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Motivation

Modern work on fluvial incision thresholds started with Tucker and Bras [2000], and since then all
the major work on fluvial erosion thresholds has included a stochastic treatment [Wolman and
Miller, 1960, Tucker and Bras, 2000, Snyder et al., 2003, Tucker, 2004, Lague et al., 2005, DiBiase
and Whipple, 2011, Lague, 2014, Rossi et al., 2016, Scherler et al., 2017, Deal et al., 2018]. As Lague
[2014] points out, if you try to use a threshold with constant forcing, you have major nonlinearities
in steady-state slope, critical discharge, critical area, etc, when the magnitude of the forcing is close
the the magnitude of the threshold. There are likely few rivers in the world whose discharge is
anything steady enough to be considered remotely constant, and at the same time, it is likely that
many rivers have a threshold of motion that is not exceeded at least part of the time. Truly, the
concepts of stochastic forcing and fluvial erosion threshold different aspects of the same process.

Applying a stochastic forcing

Start with
∂z

∂t
= U−D∆z+ E (1)

where E is the fluvial incision. To properly do the incision with a threshold, it is critical to take into
account the variability in flow. This allows for incision to occur "below" the threshold, so there
is not a singularity when K

√
A|∇z| = θ. We can do this by considering a short timescale incision

model
I = K

√
A|∇z|q∗ −Kθ (2)

where q∗ is the discharge normalized by the mean. The simplest option would be to consider that
q∗ is exponentially distributed with a mean of 1,

p(q∗) = e−q
∗

(3)

Then the fluvial incision rate is

E =

∫∞
q∗c

I(q∗)p(q∗)dq∗ = K
√
A|∇z|

∫∞
q∗c

(q∗ − q∗c) e
−q∗dq∗ (4)

where q∗c is found by solving I(0), leading to q∗c =
θ√
A|∇z| . The solution to the integral is simply

E = K
√
A|∇z|e−

θ√
A|∇z| (5)

Therefore, the full PDE is
∂z

∂t
= U−D∆z+K

√
A|∇z|e−

θ√
A|∇z| (6)

If we nondimensionalize in the same way as in the paper, this leads to

∂z∗

∂t∗
= 1 −∆∗z∗ + k∗se

−Nθ/k
∗
s (7)

where k∗s =
√
A∗|∇∗z∗| and all other parameters are exactly as in the paper. Note, now the PDE is

no longer piecewise, but instead there is an exponential decrease to zero in the magnitude of the
fluvial incision term in the neighbourhood of k∗s ≈ Nθ.
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Possible interpretations of Nθ
You mention that there are 3 characteristic scales in the problem. I think that θ implies a fourth
scale, which is fundamentally the characteristic grain size in the landscape. The characteristic
grain size Dc sets the threshold of motion. In the simplest case, it will be linearly proportional to
the threshold itself [e.g. Scherler et al., 2017], so we can say Dc ∝ θ. Many papers on threshold
stochastic formulations point out that the ratio of ΨU = Kθ

U is the key nondimensional number that
describes the importance of thresholds [e.g. DiBiase and Whipple, 2011, Lague, 2014].

I also point out in Deal et al. [2018] that this ratio is similar, and when everything is linear,
identical to the ratio of the discharge that can move the mean grain size to the mean discharge qc

µ .
Since the discharge and area are the same here, the mean discharge (cast as a flow depth) is

√
A,

and the critical discharge is the flow depth that can move the mean grain size for a given slope,
here we take the characteristic slope θ = qcGc, so the critical discharge is qc = θ

Gc
. The same result

can be found by setting I(q∗) = 0 and solving for the critical area at the mean discharge q∗ = 1 and
the characteristic slope Gc. Then we see that if we look at the nondimensional critical discharge at
the characteristic area and slope

qc

µc
=

qc√
Ac

=
qc

lc
=

θ

lcGc
=
Kθ

U
= Nθ. (8)

So Nθ can be thought of as referring directly to the channel hydraulics at the characteristic area. In
fact there are many perspectives on it: Nθ ∝ Dc

hc
can be thought of as a nondimensional grain size,

scaled by hc; or as a nondimensional critical discharge/flow depth Nθ =
qc
lc

, scaled by lc; or as a
nondimensional critical area to reach the critical discharge at mean flow Nθ =

Aθ
Ac

, (Aθ = q2
c); or as

a nondimensional shear stress Nθ = θ
θc

, scaled by the characteristic shear stress θc =
√
AcGc.

One of the main conclusions of earlier studies is that whether grains are considered large or
small is a function of the uplift rate. When uplift rates are high, grains are relatively smaller. This
is captured very nicely by Nθ.
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