
Dear Reviewers,

thanks for your constructive and encouraging comments, in particular to the two anonymous
reviewers who made many suggestions to improve the accessibility of the manuscript to a wider
readership. It is good to see that the problem with the grid-resolution dependence is still an
important issue. In the following, the points addressed in your reports are discussed, and changes
to the manuscript are described. Line numbers refer to the version with highlighted changes.

Reviewer 1

“A point of clarification: Paragraph 23 of
Perron et al. (2008) reads, . . . So the anal-
ysis in that paper uses an approach similar
to that of Howard (1994) and does consider
the physical meaning of the channel width,
even if the numerical experiments assume it
is spatially uniform!”

I think I got the subpixel approach of
Howard’s model and the meaning of the chan-
nel width w correctly. However, my key point
is that your version with constant channel
width is in principle correct, but somehow for
the wrong reason as the length scale that is
needed for compensating the mesh width δ is
not the channel width, but another property
related to the threshold catchment size where
fluvial erosion starts, and that this property
is indeed constant over the drainage network.
I explained this point more clearly in
the revised version by extending the
description of the problem (Sect. 2)
and the discussion (Sect. 5).

Reviewer 2

“Before providing my comments on the
manuscript, I wish to first review a key alter-
native approach to the problem as a means
of introducing the general issues at play. Pel-
letier (2010) addressed the problem of grid-
resolution dependence in coupled hillslope-
channel landscape evolution models . . . It is
important to note that such a modification
to the colluvial deposition term is not some
indirect way of scaling the fluvial term as
Hergarten implies. Far from being a “prob-
lem obviously coming from the fluvial inci-
sion term” (line 60), it addresses a limitation
of the model to represent the cross-valley cur-
vature and the effect of that colluvial deposi-
tion rates in valley bottoms.”

I must admit that my discussion of Pelletier’s
(2010) approach was way too short. I do not
want to raise any doubts against the major
part of this paper addressing flow routing and
distinguishing between channelized flow and
parallel flow. However, I am not convinced
by the scaling approach itself, i.e., rescaling
the divergence of the flux from the hillslopes.
If my understanding and my own analysis are
not completely wrong, this approach suffers
from the same problem as Howard/Perron
version. As soon as river width increases with
catchment size, river steepness is no longer
consistent with the empirical findings of Hack
(1957) unless the exponent m is changed. In
this case, however, the relationship to the
widely used concept of the erodibility is lost.
According to my findings, this problem af-
fects both approaches suggested previously
in almost the same way. The numerical ex-
ample with the parallel rivers given by Pel-
letier (2010) navigated around this problem
by considering relief and valley spacing. I
discussed the problem more thoroughly
in Sect. 2 now (lines 86–114).
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“Grid-resolution dependence in coupled
colluvial-fluvial models can be seen most
readily as a dependence of drainage density
on pixel size.”

I do not fully agree to this statement. If we
assume that rivers start at points with a given
minimum catchment size Ac (in m2, not in
DEM pixels) and a well-organized dendritic
network (not parallel flow on slopes), the de-
pendence of drainage density on DEM reso-
lution is rather weak. It is rather the total
area covered by the DEM pixels. This should
be clearer now in the more detailed expla-
nation (lines 153–171).

“If I understand correctly, Hergarten is
proposing to use this variation/error in
drainage density to scale the fluvial erosion
term.”

The dominator is indeed something like
drainage density except for two differences:
(i) Area is not total area as it is in drainage
density, but only the part of the area not
draining to leaves of the river network. This
is the part that makes my analysis a bit com-
plicated at first sight. (ii) Total river length
is area of the DEM that covers the network
divided by mesh width. For a square grid,
this means that diagonal river segments have
the same length as those in direction of the
axes. This should also be clearer with the
new explanation (lines 153–171).

“I am wary of this approach because there
is no clear (at least to me) physical basis for
why the fluvial erosion term would need to
be scaled in this way and because there is
no indication that the drainage density pre-
dicted by the model, even if it can be shown
to be grid-resolution independent, is the cor-
rect one for a given set of model parameters
after such scaling.”

I would immediately buy this argument if the
widely used model was derived from physical
principles. Then the rivers would not know
about properties such as drainage density.
However, it comes from empirical data of
“typical” rivers eroding ”typical” landscapes.
My conjecture is that the expression for the
fluvial erosion law, in particular the value of
the erodibility, refers to an equilibrium of ero-
sion and uplift in the catchment and does not
describe the river as an isolated object.

“I apologize if I missed it, but I didn’t
see that Hergarten demonstrated that his
approach actually leads to grid-resolution-
independent results. I was expecting to see
model results with similar topography as the
pixel size varies over a wide range. No
such figure appears in the paper. I recom-
mend that Hergarten present such a figure
along with any other analysis (e.g., predicted
steady state drainage density as a function
of pixel size) needed to demonstrate grid-
resolution independence of the model predic-
tions. I would like to see such grid-resolution
independence also demonstrated for cases on
non-uniform uplift rates, as such applications
are common in landscape evolution models.”

I am afraid that you did not miss it. I only
thought about the theoretical concept and
the generic hillslope process model that fol-
lows the direction of the river pattern where
it is somehow clear that it should work. You
are right, it is not so clear, in particular if we
use a “realistic” hillslope process model. I
have now added a new section (Sect. 4)
with 2 numerical examples of different
complexity.
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“I had a hard time following the description
of the scaling approach. My understanding is
that the hillslopes and channels in the model
output are first differentiated using a user-
defined threshold area, Ac, and then the flu-
vial erosion term is modified by an amount
equal to a power-law function of Ac. The
power-law modification to Ac is clear but how
is Ac chosen? Does the model have to be run
first without scaling the fluvial erosion term
in order to determine Ac and then rerun with
the scaling?”

Sorry for this! It is much easier than you
think, and the practical relevance of the value
of Ac is limited in most applications. The re-
sult of my approach is that the erodibility
K as it is usually considered is not the pa-
rameter that we need, but K multiplied by a
length constant (which is not the river width)
instead. I suggest

√
2Ac as a simple estimate

of this length scale. If we use a given erodi-
bility K, we expect a certain channel steep-
ness in equilibrium with a given uplift rate.
The only prediction of my concept is that we
can define any value Ac and let fluvial ero-
sion act only at catchment sizes A > Ac, we
will arrive at the correct channel steepness.
In many applications there will be hillslope
processes affecting scales larger than Ac. If
these are strong, fluvial erosion will lose rel-
evance even for for A > Ac, and the value of
Ac also becomes less relevant. If it is much
smaller than the scale of the hillslope process,
it even only defines the reference topography
that would occur if the considered hillslope
process was switched off. I hope that this
has become clearer in the revised version, in
particular with the help of the numerical
example in Sect 4.

“Please provide a step-by-step guide for per-
forming the proposed scaling that is appli-
cable not just to the case of steady uniform
uplift to steady state but for other poten-
tial landscape evolution model applications.
It may be that for the case of steady uni-
form uplift, channels and hillslopes can be
differentiated based on a threshold contribut-
ing area, but many landscape evolution mod-
els are of non-uniform uplift and hence non-
uniform drainage density. Moreover, there
is a large literature on how to differentiate
hillslopes and channels both in models and
real-world DEMs, and the use of a single
contributing area threshold is universally re-
garded as an inadequate approach to such dif-
ferentiation. Assuming that choosing Ac in-
volves differentiating hillslopes and channels
before scaling the fluvial erosion term, this
manuscript glosses over a very complex topic,
the implications of which likely influences the
applicability of the proposed method.”

Not really – it is all only about bringing
empirically determined values of K into the
model. We are free to assume any model for
fluvial erosion at small scales such as a spa-
tially variable threshold or a continuous de-
crease of erosion rates at decreasing catch-
ment sizes. We just have to keep in mind
that the value of K is the one that we would
measure from equilibrium river profiles if we
assume that fluvial erosion is switched on for
A > Ac. In this approach, differentiating hill-
slopes from channels on a given topography
would only be useful if we want to use a spe-
cific value of K measured in a given catch-
ment. If we knew the spatial distribution
of erosion in this catchment, we could use it
for assigning a “realistic” value of Ac to this
value of K. However, this is hopeless in most
cases, so that we have to accept the problem
that measured values of K many unresolved
dependencies (including something like Ac)
as you already mentioned.
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“A minor issue: it is incorrect to state that
the erodibility coefficient K depends on rock
characteristics and precipitation (line 25). K
is influenced by any factor other than chan-
nel slope and contributing area that influ-
ences detachment-limited erosion rates, in-
cluding channel width, all of the factors that
influence rainfall-runoff partitioning (includ-
ing vegetation, soil texture, the distribution
and sequence of storm events), snowmelt dy-
namics (for some catchments), etc.”

Finally, at least one point where I agree with-
out any reservations. I have streamlined
the wording (lines 27–29).

Reviewer 3

“(1) The scaling problem: the paper de-
scribes in words the scaling problem as it
manifests in landscape evolution models, but
a picture would be worth a thousand words.
I think the impact of the paper would be
greater if the author added a figure show-
ing visually the effect discussed section 2:
the steepening of topography with decreasing
pixel size. Pelletier (2010) has a figure show-
ing the (relative) lack of such effects when us-
ing his proposed solution, so one idea would
be to mirror that figure (his Fig 6) but with-
out any attempt to scale the problem away.
You could even use the same parameters. I
would also suggest including a plot showing
equilibrium slope-area scaling for models at
different pixel resolutions.”

I must admit that my explanation of the
problem was way too short and written for
readers who are already familiar with the
problem. I have now extended Sect. 2
and introduced 3 new figures. The new
Figure 3 gives a very simple example of
the problem. This scenario is used in
the following to explain why both ap-
proaches suggested before do not solve
the problem completely and is also the
basis for the first numerical example
presented in the new Sect. 4.

“Then, follow up by showing the same ex-
amples, but now using the proposed scaling
solution. This would (presumably) demon-
strate that the solution works. Adding such
a ’before and after’ pair of figures seems re-
ally key to selling the core idea of the paper;
otherwise, readers might be left wondering ’if
I bother to do this, will it really work?’.”

I have now added a new section
(Sect. 4) with two numerical examples.
The first one continues the simple ex-
ample from Sect. 2 and shows that the
approach works perfectly here not only
for the steady-state solution, but also
concerning the time scale. The second
example combines diffusion with fluvial
incision and can be seen as some kind
of standard scenario for coupling flu-
vial and hillslope processes. Here the
main result is that the approach re-
duces the scaling problem considerably,
but drainage reorganization by hills-
lope processes leaves a part of the scal-
ing problem.
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“(2) Some parts of the paper come across as
if written for readers who are already well fa-
miliar with the relevant literature. I recom-
mend making a few small additions / mod-
ifications that would make the paper acces-
sible to, for example, graduate students who
are just starting out, or people in other fields
who have a new interest in the topic. Mostly
this is a matter of adding example references
to the literature and/or expanding on some
points, as noted in the specific comments be-
low.’

I tried to make it accessible to a wider
readership now – for details see below.

“(3) A general question, which would be
worth answering somewhere in the text, is
whether the scaling analysis still holds if the
drainage patterns are qualitatively different
on hillslopes versus channels. In this Dis-
cussion version of the paper, it is not clear
whether the simulation in Figure 1 includes
any local transport (ie hillslope) processes; if
so, it is not apparent in the drainage pat-
terns.”

The entire framework was indeed developed
for the situation that the fluvial drainage pat-
tern persist on the hillslope as if fluvial ero-
sion was the only erosion process. This also
applies to Fig. 1. I tried to point this
out more clearly in the revised version
and hope the second numerical exam-
ple in Sect. 4 shows where the remain-
ing problems are.

“19-20 For readers unfamiliar with this idea,
it would be helpful to add one or a few ex-
ample references (one of the earliest I am
aware of is Andrews and Bucknam, 1987; an-
other option would be to cite a review paper
that discusses mathematical representations
of various geomorphic processes)”

Andrews and Bucknam (1987) is also the ear-
liest reference to this that I know, although
its relationship to coupled models is not re-
ally close. I have added this one together
with those that I often use as key ref-
erences in this context (line 21).

“23 ’has become some kind of paradigm’ -
this will not mean much to readers who are
just joining the conversation. Suggest giving
one or a few example references.”

Here I would not fully agree. I am quite sure
that even most of the readers just joining
the conversation about combining fluvial and
hillslope processes have either read a at least
one paper about modeling fluvial erosion or
at least one where the erodibility as a lumped
parameter is discussed. In both cases, the
chance is quite high that these readers have
already seen Eq. (2) or be able to find a paper
where it is explained in detail.

“24 I disagree that equation 2 (I think that
is what is meant by ’it’) requires the assump-
tion of constant precipitation. . . . In any
event, the text about ’constant precipitation’
(constant in space or time or both?) seems
like just a side comment, and maybe the best
approach would be simply to delete it.”

Indeed only a side comment, although I
would not expect any reader to run into prob-
lems with this statement. I have removed
it (lines 24–25).
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“26 As above, I would argue it is the spa-
tial distribution of runoff that matters most;
precipitation has some influence on this, but
there are other factors too.”

This is, of course, all true. Originally I just
wanted to point out that the erodibility is not
only a property of the rock as the term could
suggest, but a lumped parameter. I stream-
lined this point (lines 27–29).

“33 The relation predicts m/n = theta ONLY
if the erosion rate and erodibility are uniform
in space and steady in time. You allude to
that in the next sentence, but the way this is
worded would be confusing for a reader who
does not understand that you are referring to
a special case here. I recommend re-wording
this section to be more precise.”

The sentence should not imply that rivers fol-
low Eq. (3) locally then, but only that the
empirical finding of Eq. (3) in many rivers
constrains the ratio m

n . I clarified it in or-
der to avoid any confusion (lines 36–
37).

“35-38 I would argue that the condition of
equilibrium is more general than the word
’uplift’ implies. The key is that the erosion
rate is space-time uniform. This could be due
to actual tectonic uplift relative to, say, sea
level. Or it could be an equilibrium relative
to a given rate of base-level lowering at the
boundary of a given system (and in fact the
former is a subset of the latter).”

Of course, but if we replace U with E, Eq. (4)
is not even restricted to spatially uniform
conditions, but just Eqs. (2) and (3) com-
bined. However, I have replaced U with
E in Eq. (4) now.

“42-43 ’the total area covered by large rivers
decreases with decreasing mesh width’: can
you provide evidence for this, or otherwise
clarify this concept? . . . Maybe what you
actually mean here is that the surface area
covered by stream segments (’channel pix-
els’), rather than drainage area, shrinks as
pixel size shrinks (tending toward zero when
the network segments become infinitesimally
wide linear features).”

Yes, of course! Maybe the problem is that I
worked with concepts such as box counting
in the context of fractals too long, so that I
could not imagine that anyone could misun-
derstand this point. I hope the rephrased
version is clearer (lines 46–47).

“46 - I think there is a bit more to it than
that. If you omit local transport (ie, diffu-
sion or diffusion-like modification of the to-
pography), you have the odd circumstance
where for the equilibrium case the equations
predict that H → ∞ as A → 0. In practical
terms, then, a model with just eq 2 would
have increasing relief with decreasing pixel
size. Might be worth pointing out, as the
current text (’scaling problem may not be
critical’) could be misinterpreted as meaning
there is no pixel size dependence without lo-
cal transport.”

The revised version describes the scal-
ing properties of the version without lo-
cal transport in more detail, including
two new figures. I would, however, prefer
to get around the question whether H → ∞
for A → 0. S → ∞ is clear, but if we use
Hack’s (1957) scaling relation between A and
upstream length, H remains finite.
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“58-61 I don’t think this summary quite does
justice to Pelletier (2010). I suggest adding
something like ’where the factor is unity on
cells identified as hillslopes, but greater than
unity for cells that represent valley features’.
Also, you might add that a reason to suspect
it doesn’t work for ’all types of local trans-
port’ is that his derivation was (heuristically
at least) based on a linear model.”

Yes, the discussion of the approaches by
Howard/Perron et al. and Pelletier was in-
deed much too short. I have now added a
more thorough discussion of the prop-
erties of both ideas and, in particular,
why Pelletier’s approach does not solve
the problem completely (Sect. 2).

“62 Can you expand here to say why large
mesh widths would be immune? Large rel-
ative to what? Is the idea that if all cells
are conceptually valley cells, then you don’t
need special treatment for hillslopes versus
valleys?”

My impression is that it is practically like
this. In some studies (including some own),
the mesh width is large enough to assume
that all sites are channel sites, and hillslope
processes are just a small add-on to make
the topography more realistic. If we then do
not compare simulations with different reso-
lutions and do not mind whether the chan-
nel steepness is as expected, it is tempting to
disregard the problem. The revised ver-
sion addresses this aspect more pre-
cisely (lines 115–124).

“75 For what it’s worth, I would argue that
’bedrock incision’ just means what it says,
and does not (or at least should not) imply
any particular mechanism or model thereof.
I think the idea you are trying to get at here
is that there is a difference between assuming
that a channel must entrain and remove only
the material on the channel bed, or that it
must entrain and remove that plus the sum
of material transported into the channel from
surrounding hillslopes. I do not think the
term ’bedrock erosion’ is all that helpful in
articulating the difference between these two
possibilities, but it would be worth expand-
ing on the idea: for example to note that
it depends on the degree of contrast between
the ’mobile’ material coming from side slopes
and the ’intact’ or ’original’ material in the
channel floor (one example of highly resistant
material coming from side slopes is Shobe et
al. (2016 GRL)).”

As far as I can see, the term ’bedrock erosion’
did not occur; it would indeed be confusing.
I must admit that I did not get the point
’bedrock incision just means what it says’.
For me it somehow implies that bedrock at
the location of the river is eroded, and this
is not a particular mechanism or model for
me. I still think that the terms ’bedrock in-
cision’ and ’detachment-limited erosion’ re-
flect the differences between the two concepts
quite well. Nevertheless I agree that includ-
ing the reference Shobe et al. (2016) is
a good idea (lines 133–135).

7



“86-88 Consider noting here that Pelletier
(2010) described an alternative approach
based on comparing computing drainage area
on the DEM grid, and on a 2x higher resolu-
tion interpolated version of the DEM. That
approach has the advantage of allowing the
processes to determine the drainage density.
I suspect that the mechanism for identifying
channel versus hillslope pixels probably does
not matter much for the technique you pro-
pose, and if that is the case, then it would
be worth pointing out. For the sake of de-
veloping the idea, using a fixed Ac seems to-
tally fine. But as a reader would like to know
whether I can still use the approach if I use
a different method for distinguishing channel
and hillslope pixels.”

This is indeed a central point and probably
the main limitation of the concept. I hope
that this limitation becomes clearer in the
discussion section (Sect. 5) now.

“89-90 I got confused at first by the defini-
tion of Ae. A key aspect of the definition is
that it includes only those pixels that drain
DIRECTLY to a given channel pixel, and
not ones that ’pass through’ another channel
pixel upstream. If that understanding is cor-
rect, it would be worth stating this (because
other readers, like me, are probably used to
thinking of contributing area as something
that accumulates downstream). Eq 5: un-
less you are changing the definition of K, this
equation seems to change the meaning of E:
in eq 2 it seems to be length per time, but in
eq 5 it seems to become volume per time. If
that is correct, I recommend using a different
symbol than E to avoid confusion. Note I am
assuming that Ae is a surface area. The text
says ’number of sites’, so I guess it is actually
meant to be dimensionless (just a count), as
text later in the paper implies. But in that
case then you’re no longer talking about a
physical law. Why not treat Ae as a surface
area, and either have the equation represent
the volumetric erosion rate over the area con-
cerned, or divide by cell area to arrive at a
length per time. At any rate, clarification of
these issues in the text would be helpful.”

Ok, I remember that you said that a picture
would be worth a thousand words and hope
that my more detailed explanation helps
in combination with the new Fig. 4. I
also hope that it is clearer now that
all areas are measured in DEM pixels
throughout Sect. 3.
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“94 - It would be very helpful to add more
information about this model and the con-
ditions under which it was run to generate
figure 1. Is OpenLEM in this example solv-
ing just eq 2 or does it include diffusion too?
What flow routing algorithm does it use?
How are closed depressions handled? Was it
run until steady state balance between ero-
sion and uplift/baselevel was reached? Does
the fluvial threshold Ac actually apply in
the numerical model, ie, are areas smaller
than Ac treated exclusively with local trans-
port? Is local transport applied to all pix-
els or just those A < Ac? Or, alternatively,
was the model run without any threshold or
hillslopes? In addition, please list all the in-
put parameters so readers could reproduce or
replicate the experiment.”

Ok, I have now included this information,
but quite at the beginning of the paper
as the new Fig. 1 already uses topogra-
phies of the same type. Except for filling
local depressions. These are considered as
lakes (deepest outlet) for computing the flow
pattern, and erosion is switched off as long
as the water level is higher than to topogra-
phy. However, this is relevant only in the very
beginning of the simulations as these lakes
vanish soon. I would therefore prefer not to
confuse the readers with this additional in-
formation.

“121 I think you mean ’site’ not ’size’ ” Thanks!

“120-125 and eq 6: I found this section con-
fusing. I understand Ae to be a spatial field,
with a different value at every pixel. Yet if
P (Ac) is just a scalar fraction, then eq 6 im-
plies a unitary value for Ae. Is your aim here
a derived distribution of the cumulative prob-
ability of Ae? ... Ah ok, reading later, you
mention Ae is dimensionless (but perhaps you
can see why it is confusing given that A and
Ac refer to areas).”

I hope that this is clearer now. Ae de-
fined as the mean size of the contributing ar-
eas (in pixels) over all channel sites with a
given catchment size. Then the main point
is that it is almost independent of the con-
sidered catchment size and only depends on
Ac. The confusion with the areas measured
in pixels should hopefully dissolve now, too.

“134 I recommend a more extensive explana-
tion here. Clearly figure 4 shows that the Ae-
Ac relation follows a power law with about
the same slope as that of the cumulative area
distribution. But the underlying scaling ar-
gument is hard to follow.”

I would say it is an immediate consequence
of Eq. 12 (numbering of revised manuscript).
the argument why it is not exactly the same
may indeed be more complicated, but I think
it is not a problem for the following parts of
the manuscript if it is not immediately un-
derstood.

“151 It would be helpful to know the parame-
ters used to generate these synthetic topogra-
phies.”

I thought the readers would guess that ev-
erything remains the same except for those
parameter values explicitly mentioned in Ta-
ble 1. But in order to state it clearly, I added
a sentence (line 237).
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“eq 9: if you used this directly in a model,
would it not break equilibrium slope-area
scaling? Or are you suggesting that the lead-
ing factors compensate for deposition by ma-
terial sourced from surrounding hillslopes?
. . . This is basically the argument you’re
making, right? That effectively a fluvial grid
cell has to drill through not only its own ma-
terial, but also all the material coming from
the surrounding hills. I think the idea would
be conveyed more clearly if you added some
math along the lines of the above.”

Yes, exactly like this! I hope that this point
becomes clearer with the more detailed ex-
planations in the previous parts, so that there
should be no need to extend it here.

“183-4 reference for this number?” A good chance to promote my own paper
(line 277).

“185-eq 10: I can see the advantage of this
approach, but would like to see some dis-
cussion of how to reconcile the concept of
a threshold area Ac with the actually valley
head area that emerges from a model. To
mirror my questions above, are you suggest-
ing that this approach should be paired with
using a model that only applies fluvial ero-
sion to locations with A > Ac, where Ac is a
parameter? Or could one allow Ac to emerge
from the dynamics, as in Pelletier (2010)?”

Yes, indeed with Ac as a parameter. Allowing
it to emerge from the dynamics would require
the consideration of a given hillslope process
in detail. I hope this becomes clearer with the
second numerical example (lines 300–
341).

“205-6 good point, and some models I’m
aware of allow for diffusion-like transport to
be applied ONLY to convex locations, with
the assumption that the material is instantly
carried away in concave-up locations.”

In some sense “Make it as simple as possible,
but not simpler.” But what is possible for
mountain streams?

“Code availability: I do not know what the
policy of Esurf is, but ’available on request’ is
no longer generally considered best practice.
Better to place code in a community repos-
itory, or at least a public repository. Better
still to have it under version control. Even
better yet to provide input files, examples of
usage, etc., in an open repository (see Wilson
et al. below). . . . ”

I am not sure either, but as far as I know,
it is less strict than for AGU journals. To
my experience, codes deposited in reposi-
tories are not as valuable as it seems un-
less someone keeps maintaining it contin-
uously. In case of OpenLEM I am not
even able to provide enough support for
a very limited number of users. I pre-
pared a repository and placed it for the
moment at http://jura.geologie.uni-
freiburg.de/esurf-2019-77.zip. Looks as
if it takes some time to get a permanent
repository at our university this time. And
I am also afraid that people will be able to
reproduce the results, but not much more.

Best regards,
Stefan Hergarten

10



Rivers as linear elements in landform evolution models
Stefan Hergarten1

1Institut für Geo- und Umweltnaturwissenschaften, Albertstr. 23B, 79104 Freiburg, Germany

Correspondence: Stefan Hergarten
(stefan.hergarten@geologie.uni-freiburg.de)

Abstract. Models of detachment-limited fluvial erosion have a long history in landform evolution modeling in mountain

ranges. However, they suffer from a scaling problem when coupled to models of hillslope processes due to the flux of material

from the hillslopes into the rivers. This scaling problem causes a strong dependence of the resulting topographies on the spatial

resolution of the grid. A few attempts based on the river width have been made in order to avoid the scaling problem, but

none of them appears to be completely satisfying. Here a new scaling approach is introduced that is based on the size of the5

hillslope areas in relation to the river network. An analysis of several simulated drainage networks yields a power-law scaling

relation for the fluvial incision term involving the threshold catchment size where fluvial erosion starts and the mesh width.

The obtained scaling relation is consistent with the concept of the steepness index and does not rely on any specific properties

of the model for the hillslope processes.

1 Introduction10

Fluvial incision is a major if not even dominant component of long-term landform evolution in orogens. When modeling fluvial

erosion, restriction to the detachment-limited regime considerably simplifies the equations. Here it is assumed that the erosion

rate at any point of a river can be predicted from local properties such as discharge and slope, while sediment transport is not

considered. The generic differential equation for the topography H(x1,x2, t) of a landform evolution model with detachment-

limited fluvial erosion reads15

∂H

∂t
= U −E− divq (1)

where U is the uplift rate and E the rate of fluvial incision. The third term describes a local transport process at the hillslopes

where q is the flux density and div the 2D divergence operator. Linear diffusion is the simplest model here; it was considered

in the context of landform evolution by Culling (1960) even before models of fluvial erosion came into play. However, there

are also more sophisticated models for q taking into account the nonlinear dependencies of hillslope processes on topography20

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Andrews and Bucknam, 1987; Howard, 1994; Roering et al., 1999).

Concerning the fluvial incision term E, assuming a power-law function of the catchment size A and the channel slope S,

E =KAmSn, (2)

1



has become some kind of paradigm. The parameter K is denoted erodibility. Since this relation should in principle rather

involve discharge instead of catchment size, it is only an approximation for constant precipitation, and K is
:
It
::

is
:

a lumped25

parameter combining rock properties with precipitation. However, writing Eq. (2) in terms of discharge instead of catchment

sizeis quite straightforward
::::::::
subsuming

:::
all

::::::::
influences

:::
on

::::::
erosion

:::::
other

::::
than

:::::::
channel

::::
slope

::::
and

::::::::
catchment

::::
size, so that predicting

the spatial distribution of precipitation on a changing topography is the only challenge here
:
it
::
is

:::
not

:
a
:::::::
property

:::
of

::
the

::::
rock

::::::
alone,

:::
but

:::
also

:::::::
depends

:::
on

::::::
climate

::
in

::
a

::::::::
nontrivial

::::
way

:::::::::::::::::::::::::::::::::::
(e.g., Ferrier et al., 2013; Harel et al., 2016).

Equation (2) is often called stream power approach since it can be interpreted in terms of energy dissipation of the water30

per channel bed area if an empirical relationship between channel width and catchment size is used (e.g., Whipple and Tucker,

1999). However, the idea behind this approach even dates back to the empirical study of longitudinal channel profiles by Hack

(1957). In this study, a power-law relationship between channel slope and drainage area was found, often called Flint’s law

(Flint, 1974). This relationship is nowadays usually written in the form

S = kssA
−θ (3)35

where θ is the concavity index and ks :
ks:the steepness index. This relation

::::::::
Assuming

:::
that

::::
Eq.

:::
(3)

:
is
:::
the

:::::::::
fingerprint

::
of

::::::::
spatially

::::::
uniform

::::::::::
steady-state

::::::::::
conditions,

:
it
:
predicts m

n = θ and allows for a convenient interpretation of the erodibility. If local transport

(last term in Eq. 1) is neglected, the steepness index of a steady-state river (equilibrium of uplift and fluvial incision) follows

the relation

kss
n =

U

K

E

K
::

. (4)40

This relation allows for a simple adjustment of the lumped parameterK in such a way that a given channel steepness is achieved

in equilibrium with a given uplift
:
at
::
a
:::::
given

::::::
erosion

:
rate.

2 The scaling problem

While widely used and in principle simple, all models of the type described by Eqs. (1) and (2) suffer from a scaling problem.

Mathematically, the problem is that catchment sizes are not well-defined in the continuum limit as the catchment of each point45

degenerates to a line. When considered on a discrete grid, rivers become
::
are

::::::::::
represented

:::
as linear objects with a width of

one pixel. Thus, the total area covered by
:::::
surface

::::
area

:::
of

:::
the

:::::
pixels

::::::::
covering

:::
the

:::::::
network

::
of

:::
the

:
large rivers decreases with

decreasing mesh width. As a consequence, the area where uplift can be balanced by fluvial erosion at moderate channel slopes

also decreases, so that the overall topography becomes steeper.

If local transport is not considered, the scaling problem leads to a canyon-like topography where the width of the val-50

leys decreases with mesh width. However, the rivers still follow Eqs. (3) and (4)
:::
This

::::::::
behavior

::
is

:::::::::
illustrated

::
in

::::
Figs.

::
1
::::
and

:
2
::::::
where

:::
two

:::::::::::
steady-state

:::::::::::
topographies

::::
with

:::::
mesh

::::::
widths

::
of

::::::::
δ = 0.01

::::::::::
(100× 100

::::::
nodes)

:::
and

:::::::::
δ = 0.002

::::::::::
(500× 500

::::::
nodes)

::
are

::::::::::
considered.

::::
All

::::::::
parameter

::::::
values

:::
are

:::
set

:::
to

:::::
unity

:::::
except

::::
for

:::::::
m= 0.5, so that the scaling problem may not be crucial.

But
::::::
θ = 0.5.

::::
The

:::::::
northern

::::
and

:::::::
southern

::::::::::
boundaries

:::
are

::::
held

::
at

::::
zero

::::::::
elevation,

:::::
while

::::
the

::::::
western

::::
and

::::::
eastern

::::::::::
boundaries

:::
are

2
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Figure 1.
:::::

Fluvial
:::::::::
equilibrium

:::::::::
topographies

::::::::
computed

:::
for

:::::::
identical

:::::::
parameter

:::::
values

:::
on

::::
grids

::::
with

::::::
different

:::::::
spacing

::::::::
(δ = 0.01,

::::::::
100× 100

::::
nodes

:::
and

:::::::::
δ = 0.002,

::::::::
500× 500

::::::
nodes).

:::
The

::::::::
horizontal

::::
lines

::::
refer

::
to
:::
the

::::::
profiles

:::::::
analyzed

::
in

::::
Fig.

::
2,

:::
and

:::
the

:::::::
rectangle

:::::
marks

:::
the

:::::
region

:::::
shown

::
in

:::
Fig.

::
4.
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Figure 2.
::::::
Profiles

::::::
through

:::
the

:::::::::
topographies

:::::
shown

::
in
::::
Fig.

:
1.

:::::::
periodic.

::::
The

:::::::::::
topographies

:::::
were

:::::::
obtained

:::::
from

:::
the

::::::::
landform

:::::::::
evolution

:::::
model

::::::::::
OpenLEM

:::
that

::::
was

:::::
used

::
in

:::::
some

::::::::
previous55

::::::
studies

::::::::::::::::::::::::::::::::::
(e.g., Robl et al., 2017; Wulf et al., 2019),

:::
but

:::
has

::::
not

::::
been

::::::::
published

:::::::::
explicitly.

::
It

::::
uses

:::
the

:::
D8

:::::
flow

::::::
routing

:::::::
scheme

::::::::::::::::::::::::::::
(O’Callaghan and Mark, 1984) and

::
a

::::
fully

:::::::
implicit

::::::
scheme

:::::::::::::::::::::::::::::::::::::::::::
(Hergarten and Neugebauer, 2001; Hergarten, 2002),

:::
so

:::
that

:::::
large

::::
time

::::
steps

:::
can

:::
be

:::::::::
performed

::
in

::::
order

::
to
::::::
ensure

::::
that

:
a
::::::
steady

::::
state

::
is

::::::::
achieved.

:::
The

:::::::::
simulation

:::
on

:::
the

:::
fine

::::
grid

:::
was

::::::
started

:::::
from

:
a
:::
flat

::::::::::
topography

::::
with

:
a
:::::
small

:::::::
random

::::::::::
disturbance,

:::::
while

:::
the

:::::::::
simulation

:::
on

:::
the

::::::
coarse

::::
grid

:::
was

::::::
started

:::::
from

:
a
::::::::::::
downsampled

::::::
version

::
of

:::
the

::::
finer

::::::::::
topography.

:
60

:::::
Relief

::::::::
increases

::::
with

:::::::::
decreasing

::::
grid

:::::::
spacing

:::::::
because

:::
the

:::::::
smallest

:::::::::
catchment

::::
size

::::
that

:::
can

:::
be

:::::::
resolved

::
is

:::::::::
Amin = δ2,

::::
and

::::::::
maximum

::::::::::
equilibrium

:::::
slope

::
is

:::::::::::
proportional

::
to

:::::::::::
A−θmin = δ−2θ

::::::::
according

::
to
::::

Eq.
:::
(3).

:::
As

::::::
nodes

::::
with

:::::
small

:::::::::
catchment

::::
sizes

::::
can

3
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Figure 3.
::::
River

:::::::
segments

::
in
:::::::::
equilibrium

::::
with

::::
uplift

:::
for

::::::
different

::::
mesh

::::::
widths

::
δ.

::::
drain

:::::::
directly

::::
into

::::
large

::::::
rivers,

:::
this

:::::::
increase

::
is
::::

not
::::::::
restricted

::
to

:::::
major

::::::::
drainage

::::::
divides,

::::
but

:::
also

:::::
result

:::
in

::::
steep

::::::
valley

::::::
flanks.

:::
The

:::::::
heights

::
of

:::
the

:::::
valley

::::::
floors

:::
are,

::::::::
however,

::::::
hardly

:::::::
affected

::
by

::::
the

:::::
spatial

::::::::::
resolution.

:::::::::
Catchment

::::
sizes

:::
of

::::
large

:::::
rivers

:::::
even

:::::::
converge

::
in

:::
the

:::::
limit

::::::
δ→ 0,

::
so

::::
that

::::::::::
longitudinal

:::::::
profiles

::
of

:::::
large

:::::
rivers

::::::
become

::::::
stable

:::
for

:::::
δ→ 0

:::::::::
according

::
to

:::
Eq.

::::
(3).

:::::
Thus,65

::::
relief

::::
and

:::
also

:::::
mean

::::::::
elevation

::::::
depend

::
on

:::
the

::::::
spatial

::::::::
resolution

:::
for

:::
the

:::::::
simplest

::::::
model

::::::
without

::::
local

:::::::::
transport,

::::
while

:::::
large

:::::
rivers

::
are

::::::
hardly

:::::::
affected.

:

:::
The

::::::::::::
independence

::
of

::::
river

::::::::
steepness

::
of

:::::::::
resolution

::
is,

::::::::
however,

:::
lost

:
as soon as local transport comes into play, it also affects

the rivers. Then the topography becomes strongly dependent on the mesh width.
::::::
Figure

:
3
::::::
shows

:::
the

:::::::
example

::
of

:::::
short,

:::::::
parallel

::::
river

::::::::
segments

::::
with

:::
unit

:::::::
spacing

::::::::
(periodic

::
in

::
x2::::::::

direction)
:::
in

:::::::::
equilibrium

::::
with

::::::::
constant

:::::
uplift.

::::::
Linear

:::::::
diffusion

:
70

q =−D∇H
::::::::::

(5)

:::
was

:::::::
assumed

:::
as

:::
the

:::::::
simplest

:::::
model

:::
for

::::
local

::::::::
transport.

:::
As

::
in

:::
the

:::::::
previous

::::::::
example,

:::
all

:::::::::
parameters

::::::
except

::
for

::::::::
m= 0.5

::::
were

:::
set

::
to

:::::
unity.

::
A

::::::::
catchment

::::
size

::
of

::::::::
A= 106

::::
was

:::::::
assumed

:::
for

::::
each

::::
river

::::::::
segment,

:::
so

:::
that

:::
the

:::::::
channel

:::::
slope

::::::
should

::::::::::
theoretically

:::
be

::::::::
S = 10−3

::
in

::::::::::
equilibrium

::::
with

::::::
U = 1.

:::::
While

:::
the

::::::::::
topography

::
of

:::
the

::::::::
hillslopes

::
is
::
in

::::::::
principle

::::::::::
independent

::
of

:::
the

::::
grid

:::::::
spacing

::
δ,

::
the

:::::
river

:::::::
segment

:::::::
becomes

::::::
steeper

::
if
::
δ

::::::::
decreases.75

The problem has been known and addressed

:::
The

::::::
reason

:::
for

::
the

:::::::::
increasing

:::::::
channel

::::::::
steepness

::
is

:::
that

:::
the

::::
local

::::::::
transport

::
is

:::::::::::
conservative,

::
so

:::
that

:::
the

::::
river

:::::
does

:::
not

::::
only

::::
have

::
to

:::::
incise

:::
into

:::
the

::::
rock

::
at
:::
its

::::
bed,

:::
but

:::
also

::::
has

::
to

::::::
remove

:::
the

:::::::
material

:::::::
coming

::::
from

:::
the

:::::::::
hillslopes.

:::::::::
Regardless

::
of

:::
the

::::::
model

::::
used

::
for

:::::
local

::::::::
transport,

:
a
::::
flux

::
of

::::::::
(d− δ)U

:::
per

::::
river

::::::
length

:::::
enters

:::
the

:::
site

::::
that

:::::::
contains

:::
the

::::
river

::
in

::::::::::
equilibrium

:::::
where

::
d

:
is
:::
the

::::::
valley

:::::::
spacing.

::::
Then

:::
the

:::::::::
discretized

:::::::::
divergence

:::
of

:::
the

:::
flux

::::::
density

::
is
:

80

divq =− (d− δ)U
δ

.
::::::::::::::::

(6)

:::::::
Inserting

:::
this

:::::
result

::::
into

:::
the

::::::::::
steady-state

::::::
version

::
of

::::
Eq.

:::
(1)

:::::
yields

E = U − divq =
d

δ
U,

:::::::::::::::::

(7)
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::
so

:::
that

:::
the

::::::
fluvial

::::::
erosion

::::
rate

:::::::
required

:::
for

:::::::::::
compensating

:::::
uplift

::
is

::
by

::
a
:::::
factor

::

d
δ :::::

higher
::::
than

::
it

:::::
would

:::
be

::::::
without

:::::
local

::::::::
transport.

::::
This

::::::
requires

:::
an

:::::::
increase

::
in

:::::::
channel

::::
slope

:::
by

:
a
:::::
factor

:::
of

:::::

(
d
δ

) 1
n

::::::::
according

::
to

:::
Eq.

::::
(2).85

::::
This

::::::
scaling

::::
issue

:::
has

::::
been

::::::
known

:
for more than 25 years

:
,
:::
and

::::
two

:::::::::
approaches

::::
have

::::
been

:::::::::
suggested

::
to

::::::::
overcome

:::
the

:::::::
problem

::::
were

::::::::
proposed. Howard (1994) suggested a subpixel representation of the rivers where a river segment only covers a fraction

of a grid cell. It was assumed that this fraction is w
δ where w is the river widthand δ the mesh width of the grid, and then the

fluvial incision term E was multiplied with this factor.
::::::::::::::::::::::::
Perron et al. (2008) transferred

::::
this

::::::
concept

:::
to

:::
the

::::::::::::::::
detachment-limited

::::
case.

:::::::::
According

::
to

:::
Eq.

:::
(7),

::::::::
rescaling

::
E

:::
by

:::
the

:::::
factor

::

w
δ :::::

yields
:

90

E =
d

w
U,

:::::::

(8)

::
so

:::
that

:::
the

::::::::::
dependency

:::
on

:
δ
::::::
indeed

::::::::
vanishes.

While straightforward at first sight, this scaling approach is not free of problems. The channel width in general increases

in downstream direction, so that equilibrium river profiles are no longer consistent with Eq. (3)if E is rescaled without

further modifications.
:
.
:::::::::::::::::::::::
Perron et al. (2008) avoided

::::
this

:::::::
problem

:::
by

::::::::
assuming

::
a
:::::::
constant

:::::::
channel

::::::
width

:::
and

::::::::::
postponing

::
it95

::
to

:::::::::
subsequent

:::::::
studies.

:
As discussed by Pelletier (2010),

:::::
taking

::::
into

:::::::
account

:::
an

:::::::
increase

:::
of

:::::::
channel

:::::
width

::
in

:::::::::::
downstream

:::::::
direction

::::::
would

::::::
require

::
a

::::::::
reduction

::
of

:
the exponent m must be lowered in

:
in

::::
Eq.

:::
(2)

::
in order to keep it consistent . In this

case, the physical unit
::::
with

:::
Eq.

:::
(3).

::::::::
However,

::::
unit

:::
and

::::::::
meaning of the erodibility K changes, which destroys its relation to the

channel steepness. Assuming a constant channel widthw (e.g., Perron et al., 2008) introduces a dimensional parameter without

a physical meaning and is practically equivalent to replacing K by wK. So the unit of K also changes in principle, and the100

problem remains basically the same.
:::::
would

::::::
change

::::
then.

:

In order to overcome this problem, Pelletier (2010) suggested to leave the fluvial incision term as is and rescale the local

transport term (last term in Eq. 1)
::::
divq

:
by the inverse factor δ

w . This formally avoids the problems discussed above, but it

might be questionable whether a problem obviously coming from the fluvial incision term can be fixed by rescaling another

term in the equation, in particular whether this works for all types of local transport.
::
at

::::
sites

:::::::::
containing

::::::
rivers.

::::::::::
Practically,105

:::
this

::::::::
rescaling

:::::
means

::::
that

:::
the

::::
flux

::
of

:::::::
material

:::::::
coming

:::::
from

:::
the

::::::::
hillslopes

::
is

:::
not

:::::::::
distributed

::::
over

:::
the

::::::
entire

:::
grid

::::
cell,

::::
but

::::
only

:::
over

:::
the

::::
part

::
of

:::
the

::::
area

:::::::
covered

:::
by

:::
the

::::
river.

:::
So

::
it

:::
can

::
be

:::::
seen

::
as

:::
the

::::::
inverse

::
of

:::
the

:::::::
subpixel

::::::::
approach

:::
of

::::::::::::::::
Howard (1994) and

::::::::::::::::::::::
Perron et al. (2008) applied

::
to

:::
the

::::
local

::::::::
transport

::::::
instead

::
of

:::
the

::::::
fluvial

:::::::
erosion.

:::
For

:::
the

::::::::::
steady-state

:::::::
example

:::::::::
considered

::::::
above,

:::
this

::::::::
rescaling

::::
leads

::
to

:

divq =− (d− δ)U
w

:::::::::::::::

(9)110

::::::
instead

::
of

:::
Eq.

:::
(6),

:::
so

:::
that

:

E = U − divq =
(d+w− δ)

w
U.

:::::::::::::::::::::::::

(10)

:::
For

::::::
w� d

:::
and

::::::
δ� d,

::::::::
however,

::::
this

:::::::
relation

:::::::::
approaches

::::
Eq.

:::
(8),

::
so

::::
that

::::
this

:::::::
concept

::::::
suffers

::::
from

:::
the

:::::
same

:::::::
problem

:::
as

:::
the

:::::::
approach

::
of
:::::::::::::::::
Howard (1994) and

::::::::::::::::
Perron et al. (2008).

:
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So there seems to be no completely satisfying solution of the scaling problem so far. For large mesh widths δ and for115

rather qualitative studies (e.g., Wulf et al., 2019), it may not be crucial . However, even the comprehensive study on the scaling

behavior
::::::
Several

::::::::::::
contemporary

::::::::
modeling

::::::
studies

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Duvall and Tucker, 2015; Gray et al., 2018; Wulf et al., 2019; Reitman et al., 2019) use

::::::
neither

::
of

:::
the

:::
two

::::::::::
approaches,

::::
but

:::::::::
implement

:::
Eq.

:::
(1)

::
as

::
is

:::::::
without

:::::
taking

:::
its

::::::::::
dependence

::
on

:::
the

::::
grid

:::::
scale

:::
into

::::::::
account.

::::
This

:
is
::::

not
:
a
::::::

crucial
::::::::

problem
::
as

:::::
long

::
as

::::::::::
simulations

::::
with

::::::::
different

::::::
spatial

:::::::::
resolutions

::::
are

:::
not

:::::::::
compared

:::
and

:::
as

::::
long

::
as

::::
we

:::
are

:::::
aware

:::
that

:::
the

:::::::::
erodibility

:::
K

:::
has

:
a
:::::::
limited

::::::::
meaning.

::
As

:::::
soon

::
as

:::
the

::::::::
relevance

:
of fluvial erosion in combination with hillslope120

diffusion by Theodoratos et al. (2018) disregards the problem by claiming that it dissolves if the entire equation is transformed

to nondimensional coordinates. This is , however, not true as the grid spacing δ persists as an additional length scale.
:::
and

:::::::
hillslope

::::::::
processes

::
is
::::::::
assessed

:::::::::::
quantitatively

:::
or

::::::
scaling

::::::::
relations

:::
are

::::::::
developed

::::::::::::::::::::::::::
(e.g., Theodoratos et al., 2018),

:::
the

::::::::
problem

:::
may

:::::::
become

:::::::
crucial.

::
A

:::::
further

:::::::::
discussion

::
is
:::::
given

::
in

:::::
Sect.

::
5.

Other recent approaches navigate around the scaling problem by neglecting the flux of material from the hillslopes into the125

rivers. The recently presented landform evolution model TTLEM (Campforts et al., 2017) makes a distinction by catchment size

in such a way that fluvial erosion only acts on sites with a catchment size above a given threshold Ac, while hillslope processes

only act at smaller catchment sizes. It is assumed that all hillslope material entering the rivers is immediately excavated without

any further effect, so that fluxes from hillslopes into rivers can be disregarded, and the scaling problem does not occur. This

approach reduces the interaction between rivers and hillslopes to a one-way coupling where only the rivers have an influence130

on the evolution of the hillslopes and can be seen as an implementation of bedrock incision in the strict sense. While it seems

that the terms detachment-limited erosion and bedrock incision are sometimes used synonymously, it should be clarified that

the applicability of the concept of bedrock incision in this strict sense
:::
pure

:::::::
bedrock

:::::::
incision

:
is probably much narrower than

that of detachment-limited erosion,
:::

in
::::::::
particular

::
if

:::::
highly

::::::::
resistant

:::::::
material

::
is

:::::::
brought

:::
into

:::
the

::::::::
channels

::::::::::::::::
(Shobe et al., 2016).

The same in principle holds for the model most widely used in the context of drainage divide migration (Goren et al., 2014)135

where analytical solutions for hillslope processes are used on the sub-pixel scale.

3 A new scaling approach

The scaling issue can be unraveled by reconsidering the empirical basis of
::::::
simple

:::::::
example

:::::::::
considered

::
in

:::
the

::::::::
previous

::::::
section

:::::::
involves

:
a
::::::::::
dependence

:::
on

::::
grid

::::::
spacing

::
δ
:::::::::
according

::
to

:::
the

:::::
factor

::

d
δ:::::::

without
::::::::
rescaling

:
(Eq. (2). If fluxes of material from the

hillslopes into the rivers are not disregarded, the equilibrium of uplift and erosion must be reinterpreted. Erosion at the hillslopes140

must keep up with fluvial incision in order not to form deeper and deeper canyons. Fluvial incision is the only process in
::
7).

::::
Both

:::::::::
approaches

:::
for

::::::::
rescaling

::::::
replace

:::
the

::::::::::
dependence

::
on

::
δ

::
by

:
a
::::::::::
dependence

:::
on

:::
the

::::::
channel

:::::
width

:::
w,

::
so

:::
that

::
a
:::::
factor

::

d
w :::::::

remains

:
(Eq. (1)that immediately removes material, while the last term describing local transport is conservative and thus preserves the

total volume. Therefore, the volume per time carried away by a river segment is not the product of the rate defined by
:::
8).

::::
This

::
is,

::::::::
however,

:::
still

::
a

:::::::
problem

::
if

::
w

::
is

:::
not

::::::::
constant.

:::
The

::::::::::
occurrence

::
of

:::
the

:::::
factor

:::

d
w :::::::

suggests
::::
that

:::
the

::::
river

:::::::
spacing

:
d
::::::
would

::
be

::
a145

::::
more

:::::::
suitable

:::::::::::
characteristic

:::::
length

:::::
scale

:::
for

::::::::
rescaling

:::
than

::
w
::
if
:::
we

::::
want

::
to
::::::::
preserve

:::
the

::::
form

::
of

:::
the

::::::
erosion

::::
law

:
(Eq. 2with the

area of the river bed, but the product with this area plus a certain hillslope area. An estimate of this area will be developed in

6
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Figure 4.
::::
Flow

:::::
pattern

::
of

:::
the

:::::
central

:::::
region

::
of

:::
Fig.

::
1.

:::::
Black

::::
lines

::::
show

::::
rivers

::::
with

::::::
A≥Ac ::

for
::::::::
Ac = 100

:::::
pixels.

::::
Gray

::::
lines

::
are

:::::::
channels

::::
with

::::::
A<Ac ::::::::

considered
::
as

:::::::
hillslope

::::
sites.

::::
Each

::::::
colored

:::
area

::::::
consists

::
of

:::
one

::::
river

:::
site

:::
plus

:::
the

:::::::
hillslope

:::
area

:::
that

:::::
drains

::
to

:::
this

::::
river

:::
site.

this section, and it will finally yield a new scaling relation for the rate of incision as a function of the grid spacing
:
)
:::::::
without

:::::::
changing

:::
the

:::::::::
exponents

::
m

:::
and

:::
n.

::
In

:::
the

::::::::
following,

::
a
:::::::
concept

:::
that

:::::::::
generalizes

:::
the

::::::
simple

:::::::
example

:::
of

::::::
parallel

:::::
rivers

::
to

::::::::
dendritic

:::::::
networks

::
is
:::::::::
developed.150

In a first step, grid cells belonging to river segments must be distinguished from grid cells interpreted as hillslopes where

only local transport takes place. The

:::
Let

::
us

::::
start

:::::
from

:::
the

:
simplest approach to implement such a distinction is

:::::::::
distinguish

:::::::
channel

::::
sites

:::::
from

::::::::
hillslopes

:::
by

defining a threshold catchment size Ac in such a way that all sites with A≥Ac are river segments, while all grid cells
::::
sites

with A<Ac are hillslope sites. Then the question is how many hillslopessites deliver their
::::::
belong

::
to

:::::::::
hillslopes.

:::
As

:::::
local155

:::::::
transport

::
is
:::::::::::
conservative,

:::
all

:::::::
material

::::::
eroded

:::::::::
anywhere

:::
has

::
to
:::

be
::::::::
removed

::
by

:::
the

:::::
river

:::::
sites,

::
so

::::
that

:::
we

::::
need

:::
to

:::::
know

::::
how

::::
much

::::::::
material

::::
each

::::
river

::::
sites

:::::::
receives

::::
from

:::
the

:::::::::
hillslopes.

::::
The

:::
area

:::
of

:::
the

::::::::
respective

::::::::
hillslopes

::::
can

::
be

::::::::::
determined

::
for

::
a
:::::
given

:::::::::
topography

:::::::
without

:::
any

:::::::
specific

::::::::::
assumptions

::
on

:::
the

::::::::
transport

::::::
process

::::::
except

:::
for

:::
the

:::::::
direction

::
of

:::::::::
transport.

:::
The

:::::::
simplest

::::::
model

:
is
::
to
:::::::
assume

:::
that

:::::
local

:::::::
transport

:::::::
follows

:::
the

:::::::::
hypothetic

::::::
channel

::::::::
network

:
at
:::

the
:::::::::
hillslopes,

::::
i.e.,

:::
the

:::::::
direction

::
of

:::::::
steepest

:::::::
descent

::
on

:
a
::::::
purely

:::::
fluvial

::::::::::
topography.

::::::
Figure

::
4

::::::::
illustrates

:::
this

:::::::
concept.

:::::
Each

::::::
colored

::::
area

:::::::
consists

::
of

:::
one

:::::::
channel

:::
site

:::
and

:::
the

::::::::
hillslope160

:::
area

::::
that

:::::::
delivers

::
its eroded material to a given river site. This number plus one (for the river site itself) is the

:::
this

::::
site.

:

:
If
:::
the

::::
size

::
of

:::
this

::::
area

::::
was

:::
the

::::
same

:::
for

::::
each

:::::
river

:::
site,

::::::::
rescaling

:::
the

::::::
fluvial

::::::
erosion

::::
rate

:::
(Eq.

:::
2)

::::::::
according

::
to

:

E =AeKA
mSn

:::::::::::::
(11)

:::::
where

:::
Ae ::

is
:::
the

:::
size

:::
of

:::
this

::::
area

:::::::::
measured

::
in

:::::
DEM

:::::
pixels

::::
(i.e.,

:::
the

:
number of sitesthat have to be eroded by the considered

river site. Let us call this number
:
)
:::::
would

:::::::
already

:::::
solve

:::
the

::::::
scaling

::::::::
problem.

::::::::
However,

::
it

:
is
:::::::::::
immediately

:::::::::
recognized

::
in
::::
Fig.

::
4165

:::
that

:::
the

::::
sizes

:::
of

::::
these

:::::
areas

:::
are

::::::
highly

:::::::
variable.

::
A

:::::::
random

:::::::
variation

::
in

:::::
these

::::
sizes

::
is
:::
not

::
a
:::::::
problem.

::
If
:
Ae . The expression for

the fluvial erosion rate (
::
in

:::
Eq.

::::
(11)

::
is

:::
the

:::::
mean

::::
size,

:::::::
channel

::::::::
steepness

:::
will

::::
just

::::
vary

::::::::
randomly,

::::::
which

::
is

:::
also

::::::
found

::
in

::::::
nature.
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:
A
:::::::::
systematic

::::::::::
dependence

:::
of

:::
the

::::
area

::
on

:::::::::
catchment

::::
size

::::::
would,

:::::::
however,

:::
be

:
a
::::::::
problem.

::
In

::::
this

::::
case,

::::::::::
equilibrium

::::
river

:::::::
profiles

:::::
would

::
be

:::
no

:::::
longer

:::::::::
consistent

::::
with

:
Eq. 2)must then to be modified according to

E =AeKA
mSn.170

:::
(3),

::
so

::::
that

:::
the

:::::::
problem

:::::
would

:::
be

:::::::
basically

:::
the

:::::
same

::
as

::
in

:::
the

:::::::
previous

::::::::
approach

:::
for

:
a
:::::::::::
non-constant

:::::::
channel

:::::
width.

:

In the following, numerically obtained equilibrium drainage networks are analyzed in order to find out how Ae depends on

A and on Ac. These networks were obtained from the landform evolution model OpenLEM that was used in some previous

studies (e.g., Robl et al., 2017; Wulf et al., 2019), but has not been published explicitly.
::::
More

::::::::
precisely,

:::
Ae::

is
:::
the

:::::
mean

::::
size

::
of

::
all

::::::::
hillslopes

:::::
areas

:::::::
draining

::
to

:::::::
channel

::::
sites

::::
with

::
a

::::
given

:::::::::
catchment

::::
size

::
A

::
at

:
a
:::::
given

::::::
fluvial

::::::::
threshold

:::
Ac ::::

(plus
:::
the

:::::::::
respective175

::::::
channel

:::::
site).

:::
For

:::::::::
simplicity,

:::
all

::::
areas

:::
are

::::::::
measured

:::
in

:::::
DEM

:::::
pixels

::
in

:::
the

::::::::
following

:::::::::::::
considerations,

:::
i.e.,

:::
as

:
a
:::::::
number

::
of

:::::
sites.

Starting point of the analysis is a
::
the

::::::::
drainage

:::::::
network

:::
of

:
a
::::::

fluvial
::::::::::
equilibrium

::::::::::
topography

:::
on

::
a square L×L grid with

L= 10000where the northern and southern boundaries are held at zero elevation, while the western and eastern boundaries

are periodic. The simulation was started from a flat topography with a small random disturbance and a constant uplift rate.

A concavity index of θ = 0.5 as originally suggested by Hack (1957) and an exponent n= 1 were assumed. The drainage180

network of the obtained steady-state topography is .
:::::::::
Boundary

:::::::::
conditions

:::
and

::::::::
parameter

::::::
values

::::::
except

:::
for

:::
the

:::
grid

::::
size

:::
are

:::
the

::::
same

::
as

::
in

:::
the

:::::::
smaller

::::::::
examples shown in Fig. 1.

Drainage pattern of a fluvial equilibrium topography computed on a 10,000× 10,000 grid. For clarity, the image was reduced

to 2000× 2000 pixels taking the highest catchment size within each 5× 5 tile.

Figure 2
::::::
Figure

:
5
:
reveals that the eroded area Ae increases with the fluvial threshold Ac, but becomes independent of A if185

the catchment size A is sufficiently large. This means that the hillslopes draining to large rivers are not systematically larger

than those draining to small rivers. It is the reason why we will arrive at a scaling relation that preserves the form of Eq. (2)

and avoids the problem occurring if the river width is used for scaling.

The increase of Ae if A approaches Ac can be explained by distinguishing between river segments and channel heads. Let us

define channel heads as those sites without any tributary with A≥Ac, i.e., as those sites that are only supplied by hillslopes.190

All other sites with A≥Ac are considered as river segments. All sites with A=Ac are channel heads and thus follow the

relation Ae =A, so that all curves start at the dotted line in Fig. 2
:
5. The resulting values Ae of the river segments (without the

channel heads) are shown by the dashed lines in Fig. 2
:
5. The increase of Ae if A approaches Ac even turns into a decrease

then. This decrease arises from the limitation Ae ≤A−Ac that holds for all river segments as those have at least one tributary

cell contributing at least Ac. So the contribution of the hillslopes must be small if A is only slightly larger than Ac. However,195

the decrease is exaggerated by the logarithmic scale and concerns only a small number of sites. So it makes sense to assume

that Ae is independent of A for river segments.

Both the number of river segment sites and the number of channel head sites decrease with increasing threshold Ac. The

decrease of the latter is faster, so that the ratio of the numbers of head sites vs. river sites converges to zero for large Ac. This

is, however, not true for the total contributions. Figure 3
:
6 shows the ratio of the sum of the Ae values of all river segments and200

the sum of the Ae values of the channel heads. It can also be interpreted as the ratio of the total area that must be eroded by the

8
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Figure 6. Ratio of total area eroded by all river segments and total area eroded by all channel head sites as a function of the fluvial threshold

Ac.

river segments over the total area that must be eroded by the channel heads. The results shown for different grid sizes shown

in Fig. 3
:
6
:
suggests that this ratio becomes constant in the limit of large grid sizes. It apparently approaches a value of about 2

here, which means that the river segments contribute about two thirds to total fluvial erosion and the channel heads one third.

This result suggests that the dependency of Ae on the threshold Ac is determined by the cumulative distribution P (A) of205

the catchment sizes in the drainage network. This distribution describes the probability that a randomly selected size
::
site

:
has

a catchment size ≥A.
::::
The

:::::::::
probability

::::::
P (Ac)::::::::

evaluated
::
at

:::
the

::::::
fluvial

::::::::
threshold

::
is

:::
the

::::
ratio

::
of

:::
the

::::
area

:::::::
covered

::
by

:::
all

:::::::
channel

:::::
pixels

:::
and

:::
the

:::::
total

::::
area.

::
It
::::
can

::
be

::::::::::
interpreted

::
as

::
a

:::::::
drainage

:::::::
density

:::::
(river

:::::
length

::::
per

::::
total

:::::
area)

::
on

::
a
:::::::
discrete

::::
grid.

:
Then a

fraction P (Ac) :
of

:::
the

::::::::::
considered

::::::
domain

:
must erode a given fraction (here about two thirds) of the total considered domain,

9
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Figure 7. Black axes: eroded area as a function of the fluvial threshold. Red axes: cumulative distribution of the catchment sizes.

leading to the relation210

Ae =
γ

P (Ac)
(12)

with γ ≈ 2
3 for this network. While Ae can be measured directly for the considered drainage network, its relation to P (A)

(Eq. 12) is useful as this distribution has already been investigated in several studies on natural and modeled drainage networks

(Rodriguez-Iturbe et al., 1992a; Maritan et al., 1996b; Rodriguez-Iturbe and Rinaldo, 1997; Rinaldo et al., 1998; Hergarten and

Neugebauer, 2001; Hergarten, 2002; Hergarten et al., 2014, 2016). It was found that P (A) follows a power-law distribution215

P (A)∼A−β (13)

over a reasonable range where a range β ∈ [0.41,0.46] was found except for the two latest studies. In these studies, larger

networks were considered making use of increasing data availability and computing capacities. An exponent very close to

0.5 was found for both optimal channel networks (OCNs, see below) (Hergarten et al., 2014) and a real river pattern at the

continental scale (Hergarten et al., 2016).220

Equations (12) and (13) suggest a power-law relation

Ae = αAβc (14)

between the eroded area and the fluvial threshold. The validity of Eqs. (12), (13), and (14) is validated
::::::::::
investigated in Fig. 4

:
7.

Comparing the two solid curves reveals that Eq. (12) does not hold exactly since the curves come closer to each other for

decreasing catchment sizes. The reason is that Ae only refers to the river segments without the channel heads, so that P (Ac) in225

Eq. (12) should also exclude the channel head sites. The dashed red line in Fig. 4
:
7 showing the accordingly reduced distribution

P (A) illustrates that Eq. (12) indeed holds then, and that the effect vanishes for large Ac.

The black dashed line in Fig. 4
:
7
:
refers to the best-fit power-law relation according to Eq. (14). It is based on all integer

values of Ac from 1 to 10,000 assuming equal errors, so that the large values of Ac practically have a high weight in the fit.
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Figure 8. Eroded area Ae as a function of the fluvial threshold Ac for the considered drainage networks. For clarity, only the results obtained

from the largest domains are plotted.

The power law with the obtained values α= 1.360 and β = 0.465 fits the data well with a relative error of less than 5 % for230

Ac ∈ [15,10000] and less than 1 % for Ac ∈ [400,10000]. The deviations are larger for smaller fluvial thresholds due to the fact

that dendritic networks cannot be represented well on a regular lattice at small scales.

The relation to the catchment-size distribution (Eqs. 12 and 13) suggests that the power-law dependency ofAe onAc (Eq. 14)

should be universal. For testing this hypothesis, a set of equilibrium topographies with θ ∈ {0.25,0.45,0.5,0.75}was analyzed.

These values cover the range that has been found so far under relatively homogeneous conditions (e.g., Robl et al., 2017). The235

value θ = 0.45 was added as it is often used as a reference value instead of θ = 0.5 (e.g., Whipple et al., 2013; Lague, 2014).

::::::::
Parameter

::::::
values

:::
and

::::::::
boundary

:::::::::
conditions

:::
are

:::
the

:::::
same

::
as

:::
in

:::
the

:::::::
previous

::::::::
example.

:
Since the exponent n has no immediate

effect on equilibrium topographies, values n 6= 1 were not considered.

The power-law parameters α and β obtained from equilibrium topographies on different lattice sizes L are given in Table 1.

In addition, the original data for the largest grids are shown in Fig. 5
:
8. The results are overall similar with a tendency to lower240

exponents β for increasing θ. A notable deviation is only found for the very high concavity index θ = 0.75. Here the slopes

become very steep at small catchment sizes, resulting in a slower migration of drainage divides during the simulation (Robl

et al., 2017). As a result, the topography reaches a steady state quite soon, so that there is finally less reorganization in the

drainage network with regard to the initial random pattern. In this sense, the lower exponents found for θ = 0.75 can be seen

as some fingerprint of poorly organized river patterns, but are probably not relevant for the rivers that were the empirical basis245

of the stream power law. These findings confirm that the concavity index θ has a minor effect on the topology of the drainage

networks, although it strongly affects the shape of longitudinal river profiles and thus the topography.

In addition, Table 1 and Fig. 5
:
8 also contain results obtained from optimal channel networks (OCNs) on a grid with

L= 4096. Optimal channel networks are derived from the principle of minimum energy dissipation and have been widely used

in the context of river networks (e.g., Howard, 1990; Rodriguez-Iturbe et al., 1992c, b; Rinaldo et al., 1992; Maritan et al.,250
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Table 1. Parameter values of the power-law relation between eroded area and fluvial threshold (Eq. 14) obtained from different simulated

drainage networks
:
on

::::::
regular

::::::
lattices

:::
with

:::::
L×L

:::::
nodes.

θ L α β

st
ea

dy
-s

ta
te

to
po

gr
ap

hi
es

0.25

5000 1.264 0.492

2000 1.072 0.511

1000 1.587 0.470

0.45

5000 1.273 0.478

2000 1.586 0.451

1000 1.047 0.499

0.50

10,000 1.360 0.465

5000 1.434 0.459

2000 1.807 0.423

1000 1.579 0.440

0.75

10,000 1.653 0.393

5000 1.715 0.388

2000 1.433 0.412

1000 2.179 0.359

O
C

N
s

0.14

4096

1.487 0.480

0.33 1.626 0.473

0.50 1.508 0.478

0.60 1.521 0.475

1996a, b; Rinaldo et al., 1998). The networks considered here are those shown in Fig. 1 of Hergarten et al. (2014) where θ

is related to the parameter n used there by θ = n−1
n+1 . The values of Ae of OCNs are overall slightly higher than those of the

equilibrium topographies, and the variation with θ is lower. As OCNs are organized more strongly than drainage networks of

arbitrary equilibrium topographies, the lower variability among OCNs is not surprising.

::::
Table

::
2
::::::::

provides
:::::::::
additional

::::::
results

::::::::
obtained

::::
from

:::::::::::
steady-state

:::::::::::
topographies

:::
on

::::::::::
triangulated

::::::::
irregular

::::::::
networks

:::::::
(TINs).255

:::::::
Numbers

:::
of

:::::::::
neighbors,

::::::::
distances

::
to

:::::::::
neighbors,

::::
and

:::::
areas

::
of

:::::
pixels

::::
are

:::::::
variable

::::
here.

::::
The

:::::
latter

:::
are

:::::::
defined

::
by

::::
the

:::::::
Voronoi

:::::::
diagram.

::::::::::::::
Nondimensional

:::::
areas

::
(in

:::::
DEM

::::::
pixels)

:::
are

::::::::::
normalized

::
to

:::
the

:::::
mean

:::::
pixel

:::
size

:::::
given

:::
by

::::::::
δ2 = Atot

N :::::
where

::::
Atot ::

is
::::
total

:::
area

::::
and

::
N

::::
the

::::::
number

:::
of

::::::
nodes.

::::
The

:::::
values

:::::
listed

:::
in

:::
the

:::::
Table

::
2

:::
and

:::
the

:::::::::
respective

:::::
curve

::
in
::::

Fig.
::

8
:::::
show

::::
that

:::
the

::::::
results

:::::::
obtained

::::
from

:::::
TINs

:::
are

::::
close

::
to
:::::
those

::::::::
obtained

::::
from

::::::
regular

:::::::
meshes.

:

These results suggest to define the values α= 1.508 and β = 0.478 obtained from the OCN with θ = 0.5 as reference260

values. The question is, however, whether such a precision is useful for applications. In particular, β = 0.5 would be more

convenient than lower values. In the considerations made above, Ae and Ac ::
all

::::
areas

:
are measured in DEM pixels and are thus

12



Table 2.
:::::::
Parameter

:::::
values

::
of

:::
the

::::::::
power-law

::::::
relation

:::::::
between

:::::
eroded

::::
area

:::
and

:::::
fluvial

:::::::
threshold

::::
(Eq.

:::
14)

::::::
obtained

::::
from

:::::::
different

::::::::
simulated

::::::
drainage

:::::::
networks

::
on

::::::::
triangular

:::::
lattices

::::
with

::
N

:::::
nodes

::
for

:::::::
θ = 0.5.

::
N

:
α

:
β

::::::
2× 107

::::
1.630

: ::::
0.433

:

::::::
1× 107

::::
1.611

: ::::
0.435

:

::::::
5× 106

::::
1.264

: ::::
0.466

:

::::::
2× 106

::::
1.332

: ::::
0.454

:

::::::
1× 106

::::
1.400

: ::::
0.445

:

::::::
5× 105

::::
1.432

: ::::
0.450

:

nondimensional properties. Defining the grid scale δ as the square root of the area of a DEM pixel (which would be the mesh

width for a regular square lattice) and considering
::::::::::
Considering Ac as a physical (dimensional) area, Ac has to be replaced by

Ac
δ2 in Eq. 14

:::
(14). Then the fluvial erosion rate (Eq. 11) turns into265

E = α

(
Ac

δ2

)β
KAmSn, (15)

so that the fluvial incision term scales like δ−2β . For β = 0.5, the fluvial term scales like 1
δ . This is not only convenient, but

also leads to basically the same scaling relation assumed by Perron et al. (2008). The only difference is that the term α
√
Ac

occurring here was interpreted as a channel width w and then assumed to be constant for all rivers, so that it lost its physical

meaning. So the new formulation of the fluvial incision term also fixes the concern raised by Pelletier (2010) that led to the270

alternative formulation where the hillslope transport term was rescaled.

In order to estimate α for β = 0.5, it is helpful to know in which region of Fig. 5
:
8 we are in typical model applications. A

breakdown of Flint’s law (Eq. 3) was reported at catchment sizes between between about 0.1 km2 and 5 km2 (Montgomery

and Foufoula-Georgiou, 1993; Stock and Dietrich, 2003; Wobus et al., 2006). However, channel steepness declines at small

catchment sizes, so that this breakdown rather implies that other erosion processes come into play than that fluvial erosion is275

no longer active. In turn, many
::::
small springs in mountain regions have subsurface catchment sizes

:::::::::
discharges in the order of

magnitude of 0.01
::
0.1

:::::
liters

:::
per

::::::
second

:::::::::::::::::::::::
(e.g., Hergarten et al., 2016),

::::::::::::
corresponding

::
to
:::::::::
catchment

:::::
sizes

::::::::
A< 0.01 km2, but it is

not clear whether the erosive action of the resulting small streams follows Flint’s law. Reasonable estimates of Ac are probably

between these two ranges. Assuming a spatial resolution of about 100 m or a bit less, Ac will be in the order of magnitude of

10 a
::::
few to 100 DEM pixels. As illustrated by the black line in Fig. 5

:
8, α=

√
2 provides a reasonable estimate for this range280

with simple numbers as αAβc =
√
2Ac then. With this estimate, the scaling factor for the fluvial erosion rate is

√
2Ac
δ , and the

modified stream-power law for fluvial erosion turns into

E =

√
2Ac

δ
KAmSn. (16)
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Figure 9.
::::::::
Numerical

:::::
results

:::
for

:::
the

:::::::
scenario

::::::::
considered

::
in
::::

Fig.
::
3.
::::

The
::::
river

::::::
profiles

:::::::
obtained

:::
for

::::::::
δ = 0.025

:::
and

::::::::
δ = 0.01

:::::
cannot

:::
be

::::::::::
distinguished

::::::
visually.

4 Discussion
:::::::::
Numerical

::::::::
examples

The simple scaling relation for the fluvial erosion rate obtained from simulated drainage networks (Eq
::
Let

:::
us

:::
first

::::::
return

::
to

:::
the285

:::::::
example

::
of

::::::
parallel

:::::
rivers

::::::::::
considered

::
in

:::
Fig.

::
3.
::
It
::::
was

:::::
found

::
in

::::
Sect.

::
2
::::
that

::
the

::::::::::
topography

::
of

:::
the

::::::::
hillslopes

::::
was

::::::
robust

::::::
against

::
the

::::::
spatial

:::::::::
resolution,

:::::
while

:::
the

:::::::
channel

::::
slope

::::::::
increases

::::
with

:::::::::
decreasing

::::
grid

:::::::
spacing

::
δ.

::::
Both

::::::::::
approaches

::::::::
previously

:::::::::
published

::
fix

::::
this

:::::::
problem,

:::
but

:::
the

:::::::
channel

:::::
slopes

:::
are

:::
by

:
a
:::::
factor

::
of
:::

d
w :::

too
::::
steep

:::::::::
compared

::
to

::::
what

::
is

::::::::
expected

::::
from

:::
the

:::::::::
erodibility.

:

:
It
::::::
should

::
be

:::::
noted

::::
that

:::
this

:::::::
example

::
is
:::
not

::::::
related

::
to
:::
the

::::::::
approach

::
to

:::::::
estimate

:::
Ae::::

from
:::
Ac:::

for
::::::::
dendritic

:::::::
networks

:::::
(Eqs. 15 or

16)involves some variations in the parameters due to the topology of the drainage network, but appears to be quite universal.290

Concerning the hillslope processes,
:::
and

::::
16),

:::
but

:::
can

:::::
only

:::
test

:::
the

:::::::
validity

::
of

::::
the

:::::::
principal

:::::::
scaling

::::::::
approach

::::
(Eq.

::::
11).

::::
The

:::
size

::
of

:::
the

::::
area

:::
Ae:::::

does
:::
not

:::::
follow

::::
Eq.

::::
(14),

:::
but

::
is
:::::::
defined

::
by

::::
the

::::::::
geometry

::
as

:::::::
Ae =

d
δ :::::::::

(measured
::
in

:::::
DEM

::::::
pixels).

::::::
Figure

::
9

:::::
shows

:::
the

:::::::::
numerical

:::::
results

:::
for

:::
the

:::::::::
parameter

:::::
values

:::::
used

::
in

:::
Fig.

::
3
:::
for

:::::::
different

::::::
values

::
of

::
δ.

::::
The

:::::::::
simulation

:::
was

::::::
started

:::::
from

:
a
:::
flat

::::::::::
topography

:::::
where

:::
the

::::
flow

:::::
paths

:::
of

:::
the

::::::
parallel

:::::
rivers

:::
are

::::::::::
predefined.

:::
As

:::
the

:::::::
problem

::
is

:::::
linear

:::
for

::::::
n= 1,

:::
this

::::::::
example

:::
can

::::
also

::
be

:::::
seen

::
as

:::
the

:::::::
change

::
in

:::
the

:::::
river

::::::
profile

:::::::
through

::::
time

::
if

:::::
uplift

::::::::
suddenly

::::::::
increases

::
at

::::::
t= 0,

:::::
while

:::
the

::::
base

:::::
level295

::::::
remains

::::::::
constant.

::::
The

::::::
results

::::
show

::::
that

:::
the

::::::::::
equilibrium

::::::
profile

:::::::
achieved

:::
for

:::::
large

:::::
times

::
is

:::::::::
reproduced

:::::::::
correctly,

:::
and

::::
that

:::
the

::::::::::::
time-dependent

::::::::
behavior

::
is

:::
also

::::::
robust

::::::
against

:::
the

:::::::::
resolution.

::::
This

:::::
means

::::
that

:::
the

::::::
scaling

::::::::
approach

::::
itself

:
(Eq. (1) only requires

that they are conservative. As fluvial equilibrium topographies were used in
:::
11)

:::::
yields

::::
both

:::
the

::::::
correct

::::::::::
equilibrium

::::::::
behavior

:::
and

:::
the

::::::
correct

::::
time

:::::
scale.

:::
The

::::::
second

::::::::
example

:::::
refers

:::
to

:::
the

:::::::
scenario

::::::::::
considered

::
in

::::
Fig.

::
1,

:::
but

::::::::
extended

:::
by

::
a

::::::
fluvial

::::::::
threshold

:::::::::
Ac = 10−5

::::
and

:::
by300

:::::
linear

:::::::
diffusion

::::
with

::
a
:::::::::
diffusivity

:::::::::
D = 10−5.

::::
The

::::::::
threshold

::
Ac::

is
::
a

:::::::
property

::
of

:::
the

::::::
fluvial

::::::
erosion

:::::::
process,

:::::
while

:::
the

::::::::
diffusive

:::::::
hillslope

::::::
process

::
is
:::
not

::::::
related

:::
to

::
it.

::
It

:
is
::::

thus
::::::::
assumed

:::
that

::::::
fluvial

::::::
erosion

::::
acts

::::
only

::
at
::::
sites

::::::
where

:::::::
A≥Ac,

:::::
while

::::::::
diffusion

::
is

:::::
active

::::::::::
everywhere.

::
A

::::
TIN

::::::::::::
representation

::
is

::::
used

::
in
:::::

order
::
to
:::::

avoid
::::::::

artefacts
::::
from

:::
the

:::::::::::
combination

::
of

:
the simulations, it was,

however, implicitly assumed that
::::::::::::
eight-neighbor

::::
(D8)

::::
flow

:::::::
routing

::::::
scheme

::::
with

:::
the

::::::::
standard

:::::::::::
four-neighbor

::::::::
diffusion

:::::::
scheme

14
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Figure 10.
:::::
Mean

:::::::
steepness

::::
index

:::
ks ::

of
::
the

:::::
large

::::
rivers

:::::::
obtained

::::
from

:::::::::
simulations

::
on

:::::
TINs

:::
with

:::::::
different

:::::::::
resolutions,

::::::
defined

::
by

:::
the

::::
total

:::::
number

:::
of

:::::
nodes

:::
N .

::::
Solid

::::
lines

::::
refer

::
to
:::

the
::::::::

simplified
::::::

scaling
:::::::
approach

::::::::
suggested

::
in
::::

this
:::::
paper

:::
(Eq.

::::
16),

:::::
while

:::::
dashed

::::
lines

:::::
refer

::
to

::::::::
simulations

::::::::
performed

::::::
without

:::
any

::::::::
rescaling.

:::
The

::::
latter

:::
are

:::::
plotted

::::
only

::
for

::::::::
N ≤ 106.

::
on

:
a
:::::::
regular

:::::
mesh.

:::
The

::::::::::
simulations

:::
are

::::::
started

::::
from

:::
an

::::::
almost

:::
flat

:::::::::
topography

::::
with

::::
unit

:::::
uplift.

::::::
Uplift

::
is

:::::::
switched

:::
off

::
at

::::::
t= 50305

::
in

::::
order

:::
to

::::::
observe

::::
the

:::::
decay

::
of

:
the flux of material on the hillslopes follows the same direction as the flow of water if the

hillslopes were part of the fluvial regime.This may not be true since hillslopes are in general smoother than fluvial topographies.

However, the scaling relation only depends on the total flux from the hillslopes into the rivers and not on its spatial pattern.

Only the relative contributions of river segments and channel head sites may slightly vary, but this should have no big effect. So

the scaling relation can indeed be expected to be independent of the specific characteristics of the involved hillslope processes.310

:::::::::
topography.

:

As the scaling relation originates from the topology of the drainage network, it should also not be limited to the specific

form of the stream power law (
:::
The

:::::
mean

::::::::
steepness

:::::
index

::
ks ::

of
:::
the

::::
large

:::::
rivers

::
is

::::::
plotted

::
as

::
a

:::::::
function

::
of

::::
time

::
in

::::
Fig.

:::
10.

:::::
Large

::::
rivers

::::
are

::::::
defined

:::
by

::::::::
A≥ 10−3

:::::
here,

:::::
which

::
is
:::::::::::
considerably

:::::
larger

::::
than

::::
Ac,

:::
but

:::::
much

::::::
smaller

:::::
than

:::
the

:::::::
domain.

:::
As

::::::::
expected,

::
the

::::::::::
simulations

:::::::::
performed

::::::
without

::::
any

::::::::
rescaling

::
of

:::
the

::::::::
erodibility

:::::::
(dashed

:::::
lines)

:::
are

:::::::
strongly

:::::::
affected

::
by

:::
the

::::::
spatial

:::::::::
resolution.315

:::
The

::::::::
steepness

:::::
index

::::::::
increases

::::
with

:::::::::
increasing

::::::
number

::
of

:::::
nodes

:::
N ,

::::
i.e.,

::::
with

:::::::::
decreasing

::::
pixel

::::
size.

:::
In

::::
turn,

:::
the

:::::
results

::::::::
obtained

::::
using

:::
the

:::::::
simple

::::::
scaling

:::::::
relation

::::
(Eq.

:::
16,

:::::
solid

:::::
lines)

::::
have

::
a
:::::
much

::::::
weaker

::::::::::
dependence

:::
on

:::::::::
resolution.

::::::
There

::
is,

::::::::
however,

::
a

::::::
residual

::::::::
variation

::
in

:::::::
channel

::::::::
steepness.

::::
The

:::::
mean

::::
value

:::
of

::
ks :::::

varies
:::::::
between

:::::
about

:::
1.6

:::
and

:::
2.0

::::
over

:::
the

:::::::::
considered

:::::
range

:::::
from

:::::::
N = 105

::
to
:::::::::
N = 107.

::::
This

:::::
result

:::::
does

:::
not

::::::
change

::::::::::::
fundamentally

::
if
::
a
::::::
higher

::
or

:::::
lower

::::::::
threshold

:::::
than

::::::::
A≥ 10−3

::
is
:::::

used
:::
for

:::::::
defining

::::
large

:::::
rivers.

:
320

5
:::::::::
Discussion

:
It
::::
may

:::
be

:::::::::
surprising

:::
that

:::
the

::::::::
example

::
of

::::::
fluvial

:::::::
incision

::::
and

:::::::
hillslope

::::::::
diffusion

:::::::::
considered

:::
in

:::
the

:::::::
previous

:::::::
section

:::::
yields

::
a

::::
mean

:::::::::
steepness

:::::
index

::::::
greater

::::
than

::::
one,

::::::::
although

:::
the

::::::
scaling

:::::::
concept

::::
was

::::::::
developed

:::
in

:::::
order

::
to

:::::::
preserve

:::::::
channel

:::::::::
steepness.
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:::
The

:::::::
concept

:::
is,

:::::::
however,

::::::
based

::
on

::
a
:::::::
generic

:::::::
hillslope

:::::::
process

:::::
where

::::
the

:::::::
direction

:::
of

::::::::
transport

::::::
follows

::
a
:::::::::
hypothetic

::::::
fluvial

:::::::::
equilibrium

:::::::
pattern

:::
and

:::::
turns

::::
into

::::::
fluvial

:::::::
erosion

::
at

::
a
:::::
given

::::::::
threshold

:::::::::
catchment

::::
size

::::
Ac.

::
It

::
is

:::::::::::
questionable

:::::::
whether

::::
any325

:::::::
hillslope

::::::
process

:::::::::
occurring

::
in

:::::
nature

::::::
comes

:::::
close

::
to

:::
this

::::::
simple

::::::
model.

::
In

:::
the

::::::::
example

:::::::::
considered

::::
here,

:::
the

::::::::
diffusion

:::::::
process

:
is
::::::::::::
characterized

::
by

::
a
:::::::::
diffusivity

::
D

:::
and

::
is
::::

not
::::::
related

::
to

:::
Ac.

::::
The

::::::
fluvial

::::::
domain

::
is
:::::::
affected

:::
by

::::::::
diffusion

::::
more

::::
and

:::::
more

::::
with

::::::::
increasing

:::::::::
diffusivity.

:::
As

::
a

:::::::::::
consequence,

::::::
slopes

::
of

:::::
small

:::::::
channels

::::::::
decrease,

:::
so

:::
that

::::
they

:::::
erode

::::
less

:::::::::
efficiently.

::::
This

:::
has

::
to

:::
be

::::::::::
compensated

:::
by

:::
the

:::::
larger

:::::
rivers,

:::
so

:::
that

::::
they

:::::
must

::::::
become

:::::::
steeper.

::::
This

::
is,

::::::::
however,

:
a
:::
real

::::::::
property

::
of

:::
the

:::::::
hillslope

:::::::
process

::::
here,

:::
and

::
it

::
is

:::
not

:::
the

::::
goal

::
of

:::
the

::::::
scaling

::::::::
approach

::
to

::::::
remove

::
it.

::::
The330

::::::
concept

::::::::
presented

::::
here

:::::
aims

::
at

::::::::
removing

:::
the

::::::::::
dependence

::
on

:::
the

:::::::::
resolution

:::
and

::
to

:::::::
provide

:
a
::::
way

::::
how

::::::
values

::
of

:::
the

:::::::::
erodibility

::::
have

::
to

::
be

::::::::::
interpreted.

::::
Here

::
it

::
is

::::::::
suggested

::::
that

:::
they

::::::
should

:::
be

:::::::::
considered

::
in

::::::::::
combination

::::
with

::
a
:::::
fluvial

::::::::
threshold

:::
Ac::

in
::::
such

::
a

:::
way

::::
that

::::
they

:::::
would

:::::
yield

:::
the

:::::::
expected

:::::::
channel

::::::::
steepness

::
if

:::
the

::::::
generic

:::::::
hillslope

::::::
model

::::
was

::::
valid.

:

::
In

::::
turn,

:::
the

:::::::
residual

:::::::::
dependence

:::
of

::::::
channel

::::::::
steepness

:::
on

::::::::
resolution

::
is

:
a
::::::::
problem,

::
in

::::::::
particular

:::::::
because

::
it

:
is
:::
not

:::::
clear

:::::::
whether

:
it
:::::::::
converges

::
in

:::
the

:::::
limit

::::::
δ→ 0

:::::::::
(N →∞).

::::
The

:::::::
problem

::::::
arises

::::
from

::::::::
network

::::::::::::
reorganization

::::::
which

::::
also

::::::
affects

:::
the

::::::
fluvial335

::::::
region.

::::::::
Diffusion

:::::::
disturbs

:::
the

::::::::
dendritic

::::::::
topology

:::::::
towards

:::::::
parallel

::::
flow

::::::
where

:::
the

::::::
model

:::::
based

:::
on

::::::
Hack’s

:::::::
findings

::
(Eq. 2)

used in the simulations. So it should provide a quite general scaling relation for detachment-limited fluvial erosion.
:
is
::::

not

::::
valid.

::::::
Using

::
an

::::::::
improved

::::
flow

:::::::
routing

::::::
scheme

::::
that

::
is

::::
able

::
to

:::::::::
distinguish

::::::::::
channelized

::::
flow

:::::
from

::::::
parallel

::::
flow

:::
as

::::::::
suggested

:::
by

::::::::::::::::
Pelletier (2010) and

::::::
letting

:::
Ac :::::::::

self-adjust
:::::
might

::::::
reduce

:::
the

::::::::
problem.

::::::::
However,

:::
the

::::
aim

::
of

::::
this

:::::
study

::
is

::
to

:::::::
develop

:
a
:::::::
simple,

::::
quite

::::::::
universal

::::::::
rescaling

:::::::
approach

::::
that

::::::
avoids

::
or

::
at

::::
least

:::::::
reduces

:::
the

::::::::::
dependence

::
on

:::::::::
resolution

::::::
without

:::::::::
modifying

:::
the

:::::::
applied340

:::::
model

:::::::::
seriously.

::
In

::::
this

:::::
sense,

:::
Eq.

::::
(16)

::::::
should

::
be

::
a

::::
good

:::::::
tradeoff.

:

Nevertheless it is important to keep the difference between detachment-limited erosion and
::::
pure bedrock incision in mind.

Here it is assumed that the ability of the river to take up particles and carry them away concerns both the river bed and material

coming from adjacent hillslopes. If we, conversely, assume that all material coming from the hillslopes is instantaneously

removed by the river without any consequences, there is no feedback of the hillslopes to the rivers, and Eq. (1) does not require345

any rescaling.

:::
The

::::::
results

::
of

:::
this

:::::
study

::::
have

:::::::::::
consequences

:::
for

::::::
scaling

:::::::
relations

::
in

:::::::
coupled

::::::
models

::
of

:::::
rivers

:::
and

:::::::::
hillslopes.

:::::::::::::::::::::::::::::
Theodoratos et al. (2018) conducted

:
a
::::::::::::
comprehensive

:::::::
analysis

::
of

:::
the

:::::::
problem

::::
with

::::::
linear

:::::::
diffusion

:::::::
without

::::::::
rescaling.

:::
The

::::::::::
parameters

::::
they

::::
used

::::
were

:::
the

:::::
same

::
as

::
in

::
the

::::::::
previous

:::::::
example

:::::
(Fig.

:::
10),

:::
so

:::
that

::
it

::
is

::::::::::
immediately

:::::
clear

:::
that

:::::
their

::::::::
numerical

::::::
results

:::::::
strongly

::::::
depend

:::
on

:::::::::
resolution.

::::
The

::::::
authors

::::::
argued

::::
that,

::::::::
following

:::
the

::::::::
approach

::
of

::::::::::::::
Pelletier (2010),

::::
both

::::
grid

:::::::
spacing

:::
and

:::::::
channel

:::::
width

:::
are

::::::::
rescaled,

::
so

::::
that

:::
the350

::::
ratio

::

δ
w :::::::

remains
::::::::
constant,

:::
and

:::
the

::::::
scaling

:::::
issue

::
is

:::::::::
consistent

:::::::::
throughout

:::
all

::::::
scales.

::::::::
However,

:::
the

::::::
results

::::::::
presented

::::
here

:::::
show

:::
that

:::
the

:::::::
property

:::::::
relevant

:::
for

:::::::::::
compensating

::
δ

:
is
:::
not

:::::::
channel

:::::
width,

:::
but

:::
Ae:::

and
::::
thus

:::
Ac.

:::::
These

::::::::::
parameters

:::
are,

::::::::
however,

:::::::
physical

::::::::
properties

::
of

:::
the

:::::::
erosion

:::::::
process,

::
so

::::
that

::::
they

:::
do

:::
not

::::
scale

:::::
with

:::
the

:::
size

:::
of

:::
the

:::::::
domain.

:::
As

:
a
:::::::::::
consequence,

:::
the

::::::::::::
characteristic

::::::::
horizontal

::::::
length

::::
scale

::
of

:::
the

:::::::
coupled

::::::
system

::::::
should

:::::
rather

::
be

:

lc =
D√
AcK

:::::::::

(17)355
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::
for

::::::::
m= 0.5

:::
and

:::::
n= 1

:::::::
instead

::
of

::::::::
lc =

√
D
K ::::

used
:::
by

:::::::::::::::::::::
Theodoratos et al. (2018).

::::
This

:::::::
problem

::::
also

::::::
affects

:::
the

::::::
recent

::::::::
extension

::
by

::
an

:::::::
erosion

::::::::
threshold

::::::::::::::::::::::::::::
(Theodoratos and Kirchner, 2020).

:

6 Conclusions

This study presents a
::::::
simple scaling relation for the fluvial incision term in landform evolution models involving detachment-

limited fluvial erosion and hillslope processes. In order to avoid a dependence of the simulated topographies on the spatial360

resolution of the grid, the fluvial incision term must be multiplied by a scaling factor depending on the ratio of the threshold

catchment size Ac where fluvial erosion starts and the pixel size δ2 of the grid. The analysis of several simulated drainage

networks yields a power-law dependence of the scaling factor in Eq. (15) with an exponent slightly lower than 0.5. However,

for application in numerical models, a simpler approximation where the fluvial erosion rate is rescaled by a factor
√
2Ac
δ is sug-

gested.
::
As

::::
this

::::::
relation

:::::::
assumes

::
a

::::::
simple,

::::::
generic

::::::::
hillslope

:::::::
process,

:
it
::::::
cannot

::::::
provide

:::
an

::::
exact

:::::::
solution

:::
for

:::
all

::::
types

::
of

::::::::
hillslope365

::::::::
processes.

:::
In

::::::::::
combination

:::::
with

::::
such

:::::::::
processes,

::::
e.g.,

:::::::::
diffusion,

:::
the

::::::::::
dependence

:::
on

:::
the

::::::
spatial

:::::::::
resolution

::
is

:::
not

::::::::::
completely

:::::::
removed.

::::::::::::
Nevertheless,

:::
the

:::::
simple

:::::::
scaling

::::::
relation

:::::::
appears

::
to

::
be

::
a

:::::::::
reasonable

:::::::
tradeoff

:::::::
between

:::::::
accuracy

::::
and

:::::::::
simplicity.
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