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Abstract.   The ability of erosional processes to incise into a topographic surface can be limited by a threshold. Incision 

thresholds affect the topography of landscapes and their scaling properties, and can introduce non-linear relations between 

climate and erosion with notable implications for long-term landscape evolution. Despite their potential importance, incision 

thresholds are often omitted from the incision terms of landscape evolution models (LEMs) to simplify analyses. Here, we 10 

present theoretical and numerical results from a dimensional analysis of an LEM that includes terms for threshold-limited 

stream-power incision, linear diffusion, and uplift. The LEM is parameterized by four parameters (incision coefficient and 

incision threshold, diffusion coefficient, and uplift rate). The LEM’s governing equation can be greatly simplified by 

recasting it in a dimensionless form that depends on only one dimensionless parameter, the incision-threshold number Nθ. 

This dimensionless parameter is defined in terms of the incision threshold, the incision coefficient, and the uplift rate, and it 15 

quantifies the reduction in the rate of incision due to the incision threshold relative to the uplift rate. Being the only 

parameter in the dimensionless governing equation, Nθ is the only parameter controlling the evolution of landscapes in this 

LEM. Thus, landscapes with the same Nθ will evolve geometrically similarly, provided that their boundary and initial 

conditions are normalized according to appropriate scaling relationships, as we demonstrate using a numerical experiment. 

In contrast, landscapes with different Nθ values will be influenced to different degrees by their incision thresholds. Using 20 

results from a second set of numerical simulations, each with a different incision-threshold number, we qualitatively 

illustrate how the value of Nθ influences the topography, and we show that relief scales with the quantity 𝛮𝜃 + 1 (except 

where the incision threshold reduces the rate of incision to zero). 

1     Introduction 

In the uppermost parts of drainage basins, water is not flowing over the ground surface or is flowing too weakly to incise 25 

into it. At least two kinds of limits must typically be overcome for erosion by flowing water to begin. First, sufficient 

drainage area must be accumulated for overland flow to start; second, this flow must exert sufficient shear stress on the 

surface to overcome the mechanical resistance of rocks or soils and thus mobilize sediment (e.g., Perron, 2017). 

 

Channel-incision terms in landscape evolution models (LEMs) often capture both of these limits by including an incision 30 

threshold below which no incision occurs. For instance, if 𝜏 is the shear stress that water exerts on the bed and 𝜏𝜃 is a critical 

value of shear stress (equivalently, 𝜏 and 𝜏𝜃 could refer to stream power), then the rate of incision is zero for 𝜏 ≤ 𝜏𝜃 and it 

can be described by a term of the form 𝑘(𝜏 − 𝜏𝜃)𝛼, for 𝜏 > 𝜏𝜃, where k and 𝛼 are constants (e.g., Howard, 1994). Including 

such incision terms in LEMs changes the topographic properties of the landscapes that are synthesized, for example, it leads 



 

2 

 

to decreased drainage densities, more convex hillslopes, and steeper slopes (e.g., Howard, 1994; Tucker and Bras, 1998; 

Perron et al., 2008). 

 

In addition, incision thresholds can have notable consequences on the relationship between climate and long-term incision 

rates as described, for example, by Snyder et al. (2003), Tucker (2004), Lague et al. (2005), Perron (2017), and Deal et al. 5 

(2018). Specifically, incision thresholds stop smaller events from eroding the surface. In many wet climates, the total annual 

streamflow is high, but small, frequent events tend to contribute most of this total; in contrast, in many dry climates, a larger 

fraction of the total annual streamflow tends to be contributed by rare, but intense, events (e.g., Rossi et al., 2016). 

Therefore, a sufficiently high incision threshold could render ineffective a larger fraction of the total precipitation in wetter 

climates than in drier climates. This behavior can lead to a non-linear dependence of long-term erosion rates on average 10 

precipitation; it can even lead to the counter-intuitive observation that, in some cases, larger average precipitation 

corresponds to smaller long-term erosion rates (e.g., DiBiase and Whipple, 2011). 

 

Furthermore, incision thresholds can play a role in setting the smallest scales of valley dissection, which are among the 

fundamental scales that characterize landscapes. For instance, Horton (1945) suggested that valley dissection stops because 15 

further dissection would lead to hillslopes that are too short to yield flow that can erode the surface. Montgomery and 

Dietrich (1992) found that thresholds of the topographic quantity 𝐴(|∇𝑧|)2, where A is drainage area and |∇𝑧| is slope, could 

define locations of both channel and valley heads, the former being associated with an incision threshold and the latter with 

the smallest scale of dissection. Perron et al. (2008) studied the spacing of valleys, a scaling property closely related to the 

smallest scale of dissection. They found that valley spacing is most strongly controlled by the competition between advective 20 

and diffusive processes, such as stream incision and soil creep, respectively. However, they found that incision thresholds 

also control valley spacing by modulating the competition between advection and diffusion. 

 

In Theodoratos et al. (2018), we performed a scaling analysis of an incision–diffusion LEM that did not include an incision 

threshold. In the present study, we add an incision threshold to that LEM and examine how our analysis needs to be modified 25 

to account for this threshold. More specifically, in Theodoratos et al. (2018), we dimensionally analyzed an LEM that 

includes three parameters – an incision coefficient, a diffusion coefficient, and an uplift rate. For that analysis, we used three 

characteristic scales (of length, height, and time) that are defined in terms of the three parameters of the LEM. As we 

explained in detail in Theodoratos et al. (2018), because the characteristic scales depend on the model parameters and 

because there are three parameters and three characteristic scales, the LEM can be greatly simplified by being re-cast in a 30 

dimensionless form that has no parameters.  

 

Adding an incision threshold to the LEM that we analyzed in Theodoratos et al. (2018) increases the number of its 

parameters to four (see Eq. 1 below). This leads to the question of whether the LEM with incision threshold can be 

dimensionally analyzed using the same three characteristic scales that we used to dimensionally analyze the LEM without 35 

incision threshold (Theodoratos et al., 2018). Here, we hypothesize that these three scales are reasonable choices even after 

adding an incision threshold to the LEM, and we test this hypothesis by applying these scales and examining the resulting re-

scaled equations. 
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2     Dimensional analysis of LEM that includes incision threshold 

2.1   Governing equation 

We study an LEM described by the governing equation (e.g., Howard, 1994; Dietrich et al., 2003): 

𝜕𝑧

𝜕𝑡
= {

𝐷∇2𝑧 + 𝑈, √𝐴|∇𝑧| ≤ 𝜃

−𝐾(√𝐴|∇𝑧| − 𝜃) + 𝐷∇2𝑧 + 𝑈, √𝐴|∇𝑧| > 𝜃
     , (1) 

where z is elevation at a point with coordinates (𝑥, 𝑦) and t is time; A, |∇𝑧|, and ∇2𝑧 are topographic properties of the point, 

specifically, drainage area, slope, and Laplacian curvature, respectively; K is the incision coefficient, D is the diffusion 5 

coefficient, U is the uplift rate, and θ is the incision threshold, a threshold value of the quantity √𝐴|∇𝑧|. The four parameters 

K, D, U, and θ are all assumed to be constant in time and uniform across space. The dimensions of these variables, 

topographic properties, and parameters are discussed in the following subsection. 

 

The stream-power incision term 𝐾(√𝐴|∇𝑧| − 𝜃) describes the rate of incision by flowing water. It is a special case of the 10 

more general incision term 𝐾(𝐴𝑚(|∇𝑧|)𝑛 − 𝜃), where m and n, the exponents of drainage area and slope, have values that 

depend on the rate law that is assumed to describe incision (such as shear stress or stream power; e.g., Dietrich et al., 2003). 

Here, we examine the simplified case of 𝑚 = 0.5 and 𝑛 = 1 because it leads to results described by much simpler formulas; 

however, these results are valid for generic exponents m and n as well, but with more complicated formulas (see Appendix A 

of Theodoratos et al. (2018) for results pertaining to an LEM without incision threshold and with generic exponents m and 15 

n). The linear diffusion term 𝐷∇2𝑧 describes the rate of erosion or infilling by hillslope sediment transport processes. Finally, 

the uplift term U gives the rate of tectonic uplift within the model domain (or, equivalently, base level fall at its boundary). 

 

Equation (1) is defined piecewise on two subdomains. The first subdomain, where √𝐴|∇𝑧| ≤ 𝜃, corresponds to areas where 

the rate of incision is zero because it is fully suppressed by the incision threshold and, thus, the landscape evolves under the 20 

influence of diffusion and uplift only. We refer to these areas as the zones of zero incision, because they tend to form zones 

along ridges and drainage divides, where drainage area or slope, or both, are small (e.g., see Figs. 3 and 7). The second 

subdomain, where √𝐴|∇𝑧| > 𝜃, corresponds to the remaining parts of the landscape. In this subdomain, the incision rate is 

reduced by a uniform amount 𝐾𝜃, relative to the rate 𝐾√𝐴|∇𝑧| that would prevail with no threshold. Note that the transition 

between the two subdomains at √𝐴|∇𝑧| = 𝜃 entails no discontinuity in incision rates, and that if we set 𝜃 = 0, then we 25 

obtain the governing equation of the LEM without an incision threshold (e.g., Howard, 1994), 

𝜕𝑧

𝜕𝑡
= −𝐾√𝐴|∇𝑧| + 𝐷∇2𝑧 + 𝑈     , (2) 

which is the equation that we dimensionally analyzed in Theodoratos et al. (2018). 

2.2   Dimensions and characteristic scales 

We test whether the characteristic scales defined in Theodoratos et al. (2018) are reasonable choices to analyze the LEM that 

includes an incision threshold θ (Eq. 1). We start by examining the dimensions of the variables and parameters of Eq. (1). 30 

The horizontal coordinates (x, y) have dimensions of length L, elevation z has dimensions of height H, and time t has 

dimensions of time T. These fundamental dimensions flow through to the derived topographic quantities A, |∇𝑧|, and ∇2𝑧, 

and to the parameters K, D, U, and θ as seen in Table 1. LEMs typically express length and elevation in units of meters (m), 
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and time in units of years (a). We also use these units in the simulations presented in Sect. 3, and we show incision 

coefficients K in units of a–1, diffusion coefficients D in units of m2 a–1, uplift rates U in units of m a–1, and incision 

thresholds θ in units of m (e.g., Tables 3 and 4). 

 

Given that all the terms of Eq. (1) have dimensions in H, L, and T, we can dimensionally analyze Eq. (1) using characteristic 5 

scales of length, height, and time. In Eqs. (3)-(8) below, we summarize the dimensional analysis of Theodoratos et al. (2018) 

as necessary background for the new analysis presented here. The dimensional analysis of Theodoratos et al. (2018) is based 

on a characteristic length that is defined as 

𝑙𝑐 ≔ √𝐷 𝐾⁄      , (3) 

a characteristic height that is defined as 

ℎ𝑐 ≔ 𝑈 𝐾⁄      , (4) 

and a characteristic time that is defined as 10 

𝑡𝑐 ≔ 1 𝐾⁄      . (5) 

 

To non-dimensionalize the horizontal coordinates (x, y), elevation z, and time t, we divide them by lc, hc, and tc, respectively. 

Specifically, we define dimensionless coordinates as (𝑥∗, 𝑦∗) ≔ (𝑥 𝑙𝑐⁄ , 𝑦 𝑙𝑐⁄ ), dimensionless elevation as 𝑧∗ ≔ 𝑧 ℎ𝑐⁄ , and 

dimensionless time as 𝑡∗ ≔ 𝑡 𝑡𝑐⁄ . We summarize the definitions of characteristic scales and of dimensionless quantities in 

Table 2. 15 

 

To non-dimensionalize the rate of elevation change in the left-hand side of Eq. (1) and the topographic properties in the 

right-hand side of Eq. (1) (drainage area A, slope |∇𝑧|, and curvature ∇2𝑧), we need to divide them by characteristic scales 

that have the same dimensions as the rate of elevation change and the topographic properties, respectively. We define these 

characteristic scales by combining the characteristic scales of length, height, and time (lc, hc, and tc) such that we obtain the 20 

appropriate dimensions. For instance, the rate of elevation change 𝜕𝑧 𝜕𝑡⁄  has dimensions of Η T−1; therefore, to non-

dimensionalize it, we need to divide it by a characteristic scale with dimensions of height over time. The ratio ℎ𝑐 𝑡𝑐⁄  has such 

dimensions. Note that ℎ𝑐 𝑡𝑐⁄ = 𝑈 (see Eqs. 4 and 5). Thus, we can view the uplift rate U as a characteristic rate of elevation 

change and use it to define the dimensionless rate of elevation change as 𝜕𝑧∗ 𝜕𝑡∗⁄ ≔ (𝜕𝑧 𝜕𝑡⁄ ) 𝑈⁄ . Likewise, we define a 

characteristic area with dimensions of L2 as 25 

𝐴𝑐 ≔ 𝑙𝑐
2 = 𝐷 𝐾⁄      , (6) 

and use it to define the dimensionless drainage area as 𝐴∗ ≔ 𝐴 𝐴𝑐⁄ . Further, we define a characteristic gradient with 

dimensions of Η L−1 as 

𝐺𝑐 ≔ ℎ𝑐 𝑙𝑐⁄ = 𝑈 √𝐷𝐾⁄      . (7) 

If we divide the slope |∇𝑧| by the characteristic gradient Gc, we obtain a dimensionless slope term. We denote this 

dimensionless slope by |∇∗𝑧∗| because it is equal to the norm of the gradient of dimensionless elevation z* in dimensionless 

coordinates (x*, y*). See Table 2 for more details. Finally, we define a characteristic curvature with dimensions of Η L−2 as 30 

𝜅𝑐 ≔ ℎ𝑐 𝑙𝑐
2⁄ = 𝑈 𝐷⁄      , (8) 

and we use it to define the dimensionless curvature as ∇∗2𝑧∗ ≔ ∇2𝑧 𝜅𝑐⁄ . Note that the characteristic curvature is opposite to 

the steady-state curvature at ridges, drainage divides, and zones of zero incision. Specifically, if 𝜕𝑧 𝜕𝑡⁄ = 0 (steady state), 

and if √𝐴|∇𝑧| = 0 in Eq. (2) or √𝐴|∇𝑧| ≤ 𝜃 in Eq. (1), then 𝐷∇2𝑧 + 𝑈 = 0, which can be rewritten as ∇2𝑧 = − 𝑈 𝐷⁄ = −𝜅𝑐 
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(see also Roering et al., 2007; Perron et al., 2009). Note that it can be shown that –κc is also the minimum value of curvature 

in steady state. 

 

2.3   Dimensionless governing equation and the incision-threshold number Nθ 

If we divide all of the terms of the governing equation (Eq. 1) by the uplift rate U, then we obtain an equation that includes 5 

only dimensionless terms. We show how to non-dimensionalize the left-hand side, and the diffusion and uplift terms of 

Eq. (1), in Table 2. To non-dimensionalize the incision term, we expand it to 𝐾√𝐴|∇𝑧| − 𝐾𝜃. The first part, 𝐾√𝐴|∇𝑧|, 

corresponds to the value of the incision rate if there were no incision threshold, and the second part, 𝐾𝜃, corresponds to the 

reduction in the incision rate due to the threshold. If we divide 𝐾√𝐴|∇𝑧| by U, then it can be shown that we obtain the 

dimensionless product √𝐴∗|∇∗𝑧∗|, and if we divide 𝐾𝜃 by U, then we obtain 𝐾𝜃 𝑈⁄ . This ratio is dimensionless because both 10 

𝐾𝜃 and U are rates of elevation change, with dimensions of  Η T−1. We term this dimensionless ratio the incision-threshold 

number Nθ: 

𝑁𝜃 ≔ 𝐾𝜃 𝑈⁄      . (9) 

 

The incision-threshold number Nθ quantifies 𝐾𝜃, the reduction in the rate of incision due to the incision threshold, relative to 

the uplift rate U. Additionally, Nθ is the value of the dimensionless product √𝐴∗|∇∗𝑧∗| at the transition between the two 15 

subdomains of Eq. (1), i.e., at the interface between parts of the landscape where there is no incision and parts of the 

landscape where incision occurs. Specifically, at that transition, √𝐴|∇𝑧| = 𝜃; if both sides of this equality are multiplied by 

K and then divided by U, then the equality can be shown to become √𝐴∗|∇∗𝑧∗| = 𝑁𝜃. Finally, if we rearrange Eq. (9) as 

𝑁𝜃 = 𝜃 (𝑈 𝐾⁄ )⁄ , then we see that the incision-threshold number gives the magnitude of the incision threshold θ relative to 

magnitudes of other parameters of the LEM, specifically, relative to the ratio of the uplift rate U to the incision coefficient K. 20 

Note that in the general case in which the drainage area and slope exponents m and n are not 0.5 and 1, respectively, θ and K 

will have different dimensions than in the case of Eq. (1), but their product, 𝐾𝜃, will still have dimensions of Η T−1. Thus 

the ratio 𝐾𝜃 𝑈⁄  is dimensionless for any m and n. Note that Nθ is equal to the quantity θ′ in Eq. (19) of Perron et al. (2008). 

 

Bringing together the dimensionless terms derived above, we obtain a dimensionless form of the governing equation (Eq. 1): 25 

𝜕𝑧∗

𝜕𝑡∗
= {

∇∗2𝑧∗ + 1, √𝐴∗|∇∗𝑧∗| ≤ 𝑁𝜃

−(√𝐴∗|∇∗𝑧∗| − 𝑁𝜃) + ∇∗2𝑧∗ + 1, √𝐴∗|∇∗𝑧∗| > 𝑁𝜃

     . (10) 

Note that the dimensionless quantities that we denote by starred symbols (e.g., 𝑧∗, 𝐴∗, |∇∗𝑧∗|) refer to variables or 

topographic properties. These quantities vary in space across the landscape and in time as the landscape evolves. By contrast, 

the incision-threshold number Nθ depends only on the model parameters K, U, and θ, and thus it plays the role of a parameter 

in Eq. (10), one that is constant in space and time. The incision-threshold number Nθ is the only parameter in Eq. (10). Thus, 

for a given set of boundary and initial conditions, the value of Nθ is the only control on the solution of Eq. (10). 30 

 

The LEM without incision threshold, which we studied in Theodoratos et al. (2018), has a dimensionless form that does not 

include any parameters (see Eq. (16) in Theodoratos et al., 2018). Having no parameters to be adjusted, the dimensionless 

form has a single solution for any given combination of boundary and initial conditions. This implies that landscapes with 

any parameters, but with the same boundary and initial conditions (when normalized by the characteristic scales lc and hc), 35 



 

6 

 

follow geometrically similar evolutionary paths, i.e., they evolve as rescaled copies of each other. We noted that this 

rescaling property implies that, instead of running multiple simulations corresponding to multiple combinations of 

parameters, we can explore the entire parameter space of the LEM by rescaling the results of a single simulation 

corresponding to just one set of parameters. 

 5 

In contrast, the dimensionless form of the LEM with an incision threshold, Eq. (10), includes one parameter, the incision-

threshold number Nθ. Therefore, in general, landscapes with non-zero incision thresholds will not evolve as rescaled copies. 

However, Eq. (10) reveals a special case. If landscapes have the same Nθ, i.e., if they have incision thresholds θ, incision 

coefficients K, and uplift rates U such that they have the same ratios 𝐾𝜃 𝑈⁄ , then they will evolve as rescaled copies of each 

other, provided that their boundary and initial conditions are the same when normalized by the characteristic scales of length 10 

and height lc and hc. In Sect. 3, we numerically demonstrate both the special case of landscapes that have the same Nθ and 

evolve geometrically similarly, and the general case of landscapes that have different Nθ and do not follow geometric 

similarity. 

 

The elimination of three out of four parameter-related degrees of freedom from the LEM (from the four parameters K, D, U, 15 

and θ in Eq. (1) to the one parameter Nθ in Eq. (10)) is a substantial simplification. It is a consequence of the fact that we 

non-dimensionalize Eq. (1) using the characteristic scales of length, height, and time lc, hc, and tc, which depend on three 

model parameters (K, D, and U; Eqs. 3–5), and can thus eliminate an equal number of parameter-related degrees of freedom. 

This simplification validates the hypothesis that lc, hc, and tc, as a group, remain useful in the case of Eq. (1), which includes 

the incision threshold θ. Unfortunately, with only three fundamental dimensions it is not possible to eliminate all four 20 

parameters using dimensional analysis, so one dimensionless parameter (in this case Nθ) must remain. 

3     Numerical simulations 

3.1   Special case: landscapes with the same Nθ 

In this section, we numerically demonstrate that landscapes that follow Eq. (1) but have different parameters will evolve 

geometrically similarly if they have equal incision-threshold numbers Nθ, provided that their boundary and initial conditions 25 

are equivalent when normalized by the characteristic scales of length and height lc and hc. Given that we perform numerical 

simulations on discrete and finite domains, we also normalize the sizes and resolutions of these domains by lc (see Sects. 2.2 

and 3.2.2 of Theodoratos et al. (2018) for a more detailed discussion regarding the rescaling of domain size and resolution). 

 

In this context, geometric similarity is defined in the following way. Let the first landscape have characteristic scales lc and 30 

hc, and the second have lc′ and hc′. The two landscapes are geometrically similar if any point with coordinates (𝑥, 𝑦) and 

elevation 𝑧 from the first landscape corresponds to a point from the second landscape with coordinates (𝑥′, 𝑦′) and elevation 

𝑧′ such that (𝑥 𝑙𝑐⁄ , 𝑦 𝑙𝑐⁄ ) = (𝑥′ 𝑙𝑐
′⁄ , 𝑦′ 𝑙𝑐

′⁄ ) and 𝑧 ℎ𝑐⁄ = 𝑧′ ℎ𝑐
′⁄ . Note that both points correspond to the same point of a 

dimensionless landscape with coordinates (𝑥∗, 𝑦∗) = (𝑥 𝑙𝑐⁄ , 𝑦 𝑙𝑐⁄ ) = (𝑥′ 𝑙𝑐
′⁄ , 𝑦′ 𝑙𝑐

′⁄ ) and elevation 𝑧∗ = 𝑧 ℎ𝑐⁄ = 𝑧′ ℎ𝑐
′⁄ . In 

other words, the two landscapes are geometrically similar if they correspond to the same dimensionless landscape. To test 35 

whether the two landscapes are geometrically similar during their evolution, we must normalize time by their characteristic 

timescales tc and tc′. Specifically, we must compare a snapshot of the first landscape at some time t to a snapshot of the 
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second landscape at some other time t′, such that 𝑡 𝑡𝑐⁄ = 𝑡′ 𝑡𝑐
′⁄ . Both of these snapshots correspond to the same snapshot of a 

dimensionless landscape at a dimensionless time 𝑡∗ = 𝑡 𝑡𝑐⁄ = 𝑡′ 𝑡𝑐
′⁄ . 

3.1.1  Setup of simulations 

We perform numerical simulations using the Channel-Hillslope Integrated Landscape Development (CHILD) model (Tucker 

et al., 2001). Below, we briefly explain how we set up the simulations, and in Appendix A we present formulas that relate 5 

the parameters of CHILD to the parameters of the governing equation (Eq. 1). We refer readers to Theodoratos et al. (2018) 

for more details about setting up numerical simulations that follow geometric similarity (Sect. 3.1.1 and Appendix C) and 

about the theory behind such simulations (Appendix B). 

 

For our similarity analysis, we simulate nine landscapes, each having a different combination of the parameters K, D, and U, 10 

and, thus, a different combination of characteristic scales of length and height lc and hc (Eqs. 3, 4). Using Eq. (9), we 

determine the value of the incision threshold θ of each landscape such that the incision-threshold number of all landscapes is 

𝑁𝜃 = 1. We show the parameters, characteristic scales, and θ and Nθ values of the nine landscapes in Table 3. The 

landscapes are named with capital letters, from A to I. 

 15 

Note that the incision threshold values θ of some of the nine landscapes are significantly higher than natural values reported 

in the literature (e.g., Prosser & Dietrich, 1995; note the necessary unit conversions). This is due to the fact that all nine 

landscapes have incision-threshold numbers 𝑁𝜃 = 𝜃 (𝑈 𝐾⁄ )⁄ = 1, i.e., due to the fact that each landscape’s θ value must be 

equal to the value of its 𝑈 𝐾⁄  ratio. We chose to use the value 𝑁𝜃 = 1 because it leads to wide zones of zero incision (areas 

where, according to Eq. (1), there is no incision, because √𝐴|∇𝑧| ≤ 𝜃). These wide zones are readily visible when plotted. 20 

 

To obtain domains and initial conditions that are equivalent when normalized by the characteristic scales of length and 

height lc and hc, we first synthesize a random triangular irregular network (TIN) in dimensionless space, i.e., a TIN whose 

vertices have dimensionless horizontal coordinates (𝑥∗, 𝑦∗) and dimensionless initial elevations 𝑧∗. (This TIN’s total extent 

is 60⨯90 and the average length of its triangle edges is 0.4, resulting in approximately 40 thousand TIN vertices. The initial 25 

elevations are a white noise ranging between 0 and 0.1.) Second, we multiply (𝑥∗, 𝑦∗) and 𝑧∗ by each landscape’s lc and hc, 

respectively. Thus we obtain each landscape’s dimensional TIN with horizontal coordinates (𝑥, 𝑦) and initial elevations 𝑧. 

 

Normalizing the initial conditions is necessary for landscapes to evolve geometrically similarly and to reach geometrically 

similar steady states. Specifically, landscapes can be geometrically similar at some time step if they were geometrically 30 

similar at the previous time step. By extension, landscapes must start from geometrically similar initial conditions. Note that 

evolving landscapes must be compared at times that are normalized by each landscape’s characteristic timescale. For 

example, if two landscapes have characteristic timescales of tc and 2tc, then a snapshot of the first landscape with some age t0 

must be compared with a snapshot of the second landscape with age 2t0. For more details, see Appendix B in Theodoratos et 

al. (2018). 35 

 

Note that landscapes can reach geometrically similar steady states only if the criteria that define the steady state are 

normalized by appropriate characteristic scales, as explained in Sect. 3 of Theodoratos et al. (2018). In the present study, for 

instance, we assume that a simulation reaches its steady state when the absolute rate of elevation change | 𝜕𝑧 𝜕𝑡⁄  | falls 
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below a limit ε at all points. Given that ε is a rate of elevation change, we can normalize it by the uplift rate U, which can be 

viewed as a characteristic rate of elevation change, as we explain in Sect. 2.2. Thus, we set each simulation’s limit to  

𝜀 = 0.001 𝑈. 

3.1.2  Results: geometric similarity 

The nine simulated landscapes are all geometrically similar to each other, both during their evolution and in steady state. In 5 

Figs. 1–3, we graphically demonstrate that our simulated landscapes reach geometrically similar steady states. Specifically, 

we illustrate shaded relief maps in Fig. 1, elevation maps in Fig. 2, and maps of the extents of the zones of zero incision in 

Fig. 3. (In the present study, we illustrate only steady-state results. For examples of graphical demonstrations of geometric 

similarity during landscape evolution, we refer readers to Figs. 3–5 of Theodoratos et al., 2018.) For clarity, we present maps 

of only four out of the nine landscapes, specifically, of landscapes A–D in Table 3. However, all nine landscapes evolve 10 

geometrically similarly.  

 

In Figs. 1–3, the four landscapes are arranged in a 2x2 array, such that the incision threshold θ increases from top to bottom 

and from left to right. The characteristic height hc follows the same arrangement as θ, because ℎ𝑐 = 𝑈 𝐾⁄ = 𝜃 𝑁𝜃⁄  and all 

landscapes have the same Nθ. Τhe characteristic length lc increases independently of hc and θ, specifically, from bottom to 15 

top and from left to right. The coloring and labeling of Figs. 1–3 highlight both the large differences of scale and the 

geometric similarity of the four landscapes. Specifically, lengths and elevations on axes and colorbars are shown both in 

units of km or m using bold fonts, and in units of lc or hc using normal fonts. Further, color scales of elevation maps in Fig. 2 

are rescaled by hc to assist with comparing the elevations of features. Note that a quantity shown in units of the  

corresponding characteristic scale has the same numerical value as the dimensionless version of this quantity, e.g., elevation 20 

z in units of hc has the same numerical value as dimensionless elevation 𝑧∗ because both values are given by the formula 

𝑧 ℎ𝑐⁄ . Therefore, in Figs. 1–3, the values of quantities shown in units of lc or hc with normal fonts are the same as the values 

of the corresponding dimensionless quantities. 

 

In the shaded relief maps of Fig. 1, ridges and valleys form identical plan-view patterns across the four landscapes, 25 

illustrating their horizontal geometric similarity. Note that the characteristic scales of length and height lc and hc vary 

independently, leading to different characteristic gradients Gc across the landscapes. Therefore, landscape features in 

different landscapes have different steepness and, thus, they are shown with different shades of gray. 

 

In the elevation maps of Fig. 2, the spatial pattern of colors is identical across the four landscapes. This shows that the four 30 

landscapes are geometrically similar both horizontally and vertically, because the color scales are rescaled by hc. 

 

In Fig. 3, we map the zones of zero incision of the four landscapes. To illustrate these zones, we find the Voronoi polygons 

associated with points for which √𝐴|∇𝑧| ≤ 𝜃 and we color them red. (Each point of the simulated landscapes is a TIN 

vertex. The associated Voronoi polygon is the area that is assumed to drain to that point; see Tucker et al., 2001.) We 35 

observe that the spatial patterns of the red Voronoi polygons in all four maps are geometrically similar. This implies that the 

zones of zero incision of the four landscapes have geometrically similar horizontal extents. 
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The landscapes in Figs. 1–3 do not just visually appear to be geometrically similar. They are in fact geometrically similar. To 

test this quantitatively, we normalize the elevations z of each landscape by its characteristic height hc and compare the 

resulting dimensionless elevations 𝑧∗ = 𝑧 ℎ𝑐⁄  of different landscapes. As we explain further above, the dimensionless 

elevations 𝑧∗ of geometrically similar landscapes must be equal. Indeed, for the nine landscapes of Table 3, we find that the 

maximum absolute difference between steady-state 𝑧∗ values of corresponding points is less than 3⨯10–9. 5 

3.2   General case: landscapes with different Nθ 

In this subsection, we demonstrate that landscapes with different incision-threshold numbers Nθ do not evolve geometrically 

similarly, even if their domains and initial conditions are rescaled by the characteristic scales of length and height lc and hc. 

Further, we illustrate how the differences in the value of Nθ are reflected in the topography of these landscapes. 

3.2.1  Setup of simulations 10 

For these simulations, too, we use CHILD, as described in Appendix A. We perform nine simulations with incision-

threshold numbers Nθ that range between 0 and 4. We use a single combination of values for the incision coefficient K, 

diffusion coefficient D, and uplift rate U, and we vary the incision-threshold number Nθ by varying only the incision 

threshold θ (see Eq. 9). Therefore, all nine simulations have the same characteristic scales of length and height (specifically, 

lc=50 m and hc=25 m). Thus, for all nine simulations, we use the same domains and initial conditions. Specifically, we use 15 

TINs with total extent of 150 lc ⨯ 225 lc (i.e., 7.5 km ⨯ 11.25 km) and average TIN edge length of 0.4 lc (i.e., 20 m), 

resulting in approximately 250 thousand TIN vertices. The random initial elevations are drawn from a uniform distribution 

ranging between 0 and 0.1. The parameters K, D, and U have values that fall within the typical range seen in the literature 

(e.g., Perron et al., 2008; Tucker, 2009). In contrast, the incision coefficients θ that correspond to the highest values of Nθ 

that we examine here have values that far exceed real-world incision threshold values typically reported (e.g., Prosser & 20 

Dietrich, 1995; note the necessary unit conversions). However, we use these high values to examine how the LEM behaves 

when Nθ is high. The values of K, D, and U, and of θ and the corresponding Nθ of the nine landscapes are shown in Table 4. 

3.2.2  Results: lack of geometric similarity and illustration of influence of Nθ on landscape topography 

As we mentioned in the Introduction (Sect. 1), the inclusion of incision thresholds in LEMs leads to increasing topographic 

slopes, decreasing drainage densities, and more convex hillslopes (e.g., Howard, 1994; Tucker and Bras, 1998; Perron et al., 25 

2008). In Figs. 4–10, we illustrate these topographic effects using steady-state results of the nine simulations defined above 

(Sect. 3.2.1, Table 4). More specifically, we present shaded relief maps (Figs. 4 and 5), maps of elevation z (Fig. 6), maps of 

the extents of the zones of zero incision (Fig. 7), maps of curvature ∇2𝑧 (Fig. 8), and profiles from ridge to outlet along flow 

paths (Figs. 9, 10). We show profiles along each landscape’s longest flow path to make profiles of different landscapes 

comparable. We mark these flow paths with blue lines on the maps of Figs. 4–8. The maps in Figs. 4 and 6 show the full 30 

extent of the landscapes, which is 7.5 km ⨯ 11.25 km (i.e., 150 lc ⨯ 225 lc), whereas the maps in Figs. 5, 7, and 8 show 

magnified versions of a 5 km ⨯ 4 km (i.e., 100 lc ⨯ 80 lc) rectangular region from each map. To make the regions of 

different landscapes comparable, we select each region such that it contains the drainage basin of the longest flow path of 

each landscape. We mark these regions with blue rectangles in Figs. 4 and 6. Note that, in all of these figures, we show 

quantities in units of m (or km in the case of horizontal lengths) using bold fonts and in units of the corresponding 35 

characteristic scales using normal fonts (which yield the same numerical values as dimensionless versions of quantities, as 
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we explain in Sect. 3.1.2). Likewise, we show each simulation’s incision threshold θ (in units of m) using bold fonts and the 

corresponding incision-threshold number Nθ (dimensionless) using normal fonts. 

 

We observe that landscapes become steeper as Nθ increases. Specifically, in the shaded relief maps (Figs. 4, 5), hillslopes are 

shown with darker shades of gray, i.e., they become steeper, and in the profile plots (Fig. 9), the landscapes’ longest flow 5 

paths become steeper. Given that all landscapes have the same horizontal extents, the steepening of landscapes implies that 

landscape relief increases. We observe the increase of relief with Nθ both in terms of the maximum value of elevation (see 

labels at the bottom of elevation maps in Fig. 6) and in terms of the whole distribution of elevation (see profiles in Fig. 9 and 

the range of colors of elevation maps in Fig. 6). 

 10 

Furthermore, we observe that landscapes become less dissected and appear smoother in plan view as Nθ increases. 

Specifically, in the shaded relief maps (Figs. 4, 5), we see that the smooth, undissected areas along the sides of ridges and 

interfluves become wider, and the tips of valley networks move away from the ridges. In the maps of curvature (Fig. 8), we 

see that the valley networks become sparser, i.e., the landscapes become less dissected. For the case of valley heads that fall 

on the landscapes’ longest flow paths, we see the movement away from the ridges also in the profile plots of Fig. 9 (see blue 15 

circles). 

 

We observe that, as Nθ increases, valleys become deeper (more concave). Specifically, in the maps of curvature (Fig. 8), the 

maximum value of curvature increases with Nθ and, thus, the positive values of curvature become more positive. In other 

words, concave areas, which can be defined as valleys (e.g., Howard, 1994), become more concave. For a given combination 20 

of characteristic curvature κc and incision-threshold number Nθ, the maximum curvature is mainly controlled by the size of 

the domain. Specifically, a larger domain leads to a larger maximum curvature value. Additionally, in the shaded relief maps 

(Figs. 4, 5), valleys in landscapes with higher Nθ appear deeper because their contrast with neighboring hillslopes is higher. 

Note that the deepening of valleys is in agreement with the steepening of hillslopes described above. 

 25 

Moreover, we observe that as Nθ increases, the zones of zero incision (i.e., the areas with √𝐴|∇𝑧| ≤ 𝜃; shown with red in 

Fig. 7) become wider and occupy bigger portions of the hillslopes. We can also observe this in the profile plots of Fig. 9. 

Specifically, we see that, as Nθ increases, the red dots move away from the ridge and come closer to the blue circles, which 

implies that the longest flow paths’ segments that have zero incision become longer and that they occupy bigger portions of 

the segments that belong to hillslopes. 30 

 

Consequently, hillslopes become more convex as Nθ increases. In steady state, the curvature in zero-incision zones is equal 

to –κc (the negative of the characteristic curvature), which is the minimum value of curvature (see Sect. 2.2). Thus, the 

widening of zero-incision zones implies that bigger portions of hillslopes acquire the minimum curvature, i.e., bigger 

portions of them become maximally convex. (Note, however, that the value of the maximum convexity remains constant as 35 

Nθ increases, because the minimum curvature remains ∇2𝑧 = −𝜅𝑐.) The maps of curvature (Fig. 8) also show that the 

minimum value of curvature remains constant as Nθ increases. 

 

Finally, we observe that the widening of the zones of zero incision eventually leads to a qualitative change in the operation 

of the laws of the LEM across the landscapes. Specifically, the zones of zero incision almost entirely occupy the hillslopes of 40 
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the landscape with 𝑁𝜃 = 4. We deduce this by observing in Fig. 7 that the white areas (i.e., areas with √𝐴|∇𝑧| > 𝜃, where 

incision does operate) follow the pattern of the dendritic valley network. The almost complete occupation of hillslopes by the 

zones of zero incision implies that incision operates almost exclusively in valleys, which is a qualitative change. The 

governing equation without incision threshold (Eq. 2) is based on the fundamental assumption that all of its processes 

(incision, diffusion, and uplift) operate everywhere across a landscape (e.g., Howard, 1994). By including the incision 5 

threshold θ, the governing equation Eq. (1) becomes piecewise, with a first subdomain with √𝐴|∇𝑧| ≤ 𝜃 where only 

diffusion and uplift operate, and a second subdomain with √𝐴|∇𝑧| > 𝜃 where all three processes operate. This formulation 

does not exclude incision from hillslopes in principle. In effect, however, incision is excluded from hillslopes for high values 

of the incision-threshold number Nθ, as revealed by the white dendritic patterns in Fig. 7. Thus, for 𝑁𝜃 = 4 the governing 

equation (Eq. 1) is, in effect, reminiscent of LEMs that explicitly define distinct laws for hillslopes and valleys (e.g., 10 

Willgoose et al., 1991; Goren et al., 2014). Note that increasing Nθ beyond the value of 4 would not lead to the additional 

qualitative change of zero-incision zones starting to occupy valleys, because zero-incision zones have negative curvature 

(∇2𝑧 = −𝜅𝑐; see Sect. 2.2). Note that 𝑁𝜃 = 4 is the value for which hillslopes are completely occupied by zero-incision 

zones in the landscapes that we examine here. However, in landscapes with different boundary and intital conditions, the 

qualitative change described here could occur at different values of the incision threshold number Nθ. 15 

 

With the above observations in mind, we can explain the observation that landscapes become steeper as Nθ increases in two 

distinct ways, one referring to areas outside zero-incision zones and one referring to areas within them. First, channels 

become steeper to compensate for the reduction in the strength of incision by the incision threshold. Equation (1) shows that 

incision operates in areas with √𝐴|∇𝑧| > 𝜃, but the rate of incision is reduced by the quantity 𝐾𝜃 relative to 𝐾√𝐴|∇𝑧|, which 20 

is the rate of incision in a landscape without incision threshold. Therefore, for a given drainage area A, the landscape must 

have steeper slope |∇𝑧| to achieve the same incision rate, and thus balance the other processes and reach equilibrium. This 

effect becomes stronger as Nθ increases. Second, for purely geometrical reasons, the fact that hillslopes become more convex 

as Nθ increases implies that they also become steeper. Typically, the more negative the Laplacian curvature ∇2𝑧 of an area, 

the faster is the increase of slope over a given flow path length. (Exceptions can be areas with negative contour curvature, 25 

but positive profile curvature, where slope decreases along flow paths, e.g., wind gaps; see also Fig. 2, panel (c) in Mitasova 

and Hofierka, 1993.) Therefore, as Nθ increases and hillslopes become more convex, the slope at a given distance from the 

ridge becomes steeper.  

 

In an alternative interpretation, one could potentially view the quantity 𝐾𝜃 not as a reduction of the rate of incision, but 30 

rather as a virtual source term, i.e., as a virtual increase of the uplift rate U. Thus the observed increase of relief would be 

interpreted as resulting from the virtual increase of the uplift rate because, all else remaining equal, higher uplift rates lead to 

higher reliefs (e.g., Tucker and Whipple, 2002; Theodoratos et al., 2018). However, this view is not meaningful in the zones 

of zero incision, because in the first subdomain of Eq. (1) the quantity 𝐾𝜃 does not appear and, thus, U is the only source 

term (this is also reflected in the fact that ridgelines do not become more sharply convex as they would if the uplift rate were 35 

actually increased; rather, the curvature of ridgelines remains equal to −𝜅𝑐 = − 𝑈 𝐷⁄ ). To quantify how the uplift rate’s 

virtual increase depends on the incision-threshold number Nθ, we can rearrange the right-hand side of the second subdomain 

of the governing equation (Eq. 1). We take the quantity 𝐾𝜃 from the incision term and we group it with the uplift rate U. 

Thus, we form the virtual uplift rate 𝐾𝜃 + 𝑈, which we rewrite as 

𝐾𝜃 + 𝑈 = (𝑈 𝑈⁄ ) ∙ 𝐾𝜃 + 𝑈 = (𝐾𝜃 𝑈⁄ + 1)𝑈 = (𝑁𝜃 + 1)𝑈     . (11) 
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Because Eq. (11) does not apply within the zones of zero incision, treating 𝐾𝜃 as a virtual increase of the uplift rate implies 

that one must also treat the landscape as having two distinct uplift rates, (𝑁𝜃 + 1)𝑈 outside the zones of zero incision and U 

within them. 

 

Equation (11) suggests that the quantity 𝑁𝜃 + 1 can predict how the relief of a landscape (outside the zones of zero incision) 5 

depends on the value of the incision-threshold number Nθ. All else being equal, relief is proportional to the uplift rate (e.g., 

see definition of the uplift erosion number NE in Tucker and Whipple, 2002, or interpretations of our characteristic height hc 

in Theodoratos et al., 2018). Therefore, Eq. (11) suggests that relief (outside zero-incision zones) is proportional to 𝑁𝜃 + 1 

(because the virtually increased uplift rate is proportional to 𝑁𝜃 + 1), implying that elevations (outside zero-incision zones) 

in landscapes that differ only in their Nθ values would be equal when normalized by 𝑁𝜃 + 1. 10 

 

We can test this hypothesis using the profiles of Fig. 9, since they belong to landscapes that have different incision-threshold 

numbers Nθ, but the same parameters, characteristic scales, domains, and initial conditions (see Table 4). Specifically, we 

divide elevations along each profile of Fig. 9 by 𝑁𝜃 + 1, and we plot the resulting normalized profiles in Fig. 10. The 

hypothesis will not be rejected if the normalized profiles have the same normalized elevations outside the zones of zero 15 

incision. Indeed, we observe that the normalized elevations are nearly equal, especially in those reaches of each profile that 

are not near its zone of zero incision. This suggests that, away from the zero-incision zones, landscape relief nearly scales 

with 𝑁𝜃 + 1. 

 

In Fig. 10, we observe that the elevations of the normalized profiles deviate systematically from one another. Specifically, 20 

we observe that, whereas the reliefs of the original (un-normalized) profiles grow as Nθ increases, the reliefs of the 

normalized profiles decrease as Nθ increases. (In Table 5 we show an example of this reversal using the original and 

normalized elevations of the profiles at a distance of 0.5 km from the ridge, which falls outside the zones of zero incision of 

all profiles; see arrows in Fig. 10.) This reversal implies that normalizing elevations by 𝑁𝜃 + 1 is an overshoot, as it lowers 

the profiles by a larger factor than what would make them equal to each other. In other words, as Nθ increases, the elevation 25 

of the original profiles is increased less than proportionally to 𝑁𝜃 + 1, i.e., less than what is predicted by viewing the 

quantity 𝐾𝜃 as a virtual increase of the uplift rate. This suggests that the incision threshold could be resulting in additional 

effects, which oppose the virtual increase of the uplift rate, and that these effects depend on the value of Nθ. Future work can 

study such effects. For example, it is known that incision’s competition with diffusion for the propagation of elevation 

perturbations can be influenced by the incision threshold (e.g., see relationship between the Péclet number and the incision 30 

threshold in Perron et al., 2008). Thus it may be productive to examine whether changes in the competition between incision 

and diffusion alter how the incision threshold affects the rate of incision. 

4     Discussion 

4.1   On the definition of zones of zero incision 

Unlike the LEM studied here, other LEMs, such as those of Tucker (2004) or Deal et al. (2018), do not define zones of zero 35 

incision, i.e., areas where incision never operates, because those LEMs define incision terms based on conceptually different 

temporal averaging of rainfall events, in comparison to the LEM examined here. 
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Specifically, those other LEMs derive long-term incision rates by integrating stochastic rainfall over time, assuming that 

incision occurs when the shear stress (or, equivalently, the stream power) exceeds a threshold value. Given that the value of 

shear stress depends on discharge and slope, points with different drainage areas or slopes will experience different shear 

stress values during any given event. Therefore, any given combination of drainage area and slope corresponds to a critical 5 

rainfall intensity that is sufficient to generate a shear stress that equals the threshold shear stress. Long-term incision rates 

can be derived by integrating over the rainfall events that exceed this critical rainfall intensity. This approach implies that, in 

theory, any point with non-zero drainage area and slope can experience incision with a non-zero probability (provided that 

rainfall can theoretically become sufficiently intense). Therefore, in LEMs that follow this approach, zero-incision zones are 

not defined. (Note, however, that in those LEMs one can define zones of probability of exceedance of the critical rainfall 10 

intensity, i.e., of probability of incision.) 

 

In contrast, the LEM studied here assumes constant, uniform rainfall, which leads to constant stream power for any given 

combination of drainage area and slope (i.e., for any given value of √𝐴|∇𝑧|). Therefore, instead of explicitly including a 

stream-power threshold, the LEM’s governing equation (Eq. 1) uses a threshold of the quantity √𝐴|∇𝑧| itself, namely, the 15 

incision threshold θ (see the relationship between θ and the threshold of stream power in Appendix A). This formulation of 

Eq. (1) has the advantage of being much simpler than those of LEMs that use stochastic rainfall and shear-stress (or stream-

power) thresholds. However, Eq. (1) has the disadvantage of being unable to explore the non-linear relationship between 

average precipitation and long-term incision rates that we describe in the Introduction (Sect. 1). 

4.2   On the choice of characteristic scales 20 

In this study, we have examined whether the characteristic scales of length, height, and time (lc, hc, and tc; Eqs. 3–5), which 

we introduced in Theodoratos et al. (2018), remain useful after the inclusion of an incision threshold in the LEM, and we 

find that they do. Furthermore, while non-dimensionalizing Eq. (1) using this group of characteristic scales, we obtain the 

dimensionless incision-threshold number Nθ, which has useful properties. These results, however, do not imply that lc, hc, 

and tc are the only possible choices of characteristic scales, or even that they are the best choices for all problems. For any 25 

given model, different characteristic scales may be more appropriate for different applications. 

 

Dimensional analysis can ensure that a set of characteristic scales is dimensionally consistent and can provide the number of 

degrees of freedom that can be eliminated from a model (e.g., Buckingham, 1914), but it cannot show a priori which 

characteristic scales should be used. For example, in the case of Eq. (1), if we assume that length L and height H are distinct 30 

dimensions, then together with time T they form a group of three dimensions, and dimensional analysis will show that any 

manipulation of Eq. (1) can eliminate at most 3 degrees of freedom. Because the characteristic scales lc, hc, and tc are defined 

by the parameters K, D, and U, eliminating three degrees of freedom eliminates these three parameters. If, instead, one 

defined characteristic scales that depended, for example, on the measurements of the domain (e.g., Perron et al., 2008), the 

corresponding degrees of freedom that could be eliminated would be related to these domain scales. Such an approach might 35 

be more appropriate for characterizing extensive properties of a landscape as a whole (e.g., Perron et al., 2012), whereas the 

approach that we use here may be more appropriate for characterizing processes and intensive properties that vary across a 

landscape (e.g., Theodoratos et al., 2018). It may be difficult to predict a priori which choices of characteristic scales will be 

better for a given problem, and the only way to find out may be to try several different alternatives. In general, dimensional 
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analysis can be used to simplify governing equations, and it can point to useful numerical, field, or lab experiments, but it 

cannot fully substitute for the information contained in empirical results (e.g., Huntley, 1967). 

 

A future study could examine the utility of characteristic scales that are defined to depend on model parameters (Eqs. 3–5) in 

the case of parameters that vary in space or time. In such a case, the characteristic scales would also vary. We expect that if 5 

the parameter variation is gradual and follows a systematic pattern (e.g., the differential uplift across a fold described by 

Kirby and Whipple, 2001), then the resulting variable characteristic scales could be useful. For example, designing a lab-

scale sandbox landscape that models differential uplift might benefit from these non-uniform characteristic scales. However, 

if the parameters were randomly heterogeneous, or they varied greatly over distances much smaller than typical landscape 

units, then the resulting “characteristic” scales might not be characterize of any landscape properties, and thus they might 10 

lose their explanatory power. 

5     Summary and conclusions 

In this study, we perform a dimensional analysis of an LEM that includes terms describing stream-power incision, linear 

diffusion, and uplift (Eq. 1). The LEM assumes that incision is limited by a threshold, specifically, that there is no incision at 

points with drainage area A and slope |∇𝑧| such that the quantity √𝐴|∇𝑧| is below a threshold value θ, and that this threshold 15 

also reduces incision at points with √𝐴|∇𝑧| > 𝜃. 

 

Our dimensional analysis is based on characteristic scales of length, height, and time (lc, hc, and tc) that depend only on 

parameters of the LEM (specifically, on the incision coefficient K, diffusion coefficient D, and uplift rate U; Eqs. 3–5). We 

introduced these scales as a group in Theodoratos et al. (2018), where we analyzed a related LEM that did not include the 20 

incision threshold (reproduced here as Eq. 2). The distinction between lc and hc is based on the assumption that horizontal 

lengths and vertical heights are dimensionally distinct. 

 

In Sect. 2.3, using the characteristic scales lc, hc, and tc, we derive Eq. (10), a dimensionless form of the governing equation 

of the LEM that includes only one parameter, the incision-threshold number 𝑁𝜃 = 𝐾𝜃 𝑈⁄ = 𝜃 (𝑈 𝐾⁄ )⁄  (Eq. 9). This 25 

dimensionless parameter quantifies the value of 𝐾𝜃, which is the reduction in the rate of incision due to the incision 

threshold, relative to the uplift rate U or, equivalently, the relative magnitude of the incision threshold θ versus the ratio 

𝑈 𝐾⁄ . The original, dimensional LEM (Eq. 1) includes four parameters (K, D, U, and θ). Because the three characteristic 

scales (lc, hc, and tc) depend on three model parameters (K, D, and U), in deriving the dimensionless Eq. (10) we can 

eliminate three out of four parameter-related degrees of freedom, which is a notable simplification. This suggests that this 30 

group of characteristic scales is useful in the case of the LEM that includes an incision threshold. 

 

The fact that the incision-threshold number Nθ is the only parameter in the dimensionless governing equation (Eq. 10) 

implies that it is the only control on this equation, for any given set of boundary and initial conditions. As a consequence, the 

evolution of all landscapes with a given Nθ value will be geometrically and temporally similar, provided that their domains, 35 

boundary conditions, and initial conditions are rescaled by lc and hc (see Theodoratos et al. (2018) for more detailed 

theoretical exposition of these arguments). In Sect. 3.1, we present numerical simulations of landscapes with different 

parameters but equal incision-threshold numbers Nθ. In Figs. 1–3, we demonstrate that these landscapes indeed evolve 
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geometrically similarly. In contrast, landscapes with different Nθ values evolve without geometric similarity, as we show 

with a second set of numerical simulations in Sect. 3.2. 

 

In Sect. 3.2.2, we explore how these different Nθ values influence steady-state topographic properties of the resulting 

landscapes. We illustrate the topographic influence of Nθ in Figs. 4–10. We find that, as Nθ increases, landscape relief 5 

increases (Figs. 6, 9) and, thus, hillslopes and channels become steeper (Figs. 4, 5, 9), valleys become sparser but also deeper 

(Figs. 4, 5, 8), and hillslopes become more convex (Figs. 7, 8). 

 

Finally, we derive a quantitative prediction of the increase of relief with the incision-threshold numbers Nθ. Specifically, we 

show that in areas with √𝐴|∇𝑧| > 𝜃, where incision operates, relief tends to scale with the quantity 𝑁𝜃 + 1 and thus 10 

elevations tend to become equal if they are normalized by 𝑁𝜃 + 1 (Fig. 10). Our simulation results show deviations from this 

prediction, but we observe that these deviations are systematic (Sect. 3.2.2, Table 5) and we posit that the incision threshold 

causes additional effects which can be the focus of future work. 

Appendix A: Implementation of governing equation with CHILD 

To implement the governing equation of the LEM (Eq. 1) with CHILD, we use CHILD's detachment-limited module and we 15 

set the parameter DETACHMENT_LAW equal to 0. Furthermore, we use constant, uniform, and continuous precipitation, 

we define infiltration to be 0, and we set the hydraulic geometry scaling exponents ωb and ωs to be equal to 0.5, and the 

detachment capacity exponents mb, nb, and Pb to be equal to 1 (see Tucker et al., 2001, and Tucker, 2010, for definitions of 

CHILD’s assumptions, modules, and parameters). 

 20 

For this choice of exponents, CHILD uses the following equations to calculate the rate of elevation change due to incision 

(in CHILD notation): 

𝜕𝑧

𝜕𝑡
|

Incision
= −𝐷𝑐 = −𝑘𝑏(𝜏0 − 𝜏𝑐)     , (A1 a) 

𝜏0 = 𝑘𝑡

√𝑃√𝐴

𝑘𝑤
 𝑆     , (A1 b) 

where Dc is the maximum detachment capacity in ma-1, τ0 is stream power per unit bed area in W m-2, τc is the threshold 

value of τ0, below which there is no incision, also in W m-2, kb is a detachment rate coefficient in m a-1 (W m-2)-1 (i.e., kb is 

the rate of elevation change per each unit of stream power per unit bed area), kt is the specific weight of water in N m-3, P is 25 

the precipitation intensity in m a-1, kw is bankfull width per unit scaled discharge in s0.5 m-0.5, and S is slope (Tucker et al., 

2001; Tucker, 2010). 
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Equating 𝐾(√𝐴|∇𝑧| − 𝜃), i.e., the incision term of Eq. (1), to Dc of Eqs. (A1) we can relate the incision coefficient K and the 

incision threshold θ of Eq. (1) with CHILD’s parameters according to 

𝐾 = 𝑘𝑏

𝑘𝑡√𝑃

𝑘𝑤
 

√1 a

√31557600 s 
     , (A2) 

𝜏𝑐 =
𝑘𝑡√𝑃

𝑘𝑤
𝜃 

√1 a

√31557600 s 
     . (A3) 

Equations (A2) and (A3) include the unit conversion factor √1 a √31557600 s⁄  because the input files of CHILD include 

variables with units of both years and seconds.  

 5 

In Eqs. (A2) and (A3), we assume constant values of 𝑘𝑡 = 9810 N m−3, 𝑃 ≈ 1.31 m a−1, and 𝑘𝑤 = 10 s0.5 m−0.5, and we 

obtain the desired values of K and θ by entering the appropriate values of kb and τc into CHILD’s input files. 
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Tables 

Table 1: Dimensions of the variables and parameters of the LEM. 

Quantity Symbol Dimensions 

Horizontal coordinates (x, y) L 

Elevation z H 

Time t T 

Rate of elevation change 𝜕𝑧 𝜕𝑡⁄  H T–1 

Drainage area A L2 

Topographic slope |∇𝑧| H L–1 

Laplacian curvature ∇2𝑧 H L–2 

Quantity √𝐴|∇𝑧| √𝐴|∇𝑧| H 

Quantity 𝐴𝑚(|∇𝑧|)𝑛 𝐴𝑚(|∇𝑧|)𝑛 L2𝑚−𝑛 H𝑛 

Incision coefficient K T–1 

Diffusion coefficient D L2 T–1 

Uplift rate U H T–1 

Incision threshold, for exponents 𝑚 = 0.5 and 𝑛 = 1 θ H 

Incision threshold, for any m and n θ L2𝑚−𝑛 H𝑛 
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Table 2: Summary of characteristic scale definitions and of derivation of dimensionless quantities. 

Characteristic scale of: Definition 

length 𝑙𝑐 = √𝐷 𝐾⁄  

height ℎ𝑐 = 𝑈 𝐾⁄  

time 𝑡𝑐 = 1 𝐾⁄  

drainage area 𝐴𝑐 = 𝑙𝑐
2 = 𝐷 𝐾⁄  

gradient 𝐺𝑐 = ℎ𝑐 𝑙𝑐⁄ = 𝑈 √𝐷𝐾⁄  

curvature 𝜅𝑐 = ℎ𝑐 𝑙𝑐
2⁄ = 𝑈 𝐷⁄  

Quantity Dimensional form Dimensionless form 

Horizontal coordinates (𝑥, 𝑦) (𝑥∗, 𝑦∗) ≔ (𝑥 𝑙𝑐⁄ , 𝑦 𝑙𝑐⁄ ) 

Elevation 𝑧 𝑧∗ ≔ 𝑧 ℎ𝑐⁄  

Time 𝑡 𝑡∗ ≔ 𝑡 𝑡𝑐⁄  

Drainage area 𝐴 𝐴∗ ≔ 𝐴 𝐴𝑐⁄  

Topographic slope |∇𝑧| 

|∇∗𝑧∗| ≔ |
𝜕𝑧∗

𝜕𝑥∗
𝐢 +

𝜕𝑧∗

𝜕𝑦∗
𝐣| = |

𝜕𝑧 ℎ𝑐⁄

𝜕𝑥 𝑙𝑐⁄
𝐢 +

𝜕𝑧 ℎ𝑐⁄

𝜕𝑦 𝑙𝑐⁄
𝐣| = 

              =
|
𝜕𝑧
𝜕𝑥

𝐢 +
𝜕𝑧
𝜕𝑦

𝐣|

ℎ𝑐 𝑙𝑐⁄
=

|∇𝑧|

𝐺𝑐
 

Laplacian curvature ∇2𝑧 ∇∗2𝑧∗ ≔ ∇2𝑧 𝜅𝑐⁄  

Rate of elevation change 𝜕𝑧 𝜕𝑡⁄  
𝜕𝑧 𝜕𝑡⁄

𝑈
=

𝜕𝑧 𝜕𝑡⁄

ℎ𝑐 𝑡𝑐⁄
=

𝜕𝑧 ℎ𝑐⁄

𝜕𝑡 𝑡𝑐⁄
= 𝜕𝑧∗ 𝜕𝑡∗⁄  

Incision term:   

- first part 𝐾√𝐴|∇𝑧| 
𝐾√𝐴|∇𝑧|

𝑈
=

√𝐴|∇𝑧|

𝑈 𝐾⁄
=

√𝐴|∇𝑧|

ℎ𝑐
=

√𝐴|∇𝑧|

𝑙𝑐 𝐺𝑐
= √𝐴∗|∇∗𝑧∗| 

- second part 𝐾𝜃 𝐾𝜃 𝑈⁄ ≔ 𝑁𝜃 

- both parts 𝐾√𝐴|∇𝑧| − 𝐾𝜃 √𝐴∗|∇∗𝑧∗| − 𝑁𝜃 

Diffusion term 𝐷∇2𝑧 
𝐷∇2𝑧

𝑈
=

∇2𝑧

𝑈 𝐷⁄
=

∇2𝑧

𝜅𝑐
= ∇∗2𝑧∗ 

Uplift term 𝑈 𝑈 𝑈⁄ = 1 
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Table 3: Values of parameters (K, D, U, and θ) and characteristic scales (lc , hc, and Gc) of the landscapes described in Sect. 3.1. All 

landscapes have equal incision-threshold numbers Nθ and evolve geometrically similarly. The values of K, D, and U of the landscapes are 

less than one order of magnitude smaller or larger than those of Landscape D, which are typical in the literature (e.g., Perron et al., 2008; 

Tucker, 2009). Values of incision thresholds θ are such that 𝑁𝜃 = 𝐾𝜃 𝑈⁄ = 1. Maps of landscapes A–D are shown in Figs. 1–3. 

Simulated landscapes with equal incision-threshold numbers: 

𝛮𝜃 = 𝐾𝜃 ∕ 𝑈 = 1 

Landscape 

name 

 

Incision 

coefficient 

Diffusion 

coefficient Uplift rate 

Characteristic 

length 

Characteristic 

height 

Characteristic 

gradient 

Incision 

threshold 

K D U 𝑙𝑐 = √𝐷 𝐾⁄  ℎ𝑐 = 𝑈 𝐾⁄  𝐺𝑐 = ℎ𝑐 𝑙𝑐⁄  θ 

(a–1) (m2a–1) (ma–1) (m) (m) ( – ) (m) 

A 10–6 10–2 0.16⨯10–4 100   16      0.16   16 

B 4⨯10–6 0.25⨯10–2 10–4   25   25 1   25 

C 0.5⨯10–6 2⨯10–2 0.4⨯10–4 200  80    0.4   80 

D 10–6 10–2 10–4 100 100 1 100 

E 2⨯10–6 0.5⨯10–2 0.4⨯10–4   50   20    0.4   20 

F 2⨯10–6 0.5⨯10–2 2.5⨯10–4   50 125    2.5 125 

G 0.25⨯10–6 4⨯10–2 10–4 400 400 1 400 

H 0.5⨯10–6 2⨯10–2 2.5⨯10–4 200 500    2.5 500 

I 10–6 10–2 6.25⨯10–4 100 625      6.25 625 

 5 
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Table 4: Incision-threshold numbers Nθ and corresponding incision thresholds θ, parameters K, D, and U, and characteristic scales of the 

landscapes described in Sect. 3.2. All nine landscapes have the same parameters K, D, and U, and, thus, the same characteristic scales. 

These landscapes are illustrated in Figs. 4–9.  

Simulated landscapes with different incision-threshold numbers Nθ 

 
Incision-threshold 

number Incision threshold  

 𝑁𝜃 = 𝐾𝜃 𝑈⁄  θ  

 ( – ) (m)  

 0     0  

    0.1        2.5  

    0.2     5  

    0.4   10  

    0.8   20  

 1   25  

    1.6   40  

 2   50  

 4 100  

Common parameters for all of the above landscapes: 

 Incision coefficient 𝐾 = 2 × 10−6 a−1  

 Diffusion coefficient 𝐷 = 0.5 × 10−2 m2a−1  

 Uplift rate 𝑈 = 0.5 × 10−4 ma−1  

 Characteristic length 𝑙𝑐 = √𝐷 𝐾⁄ = 50 m  

 Characteristic height ℎ𝑐 = 𝑈 𝐾⁄ = 25 m  

 Characteristic gradient 𝐺𝑐 = ℎ𝑐 𝑙𝑐⁄ = 0.5  

 Characteristic curvature 𝜅𝑐 = ℎ𝑐 𝑙𝑐
2⁄ = 0.01 m−1  

 

  5 
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Table 5: Lengths, reliefs, and mean slopes of profiles along the longest flow paths of landscapes with different incision-threshold numbers 

Nθ (see Table 4 and Sect. 3.2). These profiles are shown in Fig. 9 with their original elevations and in Fig. 10 with their elevations 

normalized by 𝑁𝜃 + 1. To demonstrate that the dependence of elevations on Nθ is reversed when profiles are normalized (see Sect. 3.2.2), 

we show in this table profile elevations at a distance of 0.5 km from the ridge. 

Profiles along the longest flow paths of landscapes of Table 4 

Incision-threshold 

number, Nθ 

( – ) 

Total length 

 

(km) 

Total relief 

 

(m) 

Mean slope 

 

( – ) 

Elevation at 0.5 km away from ridge 

Original, 𝑧 

(m) 

Normalized, 𝑧 (𝑁𝜃 + 1)⁄  

(m) 

0 4.999   653 0.13   450 450 

   0.1 5.578   712 0.13   485 441 

   0.2 5.033   748 0.15   526 439 

   0.4 5.199   898 0.17   635 453 

   0.8 4.969 1090 0.22   752 418 

1 5.076 1181 0.23   879 439 

   1.6 5.109 1476 0.29 1052 405 

2 5.136 1581 0.31 1148 383 

4 5.053 2138 0.42 1555 311 

 5 
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Figures 

 
Figure 1: Horizontal geometric similarity of landscapes with equal incision-threshold numbers Nθ. Shaded relief maps show the plan-

view geometric similarity of four landscapes with different parameters, but with the same Nθ, and with domains and initial conditions that 

are normalized by the characteristic scales of length and height lc and hc. To highlight both that the landscapes are different in size and that 5 
they are geometrically similar when normalized by lc, we show domain sizes both in km (top and left, bold fonts) and in units of lc (bottom 

and right, normal fonts). Note that the characteristic gradient Gc is not the same across the four landscapes. Thus, the four landscapes have 

different topographic slopes, which are reflected in the different shades of gray used in the four maps.  
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Figure 2: Horizontal and vertical geometric similarity of landscapes with equal incision-threshold numbers Nθ. Elevation maps show 

that the four landscapes of Fig. 1 are geometrically similar in the vertical direction as well. We show domain sizes and color-scale 

elevations both in km or m (top and left, bold fonts) and in units of characteristic length and height lc and hc (bottom and right, normal 

fonts). Note that we use color scales that are normalized by hc, i.e., each color corresponds to the same elevation in units of hc across all 5 
four landscapes. Therefore, the fact that the four maps have the same color pattern shows that their elevations are equivalent when 

normalized by hc, i.e., the landscapes are geometrically similar.  
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Figure 3: Horizontal geometric similarity of zones of zero incision. Red regions show the Voronoi polygons of points with √𝐴|∇𝑧| ≤ 𝜃, 

where incision is zero according Eq. (1). The resulting maps show that the zones of zero incision in the four landscapes have geometrically 

similar horizontal extents.  
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Figure 4: Overview of influence of value of incision-threshold number Nθ on morphology of ridges, hillslopes, and valleys. Steady-

state shaded relief maps show the nine landscapes of Sect. 3.2, which have equal incision coefficients, diffusion coefficients, and uplift 

rates (i.e., equal characteristic scales), and unequal incision thresholds, such that Nθ values range from 0 to 4 (see parameters in Table 4 

and definition of Nθ in Eq. 9). The maps are arranged such that Nθ increases from left to right and from top to bottom. We interpret these 5 
shaded relief maps in the description of Fig. 5, where we show enlarged views of a rectangular region from each map to enhance the 

visibility of landscape features. Here we show these regions with blue rectangles. Their extents are 5 km ⨯ 4 km (equivalently, 100 lc ⨯ 80 

lc) and are chosen such that they contain each landscape’s longest flow path and the corresponding drainage basin. We mark these flow 

paths with blue lines, and we present profile plots along their course in Figs. 9 and 10.  
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Figure 5: Influence of incision-threshold number Nθ on morphology of ridges, hillslopes, and valleys. Shaded relief plots 

corresponding to the blue rectangular regions in Fig. 4 are arranged such that Nθ increases from left to right and from top to bottom 

(identical to Fig. 4; see parameter values in Table 4). The illumination angle is consistent among all panels; thus greater contrasts in gray 

scale correspond to steeper slopes. Maps with higher Nθ have steeper slopes, as indicated by the greater contrast. Maps with higher Nθ also 5 
exhibit wider ridges and interfluves (note the distance between tips of valley networks and basin or sub-basin divides), with the result that 

ridges and hillslopes appear smoother in plan view.   
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Figure 6: Increase of relief as the incision-threshold number Nθ increases. Steady-state elevation maps of the nine landscapes of 

Sect. 3.2 (parameter values in Table 4) are plotted using a single elevation color scale, facilitating visual comparison of elevations across 

landscapes. The blue lines show the longest flow path of each landscape and the blue rectangles mark the regions that are magnified in 

Figs. 5, 7, and 8. The landscapes are arranged such that Nθ increases from left to right and from top to bottom. By comparing the colors of 5 
the maps, we observe that landscapes with higher Nθ values have greater relief (see also the maximum elevation of each landscape, 

displayed at the bottom of each map).  
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Figure 7: Expanding extent of zones of zero incision as the incision-threshold number Nθ increases. Red regions indicate Voronoi 

polygons of points with √𝐴|∇𝑧| ≤ 𝜃, where incision does not operate (Eq. 1), and white indicates the remaining areas where incision 

operates. Note that the landscape with 𝑁𝜃 = 0 follows Eq. (2) which is not defined piecewise; thus, zones of zero incision are not defined 

for this landscape. As Nθ increases, the zones of zero incision become more extensive, and eventually occupy almost all ridges and 5 
hillslopes. In the maps of the top row, which have the smallest of the examined Nθ values, zero-incision zones appear mainly along divides 

of major drainage basins. In the maps of the middle row, which have moderate Nθ values that do not exceed 1, zero-incision zones 

completely cover the main drainage divides and increasingly appear on smaller divides (interfluves) and on hillslopes. In the first two 

maps of the bottom row, which have Nθ equal to 1.6 and 2, zero-incision zones occupy increasingly large portions of hillslopes, and in the 

third map of the bottom row, which has 𝑁𝜃 = 4, they almost completely cover the hillslopes, with the white areas following the dendritic 10 
patterns of the valley network, which can be seen also in Fig. 8. Thus, for the largest of the examined Nθ values, incision operates almost 

exclusively in valleys and is largely non-existent on the hillslopes.  
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Figure 8: Deeper and sparser valleys, and wider hillslopes, in landscapes with higher incision-threshold numbers Nθ. Steady-state 

maps of the Laplacian curvature ∇2𝑧 of the landscapes of Sect. 3.2 reveal how valley networks and hillslopes change as Nθ increases. 

Areas with ∇2𝑧 ≤ 0 are shown in white and areas with ∇2𝑧 > 0 are shown in grayscale. Gray dendritic patterns indicate valley networks, 

because concave areas can be considered as valleys, and convex areas as ridges or hillslopes (e.g., Howard, 1994). As Nθ increases, ridges 5 
and hillslopes become wider, and gray dendritic valley patterns become sparser. The color scales of the nine maps are not the same; as Nθ 

increases, the maximum value of curvature increases and, thus, curvature has a wider range of positive values. Therefore, as Nθ increases, 

concave areas become more concave, i.e., valleys become deeper. By contrast, the minimum value of curvature is ∇2𝑧 = −𝜅𝑐 in all color 

scales and, thus, the most convex areas are equally convex in all maps. However, the extent of these most convex areas becomes wider as 

Nθ increases, because the value ∇2𝑧 = −𝜅𝑐 corresponds to zones of zero incision (see Sect. 2.2), which become wider as Nθ increases (see 10 
Fig. 7). Therefore, as Nθ increases, hillslopes become more convex because bigger portions of them have the minimum value of curvature.  
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Figure 9: Steepening of profiles as the incision-threshold number Nθ increases. Blue profiles show elevation z versus distance from the 

ridge (along the flow path) for the longest flow paths in each of the nine landscapes of Sect. 3.2. These flow paths are marked with blue 

lines on the maps of Figs. 4–8. All profiles have roughly equal horizontal lengths of ~5 km, or ~100 lc (see lengths in Table 5). As Nθ 

increases, the total reliefs of profiles (i.e., their elevations at the ridge) increase and, thus, their slopes become steeper (see reliefs and mean 5 
slopes in Table 5). On each profile, a red dot shows the edge of the zero-incision zone, defined here as the first point along the profile with 

√𝐴|∇𝑧| > 𝜃, i.e., the first point with incision, and a blue circle shows the first-order valley head, defined as the first point with non-

negative curvature (∇2𝑧 ≥ 0). (We do not show a red dot for 𝑁𝜃 = 0, for which zero-incision zones do not exist.) As Nθ increases, the red 

dots and the blue circles tend to move away from the ridge, indicating that the zero-incision zones become wider and the drainage density 

decreases as Nθ increases. Note that the edges of the zero-incision zones are more sensitive to 𝑁𝜃 than the valley heads are. Thus, as Nθ 10 
increases, the red dots and blue circles converge, becoming indistinguishable for 𝑁𝜃 = 4. 
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Figure 10: Equivalence of elevations that are normalized by 𝑵𝜽 + 𝟏. Green lines show the profiles of Fig. 9 (shown again here with 

light blue lines), normalized by dividing by 𝑁𝜃 + 1. The normalized profiles largely collapse on each other. Along each profile, this 

tendency becomes stronger in the downstream direction, where the distance from the zone of zero incision grows (the edges of zero-

incision zones are indicated by red dots). As Nθ increases, the normalized profile elevations generally decrease slightly, whereas the 5 
original profile elevations increase substantially (see Table 5, which gives elevations, original and normalized, at a distance of 0.5 km from 

the ridge, which is roughly the location of the black arrow in this figure). 
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