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Abstract. Spring-fed streams throughout volcanic regions of the western United States exhibit larger widths than runoff-fed

streams with similar discharge. Due to the distinctive damped hydrograph of spring-fed streams (as compared to large peaks

visible in the hydrographs of runoff-fed streams), large wood is less mobile in spring-fed than runoff-fed stream channels,

so wood is more likely to remain in place than form logjams as in runoff-fed streams. The consequent long residence time

of wood in spring-fed streams allows wood to potentially have long-term impacts on channel morphology. We used high-5

resolution satellite imagery in combination with discharge and climate data from published reports and publicly available

databases to investigate the relationship between discharge, wood length, and channel width in 38 spring-fed and 20 runoff-

fed streams, additionally responding to a call for increased use of remote sensing to study wood dynamics and daylighting

previously unpublished data. We identify
::::::::
identified an order of magnitude more logjams than single logs per unit length present

in runoff-fed streams as compared to spring-fed streams. Histograms of log orientation in spring-fed streams additionally10

confirm
::::::::
confirmed that single logs are immobile in the channel so that the impact of single logs on channel morphology could

be pronounced in spring-fed streams. Based on these observed differences, we hypothesize
::::::::::
hypothesized

:
that there should be a

difference in channel morphology. We find
:::::
found that spring-fed streams in our study are about 2 times wider than runoff-fed

streams with similar mean discharge. A model for stream width in spring-fed streams based solely on length of wood is a better

model than one derived from discharge or including both discharge and wood length. This study provides insights into controls15

on stream width in spring-fed streams.

Copyright statement.

1 Introduction

? first proposed a set of power laws to describe channel morphology based on discharge. Subsequent studies confirmed the

existence of a relationship between discharge and width (e.g., ???), but the scatter in the relationship is large. There is a wealth20

of empirical correlations to describe width based on environmental conditions; however, the best relationships exhibit limited

capacity to describe real channels (?).
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In certain cases, though, it may be possible to predict channel width more precisely. One example is that of spring-dominated

or spring-fed streams. Spring-fed streams receive the bulk of their discharge from groundwater sources and thus exhibit rel-

atively stable hydrographs (e.g., ??). Compared to runoff-fed streams, spring-fed streams transport a proportionally larger25

amount of sediment in everyday flows than high-flow events, leading to different channel responses to disturbance, such as

flow obstacles (?). Spring-fed streams are a promising test group for understanding some of the controls on stream width since

their stable hydrographs reduce the number of variables impacting the channel.

Previous studies have identified differences between runoff- and spring-fed channels (e.g., ??). ? studied streams in the west-

ern US, primarily in the Oregon Cascades, and found that the spring-fed streams in their study (0.005-8 m3/s) are signficantly30

wider than their runoff-fed counterparts. Conversely, a study comparing spring-fed to runoff-fed streams in Arizona (10−3

m3/s) found that spring-fed streams exhibited
::::::
exhibit lower width-to-depth ratios than runoff-fed streams (?). The streams

studied by ? and ? are comparable in every aspect save discharge and the presence of large wood (LW). The streams studied

by ? had high discharge and significant amounts of LW, while the streams studied by ? had very low discharge and essentially

no LW.35

In streams included
:::::
many

:::::::
settings,

::::::::
including

:::::
those

:::::::::
considered in this study, LW is typically recruited through wind storms,

death by bark beetles, and undercutting banks. The presence of LW increases variance in channel width, demonstrating the

capacity to either constrict or widen (?). Channel widening associated with LW is
:::
was observed by ?, ?, ?, and ?, for example.

? found that the presence of wood increases mean water depth, implying lower mean velocities but local velocity increases. ?

demonstrated that single logs can increase bank erosion via those local velocity increases, providing a mechanism for channel40

widening with the presence of LW. However, with multiple single logs in a stream, the effect is enhanced when single logs

are very close together but dampened when they are moderately closely spaced (?). In contrast, removal of LW has been

observed to cause rapid changes to channel form, including rapid channel widening (???). The mechanism for LW constriction

of channel width is streambank stabilization by LW (?).

Despite evidence that LW impacts channel dimensions, LW was absent from early discussions of channel geometry (?). We45

hypothesize that LW widens spring-fed streams. In general, the stability of LW in channels is related to flow characteristics of

the stream and the size of LW (????). Notably, ? show
::::::
showed

:
that peak annual discharge has a large impact on LW mobility,

and generally, hydrology is a good predicter of wood mobility (?). Thus, due to differing hydrograph behavior, peak events

in runoff-fed streams may be able to mobilize wood, whereas the more stable hydrographs of spring-fed streams generally lie

below the threshold for wood mobility, making LW more likely to be immobile in spring-fed but not runoff-fed streams. In50

order to assess this hypothesis, ? measured orientations and diameters of wood in Oregon streams to determine whether wood

was oriented with respect to the thalweg. They found that wood in runoff-fed channels was generally more oriented with flow,

demonstrating mobility, and wood in spring-fed channels was generally aligned randomly or more perpendicular with flow,

implying immobility.

We hypothesize that mobility promotes the development of logjams in runoff-fed streams (e.g., ?) and explains the paucity55

of logjams in spring-fed streams, where single logs may dominate the population of LW. In addition to the impacts on channel

widening, the presence of logjams may impact morphology by forcing a multi-threaded rather than a single-thread channel

2



(??). With a low abundance of logjams in spring-fed streams, we thus expect that the wood interaction mechanism explored

by ? for single logs in single-thread streams (i.e. an increase in bank erosion) may dominate, leading to channel widening

associated with the presence of LW. With sufficient logs immobile in a channel, the consequent bank erosion would increase60

the reach-averaged width-to-depth ratio. In contrast, logjams may produce more variable effects on channel morphology or

locally stabilize banks, cause channel constriction.

The purpose of this study is to examine the empirical relationship between LW and the morphology of spring-fed streams in

order to identify statistically significant relationships. We also respond to a recent call by ? to employ remote sensing to study

wood dynamics and to daylight unpublished data on wood dynamics. Specifically, we investigated (1) wood orientation and65

frequency of logjams, (2) discharge and width of stream channels, and (3) length of LW and width of stream channels.

2 Field Area

In this study, we work with 36 spring-fed streams and 20 runoff-fed streams across the western United States in the Oregon

Cascades, southwestern Montana, eastern Idaho, northern Arizona, northern California, and the Ozarks in Missouri, and 2

additional spring-fed streams in El Tatio Geyser Field in Chile (Table 1). Bankfull discharge ranges from the approximately70

10−3 m3/s discharge springs in Arizona (?) to Big Springs, MO at 13 m3/s (?), with precipitation varying by only a factor of 4

in the North American examples. The streambeds generally consist of glacial outwash or alluvium. All streams included in this

study have erodible banks. Streams in this study are generally single-threaded with some examples of multi-threaded reaches

in channels, generally coinciding with large amounts of LW.

The streams located in eastern Idaho and southwestern Montana are located in the easternmost part of the Columbia Plateau75

(Snake River Plain) and neighboring Middle Rocky Mountains physiographic provinces (?). The annual precipitation is 300-

600 mm with about 150 mm snowfall (?). Mean Annual temperatures range from 1-9◦C (?). The area is underlain by Quaternary

rhyolite and basalt (?). The streams in this region primarily run through oak/pine woodland.

The spring-dominated streams in southwest Oregon and northern California are located along the border of the Cascade-

Sierra Mountains and Basin and Range physiographic provinces (?). This area lies in the rain shadow of the Cascades to the80

west. Mean annual precipitation, dominated by snow, decreases from over 1 m to the west to about 0.5 m in the southern part

of the study area (?), and mean annual temperatures range from 8-12◦C (?). The area is underlain by Quaternary basalt and

basaltic andesite. Typical land uses
:::::
cover for the studied streams in this region are oak or pine woodland, grassland, shrubland,

wetland, and some small farms.

The streams studied in northern Arizona are located along the Mogollon Rim (?). The high relief of the Mogollon rim85

at 2100 m induces a strong orographic effect (?), yielding some of the highest precipitation in the state, an annual average

of more than 800 mm (?), and the mean annual temperature is 17◦C (?). The area is underlain by Tertiary basalts, Permian

limestone (Kaibab Formation), and sandstone (Coconino Sandstone), with streambed material made up of valley fill alluvium

(?). Watersheds included in this study run through oak/pine woodland and wetland meadows.
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The streams in the Ozarks are located in the Potosi, Eminence Gasconade, and Roubidoux Formations (?). The area is under-90

lain by carbonate with interbedded chert and sandstone (?). Mean annual temperatures range from 2-15◦C, and precipitation is

0.5-1.2 m/yr (?).

The streams in El Tatio Geyser Basin, Chile are located on the San Pedro formation (?). Located in the Atacama desert,

precipitation is very low at 0.025 m/yr, but the high elevation means that the mean annual temperature is 3.6◦C (?). This area

is underlain by andesites, dacites, and rhyolites (?), with the streambed material consisting of glacial outwash. The streams in95

this area run through desert landscapes above treeline. These streams are included for comparison between spring-fed streams

with and without wood since these streams are above treeline and have no recent history of LW. Other spring-fed streams with

no visible LW in this study may have had LW in recent history since the watersheds they run through contain forests.

Spring-fed streams occur in specifically defined geological settings in which a highly permeable material overlays an im-

permeable layer, such as in the volcanic regions explored in this study (?). The geologic setting is important for producing100

the conditions for spring-fed streams to exist and sustain. Due to these particular geological constraints, it is difficult to find

a large, comparable set of runoff-fed streams. We selected
:::::
select a set of streams that are located as closely as possible to the

spring-fed streams in this study to control for geology as much as possible. We can verify that the labeled runoff-fed and spring-

fed streams display different hydrograph behavior by examining the mean and standard deviation of flow, when available. All

spring-fed streams with available data exhibit standard deviations
::
in

::::::::
discharge smaller than their mean

:::::::
discharge, whereas the105

runoff-fed streams show standard deviations larger than their mean. When unavailable, we rely on the cited authors to correctly

identify the flow source for the stream.

3 Methods

High-resolution satellite imagery has been shown to be effective in capturing quantitative data about stream morphology

and LW (e.g., ??). Using Google Earth Pro high-resolution imagery (generally 0.15m resolution–high enough resolution to110

get accurate measurements, as suggested by ?), we measured stream width along 10 stream cross-sections
:::::
along

::
a

:::::
reach

::::::::
including

:::
the

::::
GPS

::::
point

::
in
:::::
Table

::
1 for 38 spring-fed and 20 runoff-fed streamsincluding the GPS point in Table 1. This study

is
:
.
::::
This

:::::
study

::::
was

:
limited to exploring width as opposed to width:depth ratio due to the use of remote sensing for data

collection
:::::::
because

:::
the

::::::
remote

:::::::
sensing

:::
data

:::::::::
collection

::::::
cannot

::::::::
document

:::::::
channel

:::::
depth. Spring-fed and runoff-fed streams are

::::
were

:
distinguished based on prior identification in research publications. The GPS points are located at or near the gauges115

cited. These measurements are
::::
were

:
compared to field measurements by ? and ? for validation. By visual inspection of high-

resolution satellite imagery, we determine
:::::::::
determined

:
whether a stream contains wood. Those with no visible wood and those

without clear enough imagery are excluded from analyses about wood. In 2018, multiple attempts were made to contact

managers of each spring-fed stream where no wood was observed, but we did not receive any responses.

For 25 spring-fed and 19 runoff-fed streams containing wood, we measured the length of 10 or more pieces of LW found120

in or near the channel in this same reach (Table 1). Additional measurements were taken for streams exhibiting a high degree

of variability in wood length. This measurement is meant to characterize the wood source to the streams, so wood found near
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Stream Elevation (m) lat/long (degrees) Stream Width (m) Wood Length (m) Mean Discharge (m3/s) Bankfull Discharge (m3/s) Watershed Area (km2)

Oregon Cascades: Average Temperature7: 8-10 ◦C, Mean Annual Precipitation7: 0.3-1.3 m, Mean Annual Snowfall7: 0.5-0.7 m, Land use: pine woodland, grassland, wetland, small farms

Spring-fed

1 Blue Springs, OR † 1273 [42.69580, -122.07173] 4.3 ± 1.3 6.3 ± 1.7 0.0891 0.481

2 Browns Creek, OR 1334 [43.72212, -121.80372] 15.4 ± 2.1 16.0 ± 3.2 1.221 55.91

3 Cultus River, OR †,a 1357 [43.88801, -121.76216] 30.0 ± 3.0 17.6 ± 4.0 1.8 ± 0.63 42.73

4 Deschutes River, OR †,a 1358 [43.81417, -121.77583] 11.1 ± 2.7 13.1 ± 3.6 4.2 ± 2.13 3423

5 Fall River, OR†,a 1276 [43.79367, -121.52416] 15.4 ± 6.6 16.1 ± 3.4 4.392 117 10

6 Lost Creek, ORa 520 [44.17542, -122.05447] 16.7 ± 5.2 18.22 ± 5.8 5.9112 19712

7 Quinn River, ORa 1354 [43.78417, -121.8351] 17.9 ± 5.2 13.6 ± 4.6 0.6710 1.063† undetermined

8 Reservation Spring, OR †,a 1274 [42.69984, -121.96478] 19.7 ± 3.2 22.2 ± 5.5 1.581 0.121

9 Snow Creek, OR †,a 1274 [43.87347, -121.76910] 16.3 ± 3.2 14.0 ± 2.0 1.821 3.581

10 Spring Creek A, OR †,a 1281 [42.67034, -121.88592] 36.1 ± 11.8 18.0 ± 3.4 2.011 72.81

11 Spring Creek B, OR 1282 [42.65413, -121.88043] 41.5 ± 3.8 16.8 ± 2.6 6.771 33.81

Runoff-fed

12 Boulder Creek, OR †,a 521 [43.30361, -122.52917] 15.9 ± 3.5 11.4 ± 4.1 2.98 ± 4.323 31.43† 78.73

13 Crystal Castle Cr C, OR 1393 0.961 UNKNOWN 0.04911 8.951

14 Cultus Creek, OR †,a 1399 [43.82273, -121.82770] 6.9 ± 2.8 16.4 ± 4.6 0.62 ± 0.843 3.023† 863

15 Deer Creek, OR † 1383 [43.80461, -121.83833] 4.3 ± 0.8 10.4 ± 2.3 0.2 ± 0.33 0.4631 55.73

16 Hills Creek, OR 494 [43.68056, -122.36944] 15.9 ± 2.3 12.0 ± 1.6 4.30 ± 5.843 35.43† 136.53

17 Little Deschutes River, OR 1278 [43.68917, -121.50167] 12.5 ± 1.7 11.4 ± 4.8 5.83 ± 4.563 10.63† 22253

18 South Fork McKenzie River, OR 521 [44.04722, -122.21667] 19.7 ± 2.3 17.7 ± 5.0 17.93 ± 16.643 104.23† 4143

Ozarks: Average Temperature: 2-15 ◦C, Mean Annual Precipitation: 0.5-1.2 m, Mean Annual Snowfall: 0.2 m, Land use11: oak/pine woodland

Spring-Fed

19 Big Springs, MO 131 [36.95000, -90.99000] 88.0 ± 18.0 N/A 12.8 ± 4.73 undetermined

20 Maramec Springs, MO 239 [37.95000, -91.53000] 22.1 ± 3.1 N/A 0.0446 80313

21 Tucker Bay Spring, MO 119 [36.76576, -90.93988] 17.0 ± 2.4 14.3 ± 4.2 37.7511 undetermined

Runoff-fed

22 Bourbeuse River, MOa 245 [38.14692, -91.58089] 16.9 ± 5.4 20.8 ± 1.9 4.01 ± 16.793 249.83† 3503

23 Current River, MO 272 [37.44833, -91.67111] 14.4 ± 3.7 17.8 ± 3.4 3.75 ± 4.883 5.83† 1523

24 Huzzah Creek, MO†,a 203 [37.97472, -91.20444] 23.1 ± 3.6 14.3 ± 4.6 8.08 ± 21.343 101.93† 6713

25 Little Piney Creek, MO†,a 211 [37.90953, -91.90333] 17.4 ± 4.4 18.3 ± 2.2 4.74 ± 11.763 90.93† 5183

26 Meramec River, MOa 208 [37.99847, -91.36094] 35.9 ± 9.2 24.1 ± 7.7 17.13 ± 42.333 240.43† 20233

Eastern Idaho: Average Temperature7: 1-9 ◦C, Mean Annual Precipitation7: 0.2-0.6 m, Mean Annual Snowfall7: 0.7-1.6 m, Land use11: oak/pine woodland, farm

Spring-Fed

27 Big Springs, ID †,a 1947 [44.49892, -111.25711] 58.4 ± 8.9 12.5 ± 3.3 20.51 0.151

28 Billingsley Creek, ID 913 [42.81976, -114.87065] 11.3 ± 1.5 N/A undetermined

29 Black Sands Creek, MT †,a 2023 [44.66017, -111.16191] 28.0 ± 7.4 15.8 ± 1.9 0.7 1 0.0821

30 Blue Heart Springs, ID 879 [42.71034, -114.83000] 24.8 ± 3.5 N/A 3.111 0.01

31 Buffalo River, ID †,a 1938 [44.43844, -111.26001] 14.2 ± 1.8 11.4 ± 4.1 0.211 0.81

32 Chick Creek, ID † 1935 [44.42597, -111.21480] 4.5 ± 1.7 11.2 ± 2.7 1.081 22.91

33 Elk Springs Creek, ID 1977 [44.49468, -111.40109] 1.4 ± 0.4 6.7 ± 2.7 0.0241 0.281

34 Lucky Dog Creek A, IDa 1951 [44.48591, -111.26705] 7.2 ± 0.6 11.1 ± 2.5 0.921 0.151

35 Lucky Dog Creek B, ID † 1947 [44.48822, -111.29158] 6.9 ± 0.7 12.5 ± 3.1 1.351 5.751

36 Mill Creek, ID 1939 [44.46311, -111.42967] 2.7 ± 0.7 7.2 ± 1.2 0.191 1.881

37 Silver Creek, ID 1478 [43.32336, -114.10835] 20.9 ± 1.8 N/A 4.0 ± 1.43 1813

38 Toms Creek A, ID† 1932 [44.41647, -111.29339] 4.3 ± 0.6 9.7 ± 3.3 0.08721 0.941

39 Toms Creek D, ID 1914 [44.40137, -111.36421] 6.2 ± 1.3 9.0 ± 1.7 1.181 14.41

40 Tyler Creek,ID 2051 [44.50973, -111.39774] 1.2 ± 0.3 8.1 ± 1.9 0.21 3.151

Runoff-fed

41 Fall River, ID†,a 1643 [44.05611, -111.35861] 40.1 ± 4.6 15.4 ± 3.4 23.78±20.393 82.43† 8733

42 Henry’s Fork, ID †,a 1602 [44.113611, -111.333056] 62.2 ± 6.9 23.7 ± 2.8 28.14± 11.953 54.43† 16993

43 Moose Creek, ID † 1950 [44.48355, -111.28622] 2.3 ± 0.3 9.9 ± 4.3 0.641 39.71

44 Robinson Creek, ID 1606 [44.11444, -111.32417] 14.5 ± 2.9 11.4 ± 3.4 3.59±3.803 13.13† 3343

El Tatio Geyser Basin, Chile: Average Temperature8: 3.6 ◦C, Mean Annual Precipitation8: 0.00258 m, Land use: desert, geyser basin

Spring-fed

45 Rio Salado, Chile 4300 [-22.33903, -68.01808] 8.539 N/A 0.869 undetermined

46 Stream 0, Chile 4300 [-22.33444, -68.03292] 3.09 N/A 0.259 undetermined

Northern California: Average Temperature7: 10-12 ◦C, Mean Annual Precipitation7: 1.2-1.6 m, Mean Annual Snowfall7: 0.1-1.3 m, Land use: oak/pine woodland, shrubland, grassland, farm

Spring-fed

47 Big Springs Creek, CA 789 [41.60115, -122.42650] 38.2 ± 8.3 N/A 1.74 undetermined

48 Hat Creek, CA 1321 [40.68911, -121.42278] 7.6 ± 2.0 9.9 ± 2.5 4.0 ± 1.33 4213

49 Lost Creek, CA 886 [39.57003, -121.16534] 8.7 ± 1.4 8.9 ± 3.4 undetermined

Runoff-fed

50 McCloud River, CA † 335 [41.11083, -122.09534] 28.3 ± 7.2 10.3 ± 3.1 29.6 ± 41.43 28.03† 15643

Mogollon Rim, Arizona: Average Temperature7: 17 ◦C, Mean Annual Precipitation7: 0.8 m, Mean Annual Snowfall7: 0.9 m, Land use5: oak/pine woodland, wetland meadow

Spring-fed

51 Unnamed Spring 1, AZ 2207 [34.47111, -111.28761] 0.45 N/A 1.1×10−2
5 0.0295

52 Unnamed Spring 2, AZ 2313 [34.43378, -111.16097] 0.16 5 N/A 2.2×10−3
5 0.0255

53 Unnamed Spring 3, AZ 2313 [34.43528, -111.16036] 0.225 N/A 2.7×10−3
5 0.00775

54 West Pinchot Spring, AZ 2146 [34.50228, -111.19647] 0.295 N/A 3.4×10−3
5 0.0115

55 Whistling Spring, AZ 2289 [34.44844, -111.19028] 0.295 N/A 2.6×10−3
5 0.0285

Runoff-fed

56 Buck Springs Canyon, AZ†,a 2286 [34.43972, -111.13972] 1.5 ± 0.5 1.5 ± 0.5 6.1×10−3
5 0.845

57 Merritt Draw, AZ 2291 [34.44889, -111.19014] 0.9 ± 0.4 8.4 ± 3.8 6.1×10−3
5 0.51 5

58 Quaking Aspen Canyon, AZ 2267 [34.43919, -111.33889] 0.65 UNKNOWN 6.1×10−3
5 0.945

Table 1. Summary of data collected for spring-fed and runoff-fed streams. Elevation, GPS, bankfull Stream Width, and Wood Length were

collected from Google Earth Pro. Streams marked with † were included in histogram analysis, and those marked with an a were used to

examine whether wood placement changed over time. Stream Width, Wood Length, and Mean Discharge are reported as Mean±SD when

statistics are available. (1) ?, (2) ?, (3) ?, (4) ?, (5) ?, (6) ?, (7) ?, (8) ?, (9) ?, (10) ?, (11) ?, (12) ?, and (13) ?. Bankfull discharge values

attributed to 3† are estimated as the 1.25 year flood from USGS data.
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the streams should be representative of the wood that enters the channel. If wood were only measured in the channel, then

the results may be biased since we only measured wood for which we could confidently identify both ends. In the channel,

this criteria rules
:::::::
criterion

::::
ruled

:
out many pieces of wood, often excluding smaller pieces or pieces where one end is obscured125

by trees. Wood outside the channel is
:::
was sometimes more clearly identifiable in aerial imagery. To verify the validity of this

technique, we compare
::::::::
compared field measurements of wood length at one site to results from remotely sensed measurements.

While fully submerged logs likely have an impact on stream morphology as well, they are
::::
were

:
largely not included in this

study due to unreliable identification via satellite imagery. For the remainder of the paper, the term "wood length" refers to the

average wood length.130

To test the precision of our technique of measuring length in Google Earth Pro, we measured the length of a single log 10

times in a row to yield a length of 17.6±0.2 m with 90% confidence. The small size of the confidence interval (1.2%) suggests

::::::::
suggested relatively high precision for the technique. All LW observed via satellite imagery and in the field at this location was

long, so no estimates on accuracy of the method for measuring small pieces of LW were possible.

For streams marked by a † in Table ??, we also took histograms of log orientation for single logs in each stream. Histograms135

were taken using Google Earth Pro imagery. Ideally, we could measure wood orientation on a scale from 0◦ (directly in line

with flow) to 180◦ (directly opposite to flow). This is possible in the field, but due to limitations in imagery resolution, we were

unable to reliably distinguish the bottom and top of LW in this study. As a result, we noted orientation of LW on a scale from

0◦ (parallel to flow) to 90◦ (perpendicular to flow), unable to note orientation (± 90◦).

More detailed geomorphic and sedimentologic data were collected by ?, ?, and ?. Discharge data reported are
::::
were separated140

between bankfull and mean discharge in Table 1 for clarity, although for spring-fed streams, since discharge is fairly constant,

bankfull discharge and mean discharge are nearly the same (e.g., ???). For streams with adequately clear satellite imagery,

histograms of wood orientation were made by using Google Earth Pro to measure the angle between wood orientation and

the adjacent streambank for all wood outside of logjams (approximately 100 pieces) in a stream segment containing the GPS

coordinate in Table 1.
:::
The

::::::
reaches

::::::
varied

::
in

::::::
length

:::::::::
depending

::
on

:::
the

:::::
ease

::
of

:::::::::
identifying

::::::
single

::::
logs

::::
from

:::::
about

::::
1.5

:::
km

:::
for145

:::::
Cultus

::::::
River,

:::
OR

::
to
:::::

over
::
30

::::
km

:::
for

::::::::
McCloud

:::::
River,

::::
CA,

::::::::
although

:::::
most

::::::
reaches

:::::
used

:::
for

:::
this

:::::::
analysis

:::::
were

:::::
under

:::
10

::::
km.

We additionally observed, for streams with multiple dates of clear imagery, whether there was any detectable change in wood

placement for 20+ observed logs between dates. Dates were typically from about 2005 to about 2018 with variation in the

specific years and time periods when imagery were available. Regional precipitation records do
:::
did

:
not indicate persistent

drought through the entire time period at any site (?), although local conditions may deviate from regional averages. We150

primarily observed single pieces of LW with few or no logjams in the studied spring-fed streams. We quantified this observation

by measuring the density of single logs and the density of logjams over a reach about 500 m in length for streams with

adequately clear imagery. These data also allow
::::::
allowed for a sense of how close LW is to one another. This is important since

the effect of LW on bank erosion is increased when single logs are close together (?). We found all best fit parameters using

the Marquardt-Levenberg algorithm.155

Discharge data are
::::
were

:
obtained from a range of sources. When available, mean and standard deviation are

::::
were

:
reported.

For spring-fed streams, mean is
:::
was similar to bankfull discharge (e.g., ???), so when bankfull discharge is

::::
was not available,
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mean discharge is
:::
was

:
used for analyses. For runoff-fed streams, if bankfull discharge is

:::
was unavailable, 1.25-year return

period is
:::
was

:
used as an estimate for bankfull discharge. Statistics are

::::
were repeated with and without estimated bankfull

discharge.160

Data are
::::
were

:
modeled to determine which physical factors are most statistically related to stream width. We begin

:::::
began

from the historical convention of w = aQb, where w is width, Q discharge, and a and b are constants, which are
::::
were

:
fit

separately for each model and data set. Additional tested models incorporate
::::::::::
incorporated wood length l in a few different

ways. The proposed models we test are
:::::
tested

::::
were:

1. w = aQb165

2. w = alb
::::::
w = alc

:

3. w = alQb

4. w = lQb

5. w = alcQb

where w is stream width, l wood length, Q discharge, and c and
:
a,
:
b,
::::
and

:
c
:
are constants. Models 3 and 4 appear nearly the170

same, but we fit them separately since model 4 requires fewer fit parameters. These formulae align with the body of research

that confirms a power law relationship between stream width and discharge, while taking into account a power law or linear

relationship between wood length and stream width for spring-fed streams. We assess
:::::::
assessed

:
the value of candidate models

using adjusted R2 (?), which accounts for the number of predictive variables included in the model, and Akaike’s Information

Criterion (AIC), which measures the amount of information lost when data are approximated by a given model as compared175

to other candidate models also accounting for the number of predictive variables (?). An adjustment for small sample sizes

(AICc) is
:::
was

:
presented by ?, which we use

::::
used in this study. If the set of AICc values is {AICci}, then the probability that

model i is the best of a set of candidate models is given by e(min({AICci})−AICci)/2.

4 Results

4.1 Wood Dynamics180

We begin with a description of the observed wood dynamics within the studied streams. In order for single logs to drive changes

in morphology, we assume that logs must be immobile in the channel. In order to confirm that this is the case in spring-fed, but

not runoff-fed, streams, we examined
:::::::
examine

:
histograms of wood orientation.

In order to examine the validity of orientation data taken remotely, we compared
:::::::
compare

:
our orientation results to those

of ? for Cultus River and Cultus Creek, shown in Figure ??. These sites were chosen from the data available in ? due to their185

close proximity to one another and differing flow regime.
:
A
::::::
visual

::::::::::::
representation

::
of

:::
the

:::::::::
differences

:::::::
between

:::
the

::::
two

:::::::
streams

:
is
::::::
shown

::
in

::::::
Figure

:::
??

::
(a)

:::
for

::::::
Cultus

:::::
River,

::::
OR

::::::::::
(spring-fed)

:::
and

::::::
Figure

:::
??

:::
(b)

:::
for

:::::
Cultus

::::::
Creek,

::::
OR

::::::::::
(runoff-fed),

::::::
which

::::
both
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:::
feed

::::
into

:::::
Crane

::::::
Prairie

:::::::::
Reservoir.

:::
As

:::::
shown

::
in

:::::
Table

::
1,

:::
the

::::::::
measured

:::::::
lengths

::
of

:::
LW

::
at
::::
both

:::::::
streams

:::
are

:::::
about

::
17

:::
m

::::
long.

::::
The

::::
mean

:::::::::
discharge

::
of

::::::
Cultus

:::::
Creek

::::
from

::::::::::
1923-1991

:::
was

::::
0.55

:::::
m3/s

::::
with

:::
the

::::
95th

::::::::
percentile

:::
of

::::
flow

::::::::
q95 = 2.3

:::::
m3/s,

:::::
while

:::::
mean

::::::::
discharge

::
in

:::
the

::::::
Cultus

:::::
River

:::
was

::::
1.5

::::
m3/s

::::
with

::::::::
q95 = 2.8

:::::
m3/s

:::
(?).

:::::::
Despite

:::
the

::::::
similar

:::::
peak

:::::
flows,

::::::
Cultus

:::::
River

:::::::::
(30.0±3.0190

::
m)

::
is

::::::
nearly

:::
five

:::::
times

:::::
wider

::::
than

::::::
Cultus

:::::
Creek

:::::
(6.9±

::::
2.8

:::
m).

::
In

::::::
Figure

::
??

::::
(b),

::::
there

:::
are

::::
also

::::::::
numerous

:::::
large

:::::::
logjams

::::::
visible

::
in

:::::
Cultus

::::::
Creek,

:::::::
whereas

::::
very

::::
few

:::
are

::::::
visible

::
in

:::::
Cultus

:::::
River

:::::::
(Figure

::
??

::::
(a)),

::::
and

::::
those

:::::::
present

:::
are

:::::
small.

::::
This

::::::::::
comparison

::
is

:::::::::::
representative

::
of

:::
the

:::::
types

::
of

:::::::
reaches

:::::
found

::
in

:::::::::
spring-fed

:::::
versus

:::::::::
runoff-fed

::::::
streams

::::::::
included

::
in

:::
this

:::::
study.

:

Using a Kolmogorov-Smirnov Two-Sample Test, we find that for the measurements in Cultus River (Figure ?? (a)), there is

an 80% chance that the measurements are from the same distribution and a 15% chance for the measurements on Cultus Creek195

(Figure ?? (b)). The latter low confidence could be due to the fact that the measurements were taken in different years and

possibly in different stream segments, and we argue that the qualitative behavior of the histograms is similar enough to draw

the same conclusions about wood orientation. Generally, we find that there is relatively good agreement, at least qualitatively,

between the in-field results obtained by ? and those we obtained via satellite imagery.

Following ?, we note that from the histogram of aggregated data for spring-fed streams in Figure ?? (a), it appears that wood200

is preferentially oriented around 50-90◦ (see supplement for individual stream histograms). If wood were mobile in streams,

we would expect to see preferential orientation at 0-20◦ (?). We compare the histogram for spring-fed streams to that for

runoff-fed streams in this study, where wood is preferentially oriented around 0-20◦. While the aggregate histograms exhibit

clear results, many individual histograms demonstrate differences from these trends (see supplement). We considered whether

basin size impacted the results since larger basins tend to transport more wood (?), but that observation does not explain the205

data aberrations
:::::::::
differences. For instance, Chick Creek, ID (a spring-fed stream), contains wood mostly oriented around 0◦ or

50◦, while Moose Creek, Deer Creek, and Buck Springs Canyon (runoff-fed streams) show random orientation, and Boulder

Creek (runoff-fed) is preferentially oriented around 30-50◦. In Chick Creek, LW is significantly longer than the width of the

stream, so the flow regime in the channel may have little impact on the orientation of wood. In the runoff-fed streams, the

deviations from the trend are likely due to other aspects of wood dynamics noted during data collection. First, most wood210

observed in runoff-fed streams was found in logjams, and identifying single logs to measure the orientation was difficult. In

runoff-fed streams in this study, there were on average 37 pieces of single wood per km as opposed to the 130 pieces of single

wood per km found in spring-fed streams, as shown in Figure ??. The high density of single logs means that LW is closely

spaced in the streams in this study. This disparity also prevented us from collecting as much data in certain streams due to

a dearth of single logs. We noticed about 5 logjams per km in runoff-fed streams compared to about 1 per km in spring-fed215

streams. This indicates that there may be a bias toward new wood when measuring single pieces in some runoff-fed channels

since older wood may be moved to logjams already. This also led to more difficulty in measuring orientation of single logs in

some runoff-fed channels when multi-threaded channels made determining orientation with flow more difficult.

We verify conclusions about residence of LW by examining imagery from multiple dates on the streams marked by an a

in Table 1. Imagery data were clear for a period of 3-10 years, depending on the site, and we examined at least 20 pieces of220

LW at each site. In each spring-fed stream, we were unable to detect any changes in wood placement at any site. In all of

the runoff-fed streams except for Buck Springs Canyon, AZ, we observed a change in orientation or location for at least one

8



Figure 1. Orientation of wood was measured from adjacent bank for approximately 100 pieces of wood using Google Earth Pro (green).

? measured orientation of wood in the field (transparent black). Data are shown together for (a) Cultus River and (b) Cultus Creek. The

distributions align very well for Cultus River and are have the same qualitative shape for Cultus Creek, although the center peak is displaced

between the two sets of measurements.

Figure 2. Using google
:::::
Google

:
Earth Pro, orientation of wood was measured from adjacent bank for approximately 100 pieces of wood

in each stream which had clear enough imagery to reliably identify LW (marked by a † in Table ??). Histogram data are aggregated for

(a) spring-fed and (b) runoff-fed streams. Wood in spring-fed streams is preferentially oriented from 50-90◦, whereas wood in runoff-red

streams is more randomly oriented with a significant portion of wood oriented 0-20◦.

observed piece of LW. We suggest that no large run-off events occurred during the 3-year period for which clear imagery are

available at Buck Springs Canyon. We thus confirm that there is little mobility of wood in the spring-fed streams in this study,

distinct from the motion observed in runoff-fed streams.225
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Boxplot representing the number of (a) single logs and (b) logjams identified per km via satellite imagery on spring-fed and runoff-fed

streams.

Figure 3. Google Earth Pro high-resolution imagery showing (a) Cultus River (q95 = 2.8 m3/s) and (b) Cultus Creek ((q95 = 2.3 m3/s).

Stream channels are outlined in white, and flow direction is down from the top of the image in both panels. These images are representative

of the general wood dynamics in the two streams, where most of the wood in (a) is single logs, and most of the wood in (b) is in logjams, so

little of the wood in panel (b) would contribute to the histogram shown in Figure ?? (b).

A visual representation of the differences between spring-fed and runoff-fed wood dynamics is shown in Figure ?? (a)

for Cultus River, OR (spring-fed) and Figure ?? (b) for Cultus Creek, OR (runoff-fed), which both feed into Crane Prairie

Reservoir. As shown in Table 1, the measured lengths of LW at both streams are about 17 m long. The mean discharge of

Cultus Creek from 1923-1991 was 0.55 m3/s with the 95th percentile of flow q95 = 2.3 m3/s, while mean discharge in the

Cultus River was 1.5 m3/s with q95 = 2.8 m3/s (?). Despite the similar peak flows, Cultus River (30.0±3.0 m) is nearly five230

times wider than Cultus Creek (6.9± 2.8 m). In Figure ?? (b), there are also numerous large logjams visible in Cultus Creek,
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Figure 4.
::::::
Boxplot

:::::::::
representing

:::
the

::::::
number

::
of

:::
(a)

:::::
single

::::
logs

:::
and

:::
(b)

::::::
logjams

:::::::
identified

:::
per

:::
km

:::
via

::::::
satellite

:::::::
imagery

::
on

::::::::
spring-fed

::::
and

:::::::
runoff-fed

:::::::
streams.

whereas very few are visible in Cultus River (Figure ?? (a)), and those present are small. This comparison is representative of

the types of reaches found in spring-fed versus runoff-fed streams included in this study.

4.2 Discharge and Width

A common relationship used to describe stream width is the Leopold power law relating width w and discharge Q by constants235

a and b (?): w = aQb. Typically, the value of b is close to 0.5, but b can vary depending on the streams being analyzed (?). ?

found b= 0.57 for the spring-fed streams in their study. The finding of ? suggests that discharge impacts the width of streams

in their study to a similar degree as for most channels. We verify the result of ? for the streams in their study by finding

b= 0.55± 0.1.

For the full set of spring-fed streams in this study containing wood, we find that a= 9.9± 1.2 and b= 0.42± 0.09 with240

a Pearson correlation coefficient of 0.52. Spring-fed streams without wood are fit by a statistically different trendline given

by a= 14.4± 1.4 and b= 0.67± 0.08 with a Pearson correlation coefficient of 0.87. Runoff-fed streams are significantly

different from spring-fed streams containing wood only in the coefficient a, with a= 5.1± 1.1 and b= 0.36± 0.03 with a

Pearson correlation coefficient of 0.89 (When
::::
when

:
repeated without estimated bankfull discharges, the results are statistically

indistinguishable except an increase in R2 to 0.99). The value of a is significantly smaller for the runoff-fed streams than the245

spring-fed streams included in this study. This corresponds to much narrower widths for the runoff-fed streams, confirming the

results of ?. It is also noteworthy that the correlation coefficient for spring-fed streams with wood is much lower than for the

other two groups, indicating that there is another very important factor needed to describe width adequately.
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Figure 5. Relationship between bankfull discharge (or 1.25 year flow as an approximation to bankfull discharge for some runoff-fed streams

marked in Table ??) and stream width plotted on a ln-ln plot for spring-fed streams with wood (dark green), spring-fed streams without

wood (orange), and runoff-fed streams (light blue). The line of best fit for streams containing wood is shown (w = aQb, b= 0.42± 0.09,

a= 9.9± 1.2); 95% confidence interval for the fit is shaded. Stream types are denoted by color, as shown in the top left, and locations are

denoted by shape, as shown in the bottom right. Runoff-fed streams are fit by a statistically significant different value of a= 5.1± 1.1,

indicating that runoff-fed streams are narrower than spring-fed streams at the same bankfull discharge. All runoff-fed streams contain wood,

and no runoff-fed streams without wood were available for comparison.

4.3 LW and Width

We compare the stream widths we measured to those measured by ? for the subset of streams included in both studies. For all250

of the streams contained in both studies, the widths measured by ? fall within the confidence interval for the widths measured

in this study via remote sensing.

We additionally compare field measurements of wood length of 10 pieces of LW at Cultus River, OR ([43.82381, -121.79687])

to remotely sensed wood length data for 10 pieces of LW at the same location. In the field, we find that the wood length was

18.5±5.0 m, and via remote sensing, we measured 17.4±3.9 m. The
::
We

:::::
note

:::
that

:::
the

::::::::
standard

::::::::
deviation

::
in

:::::
wood

::::::
length

::
is255

:::::
larger

:::
for

::::
field

::::::::::::
measurements

::::
than

:::::::
satellite

::::::::::::
measurements.

::::
This

::::::::
indicates

::::
that

:::::::
satellite

::::::::::::
measurements

:::::
likely

:::::
cause

::
us

:::
to

::::
both

::::
miss

::::
short

::::
LW

:::
(as

::::::::
described

::::::
above)

:::
and

::::::::::::
underestimate

:::
the

:::::
length

:::
of

::::
long

:::
LW,

::::::
likely

:::
due

::
to

::::::::
obscured

:::::
ends.

::::::::
However,

:::
the con-

fidence intervals for these measurements overlap, so we conclude that it is
:::
still accurate to measure wood length via Google

Earth high-resolution satellite imagery.

For the 25 spring-fed streams containing wood, we find that there is a power law relationship between LW length and260

stream width, as shown in Figure ?? (b), with a Pearson correlation coefficient of 0.66. For streams lying below the dashed

12



Figure 6. Wood length and stream width were measured using Google Earth Pro satellite imagery. The relationship between wood length

and stream width for spring-fed streams is shown (a) on a plot with width= length shown as a dashed line and error bars showing the

standard deviation and runoff-fed streams marked with black dots (error bars left off for clarity of viewing) and (b) on a ln-ln plot with the

line of best fit (w = alb with b= 2.4± 0.4 and a= 0.04± 0.03), error bars and runoff-fed streams left out for clarity. The 95% confidence

intervals for the line of best fit is shaded. In both panels, the data symbols represent the geographic locations of the streams. There is no

apparent significant clustering by location. In panel (a), streams that fall above the dotted line are wider than the wood load entering the

streams, whereas the streams falling below the line are narrower than the wood load.

width= length line in Figure ?? (a), wood found in and around the streams is typically longer than the streams are wide,

while streams above the dashed line are wider than the LW found in the system. Most streams in the study are clustered near

the dashed line, so wood length is comparable to stream width. There is variation in the length of LW between streams. This

variation is generally geographically explicable, with streams located near one another having similar LW sizes. Also note that265

in Figure ?? (a), the standard deviation for wood length generally increases with increasing stream width. We speculate that

larger streams may contain wood that has traveled further and thus exhibits larger variation in size, but we do not have data to

confirm this hypothesis. Runoff-fed streams are marked in Figure ?? by black dots.

The relationship between LW length and stream width is displayed on a ln-ln plot in Figure ?? (b) with the line of best

fit for w = alb, where w is stream width, l is wood length, and a and b are constants. The 95% confidence interval is shaded270

for a= 0.04± 0.03 and b= 2.4± 0.4. The Pearson correlation coefficient for this relationship is 0.66, indicating that wood is

strongly correlated to the width of spring-fed streams. We see from Figure ?? (b) that the fit parameters encompass well the

variability in the data. The best fit for the runoff-fed streams is not significantly different from that for the spring-fed streams,

with a Pearson correlation coefficient of 0.56.
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Function a b c Adjusted R2 AICc AICc Probability a b c Adjusted R2 AICc AICc Probability

All Spring-fed Spring-fed ≤ 30 m

1 w = aQb 14.00 0.27 0.25 118.0 0.36 11.65 0.16 0.16 84.7 0.00

2 w = alc 0.45 1.39 0.29 118.9 0.23 0.24 1.53 0.62 68.0 0.99

3 w = alQb 1.07 0.22 0.39 116.0 0.99 0.97 0.06 0.54 73.1 0.08

4 w = lQb 0.25 0.44 116.2 0.91 0.05 0.54 73.1 0.08

5 w = alcQb 0.93 0.22 1.06 0.39 117.0 0.60 0.24 0.00 1.53 0.60 71.0 0.22

All Runoff-fed Runoff-fed ≤ 30 m

1 w = aQb 9.53 0.23 0.39 89.8 0.39 8.10 0.19 0.67 47.2 0.11

2 w = alc 0.19 1.68 0.45 87.9 0.99 1.71 0.80 0.24 60.9 0.0

3 w = alQb 0.92 0.11 0.44 89.1 0.55 0.72 0.10 0.28 60.0 0.0

4 w = lQb 0.09 0.43 89.2 0.53 0.03 0.16 61.1 0.0

5 w = alcQb 0.62 0.09 1.16 0.44 90.0 0.34 90.96 0.34 -1.11 0.78 43.0 0.99

Table 2. Fit statistics for candidate models for spring-fed and runoff-fed streams. Adjusted R2 and Akaike’s Information Criterion (AICc)

account for the number of predictive variables. A larger R2 value indicates better fit, while a smaller AICc value indicates that less information

is lost. The AICc Probability is the likelihood that a given model is the best model based on the criterion of lost information as measured by

AICc. The results from Adjusted R2 match very well with the AICc results in ranking. For both runoff-fed and spring-fed streams, we note

that models 3, 4, and 5 are essentially identical when fit for all streams since parameters a and c in model 5 are indistinguishable from 1.

4.4 Using LW and Discharge to Describe Stream Width275

There are comparably large Pearson correlation coefficients for the relationships between wood and width as well as discharge

and width for spring-fed streams, implying both are important descriptive factors for stream width. There is, however, a ln-ln

correlation between discharge and wood length with Pearson correlation coefficient of 0.44, indicating that the two parameters

do not contain totally unique information but do contain a significant amount of unique information. Since discharge and wood

length are both significant descriptors for stream width and contain unique information, we examine a model for stream width280

incorporating both parameters. Full results for all tested models are shown in Table ??. For all cases, model ranking is very

similar for AICc and Adjusted R2.

For all spring-fed streams, model fittings of parameter a in model three and a and c in model 5 are indistinguishable from

1, making models 3, 4, and 5 nearly identical, so we discuss only models 1, 2, and 4. Model 4 performs significantly better

than models 1 and 2, as demonstrated by a high adjusted R2 and a low AICc value in Table ??, although there
:
.
:::::
There

:
is still a285

significant probability that model 1 or 2 could be the most effective model (36% and 24
::
23% respectively). This is unsurprising

given that ,
:::::::
though,

:::::
since models 1 and 2 resemble model 5 very closely. For spring-fed streams with an average width less

than 30 m (the group of streams which are close to or narrower than available LW), models 3 and 4 are indistinguishable and

models 2 and 5 are indistinguishable, so we discuss only models 1, 2, and 3. Model 1 (based only on discharge), drops in

significance from an adjusted R2 of 0.25 to 0.16 while all other models rise in significance, most notably model 2 which rises290
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from adjusted R2 of 0.29 to 0.62. This trend is preserved in AICc values, which indicate that model 2 (based only on LW

length) is the highest-performing model for spring-fed streams narrower than 30 m.

For all runoff-fed streams with available discharge and wood length data, models 3, 4, and 5 are indistinguishable, so we

evaluate only models 1, 2, and 4. The highest-performing model is model 2 (based only on LW length), although models 1

and especially 4 receive high AICc probabilities (39% and 53% respectively). When we restrict analysis to runoff-fed streams295

narrower than 30 m wide, the adjusted R2 for models 2, 3, and 4 drop significantly, while significance of models 1 and 5

increase. For model 5, though, the fit parameter (c=−1.1± 0.4) is negative, completely opposite from that for all runoff-fed

streams (c= 1.2± 0.6). Due to the small sample size and unexpected sign, we find it unlikely that this model is appropriate in

general. If we remove model 5 from consideration, then model 1 is clearly the best remaining model. (When repeated without

estimated discharges, R2 values were 0.98 for all models, likely due to the small number of points, allowing for over-fitting.300

The values of a and c are still indistinguishable from 1.)

The fit for all of
:::
The

:::
fit

::
for

:::
all

::
of

:
the proposed models is plotted onto

:
in

:
graphs for spring-fed (a) and runoff-fed (b) streams

in Figure A3.

5 Discussion

5.1 Wood dynamics305

We found that there is a significant difference between the residence location and
::::::::
residence time of LW in spring-fed and

runoff-fed streams. This difference is demonstrated by the different frequencies of single logs versus logjams in runoff-fed

and spring-fed streams as well as the orientation histograms for spring-fed and runoff-fed streams. The orientation histogram

and historical satellite imagery for spring-fed streams indicate immobile wood, while the histogram and historical satellite

imagery for runoff-fed streams indicates frequent log mobility. While it may be more complicated to interpret orientation data310

in small streams (?), the historical satellite imagery confirm the conclusion that LW is stable in spring-fed streams and often

mobile in runoff-fed streams in this study. Even so, wood in larger spring-fed streams is likely more mobile than wood in

smaller spring-fed streams since the mean discharge is higher, although mobility in runoff-fed streams appears to be much

greater. We also note that the standard deviation in wood length generally increases with increasing stream width in spring-fed

streams, while standard deviation in wood length in runoff-fed streams is generally comparable with the standard deviation for315

larger spring-fed streams in the same geographic region in this study, supporting the hypothesis that increased wood mobility

increases the standard deviation in wood length. The clear differences in wood dynamics suggest a different impact of wood

on morphology of spring-fed and runoff-fed streams, in which the impact of single logs may be dominant in the former.

In particular, we note that the wood dynamics observed in spring-fed streams in this study differ from the logjams that would

be typically expected for streams in which wood length is similar to or smaller than channel width (?). The preponderance of320

single logs matches better with the category of small streams, where stream width is less than wood length (?). This difference

suggests that adding a criterion for hydrograph variability may be useful in classifying streams
:::::::
impacted

:
by LW. Such a

criterion may allow for the classification of spring-fed streams as small due to their low peak discharge relative to the mean.
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5.2 Discharge and width

Figure ?? shows a distinction between spring-fed streams with and without wood in the relationship between discharge and325

width. There is, however, only a small set of data points available to identify the relationship for spring-fed streams without

wood, and 5 of the 12 streams in this group are unusually narrow for the study group. The remaining points are not visually

distinct from the pointcloud
::::
point

:::::
cloud for spring-fed streams with wood. For the streams in the Ozarks and Eastern Idaho, we

speculate that these streams may once have had significant amounts of wood due to their size, location in wooded areas, and a

history of ”management” that may have included wood removal (????). If this is the case, then the presence of wood may have330

had a lasting impact on the channel morphology that is still measurable despite the present lack of wood, explaining why those

streams lie in the point cloud for streams containing wood. While many, if not all, streams in the study may have been subject

to wood removal at some point, we take the current wood load as representative of the type of wood dynamics that would have

existed prior to wood removal. Additional management is not expected to have had much impact on results since geomorphic

restoration efforts are typically not attempted over large reaches such as those used in this study (?).335

In contrast to the U.S. streams
:
, the El Tatio streams , are above the treeline so would not have had wood in the past. It

is possible that the channels were shaped by a different hydrological regime, but the streams run through glacial outwash,

so the shape of the channel is dynamic and is probably controlled by the contemporary, spring-fed fluvial regime. Including

all spring-fed streams in calculating the relationship between stream width and discharge does not significantly change the

relationship parameters. This finding indicates that we are unable to reliably distinguish between spring-fed streams with wood340

and those without, an analysis which may be confounded by the minimal availability of spring-fed streams without wood for

data collection.

There is, however, a robust distinction between spring-fed and runoff-fed streams in terms of the relationship between

discharge and stream width, demonstrated in the fitted parameter a. This parameter indicates that for streams larger than those

measured by ?, it is generally the case that spring-fed streams are wider than runoff-fed streams.345

5.3 LW and width

We expect wood to be most important for describing the width of streams when it is comparable in size to the streams. When

wood is much longer than the width of the stream, then additional increases in wood length do not change the way wood

interacts with the channel since the majority of the wood piece is outside of the channel since nearly all wood observed in

spring-fed streams is oriented closer to perpendicular to the bank than parallel, causing wood to either span the channel or350

interact with the channel only for part of the LW length. ? note that LW longer than 2.5 times the channel width are
:
is generally

immobile. While LW is immobile, though, the full length of the LW is relatively unimportant for its impact on stream width

beyond the fact that it is longer than the channel is wide. Conversely, when the stream is much wider than the wood, LW can

only be close to the bank on at most one side of the stream. ? found that when LW at a given orientation is closer to the bank,

the impact on shear stress is greater. Taking distance from the bank as the most important predictor of how important a single355

log is in altering channel properties, then decreasing the size of LW after a certain point does not change the ability of the
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wood to be close only to one bank. Thus, we expect LW to be less important in two cases: 1) where streams are very narrow

in comparison to LW length and 2) where streams are very wide in comparison to LW length. In other words, when discharge

is outside a certain range, we expect the impact of LW on stream width to decrease since channels are either very wide in

comparison to wood length or very narrow. We see visually in Figure ?? (a) that when streams are wider than about 25 m,360

the points deviate significantly from the otherwise apparently linear trend. For streams in this study wider than 30m, streams

are much wider than the LW found in or near them. In fact, we find that there is a linear relationship with Pearson correlation

coefficient of 0.75 for streams smaller than 30 m wide, more significant than the ln-ln relationship for all data. This stronger

correlation aligns well with our hypotheses about when wood should have an impact on stream morphology, i.e. when LW is

comparable in length to stream width. While we are unable to say with confidence whether or not there is a difference between365

spring-fed streams with or without wood, we find that deviation from the relationship occurs where expected if wood were

driving the relationship.

In the case of runoff-fed streams, although the best fit matches closely with that for spring-fed streams, we find it likely that

this relationship does not hold in general for runoff-fed streams. Since there is a strong bias in our set of runoff-fed streams

toward high-discharge streams, with over 70% of the runoff-fed streams exhibiting a discharge higher than 5 m3/s and most370

over 50 m3/s, it may be coincidence that the runoff-fed streams included in this study are about as wide as the wood found in

them. The difficulty in identifying runoff-fed streams in geologic settings in which spring-fed streams occur prevents us from

assessing more fully the relationship between wood length and stream width in runoff-fed streams in a comparable geologic

setting.

5.4 Using LW and discharge to describe stream width375

:::
For

::
all

:::::::::
runoff-fed

:::::::
streams

::::
with

::::::::
available

:::::::::
discharge

:::
and

:::::
wood

::::::
length

:::::
data,

::::::
models

:::
3,

::
4,

:::
and

::
5
:::
are

:::::::::::::::
indistinguishable,

:::
so

:::
we

:::::::
evaluate

::::
only

::::::
models

::
1,
::
2,
::::

and
::
4.

::::
The

::::::::::::::::
highest-performing

::::::
model

::
is

:::::
model

::
2
::::::
(based

::::
only

:::
on

:::
LW

:::::::
length),

::::::::
although

::::::
models

::
1

:::
and

::::::::
especially

::
4
::::::
receive

::::
high

:::::
AICc

:::::::::::
probabilities

::::
(39%

::::
and

::::
53%

:::::::::::
respectively).

:::::
When

:::
we

::::::
restrict

:::::::
analysis

::
to
:::::::::
runoff-fed

:::::::
streams

:::::::
narrower

::::
than

:::
30

::
m

:::::
wide,

:::
the

::::::::
adjusted

:::
R2

:::
for

::::::
models

:::
2,

::
3,

:::
and

::
4
:::::
drop

:::::::::::
significantly,

:::::
while

::::::::::
significance

::
of

:::::::
models

:
1
::::

and
::
5

:::::::
increase.

:::
For

::::::
model

::
5,

:::::::
though,

:::
the

::
fit

::::::::
parameter

::::::::::::::
(c=−1.1± 0.4)

::
is
::::::::
negative,

:::::::::
completely

::::::::
opposite

::::
from

::::
that

::
for

:::
all

:::::::::
runoff-fed380

::::::
streams

:::::::::::::
(c= 1.2± 0.6).

::::
Due

::
to

:::
the

:::::
small

::::::
sample

:::
size

::::
and

:::::::::
unexpected

:::::
sign,

:::
we

:::
find

::
it

:::::::
unlikely

:::
that

::::
this

:::::
model

::
is

::::::::::
appropriate

::
in

::::::
general.

::
If
:::
we

:::::::
remove

:::::
model

::
5

::::
from

::::::::::::
consideration,

::::
then

:::::
model

::
1

::
is

::::::
clearly

::
the

::::
best

:::::::::
remaining

::::::
model.

::::::
(When

:::::::
repeated

:::::::
without

::::::::
estimated

:::::::::
discharges,

:::
R2

::::::
values

::::
were

::::
0.98

:::
for

:::
all

:::::::
models,

:::::
likely

:::
due

::
to
:::

the
:::::

small
:::::::
number

::
of

::::::
points,

::::::::
allowing

:::
for

::::::::::
over-fitting.

:::
The

::::::
values

::
of

:
a
::::
and

:
c
:::
are

::::
still

::::::::::::::
indistinguishable

::::
from

:::
1.)

The large Pearson Correleation Coefficients for the relationships in spring-fed streams between discharge and width as well385

as wood length and width indicate that combining both pieces of data into a single model could provide increases in model

performance. This initial thought is borne out by the increase in adjusted R2 and decrease in AICc for the model w = lQb

compared to the relationships for either wood length or discharge alone. However, when the analysis is repeated for streams

narrower than 30 m (where wood is close to the width of the channel), the most significant relationship becomes w = alb,
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depending only on wood length. Streams narrower than 30 m are examined separately since this is the group of streams that390

we hypothesize should be most impacted by LW.

For runoff-fed streams, we repeat the same analyses, and we find no improvement in model performance by including both

variables (Q and l). Unlike for the case of spring-fed streams, when we again restrict the streams included to those narrower

than 30 m, the significance of the relationship between wood length and stream width (model 2) drops significantly, making

the relationship w = aQb the most significant of the tested relationships. This result agrees with our hypothesis that the good395

fit between wood length and width is coincidental since removing streams where wood should be less important causes the

significance to fall instead of rise. Thus, we conclude that model 2 is likely not the best model for the case of all runoff-fed

streams. The next best candidate is model 4, although model 1 is nearly as effective. This suggests that discharge is also the

more important model factor for all runoff-fed streams, not just those smaller than 30 m.

The finding that model 4 performs well for both spring-fed and runoff-fed streams is particularly interesting since the form400

(w = lQb) resembles the Leopold and Maddock formula except with l instead of a. Thus we can think of wood length l as a

useful factor in understanding the variations of the coefficient a in different locations

6 Conclusions

We were
::
are

:
able to use high-resolution satellite imagery to reproduce measurements taken in the field by ?, ?, and new

measurements taken for this article. It is particularly notable that there is a significant overlap in confidence intervals for the405

wood lengths measured via remote sensing and in the field. This contribution increases confidence in the use of remote sensing

to assess LW accurately and quantitatively. Remote sensing tools provide a more straightforward way to effectively collect data

at a large number of field sites.

We verify the result of ? that spring-fed streams are generally wider than their runoff-fed counterparts. We also identify

differences in dynamics of LW between spring-fed and runoff-fed streams which underline the importance of peak flow and410

flow variability when identifying stream dynamics in relation to LW load. While we are unable to isolate LW as the cause of

the difference in morphology between spring-fed and runoff-fed streams, we note that a model for stream width in spring-fed

streams based solely on wood length l is the best model tested in this study for streams comparable in size to LW. We therefore

recommend further study into mechanisms by which LW may control the width of spring-fed streams. This result provides

deeper insight into what controls the width of streams in general by demonstrating a strong relationship between wood length415

and stream width when discharge is controlled.

Data availability. Datasets related to this article can be found at https://github.com/lapidesd/Lapides_Manga_2019 (?).
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