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Abstract. Theoretical and experimental work (Furbish et al., 2021a, 2021b) indicates that the travel distances
of rarefied particle motions on rough hillslope surfaces are described by a generalized Pareto distribution. The
form of this distribution varies with the balance between gravitational heating, due to conversion of potential to
kinetic energy, and frictional cooling, due to particle-surface collisions; it varies from a bounded form associated
with rapid thermal collapse to an exponential form representing isothermal conditions to a heavy-tailed form as-
sociated with net heating of particles. The generalized Pareto distribution in this problem is a maximum entropy
distribution constrained by a fixed energetic “cost” — the total cumulative energy extracted by collisional fric-
tion per unit kinetic energy available during particle motions. That is, among all possible accessible microstates
— the many different ways to arrange a great number of particles into distance states where each arrangement
satisfies the same fixed total energetic cost — the generalized Pareto distribution represents the most probable
arrangement. Because this idea applies equally to the accessible microstates associated with net cooling, isother-
mal conditions and net heating, the fixed energetic cost provides a unifying interpretation for these distinctive
behaviors, including the abrupt transition in the form of the generalized Pareto distribution in crossing isother-
mal conditions. The analysis therefore represents a novel generalization of an energy-based constraint in using
the maximum entropy method to infer non-exponential distributions of particle motions. Moreover, the energetic
costs of individual particle motions follow an extreme-value distribution that is heavy-tailed for net cooling and
light-tailed for net heating. The relative contribution of different travel distances to the total energetic cost is re-
flected by the product of the travel distance distribution and the cost of individual particle motions — effectively
a frequency-magnitude product.

1 Introduction

In two companion papers (Furbish et al., 2021a, 2021b) we
examine a theoretical formulation of the probabilistic physics
of rarefied particle motions and deposition on rough hills-
lope surfaces. The formulation is based on a description of5

the kinetic energy balance of a cohort of particles treated as a
rarefied granular gas and a description of particle deposition
that depends on the energy state of the particles. The formu-
lation predicts a generalized Pareto distribution of particle
travel distances whose form varies with the balance between10

gravitational heating, due to conversion of potential to kinetic
energy, and frictional cooling, due to particle-surface colli-
sions. Specifically, the generalized Pareto distribution varies
from a bounded form associated with thermal collapse and
rapid deposition to an exponential form representing isother-15

mal conditions to a heavy-tailed form associated with net
heating of particles and decreased deposition. The transition
to a heavy-tailed form likely involves an increasing conver-
sion of translational to rotational kinetic energy leading to
larger travel distances with decreasing effectiveness of colli-20

sional friction. As described in Furbish et al. (2021b), these
varying forms of the generalized Pareto distribution are con-
sistent with laboratory measurements of particle travel dis-
tances reported by Gabet and Mendoza (2012) and Furbish
et al. (2021b), and with field-based measurements of travel25

distances reported by DiBiase et al. (2017) and Roth et al.
(2020).

Here we highlight a key point in Furbish et al. (2021a).
Namely, the generalized Pareto distribution is not selected
in an empirical manner based on goodness-of-fit criteria ap-30

plied to data sets. Rather, this distribution is dictated by the
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physics of the problem, just as, for example, the Boltzmann
distribution (an exponential distribution) emerges in classi-
cal statistical mechanics from consideration of the accessible
energy microstates of a gas system. In this problem the ver-35

satile form of the generalized Pareto distribution — specifi-
cally its apparent success in describing three distinctive ener-
getic behaviors of rarefied particle motions — is enigmatic.
Although the different energetic behaviors have a clear me-
chanical explanation, the transition from a bounded form to a 40

heavy-tailed form in crossing isothermal conditions is abrupt.
The basis of this transition, including the upper bound on
travel distances prior to transition, is unclear — whether it
represents a fundamental change in mechanical behavior or
is simply a mathematical curiosity of the generalized Pareto 45

distribution.
The purpose of this third companion paper therefore is to

further elaborate the probabilistic physics of particle motions
as represented by the generalized Pareto distribution. To do
this we appeal to the principle of maximum entropy as out- 50

lined in the pioneering work of Jaynes (1957a, 1957b). We
specifically demonstrate that in this problem the generalized
Pareto distribution is a maximum entropy distribution con-
strained by a fixed total energetic “cost” — the total cumu-
lative energy extracted by collisional friction per unit kinetic 55

energy available during particle motions. The relative ener-
getic cost locally increases with increasing travel distance for
net particle cooling and rapid thermal collapse, it is uniform
for isothermal conditions, and it decreases with increasing
travel distance for net particle heating. The cumulative cost 60

involves integrating the local cost over the particle travel dis-
tance, and the total cumulative cost is then obtained by sum-
ming over all particles. This fixed total cost unifies the inter-
pretation of the three energetic behaviors, where the upper
bound on travel distances prior to transition is a probabilistic 65

mechanical outcome.
As a point of reference, the canonical example of a maxi-

mum entropy distribution is the Boltzmann distribution of the
energy states of the particles composing an ordinary gas at
thermal equilibrium. Similarly, the Maxwell-Boltzmann dis- 70

tribution of particle speeds, which is derived from the Boltz-
mann distribution, is a maximum entropy distribution. Here
we are referring to the Gibbs entropy of statistical mechan-
ics. A maximum entropy distribution then is the unique dis-
tribution that maximizes the Gibbs entropy, subject to con-
straints imposed on the system. In the canonical case these5

constraints consist of a fixed number of particles and a fixed
total energy, which together guarantee a fixed average energy
equal to kBT , where kB is the Boltzmann constant and T is
temperature. Moreover, any other distribution of particle en-
ergy states satisfying these constraints would coincide with a10

lower Gibbs entropy.
Jaynes (1957a, 1957b) elaborated the significance of the

fact that the Gibbs entropy in statistical mechanics and the
Shannon entropy in information theory are essentially one
and the same, differing only by a constant. This similarity in-15

spired Jaynes to champion the use of a maximum entropy cri-
terion in choosing a probability distribution, leading to what
is now known as the maximum entropy method (aka MaxEnt
or MEM). The key idea of the maximum entropy method,
whether viewed as a method of statistical mechanics or as20

one of inferential statistics, is that it provides an unbiased
choice of a distribution by honoring only what is known me-
chanically about a system. That is, this unbiased choice is a
maximally noncommittal choice that is faithful to what we do
not know; it is therefore the most reasonable choice in the ab-25

sence of additional information (Jaynes, 1957a; Williamson,
2010, pp. 25 and 51). Importantly, mechanical constraints
imposed on the system are part of the choice of the distri-
bution, as opposed to empirical fitting without regard to such
constraints. The maximum entropy method has been applied30

in a remarkable variety of fields (Shore and Johnson, 1980;
Ramirez and Carta, 2006; Verkley and Lynch, 2009; Singh,
2011; Peterson et al., 2013), including sediment transport
(Furbish and Schmeeckle, 2013; Furbish et al., 2016).

In using the maximum entropy method, constraints im-35

posed on the system normally translate to constraints im-
posed on the moments of the distribution. In this case the
method leads to a distribution that is among the exponential
family (e.g., exponential, Gaussian). However, applications
of the maximum entropy method to non-exponential distri-40

butions, including heavy-tailed distributions, are of particu-
lar interest in many problems (Peterson et al., 2013). As de-
scribed below, applying this method to heavy-tailed distribu-
tions presents a special challenge in that the first or second
moment, or both of these moments, may be undefined for45

such distributions, including the generalized Pareto distribu-
tion (Pickands, 1975; Hosking and Wallis, 1987).

In Section 2 we provide background material, namely,
the essential elements of the formulation of Furbish et al.
(2021a) leading to the generalized Pareto distribution of par-50

ticle travel distances, and a summary of the properties and
derivation of a maximum entropy distribution. In Section 3
we describe how the energetic cost associated with colli-
sional friction is expressed as a constraint used in the maxi-
mization method. In Section 4 we show how the generalized55

Pareto distribution is obtained as a maximum entropy distri-
bution. In Section 5 we describe the probabilistic properties
and significance of the energetic cost. We consider the im-
plications of the analysis in the final section. In the fourth
companion paper (Furbish et al., 2021c) we step back and 60

examine the philosophical underpinning of the statistical me-
chanics framework for describing sediment particle motions
and transport.

2 Background

2.1 Elements of the distribution of travel distances 65

With reference to Figure 1, let x denote the particle travel
distance with probability density function fx(x). The theo-
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Figure 1. Definition diagram of surface inclined at angle θ and con-
trol volume with edge length dx through which particles move. Fig-
ure reproduced from companion paper (Furbish et al., 2021a).

retical formulation (Furbish et al., 2021a) then begins with
the particle disentrainment rate function defined by

Px(x) =
fx(x)

1−Fx(x)
=
fx(x)

Rx(x)
. (1) 70

Here,Rx(x) = 1−Fx(x) is the exceedance probability func-
tion where Fx(x) is the cumulative distribution function.
The disentrainment rate Px(x) may be interpreted as a con-
ditional probability per unit distance. Namely, upon mul-
tiplying both sides of Eq. (1) by dx, then Px(x)dx= 75

fx(x)dx/Rx(x) is interpreted as the probability that a par-
ticle will become disentrained within the small interval x to
x+dx, given that it “survived” travel to the distance x. In
turn, upon rearranging Eq. (1) and making use of the fact that
fx(x) =−dRx(x)/dx, the density fx(x) is obtained from 80

fx(x) = Px(x)e
−

∫ x
0
Px(x

′)dx′
. (2)

Thus, the significance of the disentrainment rate function be-
comes clear: it completely determines the density fx(x) via
Eq. (2). For reference below, Eq. (1) and Eq. (2) are standard
elements of survival (or reliability) analysis, without refer- 85

ence to entropy.
The particle energy balance formulated in Furbish et al.

(2021a) leads to the result that for a given particle size and
shape the disentrainment rate on an inclined surface with uni-
form slope and roughness is

Px(x) =
1

Ax+B
. (3)

Substituting Eq. (3) into Eq. (2) then leads to the generalized
Pareto distribution,5

fx(x) =
B1/A

(Ax+B)1+1/A
. (4)

where A ∈ < is a shape parameter and B > 0 is a scale pa-
rameter (Pickands, 1975; Hosking and Wallis, 1987). The cu-
mulative distribution is

Fx(x) =

{
1− B1/A

(Ax+B)1/A
A 6= 0

1− e−x/B A= 0 ,
(5)10

and the exceedance probability is

Rx(x) =

{
B1/A

(Ax+B)1/A
A 6= 0

e−x/B A= 0 .
(6)

For A< 1 the mean is

µx =
B

1−A
, (7)

and for A< 1/2 the variance is15

σ2
x =

B2

(1−A)2(1− 2A)
. (8)

The mean is undefined for A≥ 1 and the variance is unde-
fined for A≥ 1/2.

In mechanical terms the shape and scale parameters A and
B are20

A=
α

γ

[
S

µ
− 1+

1

α
(γ− 1)

]
and (9)

B =
α

γ

Ea0
mgµcosθ

. (10)

Here, S is the magnitude of the slope inclined at an an-
gle θ, m is particle mass, g is acceleration due to gravity,25

µ is a friction factor due to extraction of particle kinetic
energy Ep = (m/2)u2 where u is the surface-parallel par-
ticle velocity, Ea = 〈Ep〉 is the arithmetic average particle
energy so that Ea0 is the initial average energy at x= 0,
γ = Ea/Eh where Eh is the harmonic average particle en-30

ergy, and α= α0/(1−µ1Ki) where α0 and µ1 are factors of
order unity and Ki is the Kirkby number defined by

Ki =
S

µ
, (11)

which represents the ratio of gravitational heating to fric-
tional cooling. Here we emphasize that mg cosθ in Eq. (10) 35

is not to be interpreted as the static normal weight of the par-
ticle, and µ is not interpreted as a Coulomb-like friction co-
efficient. Rather, µ∼ 〈βx〉, where 〈βx〉 denotes the expected
proportion of particle kinetic energy extracted per particle-
surface collision during downslope motion. Details are pro- 40

vided in Furbish et al. (2021a, 2021b).
For plotting purposes we define a characteristic particle

cooling distance X = Ea0/mgµcosθ and in turn define the
following dimensionless quantities denoted by circumflexes:

45

x=Xx̂, Ea = Ea0Êa and Eh = Ea0Êh . (12)

In addition, a=A and b= (α/γ)Êa0. Then the dimension-
less form of the generalized Pareto distribution, Eq. (4), is
written as

fx̂(x̂) =
b1/a

(ax̂+ b)1+1/a
, (13) 50
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Figure 2. Plot of dimensionless probability density fx̂(x̂) versus dimensionless travel distance x̂ for scale parameter b= 1 and different
values of the shape parameter a for (a) a < 0 and (b) a≥ 0 with associated exceedance probability plots (insets). Figure reproduced from
companion paper (Furbish et al., 2021a). Compare with Figure 1 in Hosking and Wallis (1987).

For a < 0 the density fx̂(x̂) is bounded at x̂= b/|a| (Figure
2). This density increases with x̂ for a <−1, it is uniform
for a=−1, and it decreases with x for a >−1. It is triangu-
lar for a=−1/2. For a= 0 the density fx̂(x̂) is exponential.
For a > 0 this density is heavy-tailed. For a≥ 1 the mean 55

of fx̂(x̂) is undefined; and for a≥ 1/2 the variance is unde-
fined.

We note that the definition of the differential entropy given
in the next section involves the logarithm of the probability
density function. In a strict sense this is acceptable only if the 60

density is expressed in dimensionless form as in Eq. (13), or
if the definition involves a discrete probability mass func-
tion. Nonetheless, the maximization method removes this
logarithm such that the outcome is dimensionally the same
whether one starts with the dimensional form or the dimen- 65

sionless form of the density. For simplicity we use the di-
mensional form, Eq. (4). In addition, for simplicity in plot-
ting we set the scale parameter B = 1 in calculated functions
containing this parameter, and in several plots we use dimen-
sional abscissa values (e.g., distance x) without reference to 70

units, noting that these have the same visual appearance as if
plotted using dimensionless values.

Following Furbish et al. (2021b) we calculate the quanti-
ties

R∗ =RAx and x∗ =
A

B
x+1 . (14) 75

Based on Eq. (6), values of the modified exceedance prob-
ability R∗ and the dimensionless travel distance x∗ should
collapse to a straight line in a log-log plot with slope of -1
(Figure 3). The data in this figure, spanning more than three
orders of magnitude of the dimensionless travel distance x∗, 80

are compiled from Furbish et al. (2021b; Figure 16 therein).
Values of A and B are estimated from laboratory measure-
ments of particle travel distances reported by Gabet and Men-
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Figure 3. Plot of modified exceedance probability R∗ versus di-
mensionless travel distance x∗ and line with log-log slope of -1
for laboratory experiments described by Gabet and Mendoza (2012)
(green) and Furbish et al. (2021b) (red) and field-based experiments
described by DiBiase et al. (2017) (blue) and Roth et al. (2020)
(black). Data for A< 0 fall to left of x∗ = 100 = 1 with values in
the tails represented by smaller values of x∗. Data for A> 0 fall
to the right of x∗ = 100 = 1 with values in the tails represented by
larger values of x∗. Total data number is N = 5671.

doza (2012) and Furbish et al. (2021b), and from field-based
measurements of travel distances reported by DiBiase et al.
(2017) and Roth et al. (2020). This plot does not prove, but5

nonetheless supports, the idea that the generalized Pareto dis-
tribution correctly describes the energetics of the behavior
of rarefied particle motions for a variety of slope and sur-
face roughness conditions. The data fits for individual exper-
iments with detailed explanation are presented in Furbish et 10

al. (2021b).
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2.2 Maximum entropy distribution

If x denotes a continuous random variable with probability
density fx(x) over x= [0,∞), then the differential entropy
of x is defined as 15

H(x) =−
∞∫
0

fx(x) lnfx(x)dx, (15)

where it is understood that fx(x) lnfx(x) = 0 when fx(x) =
0. Given the lineage of this definition, hereafter we follow
Peterson et al. (2013) and refer to it as the Boltzmann-Gibbs-
Shannon (BGS) entropy. In turn, let gj(x) denote a measur- 20

able quantity of xwith j = 0,1,2, . . . ,n. We then assume that

E[gj(x)] =

∞∫
0

gj(x)fx(x)dx= aj , (16)

with finite aj , where E[ ] denotes the expectation. For exam-
ple, if g0(x) = g0 = 1, then Eq. (16) gives a0 = 1. That is, 25

the density fx(x) integrates to unity. If g1(x) = x, then Eq.
(16) gives the mean of the distribution, a1 = µx. If g2(x) =
(x−µx)2, then Eq. (16) gives the variance, a2 = σ2

x. Note,
however, that gj(x) need not be selected just to obtain the
usual moments of a distribution. Indeed, Eq. (16) may repre- 30

sent a constraint imposed by a function gj(x) that does not
coincide with a moment of fx(x). As described below, this
is essential for heavy-tailed distributions whose first or sec-
ond moment, or both of these moments, are undefined. The
maximum entropy distribution is then given by

fx(x) = exp

 n∑
j=0

λjgj(x)

 , (17)

where λ0,λ1,λ2, ... are Lagrange multipliers introduced in
the problem of maximizing the entropy H(x) (Appendix
A). Moreover, as above we set g0(x) = g0 = 1 with a0 = 1,5

which guarantees that the probability density fx(x) inte-
grates to unity.

As a point of reference, a fixed mean with g1(x) = x and
no other constraint leads to the result

fx(x) = eλ0eλ1x . (18)10

The Lagrange multipliers are then obtained as follows. By
the definition of a probability density,

eλ0

∞∫
0

eλ1xdx= 1 , (19)

which leads to eλ0 =−λ1. Alternatively, Eq. (18) sometimes
is presented as (e.g., Tolman, 1938; Schrödinger, 1946; Fur-15

bish and Schmeeckle, 2013)

fx(x) =
eλ1x∫∞

0
eλ1xdx

, (20)

where it becomes clear that eλ0 is a normalization factor that
ensures the probability density integrates to unity. In turn, by
the definition of the mean,20

−λ1

∞∫
0

xeλ1x = µx , (21)

which leads to λ1 =−1/µx and the exponential distribution,

fx(x) =
1

µx
e−x/µx , (22)

where it becomes clear that the Lagrange multiplier λ1 en-25

forces the constraint of a fixed mean. The Gaussian distribu-
tion is similarly obtained as the maximum entropy distribu-
tion with the constraint imposed by a fixed second moment
(variance).

The canonical example of the Boltzmann distribution of30

particle energy states is obtained in this manner as a maxi-
mum entropy distribution, where the mean is independently
determined to be kBT (e.g., Schrödinger, 1946). The im-
posed constraints consist of extensive quantities that scale
with system size: a fixed number of particles and a fixed total35

energy, which together guarantee a fixed mean energy. In a
similar manner, Furbish and Schmeeckle (2013) and Furbish
et al. (2016) derive an exponential distribution for the stream-
wise velocity states of particles transported as bed load, with
the mechanical constraint imposed by a fixed total particle 40

momentum under equilibrium transport conditions.
Our next task is to adapt these ideas to the generalized

Pareto distribution, which is not among the exponential fam-
ily of distributions. We note that there is a continuing effort
given to this topic, notably in relation to heavy-tailed (non- 45

exponential) distributions. Peterson et al. (2013) summarize
the basis of these efforts, and note that one approach for in-
ferring non-exponential distributions is to appeal to nontra-
ditional definitions of the entropy, for example, the Tsallis
entropy (Tsallis, 1988), rather than the canonical BGS en- 50

tropy. The procedure is the same: to maximize the defined
entropy subject to an extensive constraint that scales with the
system size. Here, however, we adopt the view of Peterson et
al. (2013), who highlight the conclusions of Shore and John-
son (1980). Namely, because the BGS definition of entropy 55

uniquely ensures addition and multiplication rules of prob-
ability, any other definition of entropy yields a bias in the
fitting of data. Peterson et al. (2013) suggest that this offers a
“compelling first-principles basis for defining a proper vari-
ational principle for modeling distribution functions.” Like 60

these authors in their analysis of the energetics associated
with the economics of scale, we retain the BGS definition of
entropy and seek a non-extensive energy constraint aligned
with the mechanics of the rarefied particle motion problem.
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3 Energetic cost as a maximizing constraint 65

In the canonical example of the Boltzmann distribution, the
particle energy state is an instantaneous quantity. Similarly,
in the example of bed load particle velocities (Furbish and
Schmeeckle, 2013; Furbish et al., 2016), the velocity state
is an instantaneous quantity. The state of a particle changes 70

from one instant to the next, and this state can be reached
from smaller or larger state values. In these cases, the to-
tal particle energy and the total streamwise momentum are
well-defined extensive quantities such that the moments of
the distributions are fixed. In the absence of additional infor- 75

mation, the maximum entropy distribution must be among
the exponential family.

In contrast to instantaneous quantities, the particle travel
distance x is an integrated quantity that reflects a dynami-
cal particle history starting from the state x= 0. The state 80

x must be reached from smaller (unrecorded) state values; it
cannot be reached from larger state values. Moreover, travel
distances are not like an extensive quantity that scales lin-
early with the system size. Nonetheless, particle motions re-
quire a source of energy and dissipation of energy. Following 85

Peterson et al. (2013) we assume that the outcome of motions
— the travel distances x — can be represented in terms of an
energetic cost that probabilistically constrains the organiza-
tion of a great number of particles into accessible states x.

The disentrainment rate Px(x) has special significance in
defining the energetic cost. In particular, this rate determines
the energetic cost associated with reaching the state x. We
start by using Eq. (10) to rewrite Eq. (3) as

Px(x) =
1

B+Ax
=

(γ/α)mgµcosθ

Ea0
(
1+ A

Bx
) . (23)5

The denominator in Eq. (23) describes how the average par-
ticle energy Ea(x) varies with x, whether this involves net
cooling (A< 0), isothermal conditions (A= 0) or net heat-
ing (A> 0). The quantity mgµcosθ in the numerator is the
expected spatial rate at which energy is extracted by colli-10

sional friction, modulated by the factor γ/α. Thus, the dis-
entrainment rate represents the local relative energetic cost
— the spatial rate at which particle energy is extracted per
unit kinetic energy available during motion at position x.

In turn, the relative energy extracted within a small interval15

dx is Px(x)dx so the cumulative energy extracted per unit
kinetic energy available is

w(x) =

x∫
0

Px(x
′)dx′ . (24)

This is the cumulative energetic cost in reaching position x.
For isothermal conditions (A= 0) the cumulative cost is20

w(x) =
1

B
x. (25)

For non-isothermal conditions (A 6= 0) the cumulative cost is

w(x) =
1

A
ln

(
A

B
x+1

)
. (26)

These two expressions for w(x) converge at small x (Figure25

4). Relative to the linear cumulative cost of isothermal condi-

10-2 10-1 100 101
10-2

10-1

100

101

Figure 4. Plot of cumulative energetic cost w(x) versus distance x
for several values of the shape parameterA representing net cooling
(A< 0, blue), isothermal conditions (A= 0, black) and net heating
(A> 0, red).

tions, Eq. (25), the cumulative cost with net cooling (A< 0)
increases more rapidly up to the limiting distance given by
x=B/|A|, and the cumulative cost with net heating (A> 0)
increases more slowly with increasing distance x.30

Consider first the isothermal case to illustrate the signifi-
cance of the cost w(x). This cost increases linearly with the
distance x. LetN denote a great number of particles. Among
all accessible microstates — the many ways of arranging N
particles into states x where each arrangement has a fixed to-35

tal cost — most microstates involve particles with small state
values and fewer with large state values. As shown below,
this constraint leads to an exponential distribution. Note that
Furbish and Schmeeckle (2013) provide a detailed descrip-
tion of the analysis leading to this outcome, including the40

basis for counting microstates (see Figure 3 and Appendix B
therein), as applied to particle momentum states rather than
travel distance states x. Nonetheless the analysis is other-
wise conceptually identical. Tolman (1938) and Schrödinger
(1946) provide clear descriptions of the canonical problem 45

(in particular see Chapter II, “The Method of the Most Prob-
able Distribution,” in Schrödinger’s text).

With non-isothermal conditions and net heating, it is eas-
ier to achieve larger state values than with isothermal condi-
tions. Among all accessible microstates, an increasing pro- 50

portion will have particles in larger states than would be pre-
dicted with a uniform cost rate. In contrast, with net cooling a
smaller proportion of microstates will have particles in large
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states xwith an increasing relative cost to achieve these large
states. Indeed, there is a limit on available energy to be spent 55

in frictional cooling such that the relative cost goes to infinity
at x=B/|A|. As shown below, these constraints lead to the
generalized Pareto distribution.

The energetic cost w(x) is a natural choice for constrain-
ing the maximization method. As described in Section 6 60

(Discussion and conclusions), this choice is identical in form
to the language of “cost” in the economics of scale (Peterson
et al., 2013) leading to non-exponential (heavy-tailed) distri-
butions of state values. We use these ideas next in deriving
the maximum entropy distribution. 65

4 Generalized Pareto distribution

4.1 Constraints

Focusing on the generalized Pareto distribution, as above we
start with the constraint given by g0(x) = g0 = 1, namely,

E[g0(x)] =

∞∫
0

fx(x)dx= 1 . (27) 70

A second, strong mechanical constraint is provided by as-
suming that the total cumulative energetic cost associated
with collisional friction is fixed. Starting with Eq. (24),

g1(x) =

x∫
0

Px(x
′)dx′ = w(x) , (28)

which is the cumulative energy extracted by friction per unit
kinetic energy available in reaching position x. Then,

E[g1(x)] =

∞∫
0

x∫
0

Px(x
′)fx(x)dx

′dx= µw , (29)5

which is the average cumulative cost.
Starting with isothermal conditions (A= 0), the disen-

trainment rate Px(x) = Px = 1/B. This gives

E[g1(x)] =
1

B

∞∫
0

xfx(x)dx= µw =
µx
B
, (30)

which shows that the expected cumulative relative cost is10

unity with µx =B. This is nominally the same as saying that
the expected absolute cost is equal to the initial available en-
ergy Ea0. More generally with Px(x) = 1/(Ax+B),

E[g1(x)] =
1

A

∞∫
0

ln

(
A

B
x+1

)
fx(x)dx= µw . (31)

We use these two results in the maximization of entropy.15

4.2 Maximization

For isothermal conditions, using Eq. (27) and Eq. (30) maxi-
mization leads to (Appendix A)

lnfx(x)−λ0−λ1
1

B
x= 0 or (32)

20

fx(x) = eλ0eλ1x/B . (33)

With eλ0 =−λ1/B and λ1 =−1 this becomes the exponen-
tial distribution,

fx(x) =
1

B
e−x/B , (34)

with B = µx.25

More generally, using Eq. (27) and Eq. (31) maximization
leads to (Appendix A)

lnfx(x)−λ0−λ1
1

A
ln

(
A

B
x+1

)
= 0 or (35)

fx(x) = eλ0e(λ1/A) ln(Ax/B+1)
30

= eλ0

(
A

B
x+1

)λ1/A

. (36)

With eλ0 =−(A+λ1)/B and λ1 =−(A+1) this becomes
the generalized Pareto distribution given by Eq. (4), thus
showing that this distribution is a maximum entropy distri- 35

bution.

5 Properties of the energetic cost

5.1 Cumulative energetic cost

Because of the importance of the energetic cost as a con-
straint in the maximum entropy method, here we examine 40

the properties of this cost. The cumulative energetic cost w
is a monotonic function of the travel distance x according to
Eq. (25) and Eq. (26), so we can readily deduce (Appendix
B) the probability density function fw(w) of the cost w. For
isothermal conditions (A= 0) this density is 45

fw(w) = e−w , (37)

with mean µw = 1. The cumulative distribution is

Fw(w) = 1− e−w . (38)

For non-isothermal conditions (A 6= 0) the density is

fw(w) = e1/AeAwe−(1/A)eAw

, (39) 50
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which has attributes of an extreme value distribution. The
mean is

µw =−e
1/A

A
Ei

(
− 1

A

)
, (40)

where Ei denotes the exponential integral. The cumulative
distribution is 55

Fw(w) = 1− e1/Ae−(1/A)eAw

. (41)

Note that these functions depend on the shape parameter A
but not on the scale parameter B.

Whereas the generalized Pareto distribution of travel dis-
tances x for net cooling (A< 0) is bounded at x=B/|A| 60

(Figure 2), the probability density fw(w) of energetic costsw
is unbounded (Figure 5). For isothermal conditions (A= 0)
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Figure 5. Plot of probability density fw(w) of energetic cost w for
different values of the shape parameterA, with semi-log plot (inset)
showing heavy-tailed form (A< 0, blue) and light-tailed form (A>
0, red).

the cost w is linearly related to the travel distance x so the
distribution fw(w) has the same exponential form as fx(x).
With net cooling (A< 0) the distribution fw(w) is heavy- 65

tailed and with neat heating (A> 0) it is light-tailed. With
cooling the energetic cost w increases with distance x up
to x=B/|A| so probability is shifted to larger values of w.
With heating the energetic cost decreases with distance x so
probability is shifted to lower values of w with increasing A. 70

Over the domain−1≤A≤ 1 the average cost µw has a max-
imum at an intermediate value of A≈−0.33 (Figure 6). For
conditions to the left of the maximum the relative costs of
motions are large but the travel distances are small. For con-
ditions to the right of the maximum the travel distances are 75

larger but with smaller relative costs. For conditions of net
heating (A> 0) the travel distances increase but the relative
costs decrease.

-1 -0.5 0 0.5 1
0.5

1

1.5

Figure 6. Plot of mean energetic cost µw versus shape parameter
A, showing maximum value at A≈−0.33.

The total cumulative cost W (w) up to the value w is

W (w) =

w∫
0

w′fw(w
′)dw′ . (42)5

Alternatively, the total cumulative cost up to the distance x is

W (x) =

x∫
0

w(x′)fx(x
′)dx′ . (43)

Expressions for Eq. (42) and Eq. (43) are provided in Ap-
pendix B and show how the total costs W (w) and W (x)10

grow with increasing w and x to a finite value. Consider
here the product W∗(x) = w(x)fx(x) = dW (x)/dx, which
is the total cost per unit travel distance. This function is like a
frequency-magnitude product and reflects the relative contri-
bution to the total cost of different parts of the travel distance 15

domain (Figure 7). For net cooling (A< 0) and large nega-
tiveA the total cost is dominated by the high individual costs
of the largest travel distances near the upper bound given by
x=B/|A|. With increasingA the cost becomes more evenly
distributed. At isothermal conditions (A= 0) the total cost is 20

dominated by travel distances near the mean distance. For
net heating the total cost is dominated by the relatively large
individual costs and proportions of small travel distances, al-
though the contribution of large travel distances grows with
increasing A. 25

5.2 Frictional loss to heat

The energetic cost outlined above pertains to the conversion
of translational kinetic energy into other forms, including ro-
tational energy, surface deformation and heat — all under the
heading of collisional friction. This cost, however, is not the 30

same as the total energy conversion to heat.
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Figure 7. Plot of the total cost per unit travel distanceW∗(x) versus
travel distance x for different values of the shape parameter A rep-
resenting net cooling (A< 0, blue), isothermal conditions (A= 0,
black) and net heating (A> 0, red).

Consider the total energy extracted by friction and ulti-
mately converted to heat. Note first that the quantity mg sinθ
at first glance normally is interpreted as the downslope com-
ponent of the weight of a particle (or control volume) with 35

massm. In energetic terms, however, this quantity is to be in-
terpreted as the accessible gravitational potential energy per
unit downslope travel distance (Furbish et al., 2021a). For an
individual particle traveling a distance x the heat generated
is 40

qp(x) = Ep0 +mg sinθx. (44)

Taking the ensemble average of Eq. (44) and using Eq. (7),

µqp = Ea0 +mg sinθ
B

1−A
A< 1 . (45)

The total heat generated by N particles is then Nµqp . As a
fun point of reference, 100 particles, each with a diameter of
0.1 m and an average starting velocity of 1 m s−1 traveling5

an average distance of 10 m down a 30 degree slope, produce
about 0.32 J of heat — the equivalent of an ordinary 100 W
light bulb turned on for 0.0032 s. On the other hand, for a
million similar particles traveling an average of 100 m down
a 45 degree slope, we must leave the light bulb on for nearly10

eight minutes.
This result offers an example of how application of the

maximum entropy method can be misleading. Namely, sup-
pose we assume that a total fixed quantity of heat generated
by particle motions, because this is an energetic “cost,” pro-15

vides a constraint on the maximization procedure. In this
situation, and with no further constraints, the maximum en-
tropy method leads to an exponential distribution fqp(qp) of
heat states qp with mean µqp = Ea0 +mg sinθµx. Because
qp and x are linearly related, then using Eq. (B1) (Appendix20

B) the distribution fx(x) of travel distances x would be ex-
ponential. Note that at this point, however, the mean travel
distance µx is not well constrained, as no mechanical in-
formation is provided for how particles achieve the distance
states x. Whereas the choice of an exponential distribution25

for fqp(qp) is a maximally unbiased choice, it almost cer-
tainly is incorrect. We comment further on this type of naïve
use of the maximum entropy method below.

6 Discussion and conclusions

Let us acknowledge that a distribution identified as a maxi-30

mum entropy distribution based on empirically constraining
one or more of its moments is not necessarily a special out-
come. For example, we frequently fit data to exponential and
Gaussian distributions based on estimates of the mean and
variance of these distributions — assuming these moments35

exist and are finite — without reference to maximum entropy.
In other words, asserting that a random variable possesses
a finite expected value (mean or variance) and then using
this assertion to choose the distribution based on the maxi-
mum entropy method has no meaningful mechanical signif-40

icance if the mechanical basis of the constraint is not spec-
ified. In this situation a maximum entropy criterion is just
one among numerous inferential methods — albeit with the
decided merit of being maximally indifferent in the choos-
ing of the distribution. Only when the constraining moment45

has independent mechanical meaning, and in the absence of
additional information, does the label of maximum entropy
carry mechanical significance. The example of heat states qp
described in Section 5.2 illustrates this point.

For example, Furbish et al. (2016) suggest:50

“In focusing on the mechanical side of the duality
of Jaynes’s principle [of maximum entropy], it be-
comes important to distinguish between a “strong”
mechanical constraint, a “weak” mechanical con-
straint, and an empirical constraint, as these in- 55

form confidence in the resulting choice of a dis-
tribution... A strong mechanical constraint is one
that derives directly from a dynamics argument...
A weak constraint is one that derives from a me-
chanical definition, for example, an appeal to mass 60

conservation... An empirical constraint is one that
appeals to our confidence in suggesting a general
behavior from experiments or dimensional analy-
sis but lacks a clear dynamics underpinning.”

For rarefied bed load particles transported under equilibrium 65

conditions, Furbish et al. (2016) show that the condition of
fixed total particle momentum provides a strong mechani-
cal constraint. In this situation the maximum entropy method
predicts an exponential distribution of particle velocities in
the absence of any additional mechanical information — 70

consistent with measurements of particle velocities based on
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high-speed imaging (e.g., Lajeunesse et al., 2010; Roseberry
et al., 2012; Furbish and Schmeeckle, 2013; Fathel et al.,
2015; Wei et al. 2015). We suggest that the total cumulative
energetic cost used herein to constrain the maximum entropy 75

method similarly represents a strong mechanical constraint.
As a point of reference, the analysis presented herein is

akin to the energetics associated with the economics of scale
as examined by Peterson et al. (2013). To illustrate this idea
we start with a binomial expansion of the disentrainment rate, 80

Eq. (3), to give

Px(x) =
1

B

(
1− A

B
x+ ...

)
. (46)

Momentarily focusing on the leading and first-order terms
for illustration, Eq. (46) has the same form as the “commu-
nal cost-minus-benefit function” proposed by Peterson et al. 85

(2013, Eg. (5) therein; Appendix C). Using the language of
economic costs, here the state xmay be interpreted as the size
of a community, for example, “particles forming colloidal
clusters, or social processes such as people joining cities, ci-
tations added to papers, or link creation in a social network” 90

(Peterson et al., 2013, p. 20381). The leading term in Eq.
(46) may be interpreted as an intrinsic cost for an individual
to achieve (“join”) the state x. For A> 0 the first-order term
represents a “discount” provided by the community of size
x. For A< 0 the first-order term represents a “penalty” im- 95

posed by the community. If the cost is independent of size
(A= 0), then the cost rate is fixed (Px = 1/B) and the max-
imum entropy method leads to an exponential distribution of
states x. If the cost is shared with increasing size (A> 0),
then the cost of joining the state x decreases with increasing 100

size. This means that larger sizes (states) are more likely to
occur than if a discount is not provided, leading to a heavy-
tailed distribution of states x. Conversely, if joining a state
x involves a penalty (A< 0), then exclusion with increasing
size occurs, leading to a light-tailed or bounded distribution
of states x. In this analysis the idea of cost is fundamentally
energetic, whether involving free energy for colloid particles,5

or the energy consumed by individuals in joining some form
of social construct.

When rearranged, the “cost-minus-benefit” function pro-
posed by Peterson et al. (2013) yields a cost function (Ap-
pendix C) whose form is identical to that of the disentrain-10

ment rate, Eq. (3). In the economics of scale problem the
costs are nominally absolute energetic costs. In the problem
of rarefied particle motions the cost function (i.e., the dis-
entrainment rate) represents the local relative energetic cost.
Nonetheless, the formalism involving a fixed total cumula-15

tive cost is essentially the same. With net particle heating it
becomes easier for particles to achieve larger states x relative
to a fixed local energetic cost, analogous to effects of a dis-
count in the economics of scale. With net cooling this effect
is reversed, where the local relative energetic cost increases20

with the state x. The key mathematical construct of the dis-

entrainment rate, Eq. (3), is that the state x appears in the
denominator of this cost function.

In this problem the maximum entropy method in ef-
fect considers all possible accessible microstates — the25

many different ways to arrange a great number of particles
into distance states x where each arrangement satisfies the
same fixed total energetic cost. (Figure 3 in Furbish and
Schmeeckle (2013) illustrates this idea.) Then, the general-
ized Pareto distribution uniquely represents the most prob-30

able arrangement. This idea equally applies to the accessi-
ble microstates associated with net cooling, isothermal con-
ditions and net heating. To elaborate this point, consider the
upper bound on travel distances, x=B/|A|, under condi-
tions of net cooling. This is the distance at which, according35

to Eq. (23), the expected available kinetic energy goes to zero
such that the disentrainment rate Px(x) becomes unbounded.
From this perspective, the conditional probability Px(x)dx
that motions cease within a small interval dx approaches
unity as x→B/|A|. However, this is not to be interpreted40

as a “hard” boundary determined by mechanical behavior.
Rather, according to Eq. (26) the cumulative energetic cost
becomes unbounded at the distance x→B/|A|. For a small
upper bound x=B/|A| the total energetic cost involves con-
tributions from all particle motions but is dominated by the45

large individual costs of the largest travel distances near this
upper bound (Figure 7). From this perspective, the bounded
form of the distribution is just the most probable among all
possible arrangements satisfying the constraint of a fixed to-
tal cost, in this case dominated by the individual costs of the50

largest travel distances. A similar conclusion pertain to the
bounded form of the distribution as contributions of individ-
ual motions to the total cost become more broadly distributed
with increasing A (Figure 7). In turn, no matter how large
the upper bound x=B/|A| becomes as |A| approaches zero,55

this upper bound nonetheless remains finite. The generalized
Pareto distribution then “flips” to an exponential form with
unbounded distance states only in the limit of A→ 0−. In
approaching this limit, the basic physics of particle motions
does not change. Similarly, in approaching this limitA→ 0+ 60

from the heavy-tailed form of the generalized Pareto distri-
bution, no changes in physics occur. That is, the essence of
the balance between gravitational heating and frictional cool-
ing by particle-surface collisions remains the same; there is
nothing special or unusual about particle-surface interactions 65

associated with crossing the isothermal transition. Thus, the
most probable arrangement of distance states x is in each
case — net cooling, isothermal conditions and net heating —
a reflection of the unifying probabilistic outcome associated
with a fixed total energetic cost. 70

Here we return to Eq. (2), the standard formulation of the
probability density fx(x) presented in survival analysis,

fx(x) = Px(x)e
−

∫ x
0
Px(x

′)dx′
, (47)
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and compare this with the entropy maximization criterion
given by 75

fx(x) = eλ0eλ1

∫ x
0
Px(x

′)dx′
. (48)

Assuming the Lagrange multiplier λ1 =−(A+1), then Eq.
(48) becomes

fx(x) = eλ0e−A
∫ x
0
Px(x

′)dx′
e−

∫ x
0
Px(x

′)dx′
, (49)

which has the form of Eq. (47) with 80

Px(x) = eλ0e−A
∫ x
0
Px(x

′)dx′
. (50)

Substituting eλ0 = 1/B and Px(x) = 1/(Ax+B) into Eq.
(49) and evaluating the integrals confirms that the general-
ized Pareto distribution is retrieved.

We now have the interesting result that, for this problem, 85

determining the distribution fx(x) according to Eq. (47) is
the same as obtaining this distribution using a maximum en-
tropy criterion. This occurs because the disentrainment rate
Px(x) represents an energetic cost to particles reaching states
x. Then, inasmuch as the total energetic cost probabilistically 90

constrains the organization of a great number of particles into
accessible states consistent with the maximization method,
the resulting distribution must be a maximum entropy dis-
tribution. If instead the disentrainment rate function Px(x)
is heuristically proposed or empirically fitted to data without 95

reference to constraints imposed on the system, then the dis-
tribution obtained from Eq. (47) will be consistent with the
disentrainment rate function, but this does not guarantee that
the distribution is a maximum entropy choice.

The analysis presented here represents an unusual situa- 100

tion. Namely, the generalized Pareto distribution of travel
distances and its parametric values are known a priori, and
this distribution is then shown to be a maximum entropy dis-
tribution consistent with the constraint imposed by a fixed
energetic cost. In contrast, normally the distribution is not
known and the maximum entropy method is used to choose
the distribution in an unbiased manner based on known con-
straints — as exemplified by the Boltzmann distribution. As
emphasized by many, starting with Jaynes (1957a), the max-5

imum entropy method represents a compelling strategy for
choosing a distribution. Nonetheless, it is important to high-
light the fact that a distribution thus chosen is not necessarily
the “correct” distribution (Furbish et al., 2016). Rather, a dis-
tribution derived from a maximum entropy criterion is unbi-10

ased in that it is faithful to what is known mechanically, but
no more; it is the most reasonable choice in the absence of
additional information. In this sense the maximum entropy
method is a formal application of Occam’s razor — an ex-
planation involving the fewest possible assumptions. Thus,15

the value of showing that the generalized Pareto distribution
is a maximum entropy distribution is this: the analysis repre-
sents a novel generalization of an energy-based constraint in
using the maximum entropy method to infer non-exponential

distributions — to include the versatile properties (forms) of20

the generalized Pareto distribution as applied to the rarefied
particle motion problem. Importantly, the analysis uses the
BGS definition of entropy rather than a nontraditional defini-
tion. We suggest that this result offers promise for examining
particle motions in other systems, including particles trans-25

ported as bed load, where insights involving particle energet-
ics might become useful as we learn more about the physics
involved.

Data availability. The data plotted in Figure 3 are available from
sources described in Furbish et al. (2021b).30

Appendix A: Maximization

The maximization method involves the calculus of variations
(Cover and Thomas, 1991), of which a version closer to the
original analysis of Boltzmann is presented in Furbish and
Schmeeckle (2013) and Furbish et al. (2016). Using the BGS35

definition of entropy given by Eq. (15) together with the con-
straints g0(x) = g0 = 1 and g1(x) given by Eq. (29) we form
the following objective function:

J [fx(x)] =

∞∫
0

fx(x) lnfx(x)dx−λ∗0

 ∞∫
0

fx(x)dx− 1


40

−λ1

 ∞∫
0

x∫
0

Px(x
′)fx(x)dx

′dx−µw

 , (A1)

with Lagrange multipliers λ∗0 and λ1. Taking the functional
derivative of Eq. (A1) with respect to fx(x) and setting the
result to zero then leads to

lnfx(x)−λ0−λ1

x∫
0

Px(x
′)dx′ = 0 , (A2) 45

with λ0 = λ∗0− 1. This yields

fx(x) = eλ0eλ1

∫ x
0
Px(x

′)dx′
. (A3)

For isothermal conditions with Px(x) = Px = 1/B, Eq.
(A3) becomes

fx(x) = eλ0eλ1x/B . (A4) 50

With µx =B, evaluating the Lagrange multipliers gives
eλ0 =−λ1/B and λ1 =−1 leading to Eq. (34) in the text.
For non-isothermal conditions with Px(x) = 1/(Ax+B),
Eq. (A3) becomes

fx(x) = eλ0

(
A

B
x+1

)λ1/A

. (A5) 55

With µx =B/(1−A), evaluating the Lagrange multipliers
using l’Hôpital’s rule gives eλ0 =−(A+λ1)/B and λ1 =
−(A+1) leading to Eq. (4) in the text.
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Appendix B: Total cumulative cost

Let x denote a random variable with probability density 60

fx(x). If a random variable w is a monotonic function of
x, namely w = g(x), then the probability density fw(w) of
w is given by

fw(w) =

∣∣∣∣ d

dw

[
g−1(w)

]∣∣∣∣fx[g−1(w)] . (B1)

For isothermal conditions (A= 0) the cumulative cost 65

w(x) is,

w(x) =
1

B
x, (B2)

so g−1(w) = x=Bw. Then dg−1(x)/dw =B and the prob-
ability density is

fw(w) =B
1

B
e−Bw/B = e−w . (B3) 70

The cumulative distribution is

Fw(w) = 1− e−w . (B4)

The mean of this distribution is

µw =

∞∫
0

we−w dw = 1 . (B5)

For non-isothermal conditions (A 6= 0),

w(x) =
1

A
ln

(
A

B
x+1

)
, (B6)

so g−1 = x= (B/A)(eAw−1). Then dg−1(x)/dw =BeAw

and

fw(w) =BeAw
1

B
e−(B/A)(eAw−1)/B

5

= e1/AeAwe−(1/A)eAw

. (B7)

The cumulative distribution is

Fw(w) = 1− e1/Ae−(1/A)eAw

. (B8)

Noting that for A< 0 the limit of Eq. (B6) as x→−B/A is10

w→∞ and for A> 0 the limit as x→∞ is w→∞, then
the mean of the distribution is

µw = e1/A
∞∫
0

weAwe−(1/A)eAw

dw

=−e
1/A

A
Ei

(
− 1

A

)
, (B9)15

where Ei denotes the exponential integral.
The total cumulative cost W (w) up to the value w is

W (w) =

w∫
0

w′fw(w
′)dw′ . (B10)

For isothermal conditions,

W (w) =

w∫
0

w′e−w
′
dw′ = 1− (1+w)e−w . (B11)20

For non-isothermal conditions,

W (w) = e1/A
w∫
0

w′eAw
′
e−(1/A)eAw′

dw′

=
e1/A

A

[
Ei

(
− 1

A
eAw

)
−Awe−(1/A)eAw

]
25

−e
1/A

A
Ei

(
− 1

A

)
. (B12)

The total cumulative cost W (x) up to the distance x is

W (x) =

x∫
0

w(x′)fx(x
′)dx′ . (B13)

For isothermal conditions,

W (x) =
1

B

x∫
0

1

B
x′e−x

′/B dx′ 30

= 1− (1+x/B)e−x/B . (B14)

For non-isothermal conditions,

W (x) =
1

A

x∫
0

ln

(
A

B
x′+1

)
B1/A

(Ax′+B)1+1/A
dx′

35

= 1−
[
1

A
ln

(
A

B
x+1

)
+1

]
B1/A

(Ax+B)1/A
. (B15)

The total cumulative cost W (x) systematically increases
with increasing travel distance x (Figure B1).

Appendix C: Cost-minus-benefit function of Peterson
et al. (2013) 40

Peterson et al. (2013) focus on discrete systems where the
state x→ k = 1,2,3, . . . denotes a community size. Their
cost-minus-benefit function has the form

αk = α0−
αk
k0
k . (C1)

Here, 45
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Figure B1. Plot of total cumulative cost W (x) versus travel dis-
tance x for different values of the shape parameter A representing
net cooling (A< 0, blue), isothermal conditions (A= 0, black) and
net heating (A> 0, red).

“the quantity on the left side of Eq. (C1) is the to-
tal cost-minus-benefit when a particle joins a k-
mer community. The joining cost has two com-
ponents, expressed on the right side: each joining
event has an intrinsic cost α0 that must be paid,
and each joining event involves some discount that
is provided by the community. Because there are k
members of the existing community, the quantity
αk/k0 is the discount given to a joiner by each ex-5

isting community particle, where k0 is a problem-
specific parameter that characterizes how much of
the joining cost burden is shouldered by each mem-
ber of the community.”

Rearranging Eq. (C1) then gives10

αk =
α0k0
k0 + k

, (C2)

which is analogous to the disentrainment rate function Px(x)
given by Eq. (3). The key similarity between Eq. (C1) and
Eq. (3) is that k and x are in the denominators of these cost
functions.15
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