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Abstract. Models of detachment-limited fluvial erosion have a long history in landform evolution modeling in mountain

ranges. However, they suffer from a scaling problem when coupled to models of hillslope processes due to the flux of material

from the hillslopes into the rivers. This scaling problem causes a strong dependence of the resulting topographies on the spatial

resolution of the grid. A few attempts based on the river width have been made in order to avoid the scaling problem, but

none of them appears to be completely satisfying. Here a new scaling approach is introduced that is based on the size of the5

hillslope areas in relation to the river network. An analysis of several simulated drainage networks yields a power-law scaling

relation for the fluvial incision term involving the threshold catchment size where fluvial erosion starts and the mesh width.

The obtained scaling relation is consistent with the concept of the steepness index and does not rely on any specific properties

of the model for the hillslope processes.

1 Introduction10

Fluvial incision is a major if not even dominant component of long-term landform evolution in orogens. When modeling fluvial

erosion, restriction to the detachment-limited regime considerably simplifies the equations. Here it is assumed that the erosion

rate at any point of a river can be predicted from local properties such as discharge and slope, while sediment transport is not

considered. The generic differential equation for the topography H(x1,x2, t) of a landform evolution model with detachment-

limited fluvial erosion reads15

∂H

∂t
= U −E− divq (1)

where U is the uplift rate and E the rate of fluvial incision. The third term describes a local transport process at the hillslopes

where q is the flux density and div the 2D divergence operator. Linear diffusion is the simplest model here; it was considered

in the context of landform evolution by Culling (1960) even before models of fluvial erosion came into play. However, there

are also more sophisticated models for q taking into account the nonlinear dependencies of hillslope processes on topography20

(e.g., Andrews and Bucknam, 1987; Howard, 1994; Roering et al., 1999).

Concerning the fluvial incision term E, assuming a power-law function of the catchment size A and the channel slope S,

E =KAmSn, (2)
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has become some kind of paradigm. The parameter K is denoted erodibility. It is a lumped parameter subsuming all influences

on erosion other than channel slope and catchment size, so that it is not a property of the rock alone, but also depends on25

climate in a nontrivial way (e.g., Ferrier et al., 2013; Harel et al., 2016).

Equation (2) is often called stream power approach since it can be interpreted in terms of energy dissipation of the water

per channel bed area if an empirical relationship between channel width and catchment size is used (e.g., Whipple and Tucker,

1999). However, the idea behind this approach even dates back to the empirical study of longitudinal channel profiles by Hack

(1957). In this study, a power-law relationship between channel slope and drainage area was found, often called Flint’s law30

(Flint, 1974). This relationship is nowadays usually written in the form

S = ksA
−θ (3)

where θ is the concavity index and ks the steepness index. Assuming that Eq. (3) is the fingerprint of spatially uniform steady-

state conditions, it predicts m
n = θ and allows for a convenient interpretation of the erodibility. If local transport (last term in

Eq. 1) is neglected, the steepness index follows the relation35

kns =
E

K
. (4)

This relation allows for a simple adjustment of the lumped parameterK in such a way that a given channel steepness is achieved

at a given erosion rate.

2 The scaling problem

While widely used and in principle simple, all models of the type described by Eqs. (1) and (2) suffer from a scaling problem.40

Mathematically, the problem is that catchment sizes are not well-defined in the continuum limit as the catchment of each point

degenerates to a line. When considered on a discrete grid, rivers are represented as linear objects with a width of one pixel.

Thus, the total surface area of the pixels covering the network of the large rivers decreases with decreasing mesh width.

If local transport is not considered, the scaling problem leads to a canyon-like topography where the width of the valleys

decreases with mesh width. This behavior is illustrated in Figs. 1 and 2 where two steady-state topographies with mesh widths45

of δ = 0.01 (100× 100 nodes) and δ = 0.002 (500× 500 nodes) are considered. All parameter values are set to unity except

for m= 0.5, so that θ = 0.5. The northern and southern boundaries are held at zero elevation, while the western and eastern

boundaries are periodic. The topographies were obtained from the landform evolution model OpenLEM that was used in some

previous studies (e.g., Robl et al., 2017; Wulf et al., 2019), but has not been published explicitly. It uses the D8 flow routing

scheme (O’Callaghan and Mark, 1984) and a fully implicit scheme (Hergarten and Neugebauer, 2001; Hergarten, 2002), so50

that large time steps can be performed in order to ensure that a steady state is achieved. The simulation on the fine grid was

started from a flat topography with a small random disturbance, while the simulation on the coarse grid was started from a

downsampled version of the finer topography.

Relief increases with decreasing grid spacing because the smallest catchment size that can be resolved is Amin = δ2, and

maximum equilibrium slope is proportional to A−θmin = δ−2θ according to Eq. (3). As nodes with small catchment sizes can55
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Figure 1. Fluvial equilibrium topographies computed for identical parameter values on grids with different spacing (δ = 0.01, 100× 100

nodes and δ = 0.002, 500×500 nodes). The horizontal lines refer to the profiles analyzed in Fig. 2, and the rectangle marks the region shown

in Fig. 4.
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Figure 2. Profiles through the topographies shown in Fig. 1.

drain directly into large rivers, this increase is not restricted to major drainage divides, but also result in steep valley flanks.

The heights of the valley floors are, however, hardly affected by the spatial resolution. Catchment sizes of large rivers even

converge in the limit δ→ 0, so that longitudinal profiles of large rivers become stable for δ→ 0 according to Eq. (3). Thus,

relief and also mean elevation depend on the spatial resolution for the simplest model without local transport, while large rivers

are hardly affected.60

The independence of river steepness of resolution is, however, lost as soon as local transport comes into play. Figure 3 shows

the example of short, parallel river segments with unit spacing (periodic in x2 direction) in equilibrium with constant uplift.
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Figure 3. River segments in equilibrium with uplift for different mesh widths δ.

Linear diffusion

q =−D∇H (5)

was assumed as the simplest model for local transport. As in the previous example, all parameters except for m= 0.5 were set65

to unity. A catchment size of A= 106 was assumed for each river segment, so that the channel slope should theoretically be

S = 10−3 in equilibrium with U = 1. While the topography of the hillslopes is in principle independent of the grid spacing δ,

the river segment becomes steeper if δ decreases.

The reason for the increasing channel steepness is that the local transport is conservative, so that the river does not only have

to incise into the rock at its bed, but also has to remove the material coming from the hillslopes. Regardless of the model used70

for local transport, a flux of (d− δ)U per river length enters the site that contains the river in equilibrium where d is the valley

spacing. Then the discretized divergence of the flux density is

divq =− (d− δ)U
δ

. (6)

Inserting this result into the steady-state version of Eq. (1) yields

E = U − divq =
d

δ
U, (7)75

so that the fluvial erosion rate required for compensating uplift is by a factor dδ higher than it would be without local transport.

This requires an increase in channel slope by a factor of
(
d
δ

) 1
n according to Eq. (2).

This scaling issue has been known for more than 25 years, and two approaches have been suggested to overcome the problem

were proposed. Howard (1994) suggested a subpixel representation of the rivers where a river segment only covers a fraction of

a grid cell. It was assumed that this fraction is w
δ where w is the river width, and then the fluvial incision term E was multiplied80

with this factor. Perron et al. (2008) transferred this concept to the detachment-limited case. According to Eq. (7), rescaling E

by the factor wδ yields

E =
d

w
U, (8)
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so that the dependency on δ indeed vanishes.

While straightforward at first sight, this scaling approach is not free of problems. The channel width in general increases85

in downstream direction, so that equilibrium river profiles are no longer consistent with Eq. (3). Perron et al. (2008) avoided

this problem by assuming a constant channel width and postponing it to subsequent studies. As discussed by Pelletier (2010),

taking into account an increase of channel width in downstream direction would require a reduction of the exponent m in

Eq. (2) in order to keep it consistent with Eq. (3). However, unit and meaning of the erodibility K would change then.

In order to overcome this problem, Pelletier (2010) suggested to leave the fluvial incision term as is and rescale the local90

transport term divq by the inverse factor δ
w at sites containing rivers. Practically, this rescaling means that the flux of material

coming from the hillslopes is not distributed over the entire grid cell, but only over the part of the area covered by the river. So

it can be seen as the inverse of the subpixel approach of Howard (1994) and Perron et al. (2008) applied to the local transport

instead of the fluvial erosion. For the steady-state example considered above, this rescaling leads to

divq =− (d− δ)U
w

(9)95

instead of Eq. (6), so that

E = U − divq =
(d+w− δ)

w
U. (10)

For w� d and δ� d, however, this relation approaches Eq. (8), so that this concept suffers from the same problem as the

approach of Howard (1994) and Perron et al. (2008).

So there seems to be no completely satisfying solution of the scaling problem so far. Several contemporary modeling studies100

(e.g., Duvall and Tucker, 2015; Gray et al., 2018; Wulf et al., 2019; Reitman et al., 2019) use neither of the two approaches, but

implement Eq. (1) as is without taking its dependence on the grid scale into account. This is not a crucial problem as long as

simulations with different spatial resolutions are not compared and as long as we are aware that the erodibility K has a limited

meaning. As soon as the relevance of fluvial erosion and hillslope processes is assessed quantitatively or scaling relations are

developed (e.g., Theodoratos et al., 2018), the problem may become crucial. A further discussion is given in Sect. 5.105

Other recent approaches navigate around the scaling problem by neglecting the flux of material from the hillslopes into the

rivers. The recently presented landform evolution model TTLEM (Campforts et al., 2017) makes a distinction by catchment size

in such a way that fluvial erosion only acts on sites with a catchment size above a given threshold Ac, while hillslope processes

only act at smaller catchment sizes. It is assumed that all hillslope material entering the rivers is immediately excavated without

any further effect, so that fluxes from hillslopes into rivers can be disregarded, and the scaling problem does not occur. This110

approach reduces the interaction between rivers and hillslopes to a one-way coupling where only the rivers have an influence

on the evolution of the hillslopes and can be seen as an implementation of bedrock incision in the strict sense. While it seems

that the terms detachment-limited erosion and bedrock incision are sometimes used synonymously, it should be clarified that

the applicability of the concept of pure bedrock incision is probably much narrower than that of detachment-limited erosion,

in particular if highly resistant material is brought into the channels (Shobe et al., 2016). The same in principle holds for the115

model most widely used in the context of drainage divide migration (Goren et al., 2014) where analytical solutions for hillslope

processes are used on the sub-pixel scale.
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Figure 4. Flow pattern of the central region of Fig. 1. Black lines show rivers with A≥Ac for Ac = 100 pixels. Gray lines are channels with

A<Ac considered as hillslope sites. Each colored area consists of one river site plus the hillslope area that drains to this river site.

3 A new scaling approach

The simple example considered in the previous section involves a dependence on grid spacing δ according to the factor d
δ

without rescaling (Eq. 7). Both approaches for rescaling replace the dependence on δ by a dependence on the channel width120

w, so that a factor d
w remains (Eq. 8). This is, however, still a problem if w is not constant. The occurrence of the factor d

w

suggests that the river spacing d would be a more suitable characteristic length scale for rescaling than w if we want to preserve

the form of the erosion law (Eq. 2) without changing the exponents m and n. In the following, a concept that generalizes the

simple example of parallel rivers to dendritic networks is developed.

Let us start from the simplest approach to distinguish channel sites from hillslopes by defining a threshold catchment sizeAc125

in such a way that all sites with A≥Ac are river segments, while all sites with A<Ac belong to hillslopes. As local transport

is conservative, all material eroded anywhere has to be removed by the river sites, so that we need to know how much material

each river sites receives from the hillslopes. The area of the respective hillslopes can be determined for a given topography

without any specific assumptions on the transport process except for the direction of transport. The simplest model is to assume

that local transport follows the hypothetic channel network at the hillslopes, i.e., the direction of steepest descent on a purely130

fluvial topography. Figure 4 illustrates this concept. Each colored area consists of one channel site and the hillslope area that

delivers its eroded material to this site.

If the size of this area was the same for each river site, rescaling the fluvial erosion rate (Eq. 2) according to

E =AeKA
mSn (11)

where Ae is the size of this area measured in DEM pixels (i.e., the number of sites) would already solve the scaling problem.135

However, it is immediately recognized in Fig. 4 that the sizes of these areas are highly variable. A random variation in these
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Figure 5. Eroded area Ae as a function of the catchment size A for different fluvial thresholds Ac. Raw data were used for those catchment

sizes that occurred at least 1000 times on the grid. Otherwise, data were binned dynamically so that there are at least 1000 points in each bin.

sizes is not a problem. If Ae in Eq. (11) is the mean size, channel steepness will just vary randomly, which is also found in

nature. A systematic dependence of the area on catchment size would, however, be a problem. In this case, equilibrium river

profiles would be no longer consistent with Eq. (3), so that the problem would be basically the same as in the previous approach

for a non-constant channel width.140

In the following, numerically obtained equilibrium drainage networks are analyzed in order to find out how Ae depends on

A and on Ac. More precisely, Ae is the mean size of all hillslopes areas draining to channel sites with a given catchment size

A at a given fluvial threshold Ac (plus the respective channel site). For simplicity, all areas are measured in DEM pixels in the

following considerations, i.e., as a number of sites. Starting point of the analysis is the drainage network of a fluvial equilibrium

topography on a square L×L grid with L= 10000. Boundary conditions and parameter values except for the grid size are the145

same as in the smaller examples shown in Fig. 1.

Figure 5 reveals that the eroded area Ae increases with the fluvial threshold Ac, but becomes independent of A if the

catchment size A is sufficiently large. This means that the hillslopes draining to large rivers are not systematically larger than

those draining to small rivers. It is the reason why we will arrive at a scaling relation that preserves the form of Eq. (2) and

avoids the problem occurring if the river width is used for scaling.150

The increase of Ae if A approaches Ac can be explained by distinguishing between river segments and channel heads. Let us

define channel heads as those sites without any tributary with A≥Ac, i.e., as those sites that are only supplied by hillslopes.

All other sites with A≥Ac are considered as river segments. All sites with A=Ac are channel heads and thus follow the

relation Ae =A, so that all curves start at the dotted line in Fig. 5. The resulting values Ae of the river segments (without the

channel heads) are shown by the dashed lines in Fig. 5. The increase of Ae if A approaches Ac even turns into a decrease then.155

This decrease arises from the limitation Ae ≤A−Ac that holds for all river segments as those have at least one tributary cell

contributing at least Ac. So the contribution of the hillslopes must be small if A is only slightly larger than Ac. However, the
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Figure 6. Ratio of total area eroded by all river segments and total area eroded by all channel head sites as a function of the fluvial threshold

Ac.

decrease is exaggerated by the logarithmic scale and concerns only a small number of sites. So it makes sense to assume that

Ae is independent of A for river segments.

Both the number of river segment sites and the number of channel head sites decrease with increasing threshold Ac. The160

decrease of the latter is faster, so that the ratio of the numbers of head sites vs. river sites converges to zero for large Ac. This

is, however, not true for the total contributions. Figure 6 shows the ratio of the sum of the Ae values of all river segments and

the sum of the Ae values of the channel heads. It can also be interpreted as the ratio of the total area that must be eroded by the

river segments over the total area that must be eroded by the channel heads. The results shown for different grid sizes shown

in Fig. 6 suggests that this ratio becomes constant in the limit of large grid sizes. It apparently approaches a value of about 2165

here, which means that the river segments contribute about two thirds to total fluvial erosion and the channel heads one third.

This result suggests that the dependency of Ae on the threshold Ac is determined by the cumulative distribution P (A) of

the catchment sizes in the drainage network. This distribution describes the probability that a randomly selected site has a

catchment size ≥A. The probability P (Ac) evaluated at the fluvial threshold is the ratio of the area covered by all channel

pixels and the total area. It can be interpreted as a drainage density (river length per total area) on a discrete grid. Then a fraction170

P (Ac) of the considered domain must erode a given fraction (here about two thirds) of the domain, leading to the relation

Ae =
γ

P (Ac)
(12)

with γ ≈ 2
3 for this network. While Ae can be measured directly for the considered drainage network, its relation to P (A)

(Eq. 12) is useful as this distribution has already been investigated in several studies on natural and modeled drainage networks

(Rodriguez-Iturbe et al., 1992a; Maritan et al., 1996b; Rodriguez-Iturbe and Rinaldo, 1997; Rinaldo et al., 1998; Hergarten and175

Neugebauer, 2001; Hergarten, 2002; Hergarten et al., 2014, 2016). It was found that P (A) follows a power-law distribution

P (A)∼A−β (13)
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Figure 7. Black axes: eroded area as a function of the fluvial threshold. Red axes: cumulative distribution of the catchment sizes.

over a reasonable range where a range β ∈ [0.41,0.46] was found except for the two latest studies. In these studies, larger

networks were considered making use of increasing data availability and computing capacities. An exponent very close to

0.5 was found for both optimal channel networks (OCNs, see below) (Hergarten et al., 2014) and a real river pattern at the180

continental scale (Hergarten et al., 2016).

Equations (12) and (13) suggest a power-law relation

Ae = αAβc (14)

between the eroded area and the fluvial threshold. The validity of Eqs. (12), (13), and (14) is investigated in Fig. 7. Comparing

the two solid curves reveals that Eq. (12) does not hold exactly since the curves come closer to each other for decreasing185

catchment sizes. The reason is that Ae only refers to the river segments without the channel heads, so that P (Ac) in Eq. (12)

should also exclude the channel head sites. The dashed red line in Fig. 7 showing the accordingly reduced distribution P (A)

illustrates that Eq. (12) indeed holds then, and that the effect vanishes for large Ac.

The black dashed line in Fig. 7 refers to the best-fit power-law relation according to Eq. (14). It is based on all integer

values of Ac from 1 to 10,000 assuming equal errors, so that the large values of Ac practically have a high weight in the fit.190

The power law with the obtained values α= 1.360 and β = 0.465 fits the data well with a relative error of less than 5 % for

Ac ∈ [15,10000] and less than 1 % for Ac ∈ [400,10000]. The deviations are larger for smaller fluvial thresholds due to the fact

that dendritic networks cannot be represented well on a regular lattice at small scales.

The relation to the catchment-size distribution (Eqs. 12 and 13) suggests that the power-law dependency ofAe onAc (Eq. 14)

should be universal. For testing this hypothesis, a set of equilibrium topographies with θ ∈ {0.25,0.45,0.5,0.75}was analyzed.195

These values cover the range that has been found so far under relatively homogeneous conditions (e.g., Robl et al., 2017). The

value θ = 0.45 was added as it is often used as a reference value instead of θ = 0.5 (e.g., Whipple et al., 2013; Lague, 2014).
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Table 1. Parameter values of the power-law relation between eroded area and fluvial threshold (Eq. 14) obtained from different simulated

drainage networks on regular lattices with L×L nodes.

θ L α β

st
ea

dy
-s

ta
te

to
po

gr
ap

hi
es

0.25

5000 1.264 0.492

2000 1.072 0.511

1000 1.587 0.470

0.45

5000 1.273 0.478

2000 1.586 0.451

1000 1.047 0.499

0.50

10,000 1.360 0.465

5000 1.434 0.459

2000 1.807 0.423

1000 1.579 0.440

0.75

10,000 1.653 0.393

5000 1.715 0.388

2000 1.433 0.412

1000 2.179 0.359

O
C

N
s

0.14

4096

1.487 0.480

0.33 1.626 0.473

0.50 1.508 0.478

0.60 1.521 0.475

Parameter values and boundary conditions are the same as in the previous example. Since the exponent n has no immediate

effect on equilibrium topographies, values n 6= 1 were not considered.

The power-law parameters α and β obtained from equilibrium topographies on different lattice sizes L are given in Table 1.200

In addition, the original data for the largest grids are shown in Fig. 8. The results are overall similar with a tendency to lower

exponents β for increasing θ. A notable deviation is only found for the very high concavity index θ = 0.75. Here the slopes

become very steep at small catchment sizes, resulting in a slower migration of drainage divides during the simulation (Robl

et al., 2017). As a result, the topography reaches a steady state quite soon, so that there is finally less reorganization in the

drainage network with regard to the initial random pattern. In this sense, the lower exponents found for θ = 0.75 can be seen205

as some fingerprint of poorly organized river patterns, but are probably not relevant for the rivers that were the empirical basis

of the stream power law. These findings confirm that the concavity index θ has a minor effect on the topology of the drainage

networks, although it strongly affects the shape of longitudinal river profiles and thus the topography.
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Figure 8. Eroded area Ae as a function of the fluvial threshold Ac for the considered drainage networks. For clarity, only the results obtained

from the largest domains are plotted.

In addition, Table 1 and Fig. 8 also contain results obtained from optimal channel networks (OCNs) on a grid with L= 4096.

Optimal channel networks are derived from the principle of minimum energy dissipation and have been widely used in the210

context of river networks (e.g., Howard, 1990; Rodriguez-Iturbe et al., 1992c, b; Rinaldo et al., 1992; Maritan et al., 1996a,

b; Rinaldo et al., 1998). The networks considered here are those shown in Fig. 1 of Hergarten et al. (2014) where θ is related

to the parameter n used there by θ = n−1
n+1 . The values of Ae of OCNs are overall slightly higher than those of the equilibrium

topographies, and the variation with θ is lower. As OCNs are organized more strongly than drainage networks of arbitrary

equilibrium topographies, the lower variability among OCNs is not surprising.215

Table 2 provides additional results obtained from steady-state topographies on triangulated irregular networks (TINs). Num-

bers of neighbors, distances to neighbors, and areas of pixels are variable here. The latter are defined by the Voronoi diagram.

Nondimensional areas (in DEM pixels) are normalized to the mean pixel size given by δ2 = Atot
N where Atot is total area and

N the number of nodes. The values listed in the Table 2 and the respective curve in Fig. 8 show that the results obtained from

TINs are close to those obtained from regular meshes.220

These results suggest to define the values α= 1.508 and β = 0.478 obtained from the OCN with θ = 0.5 as reference values.

The question is, however, whether such a precision is useful for applications. In particular, β = 0.5 would be more convenient

than lower values. In the considerations made above, all areas are measured in DEM pixels and are thus nondimensional

properties. Considering Ac as a physical (dimensional) area, Ac has to be replaced by Ac
δ2 in Eq. (14). Then the fluvial erosion

rate (Eq. 11) turns into225

E = α

(
Ac

δ2

)β
KAmSn, (15)

so that the fluvial incision term scales like δ−2β . For β = 0.5, the fluvial term scales like 1
δ . This is not only convenient, but

also leads to basically the same scaling relation assumed by Perron et al. (2008). The only difference is that the term α
√
Ac
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Table 2. Parameter values of the power-law relation between eroded area and fluvial threshold (Eq. 14) obtained from different simulated

drainage networks on triangular lattices with N nodes for θ = 0.5.

N α β

2× 107 1.630 0.433

1× 107 1.611 0.435

5× 106 1.264 0.466

2× 106 1.332 0.454

1× 106 1.400 0.445

5× 105 1.432 0.450

occurring here was interpreted as a channel width w and then assumed to be constant for all rivers, so that it lost its physical

meaning. So the new formulation of the fluvial incision term also fixes the concern raised by Pelletier (2010) that led to the230

alternative formulation where the hillslope transport term was rescaled.

In order to estimate α for β = 0.5, it is helpful to know in which region of Fig. 8 we are in typical model applications. A

breakdown of Flint’s law (Eq. 3) was reported at catchment sizes between between about 0.1 km2 and 5 km2 (Montgomery

and Foufoula-Georgiou, 1993; Stock and Dietrich, 2003; Wobus et al., 2006). However, channel steepness declines at small

catchment sizes, so that this breakdown rather implies that other erosion processes come into play than that fluvial erosion is no235

longer active. In turn, many small springs in mountain regions have discharges in the order of magnitude of 0.1 liters per second

(e.g., Hergarten et al., 2016), corresponding to catchment sizes A< 0.01 km2, but it is not clear whether the erosive action of

the resulting small streams follows Flint’s law. Reasonable estimates of Ac are probably between these two ranges. Assuming

a spatial resolution of about 100 m or a bit less,Ac will be in the order of magnitude of a few to 100 DEM pixels. As illustrated

by the black line in Fig. 8, α=
√
2 provides a reasonable estimate for this range with simple numbers as αAβc =

√
2Ac then.240

With this estimate, the scaling factor for the fluvial erosion rate is
√
2Ac
δ , and the modified stream-power law for fluvial erosion

turns into

E =

√
2Ac

δ
KAmSn. (16)

4 Numerical examples

Let us first return to the example of parallel rivers considered in Fig. 3. It was found in Sect. 2 that the topography of the245

hillslopes was robust against the spatial resolution, while the channel slope increases with decreasing grid spacing δ. Both

approaches previously published fix this problem, but the channel slopes are by a factor of d
w too steep compared to what is

expected from the erodibility.

It should be noted that this example is not related to the approach to estimate Ae from Ac for dendritic networks (Eqs. 15

and 16), but can only test the validity of the principal scaling approach (Eq. 11). The size of the area Ae does not follow250

Eq. (14), but is defined by the geometry as Ae =
d
δ (measured in DEM pixels). Figure 9 shows the numerical results for the
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Figure 9. Numerical results for the scenario considered in Fig. 3. The river profiles obtained for δ = 0.025 and δ = 0.01 cannot be distin-

guished visually.

parameter values used in Fig. 3 for different values of δ. The simulation was started from a flat topography where the flow

paths of the parallel rivers are predefined. As the problem is linear for n= 1, this example can also be seen as the change in the

river profile through time if uplift suddenly increases at t= 0, while the base level remains constant. The results show that the

equilibrium profile achieved for large times is reproduced correctly, and that the time-dependent behavior is also robust against255

the resolution. This means that the scaling approach itself (Eq. 11) yields both the correct equilibrium behavior and the correct

time scale.

The second example refers to the scenario considered in Fig. 1, but extended by a fluvial threshold Ac = 10−5 and by

linear diffusion with a diffusivity D = 10−5. The threshold Ac is a property of the fluvial erosion process, while the diffusive

hillslope process is not related to it. It is thus assumed that fluvial erosion acts only at sites where A≥Ac, while diffusion is260

active everywhere. A TIN representation is used in order to avoid artefacts from the combination of the eight-neighbor (D8)

flow routing scheme with the standard four-neighbor diffusion scheme on a regular mesh. The simulations are started from an

almost flat topography with unit uplift. Uplift is switched off at t= 50 in order to observe the decay of the topography.

The mean steepness index ks of the large rivers is plotted as a function of time in Fig. 10. Large rivers are defined by A≥
10−3 here, which is considerably larger than Ac, but much smaller than the domain. As expected, the simulations performed265

without any rescaling of the erodibility (dashed lines) are strongly affected by the spatial resolution. The steepness index

increases with increasing number of nodes N , i.e., with decreasing pixel size. In turn, the results obtained using the simple

scaling relation (Eq. 16, solid lines) have a much weaker dependence on resolution. There is, however, a residual variation in

channel steepness. The mean value of ks varies between about 1.6 and 2.0 over the considered range fromN = 105 toN = 107.

This result does not change fundamentally if a higher or lower threshold than A≥ 10−3 is used for defining large rivers.270
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Figure 10. Mean steepness index ks of the large rivers obtained from simulations on TINs with different resolutions, defined by the total num-

ber of nodes N . Solid lines refer to the simplified scaling approach suggested in this paper (Eq. 16), while dashed lines refer to simulations

performed without any rescaling. The latter are plotted only for N ≤ 106.

5 Discussion

It may be surprising that the example of fluvial incision and hillslope diffusion considered in the previous section yields a mean

steepness index greater than one, although the scaling concept was developed in order to preserve channel steepness. The con-

cept is, however, based on a generic hillslope process where the direction of transport follows a hypothetic fluvial equilibrium

pattern and turns into fluvial erosion at a given threshold catchment size Ac. It is questionable whether any hillslope process275

occurring in nature comes close to this simple model. In the example considered here, the diffusion process is characterized by

a diffusivity D and is not related to Ac. The fluvial domain is affected by diffusion more and more with increasing diffusivity.

As a consequence, slopes of small channels decrease, so that they erode less efficiently. This has to be compensated by the

larger rivers, so that they must become steeper.

This is, however, a real property of the hillslope process here, and it is not the goal of the scaling approach to remove it. The280

concept presented here aims at removing the dependence on the resolution and to provide a way how values of the erodibility

have to be interpreted. Here it is suggested that they should be considered in combination with a fluvial threshold Ac in such a

way that they would yield the expected channel steepness if the generic hillslope model was valid.

In turn, the residual dependence of channel steepness on resolution is a problem, in particular because it is not clear whether

it converges in the limit δ→ 0 (N →∞). The problem arises from network reorganization which also affects the fluvial region.285

Diffusion disturbs the dendritic topology towards parallel flow where the model based on Hack’s findings (Eq. 2) is not valid.

Using an improved flow routing scheme that is able to distinguish channelized flow from parallel flow as suggested by Pelletier

(2010) and letting Ac self-adjust might reduce the problem. However, the aim of this study is to develop a simple, quite

universal rescaling approach that avoids or at least reduces the dependence on resolution without modifying the applied model

seriously. In this sense, Eq. (16) should be a good tradeoff.290
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Nevertheless it is important to keep the difference between detachment-limited erosion and pure bedrock incision in mind.

Here it is assumed that the ability of the river to take up particles and carry them away concerns both the river bed and material

coming from adjacent hillslopes. If we, conversely, assume that all material coming from the hillslopes is instantaneously

removed by the river without any consequences, there is no feedback of the hillslopes to the rivers, and Eq. (1) does not require

any rescaling.295

The results of this study have consequences for scaling relations in coupled models of rivers and hillslopes. Theodoratos

et al. (2018) conducted a comprehensive analysis of the problem with linear diffusion without rescaling. The parameters they

used were the same as in the previous example (Fig. 10), so that it is immediately clear that their numerical results strongly

depend on resolution. The authors argued that, following the approach of Pelletier (2010), both grid spacing and channel width

are rescaled, so that the ratio δ
w remains constant, and the scaling issue is consistent throughout all scales. However, the results300

presented here show that the property relevant for compensating δ is not channel width, but Ae and thus Ac. These parameters

are, however, physical properties of the erosion process, so that they do not scale with the size of the domain. As a consequence,

the characteristic horizontal length scale of the coupled system should rather be

lc =
D√
AcK

(17)

for m= 0.5 and n= 1 instead of lc =
√

D
K used by Theodoratos et al. (2018). This problem also affects the recent extension305

by an erosion threshold (Theodoratos and Kirchner, 2020).

6 Conclusions

This study presents a simple scaling relation for the fluvial incision term in landform evolution models involving detachment-

limited fluvial erosion and hillslope processes. In order to avoid a dependence of the simulated topographies on the spatial

resolution of the grid, the fluvial incision term must be multiplied by a scaling factor depending on the ratio of the threshold310

catchment size Ac where fluvial erosion starts and the pixel size δ2 of the grid. The analysis of several simulated drainage

networks yields a power-law dependence of the scaling factor in Eq. (15) with an exponent slightly lower than 0.5. However,

for application in numerical models, a simpler approximation where the fluvial erosion rate is rescaled by a factor
√
2Ac
δ is

suggested. As this relation assumes a simple, generic hillslope process, it cannot provide an exact solution for all types of hill-

slope processes. In combination with such processes, e.g., diffusion, the dependence on the spatial resolution is not completely315

removed. Nevertheless, the simple scaling relation appears to be a reasonable tradeoff between accuracy and simplicity.

Code and data availability. All codes and data can be downloaded from the FreiDok data repository at . . . . The author will be happy to

support interested readers in reproducing the results and performing subsequent research.
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