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Abstract. Earthquake-triggered landslides can pose serious threats to mountain communities by remobilizing and providing 

loose materials for debris flows in post-seismic years. However, how long co-seismic landslides recover remains elusive due 10 

to limited observations. Using vegetation dynamics, we studied surface recovery of co-seismic landslides induced by the 2008 

Wenchuan earthquake from May 2008 to July 2019 for over 20,000 km2. Landsat derived vegetation recovery on all co-seismic 

landslides has been assessed based on the Google Earth Engine, a cloud-based computing platform.  We found most co-seismic 

landslides have been recovering after the earthquake but the spatial pattern is heterogeneous. The epicentre region with low 

elevations along the bottom of the Min River valley has the best landslide recovery, whereas many landslides on the high 15 

Longmen Mountain are poorly recovered ten years after the earthquake. These unrecovered hillslopes and gullies together with 

widespread loose debris indicate that surface processes on high mountains may still active and may provide source materials 

for debris flows, threatening communities at low elevations. To decipher possible mechanisms, we further analysed the 

relations between landslide recovery and twelve influencing factors, including slope, pre-seismic vegetation condition, 

landslide depth, landslide area, elevation, ground peak acceleration of the earthquake, aspect, slope curvatures, topographic 20 

positions, mean annual precipitation, ground cohesion strength and vegetation types. We found elevation, topographic position 

and pre-seismic vegetation condition are the most important factors that influence landslide recovery over all others. This work 

also demonstrates the efficiency of the Google Earth Engine for continuously monitoring landslide dynamics over large areas. 

1 Introduction 

Large earthquakes trigger thousands of hundreds of co-seismic landslides (Xu et al., 2014), denude vast area of vegetation 25 

(Cui et al., 2012), leave widespread unstable hillslopes, and have long-term impacts on landscape evolutions (Keefer, 1994; 

Parker et al., 2011, Yang and Qi, 2017). After major earthquakes, co-seismic landslides are widely distributed (Xu et al., 2014) 

and erosion from landslide surface can be massive (Sidle et al., 2011). Vegetation recovery on landslides plays a positive role 

on post-seismic slope stability and can be used to indicate regional slope stability after major earthquakes (Chen et al., 2020; 

Li et al., 2016; Yang et al., 2018a). How long will the scars of a major earthquake persist not only influence post-seismic 30 
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socioeconomic recovery (Huang and Fan, 2013) but also effects post-seismic regional erosion and orogenic mass balance 

(Marc et al., 2016; Parker et al., 2011). 

Earthquake-triggered landslides commonly spread large spatial areas and investigations of landslides surface recovery at 

regional scale have been carried out by jointly using optical remote sensing images and field reconnaissance (Keefer, 2002; 

Xu et al., 2014). Vegetation changes in remote sensing images are major features for landslide monitoring (Khan et al., 2013; 35 

Li et al., 2016; Lin et al., 2008; Mondini et al., 2011; Saba et al., 2010; Stumpf and Kerle, 2011). The 2008 Wenchuan 

earthquake triggered ~190,000 co-seismic landslides (Xu et al., 2014). After the earthquake, changes of landslide surfaces 

have been intensively studied at a few local areas. For example, in the epicentre area, the total area of landslides has been 

found decreasing linearly in the first five to eight years (Fan et al., 2018; Tang et al., 2016; Yang et al., 2017; Zhang et al., 

2014; Chen, 2020). The situation is similar in the lower Mianyuanhe watershed (Li et al., 2016) and the Hongxi watershed 40 

(Yang et al., 2015). These works on post-seismic landslide surface recovery have been carried out in very limited spatial area 

and observations in other parts of the earthquake-affected region is still missing, because high spatial resolution images used 

in these works are very expensive, and frequently influenced by bad weathers. Lack of observations on landslide changes over 

the entire region hinders a holistic understanding of its evolving patterns and driving factors. 

To overcome incomplete observations of post-seismic landslides after the Wenchuan earthquake, MODIS data with large 45 

footprints and short revisit time has been used (Yang and Qi, 2017; Yunus et al., 2020). The 250 m resolution MODIS data is 

sensitive to changes of landslide surfaces after the Wenchuan earthquake (Liu et al., 2015; Zhang et al., 2018). Long-term 

monitoring of post-seismic landslide surface using the MODIS time series revealed a spatially heterogeneous pattern (Yang 

and Qi, 2017). The recovery of MODIS derived landslide surface is found sensitive to precipitation and topography (Yang et 

al., 2018b). Despite MODIS observation can monitor the entire earthquake-affected region, its spatial resolution is much too 50 

coarse and most signals of the 250 m MODIS are a mixture of landslides and other ground features. 

Landsat imagery is a valuable data for monitoring long-term earth surface processes at a spatial resolution of 30 m for multi-

spectral bands. The finer spatial resolution of Landsat over MODIS makes it possible to map a single medium sized landslide 

(e.g. 30m×30m) and it has been frequently used to map regional landslides (Behling et al., 2016; Chen et al., 2019; Coe et al., 

2018; Marc et al., 2015). Landsat 5 TM, Landsat 7 ETM and Landsat 8 OLI all have 16-day revisit interval and joint use of 55 

them lead to more frequent observations and easy comparisons for monitoring landslide surface dynamics. The short revisit 

time in time series of all Landsat images have the potential to overcome partial coverage problems encountered by very high 

spatial resolution images. Despite Landsat images also face the problem posed by clouds, some algorithms have been 

developed to minimize the influence of clouds (Zhu and Helmer, 2018; Zhu and Woodcock, 2012). To obtain cloud-free 

observations, many Landsat images of different dates is needed and handling these large amounts of Landsat images could 60 

pose another challenge. 

In this work, we explore a cloud-based platform, the Google Earth Engine (GEE), to map surface recovery of co-seismic 

landslides triggered by the MW 7.9 Wenchuan earthquake in an area of 23,000 km2. This cloud-based platform has the 

advantage of easy-to-use and can efficiently process large volumes of data by researchers that are not familiar with remote 
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sensing image processing skills (Gorelick et al., 2017). The objectives of this work are: 1) to develop a method to map landslide 65 

recovery pattern by using large volumes of Landsat images, and 2) to explore possible factors that influence landslide recovery. 

2 Methodology 

2.1 Study area 

The MW 7.9 Wenchuan earthquake occurred on May 12, 2008, in the Longmen Mountain, bordering the Tibetan Plateau 

(average elevation >4000 m) and the Sichuan Basin (<800 m) (Fig. 1). This earthquake triggered nearly 200,000 landslides 70 

over 110,000 km2 and the total landslide area is 1,160 km2 (Xu et al., 2014). The size of these landslides varies over several 

orders of magnitudes, with the smallest a few square meters and the largest landslide up to ~8 km2 (Hu et al., 2019). Distributed 

along the >200 km Yingxiu-Beichuan Fault ranging from the epicentre Yingxiu town north-eastward to Qingchuang county, 

these landslides formed a densely distributed landslide zone (>10% surface area disturbed by landslides) and the width of the 

southern section (~25-30 km) is much larger than the northern part (~3-5 km) (Ouimet, 2010). 75 
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Figure 1: Study area and Landsat tiles used in this work. Landslides triggered by the 2008 earthquake are interpreted by Xu et al. 

(2014). The shown DEM is SRTM DEM downloaded from the USGS website. The surface rupture is digitized from the map in Xu 
et al. (2009). The MMI intensity lines are produced by the China Earthquake Administration and were digitized by the authors.  

2.2 Method 80 

This study area covers six Landsat Tiles: WRS129037, WRS129038, 129039, WRS130037, WRS130038, WRS130039 (Fig. 

1). WRS129038 and WRS130038 are two major tiles that cover most part of this study area. In this work, we used Tier 1 

calibrated top of atmosphere (TOA) reflectance product of the USGS Collection 1. At this level, the data is created using the 

best processing level (Chander et al., 2009). All Landsat 5, 7 images from 2001 to 12 May 2008 and all Landsat 5, 7, 8 images 

from May 2008 to July 2019 are used to study pre- and post-seismic vegetation dynamics on earthquake-triggered landslides, 85 

respectively. There are 1,167 pre-seismic images and 1,857 post-seismic Landsat images used in this work. All image 

processing was performed in Google Earth Engine (Gorelick et al., 2017). 

Previous works show that landslides can dramatically decrease vegetation index and the recovery of vegetation index to pre-

seismic level can be used to indicate the time of landslide surface recovery (Yang et al., 2018a; Zhang et al., 2018). In this 

work, we used enhanced vegetation index (EVI) to measure vegetation recover on co-seismic landslides, because EVI is more 90 

consistent than other vegetation indexes (such as NDVI) among three types of Landsat images (Bell et al., 2018; Zhu et al., 

2016). 

EVI =  
2.5∗(𝜌𝑛𝑖𝑟− 𝜌𝑟𝑒𝑑)

𝜌𝑛𝑖𝑟+6∗𝜌𝑟𝑒𝑑−7.5∗𝜌𝑏𝑙𝑢𝑒+1
 (1) 

where ρnir, ρred, ρblue are near infrared (760-900 nm), red (630-690 nm) and blue (450-510 nm) bands of Landsat TM/ETM+/OLI 

images, respectively. 95 

EVI time series after the earthquake from May 2008 to July 2019 were composed in a chronological order. Clear observations 

(not contaminated by clouds or snow) for each pixel were used to interpolate contaminated observations by an ordinary least 

square (OLS) regression method (Zhu and Woodcock, 2014; Zhu et al., 2019). Landslide surface recovery were assed based 

on changing trends of post-seismic EVI. 

2.2.1 Clear observation selection 100 

To select high-quality observations, we first used the Fmask in the TOA product to mask all possible low-quality pixels, 

including clouds and its relating shadows and scan-line corrector (SLC)-off gaps (Zhu et al., 2015; Zhu and Woodcock, 2012). 

The quality of pixels was marked by the Fmask and it can be used to remove most clouds, cloud shadows and circus clouds 

except some thin clouds and haze, which can be mistakenly regarded as EVI drop by landslides. To remove these low-quality 

pixels left by the Fmask, we used a simple Landsat cloud score algorithm from the Google Earth Engine to further remove 105 

clouds (Gorelick et al., 2017). By incorporating visible, near infrared, shortwave infrared and thermal infrared bands, this 

algorithm computed cloud score from 0 (clear pixel) to 100 (most likely cloudy pixels) 

(https://code.earthengine.google.com/dc5611259d9ccab952526b3c2d05ce07). 

We further used the Normalized Difference Snow Index (NDSI) to exclude the influence of snow in all images. 
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NDSI =  
𝜌𝑠𝑤𝑖𝑟−𝜌𝑔𝑟𝑛

𝜌𝑠𝑤𝑖𝑟+𝜌𝑔𝑟𝑛
 (2) 110 

where ρswir and ρgrn, are shortwave infrared (1550-1750 nm) and green (520-600) bands of Landsat TM/ETM+/OLI images, 

respectively. From our tests we found NDSI > 0.4 can remove most snow. 

2.2.2 Ordinary least square (OSL) regression and landslide surface recovery prediction 

By nature, vegetation index would change gradually in a year-round (Chen et al., 2004; Yang and Qi, 2017) and the OLS 

regression is a commonly used way to restore bad observations by clouds and snow in time series of Landsat images (Zhu and 115 

Woodcock, 2014; Zhu et al., 2019). In this work, we performed the OLS for both the pre- and post-seismic EVI time series. 

We calculated EVI on 15 July for all years, because at this time of the year, the solar incidence angle is near the highest, which 

could minimize the influence of mountain shadows in rugged terrains. In addition, EVI is near its annual peak values on 15 

July, when it is less likely influenced by inter-annual fluctuations of vegetation phenology. 

From previous works (Yang and Qi, 2017; Yang et al., 2018b), it is justifiable to assume annual vegetation index on most 120 

landslide surfaces change linearly in post-seismic years. For each pixel, the OSL regressed EVI values in all post-seismic years 

(2008-2019) on 15 July has been used to construct a linear regression line and the slope of the line for each location is used as 

landslide recovery rate. 

2.2.3 Analyses of influencing factors 

We used the landslide inventory interpreted by Xu et al. (2014) to select Landsat observations on co-seismic landslides. To 125 

explain the spatial patterns of landslide recovery, EVI increasing rates were plotted with twelve environmental factors, 

including: slope, pre-seismic vegetation condition, landslide depth, landslide area, elevation, ground peak acceleration of the 

earthquake, aspect, slope curvatures, topographic positions, mean annual precipitation, ground cohesion strength and 

vegetation types. 

The landslide area is an attribute of the landslide inventory interpreted by Xu et al. (2014). Ground peak acceleration of the 130 

2008 earthquake can be found from the USGS ShakeMap. Gallen et al. (2015) derived near-surface cohesion by incorporating 

fracturing. Their derived rock strength was used to study its influence on landslide surface recovery in this work. Mean annual 

precipitation was provided by the Institute of Mountain Hazards and Environment, CAS (http://english.imde.cas.cn/). 

Vegetation type data is from Zhang et al. (2007) and this data has also been used in other related works (Yang and Qi, 2017). 

All other topographic factors were derived from a 25 m DEM digitized from a 1:50,000 topography map before the earthquake 135 

(also used by Fan et al., 2012). Percent slope, aspect directions, planform and profile curvatures were calculated from the DEM 

in ArcMap 10. Aspect was transformed into aspect index Iasp by the following formula: 

𝐼𝑎𝑠𝑝 = |𝐶𝑂𝑆((𝑎𝑠𝑝𝑒𝑐𝑡 − 22.5)/180 × 𝜋/2)|  (3) 

where, aspect is calculated from ArcMap 10. Iasp ranges from 0 to 1. Southern aspects have lower values near 0, whereas 

northern aspects have higher values near 1. 140 
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In our study area, we randomly generated one million points. There are 47,076 points fall within co-seismic landslides. We 

picked out all abovementioned factors from these points on co-seismic landslides and studied their relation with landslide 

surface recovery. 

3 Results 

3.1 Spatial patterns of landslide recovery 145 

Fig. 2 shows landslide surface changing rates measured in annual EVI increasing rate over the entire study area. Annual 

landslide recovery rates are shown in four categories: <7×10-3, 7-14×10-3, 14-21×10-3, and >21×10-3. The spatial pattern of 

landslide recovery in the study area is heterogeneous. Most landslides near the epicentre area, Yingxiu, have the best recover 

rate (blue pixels) during the study period, whereas landslides (red pixels) on high mountains (Fig. 2a) are poorly recovered. 

The poorest recovery of landslide surface is found located on top of the Longmen mountain. These landslides are probably 150 

still bare debris with little vegetation cover.  

 

Figure 2: A heterogeneous spatial pattern of the co-seismic landslide surface recovery after the Wenchuan earthquake. The shown 

DEM is SRTM DEM downloaded from the USGS website. The hillshade data is produced by the authors by using ArcGIS.  

a

b
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Inset in Fig. 2 is a histogram showing the frequency distribution of annual EVI increasing rate on co-seismic landslides. 155 

Landslide recovery rate ranges from -30 to 90 ×10-3, but more than 99% landslide surfaces have positive rates. The mean 

recover rate on all co-seismic landslides in our study area is 17×10-3. 11.4% co-seismic landslides have an annual EVI 

increasing rate <7×10-3 and the rate on 31.4% co-seismic landslides ranges are within 7-14×10-3.  Annual EVI increasing rate 

on the other two categories, 14-21×10-3 and 21×10-3, cover 27.2% and 30.0% of co-seismic landslides in the study area (inset 

in Fig. 2a), respectively. 160 

3.2 Relations between landslide recovery and environmental factors 

To decipher possible influencing factors on landslide surface recovery, we analysed the relations between annual EVI 

increasing rate and twelve environmental factors: elevation, slope, aspect, topographic position, planform curvature, profile 

curvature, mean annual precipitation, ground peak acceleration, landslide area, pre-seismic mean EVI, near surface effective 

cohesion and vegetation type (Fig. 3). Although annual EVI increasing rates have a wide range (-30-90×10-3), 82.0% co-165 

seismic landslides have recovery rates between 0 to 25×10-3. In Fig. 3, we can see that these twelve factors influence landslide 

recover rates are within the range of 0 to 25×10-3.  

To clearly compare the influence of different factors on annual EVI increasing rate, all figures in Fig. 3 have the same scale of 

vertical axis (i.e. the annual EVI increasing rate ranges from 0 to 25×10-3). Among these twelve factors, elevation, TPI and 

pre-seismic EVI are the top three factors that have a wide influencing range. Elevation and TPI have similar negative relations 170 

with landslide recover rates. Recover rate decreases when elevation or TPI have higher values. Above an elevation of 1400 m, 

EVI increasing rate decrease 0.7×10-3 per 100 elevation increase. EVI increasing rate increases with the multi-year mean pre-

seismic EVI, when the pre-seismic value is lower than 0.75. 

In general, ground peak acceleration and landslide area have complex positive relations with the annual EVI increasing rate. 

Aspect index and near surface effective cohesion have slight negative relations with the annual EVI rate. The other factors, 175 

such as the mean annual precipitation, slope, curvatures and vegetation type seems to have little influence on the annual EVI 

increasing rate. 
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Figure. 3. Relations between environmental factors and landslide recovery rate (measured as annual EVI increasing rate). Lines in 
a-l are mean values and grey zones are standard error of the means. Point and bars in k and l are mean values and SEM, respectively. 180 

a b c

d e f

g h i

j k l
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4 Discussion 

4.1 Heterogeneous recovery of landslide surface after the Wenchuan earthquake 

Monitoring post-seismic landslide changes needs large coverage and long-term observation efforts, because earthquake-

triggered landslides are widely distributed (Xu et al., 2014) and are very dynamic in post-seismic years (Li et al., 2018; Yang, 

et al., 2017). By using high spatial resolution images, previous studies found significant and consistent recovery of co-seismic 185 

landslide surface and predicted that landslide surface can be fully recovered by vegetation in around a decade in partial region 

(near the epicentre area and the Mianyuanhe area) (Fan et al., 2018; Li et al., 2016; Tang et al., 2016; Yang et al., 2017). 

Extrapolations of observations from part of the earthquake-affected area to the whole region may not hold true. For the entire 

earthquake-affected region, we studied post-seismic vegetation recovery on landslides and found the recovery of co-seismic 

landslides is spatially heterogeneous. Co-seismic landslides in high Longmen mountain have very poor recovery performances. 190 

Results of this work support the findings made by Yang and Qi (2017), but it has much higher spatial resolution to reveal more 

detailed spatial patterns. Our results suggest distinct patterns of landslide evolution may exist in different parts of the 

earthquake-affected region in post-seismic years.  

4.2 Influencing factors on post-seismic landslide recovery 

To explain the spatially heterogeneous pattern of landslide recovery, we used twelve environmental variables. For the entire 195 

region, elevation, TPI and pre-seismic EVI have the most significant influences. The negative relation with TPI indicate that 

landslides recover faster on valleys (lower than its nearby locations) than on ridges (higher than its nearby locations). This 

finding indicates that landslide deposits may stay on hillslopes rather than flow down to valleys in post-seismic years (Fan et 

al., 2018). Although we cannot quantify the volume of landslide deposits that stayed on hillslopes, a large part of these materials 

cannot be transported, which may influence the competition between co-seismic uplift and erosion in this region (Parker et al., 200 

2011).  

Its relation with elevation indicates that higher elevation has lower temperatures and may lead to slower recovery rates. The 

pre-seismic EVI is an important indicator for plant physiology and its positive relation with the landslide recover indicates 

earthquake-triggered landslide did not significantly change vegetation growing conditions. These three dominant factors 

indicate that post-seismic landslide recovery is collaterally controlled by topography and plant physiology conditions. 205 

Although not all factors pose the same significant influences on landslide recovery, different ones may dominate the recovery 

process at the local scale. 

The relation with mean annual precipitation is complex. It is known that climate drives erosion of landslide deposits (Tolorza 

et al., 2019; Zhang et al. 2019). Precipitation also plays a positive role in vegetation recovery, which is against erosion 

processes on landslide surfaces (Yang et al., 2018b). To quantify the role of climate on landslide erosion, detailed information 210 

on rainfall events, such as duration and intensity should be known. The effects of an intense rainfall within a few minutes is 
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different to the same amount of precipitation that last many days. The relation between climate and post-seismic erosion may 

be re-assessed by considering vegetation dynamics. 

4.3 Implication of landslide surface recovery 

Destruction of vegetation by co-seismic landslides leave unstable slope surface exposed and vegetation recovery on landslides 215 

could improve shallow slope stability (Kim et al., 2017). The recovery of landslide surface can be used to indicate the duration 

of a major mountain earthquake (Yang et al., 2018a). Root systems of recovered vegetation could improve soil strength 

preventing further slope mobilization (Shiels and Walker, 2013) and its canopy can mitigate rain drop splash on landslides, 

mitigating surface erosion. In addition, recovered vegetation can change landslide surface hydrology in three ways: 1) canopy 

intercept rainfall and decrease surface flow, 2) root system improve preferential flow, both can postpone soil saturation and 220 

prevent further landsliding; 3) evapotranspiration drain soil water, further decreasing soil moisture (Cowpertwait and Metcalfe, 

2009; Meusburger et al., 2010). Despite the root system of recovered vegetation may only influence shallow landslides, its 

hydrological influence may have a deeper impact on substrates and bedrock weathering beneath top soils, which may relate to 

deep-seated landslides.  

This work only studied landslide surface by using EVI as an index, yet recovery of landslide interior structure still deserves 225 

further examination. Although recovered vegetation is fragile and very sensitive to post-seismic mass wasting processes, its 

recolonization marks the most significant feature changes in post-seismic mountains and the recolonization of vegetation on 

landslide indicates an at least transient stability of the surface. Vegetation recovery on co-seismic landslide surface could also 

plays a positive role in reducing surface erosion. 

4.4 Advantages of Google Earth Engine 230 

Major earthquakes, such as the Wenchuan earthquake, could trigger numerous landslides spreading very large regions. 

Studying regional landslide changes after major earthquakes is important for understanding geo-hazards after major 

disturbances, yet it is technically difficult to implement. This is because mapping landslides over very large regions requires 

many optical images of high quality. These images should not be covered by clouds, and should be acquired in summer seasons, 

when landslides are easily recognized from surrounding ground features. Images that meet these criteria is rare, especially in 235 

monsoon climate regions. Therefore, most works used a sub-set of the earthquake-affected region to study landslide changes. 

This is especially true for the Wenchuan region (Fan et al., 2018; Yang et al., 2015; 2017). 

This work used a cloud-based platform, GEE, to map landslides using all available Landsat images from 2001 to 2019 over a 

large region. GEE is a cloud-based platform, on which users can write simple scripts on their personal computers and perform 

heavy computations on numerous Google’s infrastructures. Using this platform, we can easily find replacement pixels from 240 

nearby date images to replace cloud contaminated pixels. This work only used Landsat images, because this is a consistent 

data with a long archive. Besides the Landsat data, other datasets such as the Sentinel-2 data are also available (Yang et al., 

2019). 
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In addition, the GEE can provide timely data to anywhere on the planet, which is crucial for hazard studies. The GEE updates 

its datasets at a daily level. This is important for disaster response. For example, after the Jinsha river landslide and Yarlung 245 

Zangbo debris flow, impacts of these catastrophic geomorphic processes can be quickly assessed (Yang et al., 2019). By 

combining machine learning with the cloud-based platform, it has the potential to utilize large volumes of remote sensing data 

efficiently and has the potential to provide a new way in fast hazard mappings. 

5 Conclusions 

The 2008 Wenchuan earthquake triggered more than 190,000 co-seismic landslides spreading many thousand square 250 

kilometres. Mapping landslide recovery on these co-seismic landslides could be difficult. Using a cloud-based computing 

platform, GEE, this work mapped surface recovery of all co-seismic landslides with Landsat images from 2001 to 2019. We 

found >99% landslide surfaces have been recovering since 2008, but the spatial pattern is very heterogeneous. In general, co-

seismic landslides on higher elevation ridges recover slower than landslides on valleys with lower elevations. Landslides on 

the high Longmen mountain have the slowest recover rates, whereas the epicentre area along the Min river valley has the 255 

fastest rates. Elevation, TPI and pre-seismic vegetation condition are top three most important factors that influence post-

seismic landslide recovery. In addition, pre-seismic EVI also have a strong relation with landslide recovery. Locations with 

better vegetation growing conditions before the earthquake usually have faster landslide recover rates. 
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