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Abstract.   The ability of erosional processes to incise into a topographic surface can be limited by a threshold. Incision 
thresholds affect the topography of landscapes and their scaling properties, and can introduce non-linear relations between 
climate and erosion with notable implications for long-term landscape evolution. Despite their potential importance, incision 
thresholds are often omitted from the incision terms of landscape evolution models (LEMs) to simplify analyses. Here, we 10 
present theoretical and numerical results from a dimensional analysis of an LEM that includes terms for threshold-limited 
stream-power incision, linear diffusion, and uplift. The LEM is parameterized by four parameters (incision coefficient and 
incision threshold, diffusion coefficient, and uplift rate). The LEM’s governing equation can be greatly simplified by 
recasting it in a dimensionless form that depends on only one dimensionless parameter, the incision-threshold number Nθ. 
This dimensionless parameter is defined in terms of the incision threshold, the incision coefficient, and the uplift rate, and it 15 
quantifies the reduction in the rate of incision due to the incision threshold relative to the uplift rate. Being the only 
parameter in the dimensionless governing equation, Nθ is the only parameter controlling the evolution of landscapes in this 
LEM. Thus, landscapes with the same Nθ will evolve geometrically similarly, provided that their boundary and initial 
conditions are normalized according to appropriate scaling relationships, as we demonstrate using a numerical experiment. 
In contrast, landscapes with different Nθ values will be influenced to different degrees by their incision thresholds. Using 20 
results from a second set of numerical simulations, each with a different incision-threshold number, we qualitatively 
illustrate how the value of Nθ influences the topography, and we show that relief scales with the quantity 𝛮𝛮𝜃𝜃 + 1 (except 
where the incision threshold reduces the rate of incision to zero). 

1     Introduction 

In the uppermost parts of drainage basins, water is not flowing over the ground surface or is flowing too weakly to incise 25 
into it. At least two kinds of limits must typically be overcome for erosion by flowing water to begin. First, sufficient 
drainage area must be accumulated for overland flow to start; second, this flow must exert sufficient shear stress on the 
surface to overcome the mechanical resistance of rocks or soils and thus mobilize sediment (e.g., Perron, 2017). 
 
Channel-incision terms in landscape evolution models (LEMs) often capture both of these limits by including an incision 30 
threshold below which no incision occurs. For instance, if 𝜏𝜏 is the shear stress that water exerts on the bed and 𝜏𝜏𝜃𝜃 is a critical 
value of shear stress (equivalently, 𝜏𝜏 and 𝜏𝜏𝜃𝜃 could refer to stream power), then the rate of incision is zero for 𝜏𝜏 ≤ 𝜏𝜏𝜃𝜃  and it 
can be described by a term of the form 𝑘𝑘(𝜏𝜏 − 𝜏𝜏𝜃𝜃)𝛼𝛼 , for 𝜏𝜏 > 𝜏𝜏𝜃𝜃 , where k and 𝛼𝛼 are constants (e.g., Howard, 1994). Including 
such incision terms in LEMs changes the topographic properties of the landscapes that are synthesized, for example, it leads 
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to decreased drainage densities, more convex hillslopes, and steeper slopes (e.g., Howard, 1994; Tucker and Bras, 1998; 
Perron et al., 2008). 
 
In addition, incision thresholds can have notable consequences on the relationship between climate and long-term incision 
rates as described, for example, by Snyder et al. (2003), Tucker (2004), Lague et al. (2005), Perron (2017), and Deal et al. 5 
(2018). Specifically, incision thresholds stop smaller events from eroding the surface. In many wet climates, the total annual 
streamflow is high, but small, frequent events tend to contribute most of this total; in contrast, in many dry climates, a larger 
fraction of the total annual streamflow tends to be contributed by rare, but intense, events (e.g., Rossi et al., 2016). 
Therefore, a sufficiently high incision threshold could render ineffective a larger fraction of the total precipitation in wetter 
climates than in drier climates. This behavior can lead to a non-linear dependence of long-term erosion rates on average 10 
precipitation; it can even lead to the counter-intuitive observation that, in some cases, larger average precipitation 
corresponds to smaller long-term erosion rates (e.g., DiBiase and Whipple, 2011). 
 
Furthermore, incision thresholds can play a role in setting the smallest scales of valley dissection, which are among the 
fundamental scales that characterize landscapes. For instance, Horton (1945) suggested that valley dissection stops because 15 
further dissection would lead to hillslopes that are too short to yield flow that can erode the surface. Montgomery and 
Dietrich (1992) found that thresholds of the topographic quantity 𝐴𝐴(|∇𝑧𝑧|)2, where A is drainage area and |∇𝑧𝑧| is slope, could 
define locations of both channel and valley heads, the former being associated with an incision threshold and the latter with 
the smallest scale of dissection. Perron et al. (2008) studied the spacing of valleys, a scaling property closely related to the 
smallest scale of dissection. They found that valley spacing is most strongly controlled by the competition between advective 20 
and diffusive processes, such as stream incision and soil creep, respectively. However, they found that incision thresholds 
also control valley spacing by modulating the competition between advection and diffusion. 
 
In Theodoratos et al. (2018), we performed a scaling analysis of an incision–diffusion LEM that did not include an incision 
threshold. In the present study, we add an incision threshold to that LEM and examine how our analysis needs to be modified 25 
to account for this threshold. More specifically, in Theodoratos et al. (2018), we dimensionally analyzed an LEM that 
includes three parameters – an incision coefficient, a diffusion coefficient, and an uplift rate. For that analysis, we used three 
characteristic scales (of length, height, and time) that are defined in terms of the three parameters of the LEM. As we 
explained in detail in Theodoratos et al. (2018), because the characteristic scales depend on the model parameters and 
because there are three parameters and three characteristic scales, the LEM can be greatly simplified by being re-cast in a 30 
dimensionless form that has no parameters.  
 
Adding an incision threshold to the LEM that we analyzed in Theodoratos et al. (2018) increases the number of its 
parameters to four (see Eq. 1 below). This leads to the question of whether the LEM with incision threshold can be 
dimensionally analyzed using the same three characteristic scales that we used to dimensionally analyze the LEM without 35 
incision threshold (Theodoratos et al., 2018). Here, we hypothesize that these three scales are reasonable choices even after 
adding an incision threshold to the LEM, and we test this hypothesis by applying these scales and examining the resulting re-
scaled equations. 
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2     Dimensional analysis of LEM that includes incision threshold 

2.1   Governing equation 

We study an LEM described by the governing equation (e.g., Howard, 1994; Dietrich et al., 2003): 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = �

𝐷𝐷∇2𝑧𝑧+ 𝑈𝑈, √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃
−𝐾𝐾�√𝐴𝐴|∇𝑧𝑧|− 𝜃𝜃� +𝐷𝐷∇2𝑧𝑧 +𝑈𝑈, √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃

     , (1) 

where z is elevation at a point with coordinates (𝑥𝑥, 𝑦𝑦) and t is time; A, |∇𝑧𝑧|, and ∇2𝑧𝑧 are topographic properties of the point, 
specifically, drainage area, slope, and Laplacian curvature, respectively; K is the incision coefficient, D is the diffusion 5 
coefficient, U is the uplift rate, and θ is the incision threshold, a threshold value of the quantity √𝐴𝐴|∇𝑧𝑧|. The four parameters 
K, D, U, and θ are all assumed to be constant in time and uniform across space. The dimensions of these variables, 
topographic properties, and parameters are discussed in the following subsection. 
 
The stream-power incision term 𝐾𝐾�√𝐴𝐴|∇𝑧𝑧|− 𝜃𝜃� describes the rate of incision by flowing water. It is a special case of the 10 
more general incision term 𝐾𝐾(𝐴𝐴𝑚𝑚(|∇𝑧𝑧|)𝑛𝑛 − 𝜃𝜃), where m and n, the exponents of drainage area and slope, have values that 
depend on the rate law that is assumed to describe incision (such as shear stress or stream power; e.g., Dietrich et al., 2003). 
Here, we examine the simplified case of 𝑚𝑚 = 0.5 and 𝑛𝑛 = 1 because it leads to results described by much simpler formulas; 
however, these results are valid for generic exponents m and n as well, but with more complicated formulas (see Appendix A 
of Theodoratos et al. (2018) for results pertaining to an LEM without incision threshold and with generic exponents m and 15 
n). The linear diffusion term 𝐷𝐷∇2𝑧𝑧 describes the rate of erosion or infilling by hillslope sediment transport processes. Finally, 
the uplift term U gives the rate of tectonic uplift within the model domain (or, equivalently, base level fall at its boundary). 
 
Equation (1) is defined piecewise on two subdomains. The first subdomain, where √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃, corresponds to areas where 
the rate of incision is zero because it is fully suppressed by the incision threshold and, thus, the landscape evolves under the 20 
influence of diffusion and uplift only. We refer to these areas as the zones of zero incision, because they tend to form zones 
along ridges and drainage divides, where drainage area or slope, or both, are small (e.g., see Figs. 3 and 7). The second 
subdomain, where √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃, corresponds to the remaining parts of the landscape. In this subdomain, the incision rate is 
reduced by a uniform amount 𝐾𝐾𝐾𝐾, relative to the rate 𝐾𝐾√𝐴𝐴|∇𝑧𝑧| that would prevail with no threshold. Note that the transition 
between the two subdomains at √𝐴𝐴|∇𝑧𝑧| = 𝜃𝜃 entails no discontinuity in incision rates, and that if we set 𝜃𝜃 = 0, then we 25 
obtain the governing equation of the LEM without an incision threshold (e.g., Howard, 1994), 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕 = −𝐾𝐾√𝐴𝐴|∇𝑧𝑧| + 𝐷𝐷∇2𝑧𝑧+ 𝑈𝑈     , (2) 

which is the equation that we dimensionally analyzed in Theodoratos et al. (2018). 

2.2   Dimensions and characteristic scales 

We test whether the characteristic scales defined in Theodoratos et al. (2018) are reasonable choices to analyze the LEM that 
includes an incision threshold θ (Eq. 1). We start by examining the dimensions of the variables and parameters of Eq. (1). 30 
The horizontal coordinates (x, y) have dimensions of length L, elevation z has dimensions of height H, and time t has 
dimensions of time T. These fundamental dimensions flow through to the derived topographic quantities: the rate of 
elevation change 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  has dimensions of Η T−1, the drainage area A has dimensions of L2, the slope |∇𝑧𝑧| has dimensions of 
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Η L−1, and the Laplacian curvature ∇2𝑧𝑧 has dimensions of Η L−2. The fundamental dimensions are also applied to the model 
parameters: the incision coefficient K has dimensions of Τ−1, the diffusion coefficient D has dimensions of L2 Τ−1, and the 
uplift rate U has dimensions of Η T−1. In Eq. (1), the incision threshold θ is subtracted from the product √𝐴𝐴|∇𝑧𝑧|; thus, θ 
must have the same dimensions as √𝐴𝐴|∇𝑧𝑧|, i.e., dimensions of H. Note that in the more general case where the drainage area 
and slope exponents m and n are not 0.5 and 1, respectively, θ must have the same dimensions as the product 𝐴𝐴𝑚𝑚(|∇𝑧𝑧|)𝑛𝑛, 5 
i.e., L2𝑚𝑚−𝑛𝑛  H𝑛𝑛. LEMs typically express length and elevation in units of meters (m), and time in units of years (a). We also 
use these units in the simulations presented in Sect. 3, and we show incision coefficients K in units of a–1, diffusion 
coefficients D in units of m2 a–1, uplift rates U in units of m a–1, and incision thresholds θ in units of m (e.g., Tables 1 and 2). 
 
Given that all the terms of Eq. (1) have dimensions in H, L, and T, we can dimensionally analyze Eq. (1) using characteristic 10 
scales of length, height, and time. In Eqs. (3)-(8) below, we summarize the dimensional analysis of Theodoratos et al. (2018) 
as necessary background for the new analysis presented here. The dimensional analysis of Theodoratos et al. (2018) is based 
on a characteristic length that is defined as 

𝑙𝑙𝑐𝑐 ≔ �𝐷𝐷 𝐾𝐾⁄      , (3) 
a characteristic height that is defined as 
ℎ𝑐𝑐 ≔ 𝑈𝑈 𝐾𝐾⁄      , (4) 

and a characteristic time that is defined as 15 
𝑡𝑡𝑐𝑐 ≔ 1 𝐾𝐾⁄      . (5) 

 
To non-dimensionalize the horizontal coordinates (x, y), elevation z, and time t, we divide them by lc, hc, and tc, respectively. 
Specifically, we define dimensionless coordinates as (𝑥𝑥∗, 𝑦𝑦∗) ≔ (𝑥𝑥 𝑙𝑙𝑐𝑐⁄ , 𝑦𝑦 𝑙𝑙𝑐𝑐⁄ ), dimensionless elevation as 𝑧𝑧∗ ≔ 𝑧𝑧 ℎ𝑐𝑐⁄ , and 
dimensionless time as 𝑡𝑡∗ ≔ 𝑡𝑡 𝑡𝑡𝑐𝑐⁄ . 
 20 
To non-dimensionalize the rate of elevation change in the left-hand side of Eq. (1) and the topographic properties in the 
right-hand side of Eq. (1) (drainage area A, slope |∇𝑧𝑧|, and curvature ∇2𝑧𝑧), we need to divide them by characteristic scales 
that have the same dimensions as the rate of elevation change and the topographic properties, respectively. We define these 
characteristic scales by combining the characteristic scales of length, height, and time (lc, hc, and tc) such that we obtain the 
appropriate dimensions. For instance, the rate of elevation change 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  has dimensions of Η T−1; therefore, to non-25 
dimensionalize it, we need to divide it by a characteristic scale with dimensions of height over time. The ratio ℎ𝑐𝑐 𝑡𝑡𝑐𝑐⁄  has such 
dimensions. Note that ℎ𝑐𝑐 𝑡𝑡𝑐𝑐⁄ = 𝑈𝑈 (see Eqs. 4 and 5). Thus, we can view the uplift rate U as a characteristic rate of elevation 
change and use it to define the dimensionless rate of elevation change as 𝜕𝜕𝑧𝑧∗ 𝜕𝜕𝑡𝑡∗⁄ ≔ (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) 𝑈𝑈⁄ . Likewise, we define a 
characteristic area with dimensions of L2 as 
𝐴𝐴𝑐𝑐 ≔ 𝑙𝑙𝑐𝑐2 = 𝐷𝐷 𝐾𝐾⁄      , (6) 

and use it to define the dimensionless drainage area as 𝐴𝐴∗ ≔ 𝐴𝐴 𝐴𝐴𝑐𝑐⁄ . Further, we define a characteristic gradient with 30 
dimensions of Η L−1 as 
𝐺𝐺𝑐𝑐 ≔ ℎ𝑐𝑐 𝑙𝑙𝑐𝑐⁄ = 𝑈𝑈 √𝐷𝐷𝐷𝐷⁄      . (7) 

If we divide the slope |∇𝑧𝑧| by the characteristic gradient Gc, we obtain a dimensionless slope term. We denote this 
dimensionless slope by |∇∗𝑧𝑧∗| because it is equal to the norm of the gradient of dimensionless elevation z* in dimensionless 
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coordinates (x*, y*). Specifically, |∇∗𝑧𝑧∗| ≔ �𝜕𝜕𝑧𝑧
∗

𝜕𝜕𝑥𝑥∗
𝐢𝐢 + 𝜕𝜕𝑧𝑧∗

𝜕𝜕𝑦𝑦∗
𝐣𝐣� = �𝜕𝜕𝜕𝜕 ℎ𝑐𝑐⁄

𝜕𝜕𝑥𝑥 𝑙𝑙𝑐𝑐⁄
𝐢𝐢 + 𝜕𝜕𝜕𝜕 ℎ𝑐𝑐⁄

𝜕𝜕𝜕𝜕 𝑙𝑙𝑐𝑐⁄
𝐣𝐣� = �𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐢𝐢+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝐣𝐣� (ℎ𝑐𝑐 𝑙𝑙𝑐𝑐⁄ )� = |∇𝑧𝑧| 𝐺𝐺𝑐𝑐⁄ . Finally, we 

define a characteristic curvature with dimensions of Η L−2 as 
𝜅𝜅𝑐𝑐 ≔ ℎ𝑐𝑐 𝑙𝑙𝑐𝑐2⁄ = 𝑈𝑈 𝐷𝐷⁄      , (8) 

and we use it to define the dimensionless curvature as ∇∗2𝑧𝑧∗ ≔ ∇2𝑧𝑧 𝜅𝜅𝑐𝑐⁄ . Note that the characteristic curvature is opposite to 
the steady-state curvature at ridges, drainage divides, and zones of zero incision. Specifically, if 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ = 0 (steady state), 
and if √𝐴𝐴|∇𝑧𝑧| = 0 in Eq. (2) or √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃 in Eq. (1), then 𝐷𝐷∇2𝑧𝑧+ 𝑈𝑈 = 0, which can be rewritten as ∇2𝑧𝑧 = −𝑈𝑈 𝐷𝐷⁄ = −𝜅𝜅𝑐𝑐 5 
(see also Roering et al., 2007; Perron et al., 2009). Note that it can be shown that –κc is also the minimum value of curvature 
in steady state. 
 

2.3   Dimensionless governing equation and the incision-threshold number Nθ 

If we divide all of the terms of the governing equation (Eq. 1) by the uplift rate U, then we obtain an equation that includes 10 
only dimensionless terms. Specifically, if we divide the left-hand side of Eq. (1) by U, then we obtain the dimensionless rate 
of elevation change 𝜕𝜕𝑧𝑧∗ 𝜕𝜕𝑡𝑡∗⁄ ≔ (𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄ ) 𝑈𝑈⁄ . In the right-hand side of Eq. (1), dividing the uplift term U by itself yields the 
number 1. Furthermore, dividing the diffusion term 𝐷𝐷∇2𝑧𝑧 by U and substituting the characteristic curvature κc (Eq. 8), we 
obtain (𝐷𝐷∇2𝑧𝑧) 𝑈𝑈⁄ = ∇2𝑧𝑧 (𝑈𝑈 𝐷𝐷⁄ )⁄ = ∇2𝑧𝑧 𝜅𝜅𝑐𝑐⁄ = ∇∗2𝑧𝑧∗, which is the dimensionless form of the diffusion term in Eq. (1). 
 15 
To non-dimensionalize the incision term, we expand it to 𝐾𝐾√𝐴𝐴|∇𝑧𝑧|−𝐾𝐾𝐾𝐾. The first part, 𝐾𝐾√𝐴𝐴|∇𝑧𝑧|, corresponds to the value 
of the incision rate if there were no incision threshold, and the second part, 𝐾𝐾𝐾𝐾, corresponds to the reduction in the incision 
rate due to the threshold. If we divide 𝐾𝐾√𝐴𝐴|∇𝑧𝑧| by U, then it can be shown that we obtain the dimensionless product 
√𝐴𝐴∗|∇∗𝑧𝑧∗|, and if we divide 𝐾𝐾𝐾𝐾 by U, then we obtain 𝐾𝐾𝐾𝐾 𝑈𝑈⁄ . This ratio is dimensionless because both 𝐾𝐾𝜃𝜃 and U are rates of 
elevation change, with dimensions of  Η T−1. We term this dimensionless ratio the incision-threshold number Nθ: 20 
𝑁𝑁𝜃𝜃 ≔ 𝐾𝐾𝜃𝜃 𝑈𝑈⁄      . (9) 

 
The incision-threshold number Nθ quantifies 𝐾𝐾𝐾𝐾, the reduction in the rate of incision due to the incision threshold, relative to 
the uplift rate U. Additionally, Nθ is the value of the dimensionless product √𝐴𝐴∗|∇∗𝑧𝑧∗| at the transition between the two 
subdomains of Eq. (1), i.e., at the interface between parts of the landscape where there is no incision and parts of the 
landscape where incision occurs. Specifically, at that transition, √𝐴𝐴|∇𝑧𝑧| = 𝜃𝜃; if both sides of this equality are multiplied by 25 
K and then divided by U, then the equality can be shown to become √𝐴𝐴∗|∇∗𝑧𝑧∗| = 𝑁𝑁𝜃𝜃. Finally, if we rearrange Eq. (9) as 
𝑁𝑁𝜃𝜃 = 𝜃𝜃 (𝑈𝑈 𝐾𝐾⁄ )⁄ , then we see that the incision-threshold number gives the magnitude of the incision threshold θ relative to 
magnitudes of other parameters of the LEM, specifically, relative to the ratio of the uplift rate U to the incision coefficient K. 
Note that in the general case in which the drainage area and slope exponents m and n are not 0.5 and 1, respectively, θ and K 
will have different dimensions than in the case of Eq. (1), but their product, 𝐾𝐾𝜃𝜃, will still have dimensions of Η T−1. Thus 30 
the ratio 𝐾𝐾𝐾𝐾 𝑈𝑈⁄  is dimensionless for any m and n. 
 
Bringing together the dimensionless terms derived above, we obtain a dimensionless form of the governing equation (Eq. 1): 
𝜕𝜕𝑧𝑧∗

𝜕𝜕𝑡𝑡∗ = �
∇∗2𝑧𝑧∗ + 1, √𝐴𝐴∗|∇∗𝑧𝑧∗| ≤ 𝑁𝑁𝜃𝜃

−�√𝐴𝐴∗|∇∗𝑧𝑧∗|− 𝑁𝑁𝜃𝜃�+ ∇∗2𝑧𝑧∗ + 1, √𝐴𝐴∗|∇∗𝑧𝑧∗| > 𝑁𝑁𝜃𝜃
     . (10) 
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Note that the dimensionless quantities that we denote by starred symbols (e.g., 𝑧𝑧∗, 𝐴𝐴∗, |∇∗𝑧𝑧∗|) refer to variables or 
topographic properties. These quantities vary in space across the landscape and in time as the landscape evolves. By contrast, 
the incision-threshold number Nθ depends only on the model parameters K, U, and θ, and thus it plays the role of a parameter 
in Eq. (10), one that is constant in space and time. The incision-threshold number Nθ is the only parameter in Eq. (10). Thus, 
for a given set of boundary and initial conditions, the value of Nθ is the only control on the solution of Eq. (10). 5 
 
The LEM without incision threshold, which we studied in Theodoratos et al. (2018), has a dimensionless form that does not 
include any parameters (see Eq. (16) in Theodoratos et al., 2018). Having no parameters to be adjusted, the dimensionless 
form has a single solution for any given combination of boundary and initial conditions. This implies that landscapes with 
any parameters, but with the same boundary and initial conditions (when normalized by the characteristic scales lc and hc), 10 
follow geometrically similar evolutionary paths, i.e., they evolve as rescaled copies of each other. We noted that this 
rescaling property implies that, instead of running multiple simulations corresponding to multiple combinations of 
parameters, we can explore the entire parameter space of the LEM by rescaling the results of a single simulation 
corresponding to just one set of parameters. 
 15 
In contrast, the dimensionless form of the LEM with an incision threshold, Eq. (10), includes one parameter, the incision-
threshold number Nθ. Therefore, in general, landscapes with non-zero incision thresholds will not evolve as rescaled copies. 
However, Eq. (10) reveals a special case. If landscapes have the same Nθ, i.e., if they have incision thresholds θ, incision 
coefficients K, and uplift rates U such that they have the same ratios 𝐾𝐾𝐾𝐾 𝑈𝑈⁄ , then they will evolve as rescaled copies of each 
other, provided that their boundary and initial conditions are the same when normalized by the characteristic scales of length 20 
and height lc and hc. In Sect. 3, we numerically demonstrate both the special case of landscapes that have the same Nθ and 
evolve geometrically similarly, and the general case of landscapes that have different Nθ and do not follow geometric 
similarity. 
 
The elimination of three out of four parameter-related degrees of freedom from the LEM (from the four parameters K, D, U, 25 
and θ in Eq. (1) to the one parameter Nθ in Eq. (10)) is a substantial simplification. It is a consequence of the fact that we 
non-dimensionalize Eq. (1) using the characteristic scales of length, height, and time lc, hc, and tc, which depend on three 
model parameters (K, D, and U; Eqs. 3–5), and can thus eliminate an equal number of parameter-related degrees of freedom. 
This simplification validates the hypothesis that lc, hc, and tc, as a group, remain useful in the case of Eq. (1), which includes 
the incision threshold θ. Unfortunately, with only three fundamental dimensions it is not possible to eliminate all four 30 
parameters using dimensional analysis, so one dimensionless parameter (in this case Nθ) must remain. 

3     Numerical simulations 

3.1   Special case: landscapes with the same Nθ 

In this section, we numerically demonstrate that landscapes that follow Eq. (1) but have different parameters will evolve 
geometrically similarly if they have equal incision-threshold numbers Nθ, provided that their boundary and initial conditions 35 
are equivalent when normalized by the characteristic scales of length and height lc and hc. Given that we perform numerical 
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simulations on discrete and finite domains, we also normalize the sizes and resolutions of these domains by lc (see Sects. 2.2 
and 3.2.2 of Theodoratos et al. (2018) for a more detailed discussion regarding the rescaling of domain size and resolution). 
 
In this context, geometric similarity is defined in the following way. Let the first landscape have characteristic scales lc and 
hc, and the second have lc′ and hc′. The two landscapes are geometrically similar if any point with coordinates (𝑥𝑥, 𝑦𝑦) and 5 
elevation 𝑧𝑧 from the first landscape corresponds to a point from the second landscape with coordinates (𝑥𝑥′, 𝑦𝑦′) and elevation 
𝑧𝑧′ such that (𝑥𝑥 𝑙𝑙𝑐𝑐⁄ ,𝑦𝑦 𝑙𝑙𝑐𝑐⁄ ) = (𝑥𝑥′ 𝑙𝑙𝑐𝑐′⁄ ,𝑦𝑦′ 𝑙𝑙𝑐𝑐′⁄ ) and 𝑧𝑧 ℎ𝑐𝑐⁄ = 𝑧𝑧′ ℎ𝑐𝑐′⁄ . Note that both points correspond to the same point of a 
dimensionless landscape with coordinates (𝑥𝑥∗,𝑦𝑦∗) = (𝑥𝑥 𝑙𝑙𝑐𝑐⁄ , 𝑦𝑦 𝑙𝑙𝑐𝑐⁄ ) = (𝑥𝑥′ 𝑙𝑙𝑐𝑐′⁄ , 𝑦𝑦′ 𝑙𝑙𝑐𝑐′⁄ ) and elevation 𝑧𝑧∗ = 𝑧𝑧 ℎ𝑐𝑐⁄ = 𝑧𝑧′ ℎ𝑐𝑐′⁄ . In 
other words, the two landscapes are geometrically similar if they correspond to the same dimensionless landscape. To test 
whether the two landscapes are geometrically similar during their evolution, we must normalize time by their characteristic 10 
timescales tc and tc′. Specifically, we must compare a snapshot of the first landscape at some time t to a snapshot of the 
second landscape at some other time t′, such that 𝑡𝑡 𝑡𝑡𝑐𝑐⁄ = 𝑡𝑡′ 𝑡𝑡𝑐𝑐′⁄ . Both of these snapshots correspond to the same snapshot of a 
dimensionless landscape at a dimensionless time 𝑡𝑡∗ = 𝑡𝑡 𝑡𝑡𝑐𝑐⁄ = 𝑡𝑡′ 𝑡𝑡𝑐𝑐′⁄ . 

3.1.1  Setup of simulations 

We perform numerical simulations using the Channel-Hillslope Integrated Landscape Development (CHILD) model (Tucker 15 
et al., 2001). Below, we briefly explain how we set up the simulations, and in Appendix A we present formulas that relate 
the parameters of CHILD to the parameters of the governing equation (Eq. 1). We refer readers to Theodoratos et al. (2018) 
for more details about setting up numerical simulations that follow geometric similarity (Sect. 3.1.1 and Appendix C) and 
about the theory behind such simulations (Appendix B). 
 20 
For our similarity analysis, we simulate nine landscapes, each having a different combination of the parameters K, D, and U, 
and, thus, a different combination of characteristic scales of length and height lc and hc (Eqs. 3, 4). Using Eq. (9), we 
determine the value of the incision threshold θ of each landscape such that the incision-threshold number of all landscapes is 
𝑁𝑁𝜃𝜃 = 1. We show the parameters, characteristic scales, and θ and Nθ values of the nine landscapes in Table 1. The 
landscapes are named with capital letters, from A to I. 25 
 
Note that the incision threshold values θ of some of the nine landscapes are significantly higher than natural values reported 
in the literature (e.g., Prosser & Dietrich, 1995; note the necessary unit conversions). This is due to the fact that all nine 
landscapes have incision-threshold numbers 𝑁𝑁𝜃𝜃 = 𝜃𝜃 (𝑈𝑈 𝐾𝐾⁄ )⁄ = 1, i.e., due to the fact that each landscape’s θ value must be 
equal to the value of its 𝑈𝑈 𝐾𝐾⁄  ratio. We chose to use the value 𝑁𝑁𝜃𝜃 = 1 because it leads to wide zones of zero incision (areas 30 
where, according to Eq. (1), there is no incision, because √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃). These wide zones are readily visible when plotted. 
 
To obtain domains and initial conditions that are equivalent when normalized by the characteristic scales of length and 
height lc and hc, we first synthesize a random triangular irregular network (TIN) in dimensionless space, i.e., a TIN whose 
vertices have dimensionless horizontal coordinates (𝑥𝑥∗,𝑦𝑦∗) and dimensionless initial elevations 𝑧𝑧∗. (This TIN’s total extent 35 
is 60⨯90, the average length of its triangle edges is 0.4, and the initial elevations are a white noise ranging between 0 and 
0.1.) Second, we multiply (𝑥𝑥∗,𝑦𝑦∗) and 𝑧𝑧∗ by each landscape’s lc and hc, respectively. Thus we obtain each landscape’s 
dimensional TIN with horizontal coordinates (𝑥𝑥,𝑦𝑦) and initial elevations 𝑧𝑧.  
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Note that landscapes can reach geometrically similar steady states only if the criteria that define the steady state are 
normalized by appropriate characteristic scales, as explained in Sect. 3 of Theodoratos et al. (2018). In the present study, for 
instance, we assume that a simulation reaches its steady state when the absolute rate of elevation change | 𝜕𝜕𝜕𝜕 𝜕𝜕𝜕𝜕⁄  | falls 
below a limit ε at all points. Given that ε is a rate of elevation change, we can normalize it by the uplift rate U, which can be 
viewed as a characteristic rate of elevation change, as we explain in Sect. 2.2. Thus, we set each simulation’s limit to  5 
𝜀𝜀 = 0.001 𝑈𝑈. 

3.1.2  Results: geometric similarity 

The nine simulated landscapes are all geometrically similar to each other, both during their evolution and in steady state. In 
Figs. 1–3, we graphically demonstrate that our simulated landscapes reach geometrically similar steady states. Specifically, 
we illustrate shaded relief maps in Fig. 1, elevation maps in Fig. 2, and maps of the extents of the zones of zero incision in 10 
Fig. 3. (In the present study, we illustrate only steady-state results. For examples of graphical demonstrations of geometric 
similarity during landscape evolution, we refer readers to Figs. 3–5 of Theodoratos et al., 2018.) For clarity, we present maps 
of only four out of the nine landscapes, specifically, of landscapes A–D in Table 1. However, all nine landscapes evolve 
geometrically similarly.  
 15 
In Figs. 1–3, the four landscapes are arranged in a 2x2 array, such that the incision threshold θ increases from top to bottom 
and from left to right. The characteristic height hc follows the same arrangement as θ, because ℎ𝑐𝑐 = 𝑈𝑈 𝐾𝐾⁄ = 𝜃𝜃 𝑁𝑁𝜃𝜃⁄  and all 
landscapes have the same Nθ. Τhe characteristic length lc increases independently of hc and θ, specifically, from bottom to 
top and from left to right. The coloring and labeling of Figs. 1–3 highlight both the large differences of scale and the 
geometric similarity of the four landscapes. Specifically, lengths and elevations on axes and colorbars are shown both in 20 
units of km or m using bold fonts, and in units of lc or hc using normal fonts. Further, color scales of elevation maps in Fig. 2 
are rescaled by hc to assist with comparing the elevations of features. Note that a quantity shown in units of the  
corresponding characteristic scale has the same numerical value as the dimensionless version of this quantity, e.g., elevation 
z in units of hc has the same numerical value as dimensionless elevation 𝑧𝑧∗ because both values are given by the formula 
𝑧𝑧 ℎ𝑐𝑐⁄ . Therefore, in Figs. 1–3, the values of quantities shown in units of lc or hc with normal fonts are the same as the values 25 
of the corresponding dimensionless quantities. 
 
In the shaded relief maps of Fig. 1, ridges and valleys form identical plan-view patterns across the four landscapes, 
illustrating their horizontal geometric similarity. Note that the characteristic scales of length and height lc and hc vary 
independently, leading to different characteristic gradients Gc across the landscapes. Therefore, landscape features in 30 
different landscapes have different steepness and, thus, they are shown with different shades of gray. 
 
In the elevation maps of Fig. 2, the spatial pattern of colors is identical across the four landscapes. This shows that the four 
landscapes are geometrically similar both horizontally and vertically, because the color scales are rescaled by hc. 
 35 
In Fig. 3, we map the zones of zero incision of the four landscapes. To illustrate these zones, we find the Voronoi polygons 
associated with points for which √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃 and we color them red. (Each point of the simulated landscapes is a TIN 
vertex. The associated Voronoi polygon is the area that is assumed to drain to that point; see Tucker et al., 2001.) We 
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observe that the spatial patterns of the red Voronoi polygons in all four maps are geometrically similar. This implies that the 
zones of zero incision of the four landscapes have geometrically similar horizontal extents. 
 
The landscapes in Figs. 1–3 do not just visually appear to be geometrically similar. They are in fact geometrically similar. To 
test this quantitatively, we normalize the elevations z of each landscape by its characteristic height hc and compare the 5 
resulting dimensionless elevations 𝑧𝑧∗ = 𝑧𝑧 ℎ𝑐𝑐⁄  of different landscapes. As we explain further above, the dimensionless 
elevations 𝑧𝑧∗ of geometrically similar landscapes must be equal. Indeed, for the nine landscapes of Table 1, we find that the 
maximum absolute difference between steady-state 𝑧𝑧∗ values of corresponding points is less than 3⨯10–9. 

3.2   General case: landscapes with different Nθ 

In this subsection, we demonstrate that landscapes with different incision-threshold numbers Nθ do not evolve geometrically 10 
similarly, even if their domains and initial conditions are rescaled by the characteristic scales of length and height lc and hc. 
Further, we illustrate how the differences in the value of Nθ are reflected in the topography of these landscapes. 

3.2.1  Setup of simulations 

For these simulations, too, we use CHILD, as described in Appendix A. We perform nine simulations with incision-
threshold numbers Nθ that range between 0 and 4. We use a single combination of values for the incision coefficient K, 15 
diffusion coefficient D, and uplift rate U, and we vary the incision-threshold number Nθ by varying only the incision 
threshold θ (see Eq. 9). Therefore, all nine simulations have the same characteristic scales of length and height (specifically, 
lc=50 m and hc=25 m). Thus, for all nine simulations, we use the same domains and initial conditions. Specifically, we use 
TINs with total extent of 150 lc ⨯ 225 lc (i.e., 7.5 km ⨯ 11.25 km), average TIN edge length of 0.4 lc (i.e., 20 m), and random 
initial elevations drawn from a uniform distribution ranging between 0 and 0.1. The parameters K, D, and U have values that 20 
fall within the typical range seen in the literature (e.g., Perron et al., 2008; Tucker, 2009). In contrast, the incision 
coefficients θ that correspond to the highest values of Nθ that we examine here have values that far exceed real-world 
incision threshold values typically reported (e.g., Prosser & Dietrich, 1995; note the necessary unit conversions). However, 
we use these high values to examine how the LEM behaves when Nθ is high. The values of K, D, and U, and of θ and the 
corresponding Nθ of the nine landscapes are shown in Table 2. 25 

3.2.2  Results: lack of geometric similarity and illustration of influence of Nθ on landscape topography 

As we mentioned in the Introduction (Sect. 1), the inclusion of incision thresholds in LEMs leads to increasing topographic 
slopes, decreasing drainage densities, and more convex hillslopes (e.g., Howard, 1994; Tucker and Bras, 1998; Perron et al., 
2008). In Figs. 4–10, we illustrate these topographic effects using steady-state results of the nine simulations defined above 
(Sect. 3.2.1, Table 2). More specifically, we present shaded relief maps (Figs. 4 and 5), maps of elevation z (Fig. 6), maps of 30 
the extents of the zones of zero incision (Fig. 7), maps of curvature ∇2𝑧𝑧 (Fig. 8), and profiles from ridge to outlet along flow 
paths (Figs. 9, 10). We show profiles along each landscape’s longest flow path to make profiles of different landscapes 
comparable. We mark these flow paths with blue lines on the maps of Figs. 4–8. The maps in Figs. 4 and 6 show the full 
extent of the landscapes, which is 7.5 km ⨯ 11.25 km (i.e., 150 lc ⨯ 225 lc), whereas the maps in Figs. 5, 7, and 8 show 
magnified versions of a 5 km ⨯ 4 km (i.e., 100 lc ⨯ 80 lc) rectangular region from each map. To make the regions of 35 
different landscapes comparable, we select each region such that it contains the drainage basin of the longest flow path of 
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each landscape. We mark these regions with blue rectangles in Figs. 4 and 6. Note that, in all of these figures, we show 
quantities in units of m (or km in the case of horizontal lengths) using bold fonts and in units of the corresponding 
characteristic scales using normal fonts (which yield the same numerical values as dimensionless versions of quantities, as 
we explain in Sect. 3.1.2). Likewise, we show each simulation’s incision threshold θ (in units of m) using bold fonts and the 
corresponding incision-threshold number Nθ (dimensionless) using normal fonts. 5 
 
We observe that landscapes become steeper as Nθ increases. Specifically, in the shaded relief maps (Figs. 4, 5), hillslopes are 
shown with darker shades of gray, i.e., they become steeper, and in the profile plots (Fig. 9), the landscapes’ longest flow 
paths become steeper. Given that all landscapes have the same horizontal extents, the steepening of landscapes implies that 
landscape relief increases. We observe the increase of relief with Nθ both in terms of the maximum value of elevation (see 10 
labels at the bottom of elevation maps in Fig. 6) and in terms of the whole distribution of elevation (see profiles in Fig. 9 and 
the range of colors of elevation maps in Fig. 6). 
 
Furthermore, we observe that landscapes become less dissected and appear smoother in plan view as Nθ increases. 
Specifically, in the shaded relief maps (Figs. 4, 5), we see that the smooth, undissected areas along the sides of ridges and 15 
interfluves become wider, and the tips of valley networks move away from the ridges. In the maps of curvature (Fig. 8), we 
see that the valley networks become sparser, i.e., the landscapes become less dissected. For the case of valley heads that fall 
on the landscapes’ longest flow paths, we see the movement away from the ridges also in the profile plots of Fig. 9 (see blue 
circles). 
 20 
We observe that, as Nθ increases, valleys become deeper (more concave). Specifically, in the maps of curvature (Fig. 8), the 
maximum value of curvature increases with Nθ and, thus, the positive values of curvature become more positive. In other 
words, concave areas, which can be defined as valleys (e.g., Howard, 1994), become more concave. Additionally, in the 
shaded relief maps (Figs. 4, 5), valleys in landscapes with higher Nθ appear deeper because their contrast with neighboring 
hillslopes is higher. Note that the deepening of valleys is in agreement with the steepening of hillslopes described above. 25 
 
Moreover, we observe that as Nθ increases, the zones of zero incision (i.e., the areas with √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃; shown with red in 
Fig. 7) become wider and occupy bigger portions of the hillslopes. We can also observe this in the profile plots of Fig. 9. 
Specifically, we see that, as Nθ increases, the red dots move away from the ridge and come closer to the blue circles, which 
implies that the longest flow paths’ segments that have zero incision become longer and that they occupy bigger portions of 30 
the segments that belong to hillslopes. 
 
Consequently, hillslopes become more convex as Nθ increases. In steady state, the curvature in zero-incision zones is equal 
to –κc (the negative of the characteristic curvature), which is the minimum value of curvature (see Sect. 2.2). Thus, the 
widening of zero-incision zones implies that bigger portions of hillslopes acquire the minimum curvature, i.e., bigger 35 
portions of them become maximally convex. (Note, however, that the value of the maximum convexity remains constant as 
Nθ increases, because the minimum curvature remains ∇2𝑧𝑧 = −𝜅𝜅𝑐𝑐.) The maps of curvature (Fig. 8) also show that the 
minimum value of curvature remains constant as Nθ increases. 
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Finally, we observe that the widening of the zones of zero incision eventually leads to a qualitative change in the operation 
of the laws of the LEM across the landscapes. Specifically, the zones of zero incision almost entirely occupy the hillslopes of 
the landscape with 𝑁𝑁𝜃𝜃 = 4. We deduce this by observing in Fig. 7 that the white areas (i.e., areas with √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃, where 
incision does operate) follow the pattern of the dendritic valley network. The almost complete occupation of hillslopes by the 
zones of zero incision implies that incision operates almost exclusively in valleys, which is a qualitative change. The 5 
governing equation without incision threshold (Eq. 2) is based on the fundamental assumption that all of its processes 
(incision, diffusion, and uplift) operate everywhere across a landscape (e.g., Howard, 1994). By including the incision 
threshold θ, the governing equation Eq. (1) becomes piecewise, with a first subdomain with √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃 where only 
diffusion and uplift operate, and a second subdomain with √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃 where all three processes operate. This formulation 
does not exclude incision from hillslopes in principle. In effect, however, incision is excluded from hillslopes for high values 10 
of the incision-threshold number Nθ, as revealed by the white dendritic patterns in Fig. 7. Thus, for 𝑁𝑁𝜃𝜃 = 4 the governing 
equation (Eq. 1) is, in effect, reminiscent of LEMs that explicitly define distinct laws for hillslopes and valleys (e.g., 
Willgoose et al., 1991; Goren et al., 2014). Note that increasing Nθ beyond the value of 4 would not lead to the additional 
qualitative change of zero-incision zones starting to occupy valleys, because zero-incision zones have negative curvature 
(∇2𝑧𝑧 = −𝜅𝜅𝑐𝑐; see Sect. 2.2). Note that 𝑁𝑁𝜃𝜃 = 4 is the value for which hillslopes are completely occupied by zero-incision 15 
zones in the landscapes that we examine here. However, in landscapes with different boundary and intital conditions, the 
qualitative change described here could occur at different values of the incision threshold number Nθ. 
 
With the above observations in mind, we can explain the observation that landscapes become steeper as Nθ increases in two 
distinct ways, one referring to areas outside zero-incision zones and one referring to areas within them. First, channels 20 
become steeper to compensate for the reduction in the strength of incision by the incision threshold. Equation (1) shows that 
incision operates in areas with √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃, but the rate of incision is reduced by the quantity 𝐾𝐾𝜃𝜃 relative to 𝐾𝐾√𝐴𝐴|∇𝑧𝑧|, which 
is the rate of incision in a landscape without incision threshold. Therefore, for a given drainage area A, the landscape must 
have steeper slope |∇𝑧𝑧| to achieve the same incision rate, and thus balance the other processes and reach equilibrium. This 
effect becomes stronger as Nθ increases. Second, for purely geometrical reasons, the fact that hillslopes become more convex 25 
as Nθ increases implies that they also become steeper. Typically, the more negative the Laplacian curvature ∇2𝑧𝑧 of an area, 
the faster is the increase of slope over a given flow path length. (Exceptions can be areas with negative contour curvature, 
but positive profile curvature, where slope decreases along flow paths, e.g., wind gaps; see also Fig. 2, panel (c) in Mitasova 
and Hofierka, 1993.) Therefore, as Nθ increases and hillslopes become more convex, the slope at a given distance from the 
ridge becomes steeper.  30 
 
In an alternative interpretation, one could potentially view the quantity 𝐾𝐾𝜃𝜃 not as a reduction of the rate of incision, but 
rather as a virtual source term, i.e., as a virtual increase of the uplift rate U. Thus the observed increase of relief would be 
interpreted as resulting from the virtual increase of the uplift rate because, all else remaining equal, higher uplift rates lead to 
higher reliefs (e.g., Tucker and Whipple, 2002; Theodoratos et al., 2018). However, this view is not meaningful in the zones 35 
of zero incision, because in the first subdomain of Eq. (1) the quantity 𝐾𝐾𝜃𝜃 does not appear and, thus, U is the only source 
term (this is also reflected in the fact that ridgelines do not become more sharply convex as they would if the uplift rate were 
actually increased; rather, the curvature of ridgelines remains equal to −𝜅𝜅𝑐𝑐 = −𝑈𝑈 𝐷𝐷⁄ ). To quantify how the uplift rate’s 
virtual increase depends on the incision-threshold number Nθ, we can rearrange the right-hand side of the second subdomain 

https://doi.org/10.5194/esurf-2019-80
Preprint. Discussion started: 9 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 

12 
 

of the governing equation (Eq. 1). We take the quantity 𝐾𝐾𝜃𝜃 from the incision term and we group it with the uplift rate U. 
Thus, we form the virtual uplift rate 𝐾𝐾𝜃𝜃 +𝑈𝑈, which we rewrite as 
𝐾𝐾𝜃𝜃 +𝑈𝑈 = (𝑈𝑈 𝑈𝑈⁄ ) ∙ 𝐾𝐾𝜃𝜃 +𝑈𝑈 = (𝐾𝐾𝜃𝜃 𝑈𝑈⁄ + 1)𝑈𝑈 = (𝑁𝑁𝜃𝜃 + 1)𝑈𝑈     . (11) 

Because Eq. (11) does not apply within the zones of zero incision, treating 𝐾𝐾𝜃𝜃 as a virtual increase of the uplift rate implies 
that one must also treat the landscape as having two distinct uplift rates, (𝑁𝑁𝜃𝜃 + 1)𝑈𝑈 outside the zones of zero incision and U 
within them. 5 
 
Equation (11) suggests that the quantity 𝑁𝑁𝜃𝜃 + 1 can predict how the relief of a landscape (outside the zones of zero incision) 
depends on the value of the incision-threshold number Nθ. All else being equal, relief is proportional to the uplift rate (e.g., 
see definition of the uplift erosion number NE in Tucker and Whipple, 2002, or interpretations of our characteristic height hc 
in Theodoratos et al., 2018). Therefore, Eq. (11) suggests that relief (outside zero-incision zones) is proportional to 𝑁𝑁𝜃𝜃 + 1 10 
(because the virtually increased uplift rate is proportional to 𝑁𝑁𝜃𝜃 + 1), implying that elevations (outside zero-incision zones) 
in landscapes that differ only in their Nθ values would be equal when normalized by 𝑁𝑁𝜃𝜃 + 1. 
 
We can test this hypothesis using the profiles of Fig. 9, since they belong to landscapes that have different incision-threshold 
numbers Nθ, but the same parameters, characteristic scales, domains, and initial conditions (see Table 2). Specifically, we 15 
divide elevations along each profile of Fig. 9 by 𝑁𝑁𝜃𝜃 + 1, and we plot the resulting normalized profiles in Fig. 10. The 
hypothesis will not be rejected if the normalized profiles have the same normalized elevations outside the zones of zero 
incision. Indeed, we observe that the normalized elevations are nearly equal, especially in those reaches of each profile that 
are not near its zone of zero incision. This suggests that, away from the zero-incision zones, landscape relief nearly scales 
with 𝑁𝑁𝜃𝜃 + 1. 20 
 
In Fig. 10, we observe that the elevations of the normalized profiles deviate systematically from one another. Specifically, 
we observe that, whereas the reliefs of the original (un-normalized) profiles grow as Nθ increases, the reliefs of the 
normalized profiles decrease as Nθ increases. (In Table 3 we show an example of this reversal using the original and 
normalized elevations of the profiles at a distance of 0.5 km from the ridge, which falls outside the zones of zero incision of 25 
all profiles; see arrows in Fig. 10.) This reversal implies that normalizing elevations by 𝑁𝑁𝜃𝜃 + 1 is an overshoot, as it lowers 
the profiles by a larger factor than what would make them equal to each other. In other words, as Nθ increases, the elevation 
of the original profiles is increased less than proportionally to 𝑁𝑁𝜃𝜃 + 1, i.e., less than what is predicted by viewing the 
quantity 𝐾𝐾𝜃𝜃 as a virtual increase of the uplift rate. This suggests that the incision threshold could be resulting in additional 
effects, which oppose the virtual increase of the uplift rate, and that these effects depend on the value of Nθ. Future work can 30 
study such effects. For example, it is known that incision’s competition with diffusion for the propagation of elevation 
perturbations can be influenced by the incision threshold (e.g., see relationship between the Péclet number and the incision 
threshold in Perron et al., 2008). Thus it may be productive to examine whether changes in the competition between incision 
and diffusion alter how the incision threshold affects the rate of incision. 
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4     Discussion 

4.1   On the definition of zones of zero incision 

Unlike the LEM studied here, other LEMs, such as those of Tucker (2004) or Deal et al. (2018), do not define zones of zero 
incision, i.e., areas where incision never operates, because those LEMs define incision terms based on conceptually different 
temporal averaging of rainfall events, in comparison to the LEM examined here. 5 
 
Specifically, those other LEMs derive long-term incision rates by integrating stochastic rainfall over time, assuming that 
incision occurs when the shear stress (or, equivalently, the stream power) exceeds a threshold value. Given that the value of 
shear stress depends on discharge and slope, points with different drainage areas or slopes will experience different shear 
stress values during any given event. Therefore, any given combination of drainage area and slope corresponds to a critical 10 
rainfall intensity that is sufficient to generate a shear stress that equals the threshold shear stress. Long-term incision rates 
can be derived by integrating over the rainfall events that exceed this critical rainfall intensity. This approach implies that, in 
theory, any point with non-zero drainage area and slope can experience incision with a non-zero probability (provided that 
rainfall can theoretically become sufficiently intense). Therefore, in LEMs that follow this approach, zero-incision zones are 
not defined. (Note, however, that in those LEMs one can define zones of probability of exceedance of the critical rainfall 15 
intensity, i.e., of probability of incision.) 
 
In contrast, the LEM studied here assumes constant, uniform rainfall, which leads to constant stream power for any given 
combination of drainage area and slope (i.e., for any given value of √𝐴𝐴|∇𝑧𝑧|). Thus, points with any given √𝐴𝐴|∇𝑧𝑧| either 
experience stream power above the threshold value, which leads to incision, or they do not. Therefore, instead of explicitly 20 
including a stream-power threshold, the LEM’s governing equation (Eq. 1) uses a threshold of the quantity √𝐴𝐴|∇𝑧𝑧| itself, 
namely, the incision threshold θ (see the relationship between θ and the threshold of stream power in Appendix A). This 
formulation of Eq. (1) has the advantage of being much simpler than those of LEMs that use stochastic rainfall and shear-
stress (or stream-power) thresholds. However, Eq. (1) has the disadvantage of being unable to explore the non-linear 
relationship between average precipitation and long-term incision rates that we describe in the Introduction (Sect. 1). 25 

4.2   On the choice of characteristic scales 

In this study, we have examined whether the characteristic scales of length, height, and time (lc, hc, and tc; Eqs. 3–5), which 
we introduced in Theodoratos et al. (2018), remain useful after the inclusion of an incision threshold in the LEM, and we 
find that they do. Furthermore, while non-dimensionalizing Eq. (1) using this group of characteristic scales, we obtain the 
dimensionless incision-threshold number Nθ, which has useful properties. These results, however, do not imply that lc, hc, 30 
and tc are the only possible choices of characteristic scales, or even that they are the best choices for all problems. For any 
given model, different characteristic scales may be more appropriate for different applications. 
 
Dimensional analysis can ensure that a set of characteristic scales is dimensionally consistent and can provide the number of 
degrees of freedom that can be eliminated from a model (e.g., Buckingham, 1914), but it cannot show a priori which 35 
characteristic scales should be used. For example, in the case of Eq. (1), if we assume that length L and height H are distinct 
dimensions, then together with time T they form a group of three dimensions, and dimensional analysis will show that any 
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manipulation of Eq. (1) can eliminate at most 3 degrees of freedom. Because the characteristic scales lc, hc, and tc are defined 
by the parameters K, D, and U, eliminating three degrees of freedom eliminates these three parameters. If, instead, one 
defined characteristic scales that depended, for example, on the measurements of the domain (e.g., Perron et al., 2008), the 
corresponding degrees of freedom that could be eliminated would be related to these domain scales. Such an approach might 
be more appropriate for characterizing extensive properties of a landscape as a whole (e.g., Perron et al., 2012), whereas the 5 
approach that we use here may be more appropriate for characterizing processes and intensive properties that vary across a 
landscape (e.g., Theodoratos et al., 2018). It may be difficult to predict a priori which choices of characteristic scales will be 
better for a given problem, and the only way to find out may be to try several different alternatives. In general, dimensional 
analysis can be used to simplify governing equations, and it can point to useful numerical, field, or lab experiments, but it 
cannot fully substitute the information contained in empirical results (e.g., Huntley, 1967). 10 

5     Summary and conclusions 

In this study, we perform a dimensional analysis of an LEM that includes terms describing stream-power incision, linear 
diffusion, and uplift (Eq. 1). The LEM assumes that incision is limited by a threshold, specifically, that there is no incision at 
points with drainage area A and slope |∇𝑧𝑧| such that the quantity √𝐴𝐴|∇𝑧𝑧| is below a threshold value θ, and that this threshold 
also reduces incision at points with √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃. 15 
 
Our dimensional analysis is based on characteristic scales of length, height, and time (lc, hc, and tc) that depend only on 
parameters of the LEM (specifically, on the incision coefficient K, diffusion coefficient D, and uplift rate U; Eqs. 3–5). We 
introduced these scales as a group in Theodoratos et al. (2018), where we analyzed a related LEM that did not include the 
incision threshold (reproduced here as Eq. 2). The distinction between lc and hc is based on the assumption that horizontal 20 
lengths and vertical heights are dimensionally distinct. 
 
In Sect. 2.3, using the characteristic scales lc, hc, and tc, we derive Eq. (10), a dimensionless form of the governing equation 
of the LEM that includes only one parameter, the incision-threshold number 𝑁𝑁𝜃𝜃 = 𝐾𝐾𝜃𝜃 𝑈𝑈⁄ = 𝜃𝜃 (𝑈𝑈 𝐾𝐾⁄ )⁄  (Eq. 9). This 
dimensionless parameter quantifies the value of 𝐾𝐾𝜃𝜃, which is the reduction in the rate of incision due to the incision 25 
threshold, relative to the uplift rate U or, equivalently, the relative magnitude of the incision threshold θ versus the ratio 
𝑈𝑈 𝐾𝐾⁄ . The original, dimensional LEM (Eq. 1) includes four parameters (K, D, U, and θ). Because the three characteristic 
scales (lc, hc, and tc) depend on three model parameters (K, D, and U), in deriving the dimensionless Eq. (10) we can 
eliminate three out of four parameter-related degrees of freedom, which is a notable simplification. This suggests that this 
group of characteristic scales is useful in the case of the LEM that includes an incision threshold. 30 
 
The fact that the incision-threshold number Nθ is the only parameter in the dimensionless governing equation (Eq. 10) 
implies that it is the only control on this equation, for any given set of boundary and initial conditions. As a consequence, the 
evolution of all landscapes with a given Nθ value will be geometrically and temporally similar, provided that their domains, 
boundary conditions, and initial conditions are rescaled by lc and hc (see Theodoratos et al. (2018) for more detailed 35 
theoretical exposition of these arguments). In Sect. 3.1, we present numerical simulations of landscapes with different 
parameters but equal incision-threshold numbers Nθ. In Figs. 1–3, we demonstrate that these landscapes indeed evolve 

https://doi.org/10.5194/esurf-2019-80
Preprint. Discussion started: 9 January 2020
c© Author(s) 2020. CC BY 4.0 License.



 

15 
 

geometrically similarly. In contrast, landscapes with different Nθ values evolve without geometric similarity, as we show 
with a second set of numerical simulations in Sect. 3.2. 
 
In Sect. 3.2.2, we explore how these different Nθ values influence steady-state topographic properties of the resulting 
landscapes. We illustrate the topographic influence of Nθ in Figs. 4–10. We find that, as Nθ increases, landscape relief 5 
increases (Figs. 6, 9) and, thus, hillslopes and channels become steeper (Figs. 4, 5, 9), valleys become sparser but also deeper 
(Figs. 4, 5, 8), and hillslopes become more convex (Figs. 7, 8). 
 
Finally, we derive a quantitative prediction of the increase of relief with the incision-threshold numbers Nθ. Specifically, we 
show that in areas with √𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃, where incision operates, relief tends to scale with the quantity 𝑁𝑁𝜃𝜃 + 1 and thus 10 
elevations tend to become equal if they are normalized by 𝑁𝑁𝜃𝜃 + 1 (Fig. 10). Our simulation results show deviations from this 
prediction, but we observe that these deviations are systematic (Sect. 3.2.2, Table 3) and we posit that the incision threshold 
causes additional effects which can be the focus of future work. 

Appendix A: Implementation of governing equation with CHILD 

To implement the governing equation of the LEM (Eq. 1) with CHILD, we use CHILD's detachment-limited module and we 15 
set the parameter DETACHMENT_LAW equal to 0. Furthermore, we use constant, uniform, and continuous precipitation, 
we define infiltration to be 0, and we set the hydraulic geometry scaling exponents ωb and ωs to be equal to 0.5, and the 
detachment capacity exponents mb, nb, and Pb to be equal to 1 (see Tucker et al., 2001, and Tucker, 2010, for definitions of 
CHILD’s assumptions, modules, and parameters). 
 20 
For this choice of exponents, CHILD uses the following equations to calculate the rate of elevation change due to incision 
(in CHILD notation): 
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
�

Incision
= −𝐷𝐷𝑐𝑐 = −𝑘𝑘𝑏𝑏(𝜏𝜏0 − 𝜏𝜏𝑐𝑐)     , (A1 a) 

𝜏𝜏0 = 𝑘𝑘𝑡𝑡
√𝑃𝑃√𝐴𝐴
𝑘𝑘𝑤𝑤

 𝑆𝑆     , (A1 b) 

where Dc is the maximum detachment capacity in ma-1, τ0 is stream power per unit bed area in W m-2, τc is the threshold 
value of τ0, below which there is no incision, also in W m-2, kb is a detachment rate coefficient in m a-1 (W m-2)-1 (i.e., kb is 
the rate of elevation change per each unit of stream power per unit bed area), kt is the specific weight of water in N m-3, P is 25 
the precipitation intensity in m a-1, kw is bankfull width per unit scaled discharge in s0.5 m-0.5, and S is slope (Tucker et al., 
2001; Tucker, 2010). 
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Equating 𝐾𝐾�√𝐴𝐴|∇𝑧𝑧|− 𝜃𝜃�, i.e., the incision term of Eq. (1), to Dc of Eqs. (A1) we can relate the incision coefficient K and the 
incision threshold θ of Eq. (1) with CHILD’s parameters according to 

𝐾𝐾 = 𝑘𝑘𝑏𝑏
𝑘𝑘𝑡𝑡√𝑃𝑃
𝑘𝑘𝑤𝑤

 
√1 a

√31557600 s 
     , (A2) 

𝜏𝜏𝑐𝑐 =
𝑘𝑘𝑡𝑡√𝑃𝑃
𝑘𝑘𝑤𝑤

𝜃𝜃 
√1 a

√31557600 s 
     . (A3) 

Equations (A2) and (A3) include the unit conversion factor √1 a √31557600 s⁄  because the input files of CHILD include 
variables with units of both years and seconds.  
 5 
In Eqs. (A2) and (A3), we assume constant values of 𝑘𝑘𝑡𝑡 = 9810 N m−3, 𝑃𝑃 ≈ 1.31 m a−1, and 𝑘𝑘𝑤𝑤 = 10 s0.5 m−0.5, and we 
obtain the desired values of K and θ by entering the appropriate values of kb and τc into CHILD’s input files. 
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Tables 

Table 1: Values of parameters (K, D, U, and θ) and characteristic scales (lc , hc, and Gc) of the landscapes described in Sect. 3.1. All 
landscapes have equal incision-threshold numbers Nθ and evolve geometrically similarly. The values of K, D, and U of the landscapes are 
less than one order of magnitude smaller or larger than those of Landscape D, which are typical in the literature (e.g., Perron et al., 2008; 
Tucker, 2009). Values of incision thresholds θ are such that 𝑁𝑁𝜃𝜃 = 𝐾𝐾𝐾𝐾 𝑈𝑈⁄ = 1. Maps of landscapes A–D are shown in Figs. 1–3. 5 

Simulated landscapes with equal incision-threshold numbers: 
𝛮𝛮𝜃𝜃 = 𝐾𝐾𝐾𝐾 ∕ 𝑈𝑈 = 1 

Landscape 
name 

 

Incision 
coefficient 

Diffusion 
coefficient Uplift rate 

Characteristic 
length 

Characteristic 
height 

Characteristic 
gradient 

Incision 
threshold 

K D U 𝑙𝑙𝑐𝑐 = �𝐷𝐷 𝐾𝐾⁄  ℎ𝑐𝑐 = 𝑈𝑈 𝐾𝐾⁄  𝐺𝐺𝑐𝑐 = ℎ𝑐𝑐 𝑙𝑙𝑐𝑐⁄  θ 
(a–1) (m2a–1) (ma–1) (m) (m) ( – ) (m) 

A 10–6 10–2 0.16⨯10–4 100   16      0.16   16 
B 4⨯10–6 0.25⨯10–2 10–4   25   25 1   25 
C 0.5⨯10–6 2⨯10–2 0.4⨯10–4 200  80    0.4   80 
D 10–6 10–2 10–4 100 100 1 100 
E 2⨯10–6 0.5⨯10–2 0.4⨯10–4   50   20    0.4   20 
F 2⨯10–6 0.5⨯10–2 2.5⨯10–4   50 125    2.5 125 
G 0.25⨯10–6 4⨯10–2 10–4 400 400 1 400 
H 0.5⨯10–6 2⨯10–2 2.5⨯10–4 200 500    2.5 500 
I 10–6 10–2 6.25⨯10–4 100 625      6.25 625 
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Table 2: Incision-threshold numbers Nθ and corresponding incision thresholds θ, parameters K, D, and U, and characteristic scales of the 
landscapes described in Sect. 3.2. All nine landscapes have the same parameters K, D, and U, and, thus, the same characteristic scales. 
These landscapes are illustrated in Figs. 4–9.  

Simulated landscapes with different incision-threshold numbers Nθ 

 
Incision-threshold 

number Incision threshold  
 𝑁𝑁𝜃𝜃 = 𝐾𝐾𝐾𝐾 𝑈𝑈⁄  θ  
 ( – ) (m)  
 0     0  
    0.1        2.5  
    0.2     5  
    0.4   10  
    0.8   20  
 1   25  
    1.6   40  
 2   50  
 4 100  

Common parameters for all of the above landscapes: 
 Incision coefficient 𝐾𝐾 = 2 × 10−6 a−1  
 Diffusion coefficient 𝐷𝐷 = 0.5 × 10−2 m2a−1  
 Uplift rate 𝑈𝑈 = 0.5 × 10−4 ma−1  
 Characteristic length 𝑙𝑙𝑐𝑐 = �𝐷𝐷 𝐾𝐾⁄ = 50 m  
 Characteristic height ℎ𝑐𝑐 = 𝑈𝑈 𝐾𝐾⁄ = 25 m  
 Characteristic gradient 𝐺𝐺𝑐𝑐 = ℎ𝑐𝑐 𝑙𝑙𝑐𝑐⁄ = 0.5  
 Characteristic curvature 𝜅𝜅𝑐𝑐 = ℎ𝑐𝑐 𝑙𝑙𝑐𝑐2⁄ = 0.01 m−1  

 

  5 
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Table 3: Lengths, reliefs, and mean slopes of profiles along the longest flow paths of landscapes with different incision-threshold numbers 
Nθ (see Table 2 and Sect. 3.2). These profiles are shown in Fig. 9 with their original elevations and in Fig. 10 with their elevations 
normalized by 𝑁𝑁𝜃𝜃 + 1. To demonstrate that the dependence of elevations on Nθ is reversed when profiles are normalized (see Sect. 3.2.2), 
we show in this table profile elevations at a distance of 0.5 km from the ridge. 

Profiles along the longest flow paths of landscapes of Table 2 

Incision-threshold 
number, Nθ 

( – ) 

Total length 
 

(km) 

Total relief 
 

(m) 

Mean slope 
 

( – ) 

Elevation at 0.5 km away from ridge 
Original, 𝑧𝑧 

(m) 
Normalized, 𝑧𝑧 (𝑁𝑁𝜃𝜃 + 1)⁄  

(m) 

0 4.999   653 0.13   450 450 
   0.1 5.578   712 0.13   485 441 
   0.2 5.033   748 0.15   526 439 
   0.4 5.199   898 0.17   635 453 
   0.8 4.969 1090 0.22   752 418 

1 5.076 1181 0.23   879 439 
   1.6 5.109 1476 0.29 1052 405 

2 5.136 1581 0.31 1148 383 
4 5.053 2138 0.42 1555 311 

 5 
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Figures 

 
Figure 1: Horizontal geometric similarity of landscapes with equal incision-threshold numbers Nθ. Shaded relief maps show the plan-
view geometric similarity of four landscapes with different parameters, but with the same Nθ, and with domains and initial conditions that 
are normalized by the characteristic scales of length and height lc and hc. To highlight both that the landscapes are different in size and that 5 
they are geometrically similar when normalized by lc, we show domain sizes both in km (top and left, bold fonts) and in units of lc (bottom 
and right, normal fonts). Note that the characteristic gradient Gc is not the same across the four landscapes. Thus, the four landscapes have 
different topographic slopes, which are reflected in the different shades of gray used in the four maps.  
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Figure 2: Horizontal and vertical geometric similarity of landscapes with equal incision-threshold numbers Nθ. Elevation maps show 
that the four landscapes of Fig. 1 are geometrically similar in the vertical direction as well. We show domain sizes and color-scale 
elevations both in km or m (top and left, bold fonts) and in units of characteristic length and height lc and hc (bottom and right, normal 
fonts). Note that we use color scales that are normalized by hc, i.e., each color corresponds to the same elevation in units of hc across all 5 
four landscapes. Therefore, the fact that the four maps have the same color pattern shows that their elevations are equivalent when 
normalized by hc, i.e., the landscapes are geometrically similar.  
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Figure 3: Horizontal geometric similarity of zones of zero incision. Red regions show the Voronoi polygons of points with √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃, 
where incision is zero according Eq. (1). The resulting maps show that the zones of zero incision in the four landscapes have geometrically 
similar horizontal extents.  
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Figure 4: Overview of influence of value of incision-threshold number Nθ on morphology of ridges, hillslopes, and valleys. Steady-
state shaded relief maps show the nine landscapes of Sect. 3.2, which have equal incision coefficients, diffusion coefficients, and uplift 
rates (i.e., equal characteristic scales), and unequal incision thresholds, such that Nθ values range from 0 to 4 (see parameters in Table 2 
and definition of Nθ in Eq. 9). The maps are arranged such that Nθ increases from left to right and from top to bottom. We interpret these 5 
shaded relief maps in the description of Fig. 5, where we show enlarged views of a rectangular region from each map to enhance the 
visibility of landscape features. Here we show these regions with blue rectangles. Their extents are 5 km ⨯ 4 km (equivalently, 100 lc ⨯ 80 
lc) and are chosen such that they contain each landscape’s longest flow path and the corresponding drainage basin. We mark these flow 
paths with blue lines, and we present profile plots along their course in Figs. 9 and 10.  
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Figure 5: Influence of incision-threshold number Nθ on morphology of ridges, hillslopes, and valleys. Shaded relief plots 
corresponding to the blue rectangular regions in Fig. 4 are arranged such that Nθ increases from left to right and from top to bottom 
(identical to Fig. 4; see parameter values in Table 2). The illumination angle is consistent among all panels; thus greater contrasts in gray 
scale correspond to steeper slopes. Maps with higher Nθ have steeper slopes, as indicated by the greater contrast. Maps with higher Nθ also 5 
exhibit wider ridges and interfluves (note the distance between tips of valley networks and basin or sub-basin divides), with the result that 
ridges and hillslopes appear smoother in plan view.   
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Figure 6: Increase of relief as the incision-threshold number Nθ increases. Steady-state elevation maps of the nine landscapes of 
Sect. 3.2 (parameter values in Table 2) are plotted using a single elevation color scale, facilitating visual comparison of elevations across 
landscapes. The blue lines show the longest flow path of each landscape and the blue rectangles mark the regions that are magnified in 
Figs. 5, 7, and 8. The landscapes are arranged such that Nθ increases from left to right and from top to bottom. By comparing the colors of 5 
the maps, we observe that landscapes with higher Nθ values have greater relief (see also the maximum elevation of each landscape, 
displayed at the bottom of each map).  
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Figure 7: Expanding extent of zones of zero incision as the incision-threshold number Nθ increases. Red regions indicate Voronoi 
polygons of points with √𝐴𝐴|∇𝑧𝑧| ≤ 𝜃𝜃, where incision does not operate (Eq. 1), and white indicates the remaining areas where incision 
operates. Note that the landscape with 𝑁𝑁𝜃𝜃 = 0 follows Eq. (2) which is not defined piecewise; thus, zones of zero incision are not defined 
for this landscape. As Nθ increases, the zones of zero incision become more extensive, and eventually occupy almost all ridges and 5 
hillslopes. In the maps of the top row, which have the smallest of the examined Nθ values, zero-incision zones appear mainly along divides 
of major drainage basins. In the maps of the middle row, which have moderate Nθ values that do not exceed 1, zero-incision zones 
completely cover the main drainage divides and increasingly appear on smaller divides (interfluves) and on hillslopes. In the first two 
maps of the bottom row, which have Nθ equal to 1.6 and 2, zero-incision zones occupy increasingly large portions of hillslopes, and in the 
third map of the bottom row, which has 𝑁𝑁𝜃𝜃 = 4, they almost completely cover the hillslopes, with the white areas following the dendritic 10 
patterns of the valley network, which can be seen also in Fig. 8. Thus, for the largest of the examined Nθ values, incision operates almost 
exclusively in valleys and is largely non-existent on the hillslopes.  
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Figure 8: Deeper and sparser valleys, and wider hillslopes, in landscapes with higher incision-threshold numbers Nθ. Steady-state 
maps of the Laplacian curvature ∇2𝑧𝑧 of the landscapes of Sect. 3.2 reveal how valley networks and hillslopes change as Nθ increases. 
Areas with ∇2𝑧𝑧 ≤ 0 are shown in white and areas with ∇2𝑧𝑧 > 0 are shown in grayscale. Gray dendritic patterns indicate valley networks, 
because concave areas can be considered as valleys, and convex areas as ridges or hillslopes (e.g., Howard, 1994). As Nθ increases, ridges 5 
and hillslopes become wider, and gray dendritic valley patterns become sparser. The color scales of the nine maps are not the same; as Nθ 
increases, the maximum value of curvature increases and, thus, curvature has a wider range of positive values. Therefore, as Nθ increases, 
concave areas become more concave, i.e., valleys become deeper. By contrast, the minimum value of curvature is ∇2𝑧𝑧 = −𝜅𝜅𝑐𝑐 in all color 
scales and, thus, the most convex areas are equally convex in all maps. However, the extent of these most convex areas becomes wider as 
Nθ increases, because the value ∇2𝑧𝑧 = −𝜅𝜅𝑐𝑐 corresponds to zones of zero incision (see Sect. 2.2), which become wider as Nθ increases (see 10 
Fig. 7). Therefore, as Nθ increases, hillslopes become more convex because bigger portions of them have the minimum value of curvature.  
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Figure 9: Steepening of profiles as the incision-threshold number Nθ increases. Blue profiles show elevation z versus distance from the 
ridge (along the flow path) for the longest flow paths in each of the nine landscapes of Sect. 3.2. These flow paths are marked with blue 
lines on the maps of Figs. 4–8. All profiles have roughly equal horizontal lengths of ~5 km, or ~100 lc (see lengths in Table 3). As Nθ 
increases, the total reliefs of profiles (i.e., their elevations at the ridge) increase and, thus, their slopes become steeper (see reliefs and mean 5 
slopes in Table 3). On each profile, a red dot shows the edge of the zero-incision zone, defined here as the first point along the profile with 
√𝐴𝐴|∇𝑧𝑧| > 𝜃𝜃, i.e., the first point with incision, and a blue circle shows the first-order valley head, defined as the first point with non-
negative curvature (∇2𝑧𝑧 ≥ 0). (We do not show a red dot for 𝑁𝑁𝜃𝜃 = 0, for which zero-incision zones do not exist.) As Nθ increases, the red 
dots and the blue circles tend to move away from the ridge, indicating that the zero-incision zones become wider and the drainage density 
decreases as Nθ increases. Note that the edges of the zero-incision zones are more sensitive to 𝑁𝑁𝜃𝜃 than the valley heads are. Thus, as Nθ 10 
increases, the red dots and blue circles converge, becoming indistinguishable for 𝑁𝑁𝜃𝜃 = 4. 
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Figure 10: Equivalence of elevations that are normalized by 𝑵𝑵𝜽𝜽 + 𝟏𝟏. Green lines show the profiles of Fig. 9 (shown again here with 
light blue lines), normalized by dividing by 𝑁𝑁𝜃𝜃 + 1. The normalized profiles largely collapse on each other. Along each profile, this 
tendency becomes stronger in the downstream direction, where the distance from the zone of zero incision grows (the edges of zero-
incision zones are indicated by red dots). As Nθ increases, the normalized profile elevations generally decrease slightly, whereas the 5 
original profile elevations increase substantially (see Table 3, which gives elevations, original and normalized, at a distance of 0.5 km from 
the ridge, which is roughly the location of the black arrow in this figure). 
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