minor importance in terms of geographical extent and 

in terms of the number of samples it represents. The class-wise R2 distribution of the 4EM solution shows amelioration of fit 

below a convexity of 0.9 and above a size of 250 µm, but volume in this range is insignificant (Fig. 89). Further increasing the 

number of end members does not increase model fit significantly except that the 6EM solution increases sample-wise R2 for 

the inland samples downwind of unvegetated dunes (Appendix J1I1; Appendix A2 and A3Fig. 1B and Fig. 1C). In conclusion, 10 

a 3EM output appears most robust and it reproduces the bulk of spatial variability in grain size and shape, although a four end-

member solution locally improves sample-wise R2. 

 

 

Fig. 89. Class-wise R2 for end-member modelling results of the ConD2d distributions of the dune dataset. All solutions up to 15 

eight end members are shown. Solid black lines denote end-member contours: lines drawn along those size-shape classes 

where the volume of the end-member SSD equals 0.5%. The median SSD of the dataset (average SSD) is represented by a 

dashed line at 0.2% volume. White stars denote the modes of the end-member size-shape distributions. 

3.2.2 End-member composition and abundances of the three-end-member solution  

The end-member SSDs of the 3EM solution computed for the ConD2d distribution dataset differ markedly from one another 20 

(Fig. 910): most volume of coarse-grained EM1-3 is contained between 250 and 500 µm. Its mode lies at a grain size of 339 

µm and a convexity of 0.945. This convexity dominates over the entire size range. The intermediate EM2 -3 is finer grained, 

with most of the volume between 160 and 350 µm. Its mode is positioned at a size of 201 µm and a convexity of 0.945. In 
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contrast to EM1-3, it shows a gradual decline in convexity with increasing size. Most volume of fine-grained EM3-3 lies between 

150 and 250 µm. Its mode is located at a size of 185 µm and a convexity of 0.935. It shows a strong decrease in convexity 

with increasing size.  

 

 5 

Fig. 910. SSDs of the ConD2d 3EM solution determined for the dune dataset. White stars mark the modes of the SSDs. 

 

The end-member abundances of the 3EM solution show a strong spatial differentiation that corresponds with morphological 

features: EM1-3 dominates the unvegetated notch that was dug through the foredune (average abundance 81%). EM2-3 

dominates most of the sparsely vegetated foredune (average abundance 46%) as well as the vegetated area directly downwind 10 

of the sand lobe that is prograding from the notch (average abundance 80%). EM3-3 dominates the vegetated hinterland (trap 

rows B to D, average abundance 94%) (Fig. 1011). It is also noteworthy that samples from traps A1, A2 and B2 contain 

significantly more of EM3-3 than the surface samples taken at the same locations and thus also lower the average abundance 

of EM2-3 for the foredune (Fig. 1011; Appendix A2Fig. 1B).  

 15 
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Fig. 1011. Pie-charts showing abundances of the 3EM solution computed for the ConD2d distributions of the dune dataset. 

Pie-charts with a black outline denote surface samples and are plotted at the sampling location. Pie-charts with a white outline 

denote sediment trap samples and are plotted near the sampling location. The exact locations of sediment traps are marked by 

black dots. Two of the subregions defined in appendix A3 are shown in simplified form. Aerial photograph © PDOK.nl, 2017. 5 

 

3.2.3 Comparison of results to traditional end-member modelling on grain-size distributions 

Besides the size-shape variable ConD2d, we also tested CcD2d and ArD2d. These variables make use of the shape variable 

Cox circularity and aspect ratio, respectively. In this section we intercompare end-member modelling results of the three size-

shape variables. Furthermore, we compare the results using size-shape variables to results from traditional end-member 10 

modelling on grain-size distributions (D2d). To enable direct comparison between grain size distributions and SSDs, the latter 

are transformed to grain size distributions by summation of the volumes of all shape classes per size class and subsequent re-

normalisation to 100% (Fig. 1112). The 3EM solution is used for the comparison. This number of end members is also robust 

for traditional grain-size based end-member modelling: median R2 values level off at three end members (Appendix M1L1), 

grain size classes with significant volume show high R2 indicating that class-to-class variability is well resolved (Appendix 15 
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M2L2) and sample-wise R2 is high throughout the fieldwork area indicating that spatial variability is also well resolved 

(Appendix J2I2). 

 

ConD2d end-member grain-size distributions show significant deviations from those determined for D2d: most notably a finer 

modal size for EM2-3, but also a more extended fine tail for EM1-3 and coarse tail for EM3-3 and (Fig. 11A12A). The grain 5 

size distributions of CcD2d show deviations at the same grain-size ranges. However, the deviations are weaker than for 

ConD2d (Fig. 121B). In contrast, size distributions of the ArD2d end members equal those of D2d (Fig. 121C). Furthermore, 

the SSDs of ArD2d end members lack the trend in grain shape with grain size that was observed for ConD2d and CcD2d (Fig.9 

10; Appendix MN). 

  10 

 

Fig. 1112. ConD2d (A), CcD2d (B) and ArD2d (C) 3EM solutions determined for the dune dataset. The SSDs are displayed 

as grain size distributions (solid lines) and compared to grain size distributions of the D2d 3EM solution (dashed lines). 

 

Table 3 and Appendix O N compare end-member abundances for 3EM solutions of ConD2d, D2d, CcD2d and ArD2d. The 15 

main trends of all variables correspond: EM1-3 prevails in the notch, EM2-3 on the foredune and in the vegetated area within 

100 m downwind of the notch, and EM3-3 in the hinterland. However, differences exist between the variables: ConD2d and 

CcD2d show higher proportions of EM1-3 in the notch than do ArD2d and D2d (Table 3). The four variables show similar 

proportions of EM2-3 on the foredune, but differences occur in the samples directly downwind of the notch. Here, proportions 

are highest for ConD2d, followed by CcD2d, D2d and ArD2d (Table 3). Similarly, proportions of EM3-3 in the hinterland are 20 

slightly higher for ConD2d, followed by CcD2d, ArD2d and D2d (Table 3). In summary, unmixing outcomes of ConD2d are 

generally most extreme, followed by CcD2d (they show the highest abundances of the dominant end-member). Results from 

ArD2d and D2d are generally less extreme. This clustering of results agrees with what was observed for the end-member grain-

size distributions in Fig. 1112: ArD2d distributions are highly similar to those of D2d, whereas ConD2d and CcD2d 

distributions differ respectively strongly and weakly from the D2d distributions.  25 
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Table 3. Average end-member abundances of the dominant end-member per subregion as defined in Appendix A3. 

 

4 Discussion 

4.1 Accuracy of end-member modelling on size-shape distributions  

4.1.1 Accuracy of the unmixing methodology under different mixing scenarios  5 

The precise 3EM solution for the 3EM_nonoise dataset confirms that the method is highly accurate under the condition that 

no noise is present in the dataset. Results for the 4EM_noise dataset indicate that computed end members remain correct 

reproductions of the input end members in presence of noise. However, the noise induces minor deviations in the end-member 

proportions. Two conclusions can be drawn on basis of the results for the 4EM_noise_highmix dataset. First, primary 

components that occur in a limited number of samples but at high proportions (IEM1 -4) can be accurately determined by 10 

AnalySize. Second, highly mixed primary components (IEM2-4) cannot be determined accurately by AnalySize. This outcome 

is similar to results for highly mixed grain-size distribution data (Van Hateren et al. 2017). The implication for real-world 

datasets is that highly mixed components will be overlooked during the end-member modelling procedure. However, our 

results indicate that the remaining end members and their relative proportions are computed accurately.  

 15 

4.1.2 Methods for determination of the most likely number of end members  

In the current study we use artificial datasets with a known number of end members. This allows us to test three methods for 

detection of the statistically feasible number of end members: median class-wise R2, median sample-wise R2 and class-wise 

R2 versus size and shape (a class-wise R2 distribution). The latter is similar to a graph of class-wise R2 versus grain size for 

grain size data. 20 

 

Our results for artificial datasets indicate that interpretation of the number of end members is straightforward in the absence 

of noise but ambiguous when noise is present: the noise-free dataset (3EM_nonoise) displays class and sample-wise R2 values 

of one when the number of determined end members equals the number of end members present in the dataset. In contrast, the 

R2 values for the noise-containing dataset (4EM_noise) never reach 1, which is more in line with end-member modelling 25 

Area, prevalent end 

member 

ConD2d 

(%) 

CcD2d 

(%) 

ArD2d (%) D2d (%) 

Notch, EM1-3 81 75 62 62 

Foredune, EM2-3 46 47 52 53 

<100m downwind 

from notch, EM2-3 

80 66 57 58 

Hinterland, EM3-3 94 90 90 89 
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results for real-world datasets. In this case, median R2 can only be used as a rough indication of the number of end members 

since an ‘inflection point’ (Prins and Weltje, 1999b; Weltje, 1997) is ill-defined: median R2 values for the dataset level off at 

three end members rather than four. A class-wise R2 distribution provides a better estimation of the number of end members: 

the presence of four end members is apparent from an increase in class-wise R2 in the coarser size range going from a 3EM to 

a 4EM solution. The presence of the highly mixed end member in the dataset 4EM_noise_highmix is not apparent from the 5 

class-wise R2 distribution, indicating that such an end member will likely be ignored in the end-member modelling of real-

world data.  

 

There are two additional conceivable methods for determination of the geologically feasible number of end members: 1) A 

graph of sample-wise R2 against depth (core/outcrop) or against sample location (spatial data such as the dune dataset) and 2) 10 

using samples of known origin to demonstrate the geological meaning of the end members (Weltje and Prins, 2003). These 

two methods cannot be tested with artificial data and thus will be discussed using the dune dataset. 

 

Results for the dune dataset indicate that spatially resolved sample-wise R2 can be used to determine the number of end 

members, especially when the spatial distribution of model fit is compared to known geomorphology of the area. For example, 15 

the 2EM solution fits poorly to the samples of the notch and foredune area. This indicates that two primary components are 

insufficient to describe the processes occurring in these subregions. The 3EM solution satisfactorily fits all main subregions, 

indicating that it captures the main transport processes that are active in the study area. The dune dataset also provides two 

examples of modern-day samples of known transport processes that can be used as reference material for paleo-studies. Surface 

samples from the notch area can be used as a reference for aeolian bedload sediment because the surface of the notch area was 20 

characterised by aeolian current ripples. Furthermore, samples from sediment traps, especially from rows C and D which are 

furthest land-inward (appendix AFig. 1B), can be used as a reference for aeolian suspension because 1) the distance from the 

main source areas (beach/ notches) excludes modified saltation from reaching the traps, 2) land-inward from the foredune 

ridge, denser vegetation rules out new entrainment of sediment (Arens et al., 2002; Lancaster and Baas, 1998) and 3) the height 

of the sediment traps further reduces the chance of contamination by local saltation.   25 

 

4.2 The value of end-member modelling on size-shape distributions: implications of the dune dataset 

4.2.1 Geological significance of the three-end-member ConD2d model 

The spatial distribution of end members of the 3EM solution relates strongly to the geomorphology of the area: EM1-3 occurs 

mainly on the bare surfaces of the beach and notch, EM2-3 occurs on the sparsely vegetated foredune and within the vegetated 30 

area directly downwind of the notch, and EM3-3 occurs in the vegetated hinterland. This geographical differentiation suggests 

that the end members are linked to the three aeolian processes known to operate on a beach to dune transect: 1) bedload, 
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consisting of saltation, reptation and creep, the motions of which are predominantly affected by gravity, 2) modified saltation, 

which is affected by both gravity and turbulence and 3) suspension, of which the motions are predominantly affected by 

turbulence (Arens et al., 2002; Hunt and Nalpanis, 1985).  

 

As mentioned in Sect. 4.1.2, aeolian current ripples on the supratidal beach and in the notch confirm that EM1-3 is linked to 5 

the bedload population. Component EM2-3 specifically occurs on the windward and leeward slope of the foredune. Several 

processes on the foredune increase the proportion of grains travelling in modified saltation (Arens et al., 2002): 1) On the 

windward slope of the foredune, relief and marram grass induce turbulence, thereby increasing the proportion of grains that 

travel in modified saltation and suspension. 2) At the same time, the vegetation partly impedes bedload transport. 3) At the 

foredune crest, flow separation induces even stronger vertical air motion, forcing the grains into short-term suspension. The 10 

grains that are less susceptible to turbulence are deposited at the leeward side of the foredune (modified saltation population), 

whereas the grains that are more susceptible to turbulence (the true suspension population) travel further land inward where 

EM3-3 dominates. As stated in Sect. 4.1.2, the interpretation of EM3-3 as suspension component is further corroborated by the 

distance from the source (beach/notches), the dense vegetation in the hinterland, and the fact that the sediment traps are at 

approximately 1.5 m above ground level. Sediment traps om the foredune also show a high contribution of EM3-3, which is on 15 

average higher than that of the surface samples at the same location. This is likely related to the height of the traps, causing 

them to trap the sediment that is in transport (suspended load and modified saltation) rather than the sediment that is deposited 

(bedload and modified saltation).  

 

The three end members were also set apart by a markedly different shape of their size-shape distributions: the bedload 20 

population was characterised by a constant grain regularity with increasing size, the modified saltation population by a minor 

decrease in grain regularity and the suspended population by a strong decrease in grain regularity. These differences are likely 

caused by differences in size-shape sorting between the transport modes. Movements of grains in saltation are driven mainly 

by gravity (Hunt and Nalpanis, 1985), which is a function of particle mass. Because the beach sediments in our fieldwork area 

are of uniform density with negligible heavy mineral content (Eisma, 1968), particle mass is mainly determined by particle 25 

size. Size, not shape, is therefore the predominant sorting agent during saltation. Eisma (1965) furthermore inferred that it is 

likely that surface creep favours spherical grains because they roll more easily. It therefore follows that the overall bedload 

population should show relatively regularly shaped grains and no significant trend of grain shape with grain size. This is indeed 

the case for EM1-3.  

 30 

Settling of grains in suspension is driven by gravity and restrained by aerodynamic drag of a particle. The latter factor also 

depends on grain shape: irregular grains have more drag, and thus settle slower (Komar and Reimers, 1978) and are also more 

susceptible to turbulence. It therefore makes sense that the SSD of suspension component EM3-3 shows a strong decrease in 

grain regularity with increasing size: the irregularity of the coarser grains compensates for their larger weight. Chinese loess 
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deposits are on the order of two to ten times finer grained than EM3-3 and show a similar decrease in grain regularity with 

increasing size (Shang et al., 2018). This indicates that: 1) a decrease in grain regularity with increasing size is characteristic 

of sediments transported in aeolian suspension, and 2) for a given transport mode and a similar grain shape range, the grain-

size of sediment depends on, and is a reflection of transport conditions (amount of transport energy available and transport 

distance). SSDs are therefore a good indication of the mode of transport; grain-size distributions are not. 5 

 

Modified saltation is a process that is intermediate between saltation and suspension: grains are saltating (sorted by 

susceptibility to gravity) but are also shortly suspended (sorted by susceptibility to gravity and turbulence). The size-shape 

distribution of EM2-3 is indeed intermediate between EM1-3 and EM3-3, both in terms of its grain size and its minor decline in 

grain regularity with increasing grain size.  10 

 

4.2.2 A comparison of traditional grain-size based and novel size-shape based end-member modelling 

End member distributions obtained using size-shape variable ArD2d are remarkably similar to those obtained using traditional 

size-based end-member modelling (D2d). This suggests that during transport, grains are not sorted by their aspect ratio. 

However, Shang et al. (2018) did observe sorting of aspect ratio. This incongruity may be explained by the difference in how 15 

aspect ratio was defined in the two studies: We defined aspect ratio based on the major and minor diameters of ellipses fitted 

to the particles. These diameters represent the overall particle shape since their length is not sensitive to small-scale particle 

roughness: the ellipse fitting procedure ‘averages out’ small humps. In contrast, the major and minor Feret diameters as used 

in Shang et al. (2018) are affected by such small humps. 

 20 

In contrast to ArD2d, end-member modelling results of CcD2d and especially ConD2d differ from D2d (grain size): the mode 

of their intermediate end member is significantly finer-grained and it overlaps more substantially with EM3-3. This overlap 

may actually be the cause of the observed difference: end-member modelling on size-shape distributions would be more 

suitable for identification of an end member that strongly overlaps with another in terms of grain size but differs in grain shape. 

Of the three studied size-shape variables, results of ConD2d shows the strongest unmixing (highest abundances of the dominant 25 

end-member). This indicates that ConD2d may be the most appropriate variable for the identification of transport processes.  

 

5 Conclusions 

We introduce a novel method that can be used to reconstruct sediment transport processes from sedimentary deposits. The 

method makes use of end-member modelling on grain size-shape distributions, which are constructed from grain size and 30 

shape data obtained by dynamic image analysis. Tests with artificial size-shape distribution datasets indicate that the known 
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end-members and end-member mixing proportions are accurately computed by the method, even when noise is present in the 

data. End-members with limited occurrence are also identified; highly mixed components, however, cannot be determined 

accurately. The tests also point out that the distribution of the fit of unmixing results per size-shape class (the class-wise R2 

distribution) can be used to indicate the number of end-members present.  

 5 

The size-shape distribution unmixing method is also applied to real-world data from an active aeolian system in the Dutch 

coastal dunes. Results show that a comparison of the spatial distribution of model fit (sample-wise R2) to local geomorphology 

further increases insight into the number of end-members present. The geological meaning of end members can be validated 

by comparing their size-shape distributions to reference samples of different transport processes.  

 10 

Three end members are determined for the dune dataset. The spatial distribution of these end members is in accordance with 

the local geomorphology and reflects the three dominant aeolian transport processes known to occur along a beach to dune 

transect: bedload, modified saltation and suspension. These processes are characterised by distinctly different end-member 

size-shape distributions, resulting from differential (size and) shape sorting: with increasing size, bedload shows a constant 

grain shape, modified saltation a minor decrease in grain regularity, and suspension a strong decrease in grain regularity (when 15 

using convexity or Cox circularity as shape parameter). 

 

Compared to traditional end-member modelling on grain-size distributions, unmixing of SSDs gives rise to different end-

member grain-size distributions due to shape sorting effects. Results of the new method also show higher proportions of the 

dominant end members, indicating a better discrimination of the aeolian transport processes (especially when using convexity 20 

as shape parameter). The principal advantage of the new method, however, is that the characteristic shapes of the end-member 

size-shape distributions can be used as a fingerprint of the transport mode. The new method therefore resolves the ambiguity 

that arises when the transport mode is reconstructed using grain-size distributions.   

 

 25 

 

Code availability 

Not available  

Data availability 

Data are available from the Pangaea database (https://issues.pangaea.de/browse/PDI-21911) 30 
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Appendices 

 

Appendix A. Fieldwork area in the coastal dunes of the National Park Zuid-Kennemerland. A1 shows the general location of 

the study area. A2 displays the locations of surface samples and sediment traps. A3 covers the same area and shows subregions 

based on geomorphic features. Aerial photograph © PDOK.nl, 2017. 5 
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Appendix BA. Sediment trap on a vegetated dune  
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Appendix CB. Flow diagram for the image processing script. 
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Appendix DC. Input and determined end-member SSDs for the 3EM_nonoise dataset. 
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Appendix ED. Input and determined end-member SSDs for the 4EM_noise dataset. 
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Appendix FE. Input and determined end-member SSDs for the 4EM_noise_highmix dataset.      
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Appendix GF. Median class- and sample-wise R2 versus the number of end members for the artificial datasets: 3EM_nonoise 

(1), 4EM_noise (2) and 4EM_noise_highmix (3). Figure 2B and 3B zoom in on Fig. 2A and 3A.  
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Appendix HG. A comparison of modelled and input end-member abundance for the artificial datasets (1: 3EM solution for 

3EM_nonoise, 2: 4EM solution for 4EM_noise, 3: 4EM solution for 4EM_noise_highmix, 4: 4EM solution for 

4EM_noise_highmix but without the highly mixed end-member).  

 

Appendix IH. Median class- and sample-wise R2 versus the number of end members for the ConD2d distribution dune dataset. 5 

 

Appendix JI. Sample-wise R2 plotted over the sample locations for variable ConD2d (J1) and variable D2d (J2). The first 

interval of the colour scale is enlarged to elucidate the changes in R2, which mainly occur above a value of 0.9. Points with a 

black outline denote surface samples and are plotted at the sampling location. Points with a white outline denote sediment trap 

samples and are plotted near the sampling location. The exact locations of sediment traps are marked by white dots. Two of 10 

the subregions defined in appendix A3 are shown in simplified form. Aerial photograph © PDOK.nl, 2017. 
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Appendix KJ. End-member distributions computed for the ConD2d dune dataset (1 to 8EM solutions). 
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Appendix LK. End-member abundances for variable ConD2d determined for the dune dataset. Pie-charts with a black outline 

denote surface samples and are plotted at the sampling location. Pie-charts with a white outline denote sediment trap samples 

and are plotted near the sampling location. The exact locations of sediment traps are marked by black dots. Two of the 

subregions defined in appendix A3 are shown in simplified form. Aerial photograph © PDOK.nl, 2017. 

 5 

Appendix ML. Median class-wise and sample-wise R2 for D2d end-member modelling results of the dune dataset (1) and size-

resolved class-wise R2 (2). 
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Appendix NM. CcD2d (1) and ArD2d (2) 3EM solutions determined for the dune dataset. 

 

Appendix ON. Pie-charts showing abundances of the 3EM solution determined for the ConD2d (1), CcD2d (2), ArD2d (3) 

and D2d (4) distributions of the dune dataset. Pie-charts with a black outline denote surface samples and are plotted at the 

sampling location. Pie-charts with a white outline denote sediment trap samples and are plotted near the sampling location. 5 

The exact location of sediment traps is marked by black dots. Two of the subregions defined in appendix A are shown in 

simplified form. Aerial photograph © PDOK.nl, 2017. 
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Response to the Anonymous Referee 

Dear anonymous referee, 

Thank you for your positive review and valuable comments and suggestions. 

Below you will find your comments and our replies in section 1. Section 2 contains a list of the changes that were made to the 

manuscript.  5 

Section 1. Comments and replies 

Below we have made a list of your comments (in quotation marks and Italic) and our replies. 

Comment 1) “A more detailed description of the technique is suggested (Some suggested points: 

Why are these methods better than previous sizing techniques? What are the advantages 

and drawbacks compared to other imaging approaches? The repeated pumping 10 

of the sample causes data redundancy [one particle will appear on more than one 

captured frames]. Is it a problem, or not?).” 

 

1A) “Why are these methods better than previous sizing techniques?” 

 15 

Many methods for measuring grain size have been/are employed, the most prevalent being sieving, settling and laser 

diffraction.  

The first advantage over these methods is obvious: in addition to size analysis, image analysis allows measurement of grain 

shape, the traditional methods do not.  

The second advantage is less obvious: the varying shape of natural sediment particles causes deviations in the size 20 

measurements obtained by sieving and laser diffraction: A sieve mesh actually measures the intermediate diameter of a particle 

and relatively large yet elongate particles can pass the mesh. With settling measurements, one has to make an assumption of 

the particle’s shape (and density) to convert settling velocity to grain size.  

In laser diffraction, the assumption is made that all particles are spherical. Since natural sediment grains are generally not 

spherical, this causes errors in the obtained grain size distribution. Grain size obtained by image analysis is more robust in this 25 

sense: the (2D) shape of the particle is known, and therefore one can choose any definition of ‘particle size’. For example, the 

largest diameter (2D), smallest diameter (2D) or ‘average diameter’. We feel the latter is the most robust. For this reason, we 

used a diameter based on the surface area of the particle (D2d), as described in the manuscript. The third advantage of image 

analysis over traditional sizing techniques is that information is obtained on the size of each single grain passing the camera 

rather than just the grain size distribution of the entire sample. This means 1) that single grains with a certain size can be 30 

extracted from the data for specific research questions. For example, one may want to know the largest grain per sample, 2) 

that single very large grains are detected (in our experience this is not the case with laser granulometry), 3) that grain size 

distributions can be made by percentage of the total volume of all grains per size class, but also by percentage of total diameter 
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or percentage of total number of particles, 4) that there are more options for statistical analysis of the sediment samples (which 

are as of yet not used). 

 

There is however also a major drawback to the new technique: due to the pixel size of approximately 5 µm (or 2 µm with a 

different set-up which allows measurement of finer-grained particles but limits the maximum measurable grain size to 400 µm 5 

due to the 500 µm cuvette width), a reliable measurement of particle shape is not possible for anything finer than medium silt 

(Shang et al., 2018, Aeolian silt transport processes as fingerprinted by dynamic image analysis of the grain size and shape 

characteristics of Chinese loess and Red Clay deposits. Sedimentary geology, 375, 36-48). This is a financial, and not a 

technical limitation: the boundary could be lowered substantially with higher-resolution cameras. 

 10 

 

1B) “What are the advantages and drawbacks compared to other imaging approaches?”. 

 

The main advantage of dynamic image analysis (where particles pass a camera suspended in air or water) compared to the 

more classic static image analysis (where particles are photographed, for example under a microscope) lies in its statistical 15 

robustness and low measuring time: many particles can be measured in relatively little time (5 minutes for a typical number of 

particles of 150 thousand for sand (this manuscript) or 5 minutes for ~ a million particles for silts (Shang et al., 2018)). The 

large number of particles ensures that the size-shape distributions are statistically robust.  

 

There are additional differences with the static methods: If the sample consists of unconsolidated sediment spread out on a flat 20 

surface, the orientation of the particles is known: particles lying on a surface have their smallest axis oriented vertically, and 

therefore their largest and intermediate axis show up on the image. This is both an advantage and disadvantage over our 

method: it is favourable that the orientation is known, but any inferences about the volume of the particles will always be 

overestimations of the actual volume.  

 25 

Non-automated measurements using a microscope enable the computation of shape variables that are difficult to automate, 

such as surface texture of the grains or Power’s roundness. However, such measurements are user-dependent, very time 

consuming and will comprise only a limited number of measured grains leading to less robust results. 

 

1C) “The repeated pumping of the sample causes data redundancy [one particle will appear on more than one captured 30 

frames]. Is it a problem, or not?” 

 

The most often used method for measuring grain size is laser diffraction. In most of the laser diffraction set-ups, the sample is 

repeatedly pumped through the cuvette as well. Therefore, this “problem” is universal in grain size measurements. In our view, 
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however, it is not a problem but rather something that adds to the strength of the measurement. Because the flow in the large 

cuvette is quasi-turbulent, the particles will pass the camera at different angles each time. The total measurement therefore 

becomes to some extent a 3D average of the various 2D shapes that one obtains by looking at a particle at different orientations. 

A size-shape distribution therefore becomes more robust then had the sediments passed the camera only once. 

 5 

Comment 2) “The description and the presented flow diagram ensure the reproducibility of the introduced measurement and 

data processing approach for experts of the field, but researchers without deeper knowledge on image analysis-based grain 

size and shape characterization may have trouble to understand the key steps of the method.” 

 

We assume that this comment deals mainly with chapter 2.2 (dynamic image analysis). We enhanced apprehensibility of the 10 

chapter by adding a short description of the flow diagram (see section 2). 

 

In our opinion, chapter 2.3 (construction and unmixing of size-shape distributions) and chapter 2.4 (artificial datasets for testing 

and validation of the method) go into sufficient detail to explain the method to non-experts.  

 15 

Comment 3) “The applied self-written Matlab script (with imfill, regionprops and convhull functions) 

is using the raw images of the acquired frames not processed data of the Sympatec 

Qicpic’s software, allowing for a more detailed and freely customizable data handling. Are 

there any differences among the results of your own calculations (by using ‘regionprops’) 

and ones by the device software?” 20 

 

Besides flexibility and customisability, there are two reasons for applying a self-written script: 

 

3.1) The Qicpic software (our version at least) does not allow filling of blank spaces in particles. These blank spaces occur 

because some minerals, such as quartz, are transparent, causing them to appear donut-shaped in the images. Due to our quartz-25 

rich samples, we were not able to use any of the built-in functions for computing area-based shape parameters. Matlab, on the 

other hand, has built-in functions to perform the task of filling blank spaces in objects. At the moment, however, we use the 

perimeter to determine the 2D surface area of the particles and therefore blank spaces are less of a problem. 

 

3.2) The Qicpic software (and many of Matlab’s built-in functions such as regionprops('ConvexHull')) consider pixels to have 30 

an area (a pixel is a little square). In our method, we base computations on the pixel’s centre location.  

 

Comment 4) “The presented size-shape distributions are equivalent to volume-weighted scatter plots of size and different 

shape parameters of individual particles. (It is a relatively well 
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known approach of image analysis-based granulometric characterization, actually, a 

default data visualization mode in the software of Malvern Morphologi automated static 

image analyser device).” 

 

We were not aware that grain size-shape distributions are a well-known approach. The size-shape distributions or volume-5 

weighted scatter plots of size and different shape parameters can indeed  be found in Malvern’s documentation: 

https://www.cif.iastate.edu/sites/default/files/uploads/Other_Inst/Particle%20Size/Particle%20Characterization%20Guide.pd

f. Furthermore, we found one application in powder metallurgy: Takashi Itoh & Yoshimoto Wanibe, 1991: Particle Shape 

Distribution and 

Particle Size–Shape Dispersion Diagram, Powder Metallurgy, 34:2, 126-134, DOI: 10.1179/ 10 

pom.1991.34.2.126. However, we found no applications of a similar method in sedimentology. Thus, grain size-shape 

distributions are not new, but their application to the study of sediments is new. More importantly, the combination with end-

member modelling is also new. We added the reference of Itoh & Wanibe to the manuscript (see section 2).  

 

Comment 5) “Last columns of Table 2 are not visible in the manuscript.” 15 

 

Thank you for noting this error. Part of the last column is indeed not visible in the manuscript. This is changed in the revision.  

 

Comment 6) “The overall structure of the paper is good, however, figure from the Appendix A could 

be moved into the main text.” 20 

 

Appendix A is moved into the main text of the revision.  

 

References 

 25 

Shang, Y., Kaakinen, A., Beets, C. J., & Prins, M. A. (2018). Aeolian silt transport processes as fingerprinted by dynamic 

image analysis of the grain size and shape characteristics of Chinese loess and Red Clay deposits. Sedimentary geology, 375, 

36-48 
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Section 2. Changes made to the manuscript. 

In this section we describe the changes we made to the manuscript based on your comments. Changes are in quotation marks 

and in italic.  

 

Comment 1) “A more detailed description of the technique is suggested (Some suggested points: Why are these methods better 5 

than previous sizing techniques? What are the advantages and drawbacks compared to other imaging approaches? The 

repeated pumping of the sample causes data redundancy [one particle will appear on more than one captured frames]. Is it a 

problem, or not?).” 

 

1A) “Why are these methods better than previous sizing techniques?” 10 

 

A comparison of dynamic image analysis to other sizing techniques is outside the scope of this manuscript. The full reply in 

section 1 was therefore not taken up into the manuscript.   

However, we have included a brief explanation of the advantage of knowing the two-dimensional shape of a particle when 

determining its size (page 6, line 10 to 14). We deleted: “For the same reason, “the” diameter of the particle is given in the 15 

robust form of an area equivalent diameter (Table 2).” And we added: ““The” grain size of the particle is given in the form 

of an area equivalent diameter (Table 2), essentially the average particle diameter of the two-dimensional image of the grain. 

Because the two-dimensional shape of the particle is known, grain size obtained by image analysis is more robust than 

traditional size measurements (e.g. sieving, laser diffraction and settling) where an assumption has to be made of particle 

shape before computing size (Konert and Vandenberghe, 1997).” 20 

 

1B “What are the advantages and drawbacks compared to other imaging approaches?”. 

 

A detailed comparison of dynamic image analysis to other imaging approaches is also outside the scope of this manuscript. 

We therefore did not include our answer into the revised manuscript.  25 

 

1C) “The repeated pumping of the sample causes data redundancy [one particle will appear on more than one captured 

frames]. Is it a problem, or not?” 

 

The answer to 1C) was not included in the manuscript because repeated pumping of a sample is very common in grain size 30 

measurements and therefore not new to our method. 

Comment 2) “The description and the presented flow diagram ensure the reproducibility of the introduced measurement and 

data processing approach for experts of the field, but researchers without deeper knowledge on image analysis-based grain 

size and shape characterization may have trouble to understand the key steps of the method.” 
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We enhanced apprehensibility of the chapter by adding a short description of the flow diagram (page 6, line 4 to 8): 

“In the first step of the script some limitations and conditions are set. Subsequently, the script iterates over each video, over 

each frame in the video and over each particle found in the frames. For each particle, the length of its outer edge (perimeter) 

is computed, as well as its area and the length of its convex hull (a polygon drawn around the particle without taking into 

account the concave areas). These basic parameters are stored for each particle. Particle size, volume, aspect ratio, convexity 5 

and Cox circularity are subsequently computed from these basic parameters.” 

 

Comment 3) “The applied self-written Matlab script (with imfill, regionprops and convhull functions) is using the raw images 

of the acquired frames not processed data of the Sympatec Qicpic’s software, allowing for a more detailed and freely 

customizable data handling. Are there any differences among the results of your own calculations (by using ‘regionprops’) 10 

and ones by the device software?” 

 

A discussion on the differences between the Sympatec software, the built-in Matlab functionality and our functions is outside 

the scope of the manuscript. However, the fact that we fill blank spaces in the particles and that we compute size and shape by 

the pixel’s centre locations are important for reproducibility of this work. This information was already present in the workflow 15 

diagram of the script (Appendix B, which was appendix C in the previous version of the manuscript) 

 

Comment 4) “The presented size-shape distributions are equivalent to volume-weighted scatter plots of size and different 

shape parameters of individual particles. (It is a relatively well known approach of image analysis-based granulometric 

characterization, actually, a default data visualization mode in the software of Malvern Morphologi automated static image 20 

analyser device).” 

 

We changed: “In this study we outline a new method for determination of sediment transport processes involving 1) the 

integration of grain size and shape data into size-shape distributions and 2) end-member modelling on these distributions.” 

(Introduction, page 3, lines 8-10) to: “In this study we outline a new method for determination of sediment transport processes 25 

involving 1) the integration of grain size and shape data into size-shape distributions (e.g. Itoh and Wanibe, 1991) and 2) end-

member modelling on these distributions”. 

 

Comment 5) “Last columns of Table 2 are not visible in the manuscript.” 

 30 

Table 2 was changed in the revised manuscript to include the last column. 

 

Comment 6) “The overall structure of the paper is good, however, figure from the Appendix A could 

be moved into the main text.” 
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Appendix A has been moved into the main text as Fig. 1. 
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Response to Simon Blott 

Dear Simon Blott, 

Thank you for your positive comments and your suggestions. 

Section 1 contains our replies to your comments. Section 2 describes the changes made to the manuscript based on your 5 

comments.  

 

Section 1 

Below we have made a list of your comments (in italic and quotation marks) and our replies. 

Comment 1) “It is lengthy, but it is difficult to see how it could be substantially shortened without removing relevant material”. 10 

We also feel that, although the manuscript is long, there is not much opportunity for shortening it. 

Comment 2) “One small point is that Table 2 appears truncated and missing the right hand side”.  

Thank you for noting this error. Part of the last column is indeed not visible in the manuscript. This is changed in the revision. 

Comment 3) “And it is also unfortunate that important material is in the Appendices at the back - I found myself referring to 

these throughout, which is a little tiresome moving back and forth to the end of the manuscript. I would recommend moving at 15 

least the first two appendices into the main text”. 

Do you suggest to move appendix A1 and A2 into the main text, or A and B? We moved A1, A2 and A3 into the main text, 

but appendix B is not moved as it is of less importance.  

Section 2 

Below we have made a list of your comments and the accompanying changes we made to the manuscript.  20 

Comment 1) “It is lengthy, but it is difficult to see how it could be substantially shortened without removing relevant material”. 

We did not shorten the manuscript. 

Comment 2) “One small point is that Table 2 appears truncated and missing the right hand side”.  

Table 2 was updated to include the last column. 

Comment 3) “And it is also unfortunate that important material is in the Appendices at the back - I found myself referring to 25 

these throughout, which is a little tiresome moving back and forth to the end of the manuscript. I would recommend moving at 

least the first two appendices into the main text”. 

We moved appendix A1, A2 and A3 into the main text as figure 1.  
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