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Reply to referee comments on “Dimensional analysis of a landscape 
evolution model with incision threshold” by Theodoratos and 
Kirchner 

We are grateful to Eric Deal, Wolfgang Schwanghart, and the anonymous referee for their feedback on 

our manuscript. In the following response to their reviews, we first quote their comments (in blocks of 

italic text) and then respond (in normal text). 

Nikos Theodoratos and James Kirchner 

1. Response to referee Eric Deal 

In “Dimensional analysis of a landscape evolution model with incision threshold”, the 

authors extend a previous analysis of the classic advection-diffusion landscape evolution 

equation with a constant source term to include a threshold for erosion. Though the 

neither the idea of erosion thresholds nor the advection-diffusion equation themselves are 

new, I have not seen them combined in this way before. This novel connection, together 

with the authors very thoughtful and insightful analysis of the equations produces some 

valuable and widely applicable conclusions. In particular, the fact that introducing a 

threshold adds a parameter to the nondimensionalized equations that distinguishes 

landscapes with different relative threshold magnitudes from one another fundamentally 

is very interesting. 

Overall I find the paper to be well cited, novel, scientifically rigorous and the impact is 

appropriate for the journal. The authors are clearly knowledgeable of the state of the art, 

and have placed their work in the correct context. The writing, figures and overall 

presentation is excellent. 

Thank you. 

One of my few criticisms is that the authors have a tendency to over-explain some 

concepts, and I think it would be possible to shorten some explanations and derivations. 

However, the paper is not too long, and I don’t think that this is a necessary change. 

As you can see below, the anonymous referee recommends to summarize in a table the dimensions of 

variables and parameters of the governing equation (now presented as a paragraph in pages 3 and 4). 

We like this idea, and we will apply it to other parts of the paper, such as the derivations of 

characteristic scales and of various dimensionless terms (pages 4 and 5). This will shorten the 

derivations. 

I have one significant criticism, which is that the authors have used a threshold with a 

steady-state constant rainfall/discharge, yet have compared it in many ways to thresholds 

which are derived under the assumption of stochastic forcing. There is very little modern 

work on erosion thresholds outside of a stochastic forcing context, because without a 

stochastic forcing, thresholds lead to dramatic, very nonlinear behaviours which are not 

realistic. I find that it is not difficult to include a simple stochastic forcing, though it 

would require rerunning the models shown in the paper. I think that the effort required to 

use stochastic forcing would be rewarded with a much firmer theoretical connection to 
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modern work on incision thresholds and more interest from the community. I have 

included a document which contains further argument for using a stochastic forcing. 

Besides this one major criticism, I would enthusiastically recommend this paper for 

publication. The authors do include a small section addressing my criticism already, and 

the novelty of the approach still stands even if the authors do not adopt stochastic 

forcing. I will not withhold my recommendation for publication contingent on addressing 

this point. However, I do want to take the opportunity to stress that I feel that including 

stochastic forcing will increase the significance of the paper, increase how well it fits in 

with the state of the art, as well as increase its impact, and I very strongly urge the 

authors to consider redoing the analysis with stochastic forcing, or adding it alongside 

the original analysis. 

We thank you for recommending our paper for publication. We acknowledge your comment and we 

welcome your suggestions. We thank you for elaborating your suggestions in a supplement. 

In addition to the problems that you describe, the incision threshold formulation that we adopt here 

“has the disadvantage of being unable to explore the non-linear relationship between average 

precipitation and long-term incision rates that we describe in the Introduction (Sect. 1)”, as we 

mention in the manuscript. We agree that these effects of erosion thresholds can be much better 

understood within the context of stochastic precipitation. 

In this work, however, we do not examine the effects of thresholds on long-term incision rates. Rather, 

we examine the effects of thresholds on the geometric similarity that we found in Theodoratos et al. 

(2018). Specifically, we examine whether we can use lc, hc, and tc to obtain geometrically similar 

landscapes if these landscapes include incision thresholds. We find that landscapes can be 

geometrically similar in the specific case of having equal incision-threshold numbers Nθ. Further, we 

examine how dissimilar they are when their Nθ are not equal, and we find that this depends on the 

value of Nθ. 

Reformulating the precipitation from constant to stochastic could affect the definition of the incision 

coefficient K, e.g., see Eqs. (21) and (22) in Tucker (2004). This would, in turn, affect the definitions 

of characteristic scales (Eqs. 3–5). In this way, the effects that we examine here could be obscured. 

Therefore, we prefer to examine one change at a time, by examining the inclusion of a threshold in this 

paper, and examining stochastic precipitation in a new manuscript. 

Making the precipitation stochastic will likely lead to significant changes to the results and 

interpretations of the current manuscript. Therefore, a separate manuscript would be a more suitable 

way to present changes. Furthermore, with your supplement, you have made a substantial contribution 

toward new results and interpretations. Therefore, we hope you would accept an invitation to be a co-

author of the future manuscript. 

2. Response to the anonymous referee 

The authors present a dimensional analysis on a landscape evolution model that includes 

an incision threshold. In their analysis, they non-dimensionalize a landscape evolution 

model with an incision threshold using the same length, height, and time scales from their 

previous analysis (Theodoratos et al., 2018). They show that adding a threshold changes 

the model from a 0-parameter model to 1-parameter model, named Nθ. In this model, 

simulations using the same value of Nθ show geometric similarity, and simulations 
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increasing Nθ cause an increase in dimensionless relief with Nθ + 1. Last, they find 

increasing Nθ effectively causes fluvial processes to be isolated to valleys. 

This manuscript is a thorough and straightforward presentation of a landscape evolution 

model including an incision threshold. This analysis is a logical and sensible next-step 

after the authors’ previous work (Theodoratos et al., 2018), yet their results and 

discussion are still novel. The manuscript is well-written and understandable. I 

recommend acceptance of this manuscript without any modification. I look forward to the 

future work of the authors. 

Thank you for the supportive comments. 

Line Comments: 

Page 2, Line 9-12: Interesting thought. Is there a way to implement an intermittency 

factor into the model to simulate this? 

First of all, the ideas discussed in these lines are not ours, so credit should go, for example, to DiBiase 

and Whipple (2011), as cited in the manuscript. Intermittency could be simulated, for example, by 

using stochastic precipitation (see also our response to Eric Deal, above). 

Page 3, Line 16: How do you expect your results of varying Nθ to change with a 

nonlinear hillslope diffusion formulation? 

We address this question further below, after providing some background information in the answer to 

a different question. 

Page 3, Line 29 to Page 4, Line 8: Could this paragraph by summarized into a table or 

set of equations? 

Thank you, this is a nice idea. We will adopt it and extend it. Specifically, we will also summarize in 

tables the content of: 

- lines 4–8, 10, and 16–17 in page 3, where we describe the terms of the governing equation (Eq. 1) 

- line 21 in page 4 until line 19 in page 4, where we define the characteristic scales Ac, Gc, and κc, and 

we non-dimensionalize terms of the governing equation. 

Page 5, Line 7-8: What sets the maximum value of curvature in Figure 8? 

For a given combination of characteristic curvature κc and incision-threshold number Nθ, the maximum 

curvature is mainly controlled by the size of the domain. Specifically, a larger domain leads to larger 

maximum curvature value. 

Page 7, Line 32-38: What is the rationale behind scaling the initial conditions with the 

length and height scales? Without this that the landscape will not be geometrically 

similar, but I’m not sure why the height of the initial randomization and topography 

should scale with parameters. A super bumpy initial surface may look flat at a zoomed-

out scale and vice versa. 

We explain this in more detail in Appendix B of Theodoratos et al. (2018). In brief, two landscapes 

can be geometrically similar at some time step if they were geometrically similar at the previous time 

step. Thus, to reach geometrically similar steady states, they must start from geometrically similar 

initial conditions. 
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Note that evolving landscapes must be compared at times that are normalized by each landscape’s 

characteristic timescale. For example, if a landscape has characteristic timescale tc and another 

landscape has 2tc, then a snapshot of the first landscape with some age t0 must be compared with a 

snapshot of the second landscape with age 2t0. 

It is true that the bumpiness of surfaces would change when looked at different zoom levels, but this is 

desirable. We treat lengths and heights as dimensionally distinct quantities and we normalize them 

independently according to the characteristic length and height lc and hc of each landscape. In this way, 

we rescale drainage areas, slopes, and curvatures such that they result in incision and diffusion rates 

with appropriate proportions relative to the uplift rates. In the four shaded relief maps of Fig. 1, the 

differences in shading intensity illustrate how the landscapes’ steady states differ in bumpiness. Their 

initial conditions differed in bumpiness in the same manner. 

Page 8, Line 28-34: Great illustrations of how your dimensional analysis works. 

Thank you! 

Page 9: A good set of illustrations to show the effects of varying Nθ. Through 

explanation. 

Thank you. 

Page 11, Line 1-2: I find this discussion though provoking. What sets the value of Nθ=4? 

and how would your results change if the initial condition was more or less bumpy? 

To rephrase your question, what controls the distance between the edge of zones of zero incision and 

hillslope–valley transitions (e.g., between red dots and blue circles in Fig. 9)? 

Below, we qualitatively describe how the topology of flow paths influences this distance. A 

quantitative prediction of this distance can likely be obtained only by running simulations and 

analyzing their results. 

In what follows, we refer to the edges of zero incision zones as “zone edges”, and to hillslope–valley 

transitions as “valley heads”.  

To begin with, if the distance between zone edges and valley heads is roughly equal to or smaller than 

the resolution, then these points will coincide, or be immediate neighbors. So in the rest of this answer, 

we assume a fixed resolution. 

According to the governing equation (Eq. 1), zone edges are points with √𝐴|∇𝑧| = 𝜃. Valley heads 

can be defined as points with Laplacian curvature ∇2𝑧 = 0, where the topography transitions from 

being convex to being concave (e.g., Howard, 1994). Setting ∇2𝑧 = 0 and 𝜕𝑧 𝜕𝑡⁄ = 0 (steady state), 

and given the definition of the characteristic height hc (Eq. 4), the governing equation gives the value 

√𝐴|∇𝑧| = ℎ𝑐 + 𝜃 for valley heads. Finally, given the definition of the incision-threshold number Nθ 

(Eq. 9), we see that at zone heads √𝐴|∇𝑧| = 𝑁𝜃ℎ𝑐 and at valley heads √𝐴|∇𝑧| = (𝑁𝜃 + 1)ℎ𝑐. 

Therefore, in steady state, the distance between zone edges and valley heads is equal to the distance 

needed for the quantity √𝐴|∇𝑧| to grow from 𝑁𝜃ℎ𝑐 to (𝑁𝜃 + 1)ℎ𝑐. 

First, we examine how the growth of √𝐴|∇𝑧| depends on the convergence or divergence of flow paths. 

Afterwards, we examine how the convergence or divergence of flow paths is related to the value of Nθ. 
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Moving downhill along a flow path, the rate of growth of √𝐴|∇𝑧| per unit length depends on the rate 

of drainage area accumulation and on the rate of slope change. (Note that drainage area can only grow, 

but slope can become either steeper or gentler as we move downstream. So for √𝐴|∇𝑧| to grow, 

drainage area must be accumulated fast enough to compensate for a decreasing slope.) 

The rate of drainage area accumulation per unit length depends on the contour curvature, which 

expresses the convergence or divergence of flow paths. The rate of change of slope per unit length 

depends on the profile curvature. For definitions of these curvatures, see Mitasova and Hofierka 

(1993). It can be shown that the Laplacian curvature ∇2𝑧 can be expressed as a weighted sum of 

contour and profile curvature. Thus, for a given value of ∇2𝑧, the values of contour and profile 

curvature are interrelated, specifically, if one of them is increased, then the other must be decreased. 

Where flow paths converge more strongly, drainage area accumulates faster. Moreover, contour 

curvature is larger and thus profile curvature must be more negative (so that a negative Laplacian 

curvature is obtained, since the point in question must have a curvature between 0 and –κc, the value in 

zones of zero incision). Thus, slope also becomes steeper faster. Consequently, the quantity √𝐴|∇𝑧| 

has the fastest growth rate per unit length at areas with strongly convergent flow paths. 

In landscapes with smaller Nθ, the zone edge is closer to the ridgeline, but in landscapes with larger Nθ, 

the zone edge is farther from the ridge. Close to the ridge, flow paths are divergent or only weakly 

convergent. By contrast, farther from the ridge, the topography can become convergent even on 

hillslopes, because the landscape surface is adjusting itself to the valley network downhill. Therefore, 

as Nθ increases, the zone edge moves farther from the ridge to areas where flow paths are more 

convergent, i.e., to areas where the quantity √𝐴|∇𝑧| grows faster from 𝑁𝜃ℎ𝑐 to (𝑁𝜃 + 1)ℎ𝑐. 

To summarize, larger Nθ results in zone edges that are farther from the ridge, which results in more 

strongly convergent flow paths, which in turn result in smaller distance between zone edges and valley 

heads. However, the exact value of Nθ that leads to a distance smaller than some limit (e.g., smaller 

than the resolution) may be quantifiable only by simulations. 

Beyond the resolution, it seems likely that this value of Nθ is ultimately influenced by the size and 

shape of the domain, which influence the large-scale geometry and topology of the valley network, 

which in turn influence the way that hillslopes are folded to smoothly connect valleys and ridges. 

Consequently, the bumpiness of initial conditions may affect the results if it can affect the 

convergence or divergence of the final landscape surface. 

Page 3, Line 16: How do you expect your results of varying Nθ to change with a 

nonlinear hillslope diffusion formulation? 

Nonlinear hillslope diffusion affects the resulting topography of hillslopes, e.g., the way that 

topographic gradients change along flow paths, or the convergence and divergence of flow paths. 

Therefore, nonlinear diffusion could change the arrangements of zero incision zones, etc. 

Page 12, Line 27-29: Can the authors hypothesize what this additional effect is? Are the 

smaller catchments becoming more diffusional as the incision threshold is increased? 

This would increase the positive curvature in the valleys, but perhaps this increase in 

curvature does not scale with 1+ Nθ. Could plotting how the ratio between area of no 

incision and the total area with Nθ be informative? 
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Based on the above discussion regarding flow path convergence and the per-unit-length growth of the 

quantity √𝐴|∇𝑧|, we hypothesize that the value of Nθ affects the structure, as it were, of the landscape. 

Landscapes with different Nθ values are composed of areas with zero, weak, medium, and strong 

incision that are mixed in different proportions. These differences not only result in different incision 

rates and reliefs, but also result in different competition between incision and diffusion, which controls 

the horizontal scales of landscapes. Furthermore, the differences in horizontal scales are not constant 

across landscapes, but instead they are more pronounced in hillslopes and less pronounced in valleys, 

where the quantity √𝐴|∇𝑧| is large relative to the incision threshold θ. We examine effects like these 

in a separate manuscript that we will submit soon. 

3. Response to referee Wolfgang Schwanghart 

Nikos Theodoratos and James Kirchner conduct a dimensional analysis of the stream 

power incision model that includes an incision threshold that defines zones of zero 

incision below a defined stream power threshold. The dimensional analysis reveals that 

the incision threshold number remains the only parameter that governs the evolution of 

landscapes simulated by the stream power incision model. Their analysis expands on and 

complements a previous paper, that the authors also published in ESURF. 

Overall, the paper is very well written and illustrated. I like the comprehensive 

explanation which allows readers to follow the steps taken by the authors. The results are 

well illustrated by the figures and tables, but the text could be abbreviated. 

Thank you. We will make some abbreviations of the text, as described above. 

The discussion places the results in the context of stochastic stream power incision 

models, and the choice of characteristic scales. In my opinion, the discussion could also 

revisit some of the assumption behind the study (in particular uniform uplift). 

This would be an interesting discussion. Our characteristic scales depend on the parameters, so they 

would also become non-uniform if the parameters were non-uniform. Thus, we can add this discussion 

in Sect. 4.2, which deals with characteristic scales. 

If the non-uniformity is gradual and follows a systematic pattern (e.g., the differential uplift across a 

fold described by Kirby and Whipple, 2001), then the resulting non-uniform characteristic scales could 

be useful. For example, designing a lab-scale sandbox landscape that models differential uplift might 

benefit from these non-uniform characteristic scales. 

However, if the parameters were randomly heterogeneous, or they varied greatly over distances much 

smaller than typical landscape units, then the resulting “characteristic” scales might not be 

characteristic of anything, and thus they might lose their explanatory power. 

All in all, I think that the paper is already in a very good shape and ready to be published 

in ESURF after minor revisions. 

Thank you. 
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Specific comments: 

7-17 While referring the reader to Theodoratos et al. (2018), you may nevertheless 

provide some more details on the numeric simulations here, e.g. resolution or the nr of 

vertices used in the TIN. 

We will include some more details in an appendix. 

13-19 Given Eq. 1, this should rather read that points with any given stream power above 

the threshold value experience a stream power greater than zero, ... 

Thanks, we now see why this could be confusing. We will rephrase it. 
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