
I wish to thank Yan et al. for their diligent responses to my initial review. I think the paper could 
make a strong contribution to ESurf with additional major revision. 
 
My initial review was somewhat brief because the manuscript contained too many omissions to 
be comprehensively reviewed. My sense is that ESurf tends to limit the review of the post-
discussion manuscript to a single round. In this case I urge the editors to allow one more round 
of review if possible given that major omissions remain.  
 

Our Response: 
We thank the reviewer’s suggestion. We address the following issues one-by-one, and we 
also revised the manuscript systemically based on these comments.  

 
For example, the paper still contains very limited information on calibration. I alluded to this 
problem by highlighting a few values (e.g., h_0) that were plainly incorrect in the discussion 
manuscript. The authors have stated that the h_0 value was a typo in the initial manuscript, but I 
still have a limited idea of how their reported value for h_0 compares against alternative values 
when the values of other parameters are modified to best match the calibration data. I would 
really like to see a figure that demonstrates the fit of the model to calibration data for the entire 
parameter space. The need to *see* the results of the calibration is particularly important when a 
single measurable (soil thickness in this case) is being used to calibrate a model with more than 
one or two parameters (7 in this case, more if one includes the 50 cm of uniform soil assumed in 
the initial condition which should be added to the list of unconstrained parameters requiring 
calibration). The model may do equally well at reproducing soil thickness data if h_0 and P_0 
are both increased, for example, yet if the parameters are not accurate then the model may 
perform very poorly when applied to a different but very similar location. 

 
Our Response: 
We thank the reviewer’s comments and present more results regarding the calibration for 
the soil thickness. We performed a grid search approach where the model loops across 
the parameter space. There are seven parameters in our hybrid mode, but due to 
parameter Ks (which is in charge of the overland flow erosion) is not sensitive to soil 
thickness, we drop this parameter for the grid search. We assign 6 equally distributed 
space for each parameter.  We then calculate the root-minimum-square-error (RMSE) 
between the simulated and measured soil thickness across the site. 
 
The distribution of the RMSE as a function of the parameters are shown in Figure S7 
(each set of parameters corresponds to one RMSE; all the RMSEs are projected into each 
parameter space as a marginal distribution). The global minimum can be defined as the 
set of parameter provides the lowest RMSE. Based on Equation 7 and 8, we agree that the 
parameters we calibrated may not be the ‘real’ set of parameters. There is indeed a 
possibility that another set of parameters may provide equally good or better fit for the 
data. However, the point of this work is to find the best fit for the sampling points and 
apply it to other unsampled locations in the sample hillslope. In this specific study site, 
we find a unique set of parameters, which provide the global minimum with the grid 
search study. Moreover, when the threshold of RMSE decreases, the number of samples 
with RMSE below this threshold decrease and converges to the global minimum. Based 



on theses result, we conclude that the non-uniqueness is minimal and we can identify the 
combination of the parameters that provide the global minimum. 
 
In addition, we have applied a Bayesian approach to estimate the posterior distribution of 
parameters. We assume the uniform prior distributions between the range that define the 
parameter space. We find that the maximum a posteriori estimates (Figure S8) also 
correspond to the global minimum of the RMSE. 
 
Here, we include the range of parameter space on the revised Table 1, add Figure S7 and 
Figure S8, revise the description of the calibration procedure into the main text, and 
include the Bayesian approach in the supplementary information as shown below: 
 
“We use the sampling data from auger and the CPT to calibrate the model parameters 
(Table 1) for the south-facing and north-facing hillslopes separately. The calibration is 
performed using a grid search approach where the model loops through the entire 
parameter space, with 6 evenly distributed values foreach parameter. The range of each 
parameter is based on literature and shown in Table 1. The overland flow coefficient  
is not included in this process because it is unsensitive to soil thickness (Fig. 3). The 
range of the remaining 6 parameters is based on literature and shown in Table 1. We 
created an ensemble of the soil thickness based on 66 (=46646) combinations of 
parament sets. We then calculate the root-minimum-square-error (RMSE) between the 
simulated and measured soil thickness across the site. Each set of parameters 
corresponds to one RMSE, and the distribution of the RMSE as a function of the 
parameters are shown in Figure S7. The global minimum can be defined as the set of 
parameter provides the lowest RMSE. In this specific study site, we find a unique set of 
parameters, which provide the global minimum with the grid search study. Moreover, 
when a threshold of RMSE decreases, the number of samples with RMSE below this 
threshold decrease and converges to the global minimum. This result indicates the 
absence of other potential strong minimum, and therefore, we can identify the 
combination of the parameters that provide the global minimum.In addition, we have 
applied a Bayesian approach to estimate the posterior distribution of parameters, as well 
as the maximum a posterior estimates. We assume the uniform prior distributions 
between the range that define the parameter space. We find that the maximum a 
posteriori estimates (Figure S8) also correspond to the global minimum of the RMSE.” 
 
We also include the following section in the Supplementary Information: 
 
Posterior distribution of the parameters 

We used the Bayesian method to calculate the posterior distribution of the parameters in this hybrid-
model (Eqn. 6-8) and estimated the maximum a posteriori (MAP).  
 
The parameter set is defined as a vector , including six parameters (except for  in Eqn. 3b). We define 
the prior distribution for , , which is the products of independent uniform distributions between the 
predefined range parameter for each parameter. We define the measured soil thickness data vector  
(which is a -vector with  field sampling points: ) as the sum of predicted soil thickness 
and error vector : 



 
(S1) 

where  is the predicted soil thickness based on the model and parameter sets: 
. 

(S2) 
We assume that each element in the error vector follows a normal distribution with a standard deviation 

. We estimate the standard deviation of the measurement error based on the discrepancy between the 
auger and CPT measurements.  
 
Using the Bayes’ rule, we define the posterior distribution as:  

 
(S3) 

Since the error vector is normal, the likelihood ) is a normal distribution.  
 
To compute the posterior distribution, we use the sampling-resampling scheme (Smith and Gelfand, 1992). 
We sample the parameter set at each grid following the grid search { , where 

 and predict the soil thickness at the measurement locations { } where 
. Note that each vector represents the collection of soil thickness at the measured locations 

. 
 
The posterior distribution is derived as: 

                                                                                                                                        (S4) 
Where the likelihood l(i) is defined as the normal distribution with the mean  and the standard deviation 

 as: 

 

 
(S5) 

Note that C is the normalization factor. The standard deviation of the error is equal to the standard 
deviation of the difference. We then obtained the MAP estimate as the parameter set that provides the 
maximum posterior probability. The marginal distribution of each parameter can be calculated by the 
summation of the posterior distributions given each fixed parameter value ( Fig. S8). 

 References 

A. F. M. Smith and A. E. Gelfand, Bayesian statistics without tears: a sampling-resampling perspective, Am. 
Statistician, 46 (1992), pp. 84–88. 
 



 
Figure S7: Probability density function and histogram plots from a series of simulations of a grid search. The root-mean-
square error (RMSE) between the simulated and measured soil thickness. (a-c) The RMSE for the south-facing hillslope and 
the corresponding histogram plots which show the distribution of each parameter that corresponds to 10.0%, 1.0%, and 0.1% 
of the smallest RMSE values, respectively; (d-f) The RMSE of north-facing hillslope and the corresponding histogram plots 
which show the distribution of each parameter that corresponds to 10.0%, 1.0%, and 0.1% of the smallest RMSE values, 
respectively. The red color bar represents the parameter that provides the global minimum between simulation and field 
measurement.  
  



 
Figure S8: Marginal posterior probabilities of six parameters. (a) The posterior probabilities of the six parameters for the 
south-facing hillslope; (b) The posterior probabilities of the six parameters for the north-facing hillslope.  

 
 
 
Table 1: Parameters used for fitting models of north-facing and south-facing, respectively 
symbol Physical meaning unit Value range North-facing  South-facing 

 Normalized soil depth m 0.15 0.5*,a,b,c,d 0.20 0.18 

 Potential weathering rate or the 
maximum bedrock weathering rate 

m/yr 
a,b,c,d 

  

 Spatially mean soil thickness among 
depositional area 

m 0.2 0.8e 0.55 0.44 

 The slope of the linear relationship 
between curvature and soil thickness 
among depositional area 

m2 10 60e    

 Topography diffusion coefficient, 
which is controlled by vegetation 
cover, grain size, animal disturbance, 
etc.  

m2/yr 

d,f  
  

 Soil erodibility by overland flow 
erosion, which is controlled by 
overland flow rate, soil cohesivity, 
grain size, etc.  

m/yr 
g 

  

 The threshold value of annual soil 
thickness erosion rate that determines 
which model to use -- mass 

m/yr 
  

  



conservation method or Patton’s 
method 

*:  we defined h as the distance along the norm direction to the land surface, which give , where  is the 
slope of the land surface in degree (Pelletier and Rasmussen, 2009). In this case,  is adjusted to include  when 
referring to other literatures.  
a: Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C.: The soil production function and landscape 
equilibrium, Nature, 388(July), 358–361, 1997. 
b: Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C.: Soil production on a retreating 
escarpment in southeastern Australia, Geology, 28(9), 787–790, doi:10.1130/0091-
7613(2000)28<787:SPOARE>2.0.CO;2, 2000. 
c: Heimsath, A. M., Furbish, D. J. and Dietrich, W. E.: The illusion of diffusion: Field evidence for depth-dependent 
sediment transport, Geology, 33(12), 949–952, doi:10.1130/G21868.1, 2005 
d: Dietrich, W. E., Reiss, R., Hsu, M. and Montgomery, D. R.: A process-based model for colluvial soil depth and 
shallow landsliding using digital elevation data, Hydrol. Process., 9, 383–400, 1995. 
e: Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. and Parsons, S. B.: Topographic controls of soil 
organic carbon on soil-mantled landscapes, Sci. Rep., 9(1), 6390, doi:10.1038/s41598-019-42556-5, 2019. 
f: Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffusive processes: The timescale for equilibrium 
adjustments, Water Resour. Res., 33(6), 1307–1318, doi:10.1029/97WR00534, 1997. 
g: Kilinc, M. Y. and Richardson, E. V.: Mechanics of soil erosion from overland flow generated by simulated 
rainfall, Hydrol. Pap., 63, 1973. 
 
The geologic map was helpful to see that moraine deposits are not widespread in the study area. I 
trust the authors that most of the boreholes did not show glacial deposits but I must admit I 
would have liked to have seen some of these data. I think the paper would benefit from the 
inclusion of a brief conceptual model. It seems that authors assume that the study site was 
glaciated c. 18 ka and that such glaciation scoured the valley to bedrock and that glacial retreat 
started the “clock” for soil thickening by in situ soil production and colluvial deposition 
involving soil derived from upslope. This should be stated. 

 
Our Response: 
We thank the reviewer’s suggestion and provide a brief explanation for a conceptual 
model. We also include the surface geology map in the supplementary information as 
shown below to represent the spatial distribution of parent material and glacial deposits. 
We include a reference (below) to describe the bedrock and weathering condition in our 
study site. We include the following texts in the revised manuscript  

 
“Glacial deposits are mapped at many locations throughout the watershed (Gaskill, 1991; 
Fig. S3), but they are rather isolated and have a limited spatial extent, including in the 
area analyzed in this study. A former study at the same site analyzed 40 hand-augured 
soil cores and showed progressive changes in color and texture among soil, weathered 
zone, and unweathered bedrock with depth (Wan et al., 2019). Further, among total five 
wells drilled at the site, none of them reports the presence of glacial deposit (Tokunaga et 
al., 2019; Wan et al., 2019). It is likely that the glacial legacy scoured the valley to 
bedrock and the glacial retreat reset the ‘clock’ for soil formation mostly by in situ 
bedrock weathering and minor by colluvial deposition.”  



 

 
Figure S3: A geological map of parent materials and deposits.  

Wan, J., Tokunaga, T. K., Williams, K. H., Dong, W., Brown, W., Henderson, A. N., Newman, A. W. and 
Hubbard, S. S.: Predicting sedimentary bedrock subsurface weathering fronts and weathering rates, Sci. 
Rep., 9(1), 17198, doi:10.1038/s41598-019-53205-2, 2019.  

 
Tokunaga, T. K., Wan, J., Williams, K. H., Brown, W., Henderson, A., Kim, Y., Tran, A. P., Conrad, M. E., 
Bill, M., Carroll, R. W. H., Dong, W., Xu, Z., Lavy, A., Gilbert, B., Romero, S., Christensen, J. N., 
Faybishenko, B., Arora, B., Siirila-Woodburn, E. R., Versteeg, R., Raberg, J. H., Peterson, J. E., Hubbard, 
S. S., Billings, S. A., Richter, D. de B., Ziegler, S. E., Prestegaard, K. and Wade, A. M.: Depth- and Time-
Resolved Distributions of Snowmelt-Driven Hillslope Subsurface Flow and Transport and Their 
Contributions to Surface Waters, Water Resour. Res., 55(11), 9474–9499, 
doi:https://doi.org/10.1029/2019WR025093, 2019. 

 
The overland flow component of the model (in terms of predicted flow depths and the erosion 
caused by such flow) cannot be evaluated because no results are presented on this aspect of the 
model. The reader needs to see a map of the overland flow and of the erosion attributable to this 
transport process. I have no idea how much transport is attributable to colluvial versus fluvial 
transport and whether the spatial patterns produced by each are realistic. This is a major omission 
that, again, prevents a comprehensive review of the manuscript. 
 

Our Response: 
We thank the reviewer’s suggestion and agree that a map is needed to present the 
overland and the corresponding erosion contribution to the total transport rate. We 
include the map of the fraction of the overland flow erosion to the total soil transport. 
And include the following texts: 
“The contribution of overland flow-driven soil transport (erosion and deposition) to the 
soil thickness formation is minor compared to the diffusion-driven soil transport. The 
water depth reaches steady-state after about six days with a constant rainfall intensity 
(i.e., 363 mm/yr) in the study area (Figure S11a). We apply this spatial map of the water 
depth to drive the soil transport from overland flow (Eqn. 3). The soil transport rate from 
overland flow mostly happens in the water pathways, which have no ponding after snow 
melting and storm events. The ratio of the soil transport rate from overland flow to the 
total soil transport rate is mostly less than 1% in the two hillslopes (Fig. S11b). This 

   



minor impact from overland flow also explains why the parameter  is not sensitively in 
this hybrid model.”  

 
Figure S10: (a) water depth of overland flow at a steady-state, which occurs after 6 days with constant rainfall = 363 mm/yr; 
(b) The rate of the overland flow erosion rate to the total soil transport rate. The overland flow erosion mechanism is from 
Equation 3. 


