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Dear Reviewer,

thanks for your constructive and encouraging comments! It is good to see that the
problem with the grid-resolution dependence is still an important issue as long as we
do not disregard the feedback of the hillslopes to the rivers. Let me take the chance to
clarify your points immediately, starting from the discussion of the alternative approach
suggested by Pelletier (2010).

I agree to your first point in recapitulating Pelletier’s (2010) approach – Given that all
fluvial erosion formulae are based on unit or specific discharges (i.e., discharges per
unit channel width) or related quantities such as shear stress or unit stream power,
Pelletier proposed that landscape evolution models should also be based on unit or
specific contributing area, . . . . They should, and this would make things easier. How-
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ever, the relation that is used in almost all models is an erosion rate as a function of
channel slope and total catchment size (some proxy for total discharge, but not for
discharge per unit width). This old relationship was empirically derived from river pro-
files and has the advantage that it immediately bridges between model results and real
river profiles via the concavity index and the steepness index. It is a lumped equation
that already includes the downstream increase of river width without specifying this in-
crease explicitly. This means that we must be careful when starting from this relation
and bringing river width into play afterwards. In my opinion, this applies to both the
concept suggested by Howard (1994) and adopted by Perron et al. (2008) as well as
Pelletier’s approach.

My interpretation of Pelletier’s idea was slightly different from your explanation. I
thought of taking the entire flux from both hillslopes into the river and distributing it
not over a width δx, but over the river width w. However, the representation in the
equation is the same in both cases, and I guess that you know better than me what
the original idea was. The scaling is opposite to the other concept as it rescales the
divergence of the hillslope flux at the river by δx

w instead of rescaling the fluvial erosion
rate by w

δx . This was the reason for my sloppy argument about the “problem obviously
coming from the fluvial incision term.”

The main problem, however, is that Pelletier’s concept is not independent of the spatial
resolution at least according to my preliminary findings. The results of a simple numer-
ical experiment are attached as figures. It describes a river segment of unit length and
width (one slope of length 1

2 at each side of the river). All parameters are set to unity
(including the uplift rate and the catchment size in the stream power law) except for a
diffusivity of 0.1. Figs. 1–3 show the topography (with the scaling approach suggested
in my manuscript) at different times, starting from a flat topography. Figs. 4–6 show
the river profile for δx = 0.01 and δx = 0.1 at different times with both scaling concepts.
The profile should approach a straight line with a slope of 1 for t → ∞. While the
profile becomes independent of δx for large t for both scaling concepts (although too
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steep in Pelletier’s approach), the time scale of adjustment strongly depends on δx for
Pelletier’s scaling concept. This means that the time scale of response to changes in
uplift etc. depends on the spatial resolution in Pelletier’s scaling concept, so that I am
not convinced that is solves the scaling issue. However, I may be wrong, and if you
ever tested the scaling properties of Pelletier’s approach and obtained different results,
I would be happy to know.

Now about the specific points addressed in your review.

Grid-resolution dependence in coupled colluvial-fluvial models can be seen most read-
ily as a dependence of drainage density on pixel size.

I do not fully agree to this statement. If we assume that rivers start at points with a
given minimum catchment size Ac (in m2, not in DEM pixels) and a well-organized
dendritic network (not parallel flow on slopes), the dependence of drainage density on
DEM resolution is rather weak.

If I understand correctly, Hergarten is proposing to use this variation/error in drainage
density to scale the fluvial erosion term.

The dominator is indeed something like drainage density except for two differences:
(i) Area is not total area as it is in drainage density, but only the part of the area not
draining to leaves of the river network. This is the part that makes my analysis a bit
complicated at first sight. (ii) Total river length is area of the DEM that covers the
network divided by mesh width. For a square grid, this means that diagonal river
segments have the same length as those in direction of the axes.

I am wary of this approach because there is no clear (at least to me) physical basis
for why the fluvial erosion term would need to be scaled in this way and because there
is no indication that the drainage density predicted by the model, even if it can be
shown to be grid-resolution independent, is the correct one for a given set of model
parameters after such scaling.
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As mentioned above, I would immediately buy this argument if the widely used model
was derived from physical principles. Then the rivers would not know about properties
such as drainage density. However, it comes from empirical data of “typical” rivers
eroding ”typical” landscapes. My conjecture is that the expression for the fluvial erosion
law, in particular the value of the erodibility, refers to an equilibrium of erosion and uplift
in the catchment and does not describe the river as an isolated object. If this conjecture
holds, scaling must be like the one described in my manuscript.

I apologize if I missed it, but I didn’t see that Hergarten demonstrated that his approach
actually leads to grid-resolution-independent results. I was expecting to see model re-
sults with similar topography as the pixel size varies over a wide range. No such figure
appears in the paper. I recommend that Hergarten present such a figure along with
any other analysis (e.g., predicted steady state drainage density as a function of pixel
size) needed to demonstrate grid-resolution independence of the model predictions. I
would like to see such grid-resolution independence also demonstrated for cases on
non-uniform uplift rates, as such applications are common in landscape evolution mod-
els.

I am afraid that you did not miss it. I thought it would be clear from the analyzed network
properties alone, but accept that it is not. So I can include a more serious version of
the simulated river segment and the results of a series of larger simulations that I have
just started. In order to make it a bit more interesting, these simulations use irregular
triangular grids with 105 to 107 nodes and a threshold model for the hillslopes. I think
they will be ready in a few weeks.

I had a hard time following the description of the scaling approach. My understanding
is that the hillslopes and channels in the model output are first differentiated using a
user-defined threshold area, Ac, and then the fluvial erosion term is modified by an
amount equal to a power-law function of Ac. The power-law modification to Ac is clear
but how is Ac chosen? Does the model have to be run first without scaling the fluvial
erosion term in order to determine Ac and then rerun with the scaling?
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It is much easier than you think, and the practical relevance of the value of Ac is limited
in most applications. The result of my approach is that the erodibility K as it is usually
considered is not the parameter that we need, but K multiplied by a length constant
(which is not the river width) instead. I suggest

√
2Ac as a simple estimate of this

length scale. If we use a given erodibility K, we expect a certain channel steepness
in equilibrium with a given uplift rate. The only prediction of my concept is that we can
define any value Ac and let fluvial erosion act only at catchment sizes A > Ac, we will
arrive at the correct channel steepness. In many applications there will be hillslope
processes affecting scales larger than Ac. If these are strong, fluvial erosion will lose
relevance even for for A > Ac, and the value of Ac also becomes less relevant. If it is
much smaller than the scale of the hillslope process, it even only defines the reference
topography that would occur if the considered hillslope process was switched off.

Please provide a step-by-step guide for performing the proposed scaling that is appli-
cable not just to the case of steady uniform uplift to steady state but for other potential
landscape evolution model applications. It may be that for the case of steady uniform
uplift, channels and hillslopes can be differentiated based on a threshold contribut-
ing area, but many landscape evolution models are of non-uniform uplift and hence
non-uniform drainage density. Moreover, there is a large literature on how to differen-
tiate hillslopes and channels both in models and real-world DEMs, and the use of a
single contributing area threshold is universally regarded as an inadequate approach
to such differentiation. Assuming that choosing Ac involves differentiating hillslopes
and channels before scaling the fluvial erosion term, this manuscript glosses over a
very complex topic, the implications of which likely influences the applicability of the
proposed method.

Not really – it is all only about bringing empirically determined values of K into the
model. We are free to assume any model for fluvial erosion at small scales such as
a spatially variable threshold or a continuous decrease of erosion rates at decreasing
catchment sizes. We just have to keep in mind that the value of K is the one that
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we would measure from equilibrium river profiles if we assume that fluvial erosion is
switched on for A > Ac. In this approach, differentiating hillslopes from channels
on a given topography would only be useful if we want to use a specific value of K
measured in a given catchment. If we knew the spatial distribution of erosion in this
catchment, we could use it for assigning a “realistic” value of Ac to this value of K.
However, this is hopeless in most cases, so that we have to accept the problem that
measured values of K many unresolved dependencies (including something like Ac)
as you already mentioned.

A minor issue: it is incorrect to state that the erodibility coefficient K depends on rock
characteristics and precipitation (line 25). K is influenced by any factor other than chan-
nel slope and contributing area that influences detachment-limited erosion rates, in-
cluding channel width, all of the factors that influence rainfall-runoff partitioning (includ-
ing vegetation, soil texture, the distribution and sequence of storm events), snowmelt
dynamics (for some catchments), etc.

Finally, at least one point where I agree without any reservations.

Best regards,
Stefan Hergarten

Interactive comment on Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2019-77,
2020.
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