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Abstract. Soil thickness plays a central role in the interactions between vegetation, soils, and topography where it controls the 

retention and release of water, carbon, nitrogen, and metals. However, mapping soil thickness, here defined as the mobile 

regolith layer, at high spatial resolution remains challenging. Here, we develop a hybrid model that combines a process-based 10 

model and empirical relationships to estimate the spatial heterogeneity of soil thickness with fine spatial resolution (0.5 m). 

We apply this model to two aspects of hillslopes (southwest- and northeast-facing, respectively) in the East River Watershed 

in Colorado. Two independent measurement methods—auger and cone penetrometer—are used to sample soil thickness at 78 

locations to calibrate the local value of unconstrained parameters within the hybrid model. Sensitivity analysis using the hybrid 

model reveals that the diffusion coefficient used in hillslope diffusion modelling has the largest sensitivity among all input 15 

parameters. In addition, our results from both sampling and modeling show that, in general, the northeast-facing hillslope has 

a deeper soil layer than the southwest-facing hillslope. By comparing the soil thickness estimated between a machine learning 

approach and this hybrid model, the hybrid model provides higher accuracy and requires less sampling data. Modeling results 

further reveal that the southwest-facing hillslope has a slightly faster surface soil erosion rate and soil production rate than the 

northeast-facing hillslope, which suggests that the relatively less dense vegetation cover and drier surface soils on the 20 

southwest-facing slopes influence soil properties. With seven parameters in total for calibration, this hybrid model can provide 

a realistic soil thickness map with a relatively small amount of sampling dataset comparing to machine learning approach. 

Integrating process-based modeling and statistical analysis not only provides a thorough understanding of the fundamental 

mechanisms for soil thickness prediction, but integrates the strengths of both statistical approaches and process-based modeling 

approaches.  25 

1 Introduction 

The soil layer is an element of the critical zone where water, carbon, nitrogen, and other elements exchange between air and 

plants and the subsurface. The thickness of a soil layer regulates the hydrologic response, including surface and base flow 

runoff, water partitioning, evapotranspiration, plant-available water, and water and nutrient residence time (Fan et al., 2019). 
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It also determines hillslope stability (or landslide potential), channel initiation, drainage density, and other geomorphic 30 

processes (Dietrich et al., 1995). Moreover, soils hold the largest reservoir of organic carbon in the terrestrial ecosystem and 

function as a reservoir of other elements’ accumulation, sequestration, and biogeochemical reactions (Grant and Dietrich, 

2017; Tokunaga et al., 2019). Therefore, an accurate soil thickness map can improve the estimation of water, carbon, nitrogen, 

and other elements dynamics for hydrologic and biogeochemical modeling (Carvalhais et al., 2014; Fan et al., 2019; Li et al., 

2020; Patton et al., 2019; Pelletier et al., 2016). However, mapping soil thickness remains one of the key uncertainties in land 35 

surface process models because of the complexity of factors that affect soil thickness (Jackson et al., 2017; West et al., 2012; 

Pelletier et al., 2018; Tesfa et al., 2009). 

 

The soil layer, here defined as the mobile regolith layer, extends from the land surface to the top of the saprolite layer or 

bedrock (if no saprolite layer). Process-based geomorphologic models describe the soil thickness with mass conservation based 40 

on the balance between (1) soil transport (i.e., erosion and deposition) on the land surface and (2) soil production resulting 

from the bedrock-to-soil or saprolite-to-soil weathering at the bottom of the soil layer(Catani, et al., 2010; Dietrich et al., 1995; 

Heimsath et al., 2001; Heimsath et al., 1997; Nicótina, et al., 2011; Roering, et al., 1999, 2001; Tesfa et al., 2009). These two 

processes are controlled by vegetation cover, topographic gradient, biogenic processes, and climate forcing. The surface soil  

transport is expressed as a diffusive-like process, either linear or nonlinear, with topographic gradient (Grant & Dietrich, 2017; 45 

Pelletier & Rasmussen, 2009; Temme & Vanwalleghem, 2016; Vanwalleghem, et al., 2013). The soil production rate is usually 

expressed as relationships of exponential decay (Heimsath et al., 1997) or “bell-shaped” along soil depth (Heimsath, et al., 

2009; Pelletier & Rasmussen, 2009). However, previous studies have focused exclusively on erosional areas near ridges where 

the erosion rate keeps pace with soil production rate. In areas where the topography has convergent (mostly depositional) 

zones, which are commonly revealed in a Light Detection and Ranging (LiDAR) digital elevation model (DEM) for high 50 

spatial-resolution modeling, these mechanistic models fail to capture the full soil thickness distribution. The missing part of 

soil thickness estimation in convergent areas underlines the need for a hybrid approach that couples mechanistic and empirical 

methods to map soil thickness. 

 

Many studies have used curvature—defined as the second order derivative of elevation—as a proxy for soil thickness (Patton, 55 

et al., 2018; Tesfa et al., 2009), because hillslope curvature has an inverse (either linear or nonlinear) relationship with soil 

production rate based on mass conservation laws (Dietrich et al., 1995; Heimsath et al., 1997; Jackson et al., 2017). However, 

some studies show that curvature is a secondary or less significant variable than other topographic or land cover features in 

predicting soil thickness (Roering, et al., 2010; Shangguan, et al., 2017; Taylor et al., 2013; Tesfa et al., 2009). Also, curvature 

is proven to show a weak correlation to soil thickness in catchments with high curvature variability (Patton et al., 2018). One 60 

of the reasons that curvature fails to be the dominant explanatory variable could be that curvature is sensitive to the DEM 

resolution even among adjacent hillslopes (Patton et al., 2018; Pelletier and Rasmussen, 2009). Moreover, because the 

relationship between curvature and other features are difficult to generalize or transfer from one study site to another site, it is 
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not ideal to rely on curvature only to estimate soil thickness. Still, the derivation of an empirical relationship may serve the 

needs for partial areas in a landscape such as zones with convergent topography (Patton et al., 2018). 65 

 

Here we present a hybrid model that combines a process-based model with empirical relationships to explore the fundamental 

mechanisms of soil thickness and estimate the spatial variability. The advancement embodied in this hybrid model is that it 

generalizes the calculations needed to predict soil thickness and is therefore applicable to various sites. In the methodology 

section, we introduce our hybrid modeling approach and relevant concepts such as curvature calculation with different DEM 70 

smoothing methods, sensitivity analysis of model parameters, and a machine-learning approach as a comparison with the 

hybrid model. This model was applied with high resolution DEM (i.e., 0.5 m) at two adjacent mountainous hillslopes in the 

East River watershed in Colorado, U.S.A. Data from field observations at this site allows for calibration of the model. We first 

investigate the impacts of DEM resolution on the topographic curvature, an essential variable in this hybrid model, and then 

discuss the sensitivity of parameters to determine the importance of each parameter. The spatial maps of soil thickness, surface 75 

transport rate, and soil production rate are then presented. A Random Forest machine-learning model is used to correlate and 

predict soil thickness based on topographic and vegetation features and is compared with the hybrid model. 

 

2 Methodology  

2.1 Hybrid modelling approach 80 

We introduce a hybrid approach that couples two methods—a mass conservation law (Dietrich et al., 1995; Roering et al., 

1999, 2001; Yan et al., 2019) and an empirical relationship (Patton et al., 2018)—to overcome the limitations of each individual 

method. The mass-conservation method is suitable for a divergent topography where erosion is the dominant process, while 

the empirical relationship is applied to a convergent topography where deposition is the dominant process. In this hybrid model, 

seven parameters (Table 1) need to be calibrated for a specific hillslope area. In addition, we synthesize methods that are used 85 

to investigate the impacts of DEM resolution on topographic curvature, which is a key input variable for soil thickness in the 

empirical relationship. A diagram that highlights the workflow is shown in Figure S1.  

2.1.1 Mass conservation method 

The mass conservation equation of soil thickness that combines soil surface transport and soil production processes can be 

expressed as:  90 

!"
!#
= 𝑃 − 𝛻 ∙ 𝑞$ 	− 𝛻 ∙ 𝑞%          (1) 

where ℎ is soil thickness [𝐿], 𝑡 is time [𝑇], 𝑃 is soil production rate [𝐿/𝑇], 𝑞$ and 𝑞% is the volume flux of sediment transport 

per unit width resulting from diffusion-driven and overland flow-driven erosion, respectively [𝐿&/𝑇]. The diffusion-driven soil 
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transport rate 𝛻 ∙ 𝑞$ is the outcome of combining wind erosion, biogenic disturbance, soil creep, and rain drop splash. On steep 

slopes, the following nonlinear slope-dependent transport law is often used for topographic analysis and numerical experiments 95 

and has been successfully demonstrated by field studies and laboratory experiments (Andrews and Bucknam, 1987; Perron, 

2011; Roering et al., 1999, 2001): 

𝑞$ = − '!()
*+(()/.")#

                                         (2) 

where 𝐾$  is the diffusion coefficient [L2/T], and 𝑆0 = 1.25 (Roering et al., 1999) is a critical surface slope. The equation 

implies that when the slope (𝛻𝜂) is far less than 𝑆0, the relationship between diffusion flux and slope is almost linear; when 100 

the slope approaches S1, 𝑞$ increases rapidly. 

The overland flow-driven soil transport rate 𝛻 ∙ 𝑞% is expressed as the spatial divergence of stream power (Yan et al., 2019): 

𝛻 ∙ 𝑞% =
2$,&'(+32$,)*

$$
                             (3a) 

𝑞% = 𝐾%(H4S)5                                                                    (3b) 

where 𝐾% is the soil erodibility coefficient [𝐿&+6/𝑇], 𝑆 is the slope along flow direction [-], and  𝛽 is an empirical constant for 105 

surface erosion, where 𝛽 = 1.68 (Yan et al., 2019). 𝐻7 is surface water depth [𝐿], which is expressed in a 2-D diffusive form 

(Lal, 1998): 
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where 𝐷" is a diffusion coefficient controlled by water depth, land-surface gradient, and Manning’s coefficient (Lal, 1998; 

Yan et al., 2019).  110 

 

The soil production rate function has been developed to calculate only the development of mobile soil (it excludes the immobile 

saprolite layer) (Heimsath et al., 1997). The calculation of the soil production rate makes use of two assumptions: (1) 

production rate exponentially decreases with soil thickness, and (2) production rate has a humped relationship (or a ‘belly-

shape’) along soil depth (Dietrich et al., 1995; Heimsath et al., 2001; Pelletier and Rasmussen, 2009). Because the humped 115 

relationship is not yet well validated by field observations, in this study we rely only on the exponential model to represent 

soil production rate: 

𝑃 = ;,
;$

*
0<%=

𝑃<𝑒+"0<%=/"&               (5) 

where 𝜌> and 𝜌% are bedrock and soil bulk density, respectively, [M/L3]. The mean value of the soil bulk density at sampling 

sites is 0.948 [g/cm3], and the bedrock bulk density for weathered shale from our deep samples is estimated to be 1.26 [g/cm3].  120 
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𝑃< [L/T] and ℎ< [L] are empirical constants for soil production; and 𝜃 is the slope of the land surface in degree [-] because the 

direction of soil thickness is perpendicular to the land surface.  

 

Under the assumption of steady-state conditions, which have been observed in several mountainous area studies (Dietrich et 

al., 1995; Vanwalleghem et al., 2013), we can solve soil thickness from the mass-conservation equation. The validity of this 125 

assumption for the site studied here will be presented in Section 3. By adopting this assumption, the soil thickness (ℎ) can be 

solved from the mass-conservation equation (Eqn. 1) as: 

;,
;$

*
0<%=$

𝑃<𝑒+"0<%=/"& − 𝛻 ∙ 𝑞$ − 𝛻 ∙ 𝑞% = 0                         (6) 

The soil thickness value ℎ can be directly solved here because 𝛻 ∙ 𝑞$ and 𝛻 ∙ 𝑞% are independent of soil thickness. One issue 

that arises here is that there is no real number for soil thickness if 𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% < 0 where there is a continuous depositing 130 

of surface soil. Therefore, we introduce Patton’s method (Patton et al., 2018) in depositional areas to overcome this drawback 

in the following section. 

2.1.2 An empirical approach for depositional areas 

Based on field measurements among five mountainous watersheds, Patton et al. (2018) found that soil thickness has a linear 

relationship with curvature: 135 

ℎ = 𝑎𝛻 ∙ 𝛻𝜂 + ℎF                                                                             (7) 

where ℎF is the spatial mean value of soil thickness, and 𝑎 is a constant value which is determined by having a negative linear 

relationship with the standard deviation of curvature. In our model, we take 𝑎 as an independent parameter instead of being 

calculated based on curvature, which adds one more degree of freedom to the model.  

2.1.3 Investigation of the LiDAR DEM smoothing range for curvature 140 

In the empirical equation (Eqn. 7), the curvature (𝛻 ∙ 𝛻𝜂) is the only spatial variable that determines the soil thickness. Further, 

the topographic curvatures are very sensitive to the resolution of the DEM. If the grid size of the DEM is large, then the 

topography could be over-smoothed, thus underestimating the actual curvature. On the other hand, if the grid size of elevation 

is small, then there could be temporary pits or burrows in the topography, which can result in large local curvature values that 

do not represent the soil production processes. To identify a reasonable range of DEM resolution for calculating	𝛻 ∙ 𝛻𝜂, we 145 

explored three approaches to reproduce the DEM by: 1) smoothing the DEM over space, 2) polynomial fitting of the DEM, 

and 3) smoothing the DEM over time. The smoothed DEM is for calculating curvature in the imperial method only (Eqn. 7), 

and the rest of all other calculations (Eqn. 1-6) still use the original lidar DEM as the input. 
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Smoothing of the DEM over space is done by replacing the value of a 2-D grid cell with the mean value of its surrounding 150 

neighbours. The size of its neighbour cells follows 3𝛥𝑥  (8 neighbors), 5𝛥𝑥  (24 neighbors), 7𝛥𝑥  (48 neighbors), …, 

(2𝑁 + 1)𝛥𝑥 ((2𝑁 + 1)& − 1	𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠), respectively; where 𝛥𝑥 is the original resolution (i.e., 0.5 m), and 𝑁 is an integer; 

then a moving window replaces the value of every single 2-D grid cell in the 0.5 m lidar. The polynomial fitting of the DEM 

is achieved by fitting a 2nd order polynomial to grid cells within a specified radius and repeating this at each grid cell within 

the study area. For example, the elevation is fitted by 𝜂 = 𝑎*𝑥&𝑦& + 𝑏*𝑥&𝑦 + 𝑏&𝑥𝑦& + 𝑐*𝑥& + 𝑐&𝑦& + 𝑑𝑥𝑦 + 𝑒*𝑥 + 𝑒&𝑦 + 𝑓, 155 

where 𝑎*, 𝑏*, 𝑏&, 𝑐*, 𝑐&, 𝑑, 𝑒*, 𝑒&, 𝑎𝑛𝑑	𝑓 are parameters to fit the polynomial curve. The curvature value is 𝛻 ∙ 𝛻𝜂 = 2𝑐* + 2𝑐&. 

The DEM smoothing over time is performed by discretizing the diffusion equation !)
!#
= 𝐾$𝛻 ∙ 𝛻𝜂, which gives 𝜂? = 𝜂* +

Δ𝑡 ∗ 𝐾$Σ@A*?+*𝛻 ∙ 𝛻𝜂@ , where subscript 𝑖, 1, and 𝑛 denote the time step. A longer time period (higher 𝑛 value) results in a 

smoother topography, so the DEM is smoothed into different levels with different 𝑛 values. To the authors’ knowledge, 

smoothing over time approach is new and original in the study.   160 

2.1.4 Combine the mass conservation method with the empirical method 

For the mass conservation equation, the steady-state assumption is used for the soil thickness estimation in the assumption that 

the soil production balances the physical erosion, as used in other studies (Pelletier and Rasmussen, 2009; Pelletier et al, 2011; 

Dietrich et al, 1995). Therefore, the mass conservation method with the steady-state assumption can be used to solve the soil 

thickness at erosional sites but has a limitation at depositional sites (Eqn. 6, Dietrich et al, 1995). Patton’s method is better 165 

adapted to depositional sites. However, it can provide negative values of soil thickness at erosional sites where there are zones 

with high negative-curvature values. Also, in a low gradient and divergent area, if the soil transport rate is assumed as a linear 

relationship with curvature (i.e., 𝛻 ∙ 𝑞$ = −𝐾$𝛻 ∙ 𝛻𝜂,	 and 𝛻 ∙ 𝑞% = 0.0), then Equation 6 can be further simplified in that the 

soil thickness has a natural logarithm relationship with curvature (i.e., ℎ = −𝑚 ∗ 𝑙𝑛(𝛻 ∙ 𝛻𝜂) + 𝐶, where 𝑚 and 𝐶 are constant 

parameters that can be calibrated from field sampling data. However, Patton's method (Patton et al., 2018) always assumes a 170 

linear relationship between soil thickness and curvature. This may be why his empirical relationship does not work very well 

in the erosional areas. However, this can be compensated for by using the mass-conservation method.  

 

We combine the two methods by applying the mass-conservation method to most erosional sites, and then applying the 

empirical method to all depositional sites and a potentially small portion of erosional sites where the curvature values are 175 

negative but close to zero. The threshold value used to separate these two methods is represented as 𝐸#">B [L/T] (𝐸#">B ≥ 0): 

`
𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% > 𝐸#">B , mass	conservation
𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% ≤ 𝐸#">B , PattonCs	method                  (8) 

where the threshold, 𝐸#">B, is a condition of the soil erosion rate and equal or larger than zero value. If  𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% > 𝐸#">B 

at a 2-D grid cell, then this cell must be an erosional site; if 𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% ≤ 𝐸#">B, then this cell can be either a depositional 

site (if 𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% ≤ 0)	 or a slightly erosional site (if 0 < 𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% ≤ 𝐸#">B ). In most of areas, a divergent 180 
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topography corresponds to erosional areas and vice versa for depositional areas. But here we use the transport rate instead of 

the curvature as the criteria to choose between the two methods because there are possibly sites which are convergent but 

erosional where overland flow erosion is stronger than the diffusive deposition. In other words, areas where 𝛻 ∙ 𝑞$ + 𝛻 ∙ 𝑞% ≤

	0, it must be a convergent area and undergoing deposition, but if it is a convergent area, it is unnecessary to be 𝛻 ∙ 𝑞$ + 𝛻 ∙

𝑞% ≤ 0. Also, we assign 𝐸#">B ≥ 0 instead of equal to zero, aiming to provide a more flexibility to switch between the two 185 

methods. Overall, 𝐸#">B is supposed to be very close to zero. We conducted a grid search to calibrate the parameters and discuss 

the corresponding posterior distribution of parameters in Section 4.3.   

2.2 Sensitivity analysis of the model parameters 

We introduce the Morris one-step-at-a-time (OAT) method for a sensitivity analysis of parameters used in the hybrid model. 

Given the uncertainty of the input parameters (Table 1), we applied the Morris OAT method to quantify parameter sensitivity 190 

(Campolongo, et al. 2007; Morris, 1991). The Morris method provides global sensitivity indices over the parameter space at a 

relatively limited computational cost (Wainwright, et al., 2014). With a set of 𝑘 parameters {𝒙} in that {𝑥@|𝑖 = 1,2, … , 𝑘}, the 

output from the combined model is 𝑓({𝒙}). The Morris method first generates a randomly assigned set of parameters in a 

discrete parameter space, and then changes one parameter at a time. (k + 1) simulations are required to complete one path, 

having a set of parameters, and changing all the parameters. This path is repeated for randomly generated parameter sets, with 195 

the total run being 𝑟(𝑘 + 1), when the number of paths is 𝑟. By normalizing parameters and uniformly spacing from 0 to 1 

with (𝑝 − 1) intervals, the elementary effect is given as: 

𝐸𝐸@ =
*
D
E(9-,9#,…,9).-,9)HIH9)/-,…,90)+E(𝑿)

I
           (11) 

where 𝜏 is a scaling factor, {𝒙} is a randomly selected parameter set, and the fixed increment Δ = 𝑝/y2(𝑝 − 1)z  (Campolongo 

et al., 2007).  200 

 

Here, we use iTOUGH2 (Wainwright et al., 2014) to generate sets of parameters. Then we sample 𝑟	(= 20) elementary effects 

for each parameter. The standard deviation (𝜎) and absolute of the mean value (|𝜇|) of elementary effect of each parameter 

can be used to investigate the importance and nonlinearity in the combined model. To avoid the influence of non-monotonicity 

when some effects cancel each other out (Campolongo et al., 2007), we use the absolute mean value instead of the mean value 205 

in this study. Our work focuses on the sensitivity of how soil thickness is dictated by landscape characteristics such as the 

hillslope diffusion coefficient, soil erosion coefficient, and the saprolite-to-soil weathering capacity.   

2.3 Random Forest regression 

In addition to the hybrid modeling approaches, we use a machine-learning approach Random Forest (Breiman, 2001), to predict 

the soil thickness for comparison purposes to the hybrid method. The features to train the model are topographic and land-210 
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cover data obtained from remote sensing. The Random Forest analysis also helps to identify important predictors for soil 

thickness. Random Forest is capable of averaging the generated regression trees from bootstrapped subsampled data. This 

algorithm is nonparametric by assuming no specific data distribution ahead of time (Hastie, 2001). We use the ‘sklearn’ Python 

package for this study. 

 215 

The Random Forest algorithm input dataset comprises topographic and land cover features, including aspect, gradient, 

curvature, topographical flow accumulation, normalized difference vegetation index (NDVI), canopy water content, 

topographical position index (TPI) etc. (Brodrick et al., 2020; Chadwick et al., 2020; Goulden et al., 2020) at 10 m resolution 

and smoothing with a moving window at different sizes (e.g., 30 𝑚, and 50 𝑚, and 90 𝑚) (See Table S1 for the full list of 

features). Because the field observations have limited sampling points (78), we use the leave-one-out cross-validation method 220 

(Efron, 1982) where the number of folds equals the number of instances in the dataset. The Random Forest algorithm is applied 

once for each instance, using all other instances as a training set and using the selected instance as a single-item test set. 

3 Study site description and data sampling 

Our study site is within the East River watershed, which represents a typical headwater mountainous watershed in the Upper 

Colorado River Basin in Colorado. The East River watershed is a testbed aiming to improve predictions of hydrology-driven 225 

biogeochemical activities. There is a focus on this watershed because it hosts a wide spectrum of vegetation cover, features 

various hydrologic and geomorphologic processes. It is a headwater to the Colorado River that supplies 1 in 10 Americans 

with water for municipal usage and irrigation for over 2.2 million ha (Hubbard et al., 2018). This ~126.5 km& watershed has 

a continental climate with long, cold winters and short, cool summers, with monthly mean temperature ranging from -9.2 to 

9.8oC. The annual precipitation, based on three years of monitoring (2015-2018), is between 659 and 750 mm, the majority of 230 

which falls as snow, followed by mid- to late-summer monsoonal rainfall.   

 

We consider opposite facing hillslopes to determine whether the variability in meteorological forcing drives differences in the 

soil thickness (Pelletier et al., 2018). Our study sites (Fig. 1a) include northeast- and southwest-facing hillslopes (for simplicity, 

referred to as north-facing and south-facing hillslopes) connected to a floodplain (Fig. S2) spanning a total of 0.4 km& and 235 

located with an elevation range from ~2755 to 2922 m at ~38.93ON latitude and ~106.95OW longitude. The differences in 

slope and aspect drive differences in hillslope energy balance, snow-melt timing, and vegetation seasonal dynamics. The south-

facing slope shows a thinner snowpack resulting from episodic melt events scattered throughout the winter and spring; whereas 

the north-facing slope develops a thicker seasonal snowpack that primarily melts during a large snowmelt event occurring over 

several weeks in spring (Hinckley et al., 2014). Based on the field campaigns in 2019, soils in this area are composed of 15% 240 

sand, 47% silt, and 38% clay. Several remote sensing products available at this site were used in this study including, 0.5 m 

lidar DEM, topographic and vegetation features (Table S1).  
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Figure 1: Study site and soil thickness observation. (a) Study site in the East River Watershed, CO, USA. The LiDAR DEM is 0.5 m 
(Goulden et al., 2020). (b-e) Soil thickness measured by auger (orange dots) and cone penetrometer (CPT) (green cross) data along 245 
four transect lines. The CPT data is presented as natural logarithm. The CPT-inferred vertical profiles of resistance values at each 
surveyed location have been interpolated along the transects by using a kriging method. The dashed lines are estimated soil thickness 
by averaging the auger and CPT measurements. 

The last glacial advancing and retreating in the Upper Colorado River Basin is dated between 16.1 and 20.8 ka (Brugger, 

2010). Glacial deposits are mapped at many locations throughout the watershed (Gaskill, 1991; Fig. S3), but they are rather 250 

isolated and have a limited spatial extent, including in the area analyzed in this study. A former study at the same site analyzed 

40 hand-augured soil cores and showed progressive changes in color and texture among soil, weathered zone, and unweathered 

bedrock with depth (Wan et al., 2019). Further, among total five wells drilled at the site, none of them reports the presence of 

glacial deposit (Tokunaga et al., 2019; Wan et al., 2019). It is likely that the glacial legacy scoured the valley to bedrock and 

the glacial retreat reset the ‘clock’ for soil formation mostly by in situ bedrock weathering and minor by colluvial deposition. 255 
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Soil thickness was measured at 78 locations across the north- and south-facing slopes. Many studies dig soil pits or use augers 

to distinguish the contact layer between mobile and immobile regolith layers (Catani et al., 2010; Heimsath et al., 1997; Patton 

et al., 2018; Pelletier and Rasmussen, 2009). Here, we chose two independent methods to measure the soil thickness of the 

two hillslopes. We used an auger to drill and sampled 78 points within the two hillslopes, and used a dynamic cone 260 

penetrometer technique (CPT)  (Vanags, et al., 2004) to measure two transects along each side of the hillslopes, sampling 54 

locations in total (Fig. 1a).  

 

At this study site, we used and compared both auger and CPT measurements to estimate soil thickness. The CPT measurements 

provide a vertical profile of soil resistance for a soil column. We tested the accuracy of the CPT measurement and found that 265 

the CPT i) shows largest change in resistance when entering weathered bedrock, and ii) can be stopped very sharply only in 

the presence of a boulder, in which case the resistance is so strong that the measurement was deemed suspicious and repeated 

nearby. Because the CPT may not clearly identify the potential presence of moraine deposits, we also visually inspected the 

soil and saprolite materials extracted by the auger. From the auger, the transition zone from soil to the saprolite or bedrock is 

based on the material size and color of retrieved samples (Fig. S4). When the auger reaches the bedrock shale, it cannot 270 

penetrate easily. We believe our measurement is relatively accurate and efficient, which provides a consistent assessment of 

soil thickness over space in comparison to other existing methods. Figures 1b-1e show the relationship between soil thickness 

estimated from auger, CPT, and local elevation. There is a high variation in soil thickness from local to hillslope scales. To 

fully take advantage of all the sampling data, we used auger data to fit values for CPT (Fig. S5). The CPT and auger data are 

mostly in agreement. For soil thicknesses less than ~0.5 m, the CPT data are slightly higher than the auger, and for soil thickness 275 

larger than ~0.5 m, the CPT data are slightly lower. 

4 Results and Discussion 

In this section, we first investigate the scaling issues from DEM resolution with curvature and then discuss the sensitivity of 

all the parameters used in this hybrid model. Next, we show both the soil thickness predictions based on the hybrid model with 

the optimal curvature and the soil thickness results from the Random Forest machine-learning approach. Finally, we discuss 280 

the relationship between soil thickness, surface transport rate, and weathering rate as determined by the hybrid model.  

4.1 Model parameterization of curvature with different smoothing techniques of DEM 

The topographic curvature is the key variable for estimating the soil thickness for the empirical approach. However, curvature 

is an inherently resolution-dependent topographic feature that is derived from a DEM. A 0.5 m DEM can provide ‘noises’ for 

the results of curvature. The goal here is to determine the optimal DEM resolution for curvature to match with the sampling 285 

data, and the smoothing methods provided here are only for the calculation of curvature. To investigate the optimal resolution 
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of the DEM for calculating curvature, we tested three approaches as explained in Section 2.1.3: smoothing the DEM over 

space, polynomial fitting of the DEM, and smoothing the DEM over time. For smoothing over space, the elevations of original 

0.5 m DEM were replaced by utilizing the mean elevation of the surrounding adjacent cells at the range of 1.5 m, 2.5 m, …, 

and 13.5 m. For the polynomial fitting, the diameter is also chosen over the same range and intervals as the way of smoothing 290 

the DEM. For smoothing over time, the evolution period of the topography is taken as 0 kyr, 0.25 kyr, 0.5 kyr, …, 3.25 kyr. 

We compare the root-mean-square deviation (RMSD) between the sampling results and simulation results of soil thickness as 

an indicator of the optimal resolution for calculating the curvature (Fig. 2). The sets of parameters used for each spatial or 

temporal resolution are determined by comparing with the field sampling data, with each parameter increasing linearly from 

the minimum value to the maximum (the same data sets as in the Morris OAT method).  We chose the set of parameters which 295 

gives the smallest RMSD.  

 
Figure 2: Smoothing techniques to find the best resolutions of DEM for curvature. For smoothing over time approach, the time step 
is one year; the diffusion coefficient, 𝑲𝒅 , is 𝟏. 𝟏 × 𝟏𝟎+𝟑  m2/yr and 𝟏. 𝟖 × 𝟏𝟎+𝟑  for the north-facing and south-facing 
hillslopes, respectively. Nf = North-facing hillslope, Sf = South-facing hillslope. 300 

Different smoothing methods and study sites corresponds to their own optimal DEM resolution for curvature (Fig. 2). For 

example, in this study the north-facing hillslope shows best fitting with 4.5 m DEM smoothing over space, but the south-facing 

hillslope corresponds to 8.5 m. Other studies that calculate curvature with various spatial smoothing constraints show the 

highest accuracy in model predictions with smoothing ranging between 3m and 10 m (Patton et al., 2018; Tesfa et al., 2009). 

The polynomial fitting and smoothing over time show the same best fitting results among the two hillslopes, which is 8.5 m 305 

and around 2 kyr, respectively. Overall, smoothing the DEM over time provides the smallest RMSD with a relatively high 

efficiency compared to the other two approaches. Smoothing over time provides relatively constant and stable results for both 

hillslopes. Therefore, in this study, we use the DEM smoothed over time at year 2 kyr to calculate curvatures. However, we 

still use the original lidar DEM for the mechanistic model of soil thickness.  
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4.2 Global sensitivity analysis 310 

We apply the Morris OAT method to investigate the global sensitivity of the seven parameters (Table 1) in the hybrid model. 

For each parameter, we calculate the “absolute of the mean elementary effect,” |𝜇|, in that the higher number represents higher 

importance; and the standard deviation of the elementary effect, 𝜎, which represent the nonlinearity effect or interactions with 

other parameters (Fig. 3). Each dot represents an evaluation of one parameter at one sampling site. In general, the parameters 

in the mass-conservation model have higher |𝜇| values, meaning that they have more significant impact on soil thickness than 315 

the parameters in the empirical model. The diffusion coefficient, 𝐾$, is the most important factor (high |𝜇| value) and high 

nonlinearity (𝜎) and thus should be carefully calibrated. It represents the soil diffusive-like process such as soil creeping and 

biogenic activities. The normalized soil depth (ℎ<) is also has higher | high |𝜇| value, which suggests that it is a very important 

factor because, but more linear than 𝐾$ due to relatively small 𝜎. These imply that on surface of a soil layer, the diffusive 

process is the most important transport mechanism for hillslope soil erosion rather than the soil erosion from overland flow 320 

(Dietrich et al., 1995; Nicótina et al., 2011; Roering et al., 1999, 2001); and at the bottom of the soil layer, the normalized soil 

depth is the most important parameter for estimating the soil production rate. The two parameters from the empirical method, 

𝑎 and ℎF, are used for soil depositional areas. The sensitivity of 𝑎 and ℎF are nearly linear (since s is close to zero), but when 

the soil thickness reaches an upper limit (2 m in our model), this causes a nonlinear increase in soil thickness and hence a rapid 

increase of 𝜎. 325 

 
Figure 3: Sensitivity analysis of the seven parameters in the hybrid model. Parameters 𝒉#,  𝑬𝒕𝒉𝒓𝒆, and 𝒂 are in Patton’s method; and 
𝒉𝒐, 𝑩𝒑, 𝒍𝒐𝒈(𝑲𝒅), and 𝒍𝒐𝒈(𝑲𝒔) are in the mass-conservation method. The solid and dash lines are fitted linear-regression lines to 
reveal the relationship between the standard deviation (𝝈) of the elementary effect and the absolute of the mean (|𝝁|) of elementary 
effect for the mass-conservation method and Patton’s method, respectively. Each dot is at one sampling location per parameter.  330 

4.3 Hybrid data-model soil thicknesses predictions and their comparison to measurements  

At erosional sites, the erosion from the land surface can be balanced out by the soil formation from the bottom, therefore, the 

soil thickness may reach a steady state condition. By coupling soil thickness with landscape evolution, we found that the soil 

thickness reaches a dynamic steady-state after approximately 25 kyr at this study site (Fig. S6), which is consistent with other 
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studies in mountainous areas (Dietrich et al., 1995; Vanwalleghem et al., 2013). This implies that the current soil thickness in 335 

the East River Watershed may have already reached a steady-state condition since the last glacial legacy. Here, we only focus 

on the steady state condition at erosional sites because they are where we apply the mass conservation equation. For 

depositional sites, the soil gradually accumulates on the land surface; and meanwhile, the soil weathering slowly at the bottom; 

therefore, the soil thickness is supposed to continuously increase (Dietrich et al., 1995). Due to the complexity of soil 

depositional environments, such as expansion or compression of soils, we consider that using an empirical relationship is 340 

appropriate for the soil thickness at depositional areas. 

 

A spatial map of soil thickness that compares modelling predictions and observation results is shown in Fig. 4. In general, the 

soil thickness of the north-facing hillslopes is greater and has higher variation than that of the south-facing hillslopes. 

Specifically, soil thickness of the south-facing side ranges from about 0.2 m to 1 m, with a mean value of 0.55 m, while on the 345 

north-facing side, the soil thickness ranges from 0.15 m to 1.5 m, with a mean value of 0.67 m. We use the sampling data from 

both auger and the CPT to calibrate the seven parameters (Table 1) for the south-facing and north-facing hillslopes separately. 

One explanation for the mismatch between modeling and field observations (Fig. 4b) could be that parts of the hillslopes are 

on terraces. These areas may have fluvial deposits on ancient floodplains before they were turned into terraces (Yan et al., 

2018).  350 

 

We use the sampling data from auger and the CPT to calibrate the model parameters (Table 1) for the south-facing and north-

facing hillslopes separately. The calibration is performed using a grid search approach where the model loops through the 

entire parameter space, with 6 evenly distributed values for each parameter. The range of each parameter is based on literature 

and shown in Table 1. The overland flow coefficient KL is not included in this process because it is unsensitive to soil thickness 355 

(Fig. 3). The ranges of the remaining 6 parameters are based on literature and shown in Table 1. We created an ensemble of 

the soil thickness based on 66 (=46646) combinations of parameter sets. We then calculate the root-minimum-square-error 

(RMSE) between the simulated and measured soil thickness across the site. Each set of parameters corresponds to one RMSE, 

and the distribution of the RMSE as a function of the parameters are shown in Figure S7. The global minimum can be defined 

as the set of parameter provides the lowest RMSE. In this specific study site, we find a unique set of parameters, which provide 360 

the global minimum with the grid search study. Moreover, when a threshold of RMSE decreases, the number of samples with 

RMSE below this threshold decrease and converges to the global minimum. This result indicates the absence of other potential 

strong minimum, and therefore, we can identify the set of the parameters that provides the global minimum. In addition, we 

have applied a Bayesian approach to estimate the posterior distribution of parameters, as well as the maximum a posterior 

estimates (see more in the Supplementary Information). We find that the maximum a posteriori estimates (Figure S8) also 365 

correspond to the global minimum of the RMSE. Moreover, among the posterior distribution of each parameter, 𝑃< and 𝐸#"B#M 

show closer to uniform in the south-facing hillslope than the north-facing hillslope. The reason may be that the north-facing 

hillslope has more sampling points, which provides better estimation than the south-facing hillslope. 
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The difference in soil thickness between the two hillslopes is evident. This is controlled by insolation due to the topographic 370 

aspect. The air temperatures and potential evapotranspiration rates produce significantly different microclimates that determine 

the structure of different ecosystems and surface process regimes. Weathered shale under the soil layer appears to be 

mechanically weaker on the north-facing slope because of the thicker saprolite layers (Fig. 4b), which results in less resistance 

during excavations in the field sampling. This implies that thicker soil depth results from a higher soil water content associated 

with a longer snowmelt period in the north-facing hillslope. The thicker soil depth in turn provides a higher water-storage 375 

capability, higher concentration of fine particles, and more biomass, which leads to a positive feedback (Pelletier et al., 2018; 

Roering et al., 2010).  

 
Figure 4: Soil thickness map. (a) Spatial map of soil thickness from modeling. (b1) and (b2) Comparison between model and field 
measurements for the south-facing and north-facing hillslope, respectively. The error bars along the x-axis are the differences 380 
between auger and CPT data. Gray and green dots present the bottom of the sampling site is bedrock and saprolite, respectively. 
The correlations, root-minimum-square-errors, and p-values are 0.71, 0.18 m, and 4.2*10-4; and 0.77, 0.19 m, and 2.32*10-10 for 
south-facing and north-facing hillslopes, respectively. Note that the sampling points in the floodplain zone are excluded because our 
hybrid model aims to predict the soil thickness in hillslopes.  

 385 
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4.4 Predictive value of landscape features for estimating soil thickness  

We evaluate the correlation between soil thickness from sampling and other landscape features obtained from remote sensing 

data (Fig. 5). Among about 18 topographic and land cover features with various spatial resolutions, we generated ~50 

topographic matrices (Table S1). The top five topographic matrices, correlating with soil thickness higher than 25%, from high 

to low are topographic position index (TPI), curvature, slope degree, topographic wetness index (TWI), and elevation. Other 390 

factors such as NDVI (normalized difference vegetation index), leaf mass area, and canopy liquid water do not show obvious 

correlation with soil thickness. This is consistent with other studies that commonly use the environmental variables such as 

TWI, elevation, and curvature as the most highly correlated variables in the geostatistical interpolation of soil thickness (Hengl, 

et al., 2004; Kuriakose, et al., 2009; Shangguan et al., 2017; Taylor et al., 2013). Among the five highest correlated features, 

TPI and curvature have the highest correlation (-0.87), which implies that the local relief of ridges and valleys are scalable 395 

with the size of the corresponding local curvature. 

 

 
Figure 5: Correlation analysis between soil thickness and the top five most highly correlated topographic features). TPI is 10 m 
resolution topographic position index, Curvature is 10 m resolution curvature, Slope is 10 m resolution slope degree, TWI is the 10 400 
m resolution topographic wetness index, and Elevation is 1 m resolution DEM. 
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Since we have a limited number of soil samples (78), we use the five most highly correlated features as a collection of metrics 

to perform the Random Forest modeling. We use the Random Forest model with leave-one-out cross validation to predict the 

soil thickness and compare with the hybrid modeling results (Fig. 6). The result shows that the hybrid model (RMSE = 0.196 405 

m) outperforms the Random Forest model (RMSE = 0.225 m) by ~13%. The comparable performance between Random Forest 

and the hybrid model suggests that (1) the correlations of soil thickness with topographic metrics are the major driving factors, 

and (2) the hybrid model is applicable to other sites given similar soil types and topography, without requiring many datasets 

given the application of process-based laws. To improve the results from machine learning, one may need to collect more data 

from additional sampling points. However, the advantage of this hybrid model is that there are only seven parameters to 410 

calibrate, and fewer sampling points are required. The extension to other watersheds is also easier with the hybrid approach. 

This hybrid method also provides higher accuracy than Patton’s method in this study site, particularly at very thin or thicker 

soil layers (Fig. S9). Finally, we note that the hybrid modeling approach not only provides the soil thickness distribution, but 

also other outputs from the model, including the surface soil transport and soil production rates as discussed below. 

 415 
Figure 6: Comparison between observed and predicted soil thickness. Note, ML = machine learning based simulation, Simu = the 
hybrid model simulation, and RMSE = root-mean-square error.  

 

4.5 Relationship between soil thickness, soil surface transport rates, and soil production rates in two aspects 

One of the advantages of this hybrid model compared with machine-learning models is that we can obtain the spatial maps of 420 

surface soil transport rates (Fig. 7) and soil production rates (Fig. 8). The probability density functions (PDFs) show that in 

general, the south-facing hillslope has a thinner soil thickness and a faster erosion rate than the north-facing hillslope (Fig. 7b). 

On the south-facing hillslope, where solar radiation is sufficient, soil moisture is a limiting factor that controls vegetation cover 
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in the coupled hydro-bio-geomorphological processes. In contrast, on the north-facing hillslope where solar radiation is limited, 

the energy becomes a limiting factor of critical zone processes (Pelletier et al., 2018). The higher potential evaporation of 425 

south-facing hillslopes results in lower mean soil moisture and thinner vegetation cover, thus triggering feedbacks that result 

in a higher surface soil erosion rate. Moreover, on the south-facing hillslope, the lower interception of rainfall due to thinner 

vegetation cover and more sand material from the soil texture (Fig. S10) also increase sediment mobilization by raindrop 

impacts. 

 430 

The contribution of overland flow-driven soil transport (erosion and deposition) to the soil thickness formation is minor 

compared to the diffusion-driven soil transport. The water depth reaches steady-state after about six days with a constant 

rainfall intensity (i.e., 363 mm/yr) in the study area (Figure S11a). We apply this spatial map of the water depth to drive the 

soil transport by overland flow (Eqn. 3). The soil transport rate from overland flow mostly happens in the water pathways, 

which have no ponding after snow melting and storm events. The ratio of the soil transport rate from overland flow to the total 435 

soil transport rate is mostly less than 1% in the two hillslopes (Fig. S11b). This minor impact from overland flow also explains 

why the parameter 𝐾$ is not sensitively in this hybrid model.  

 
Figure 7: Map of soil surface-transport rate. (A) Spatial map of soil transport rate from modeling results. (b1 and b2) Relationship 
between soil thickness and transport rate for the south-facing and north-facing hillslopes, respectively. Positive values of transport 440 
rate represent deposition, and negative values represent erosion. The orange dots represent the soil thickness from field 
measurements.  
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The south-facing hillslope corresponds to a higher actual soil production rate than the north-facing hillslope, which is consistent 

with transport rates in that the south-facing hillslope has a higher erosion rate. One should note that the soil production rate 445 

here is different from bedrock weathering rate, which is controlled by water table dynamics (Wan et al., 2019). The actual soil 

production rate is controlled by the soil thickness and potential production rate, 𝑃< (Eqn. 5). A thinner soil layer (south-facing) 

results in a faster actual soil production rate. A high evapotranspiration and rapid vertical infiltration result in lower 𝑃<. 𝑃< on 

the south-facing hillslope is slower than the north-facing hillslope (Table 1) due to the microclimate differences between the 

two hillslopes. On south-facing hillslopes, more of the incoming precipitation is lost to evapotranspiration, which results in 450 

less water available for runoff and infiltration (Tran, et al., 2019). In addition, the south-facing slopes experience brief periods 

of rapid vertical transport following snowmelt events and are drier overall than north-facing slopes (Hinckley et al., 2014).   

 

Pelletier et al. (2013) uses an energy-based variable, Effective Energy and Mass Transfer (EEMT), which is a function of 

precipitation, temperature, and vapor pressure deficit, to quantify the potential rate of bedrock breakdown into soils. Their 455 

study also suggests that under comparable climatic conditions north-facing hillslopes have a higher EEMT, leading to higher 

𝑃< . However, the thicker soil thickness offsets the impact of 𝑃<  in that thicker soil thickness results in slower actual soil 

production rate. This is a possible reason why the north-facing hillslope has slower actual soil production rate even though it 

has a higher 𝑃<.  

 460 
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Figure 8: Map of soil production rate. (A) Spatial map of soil bottom (either bedrock or saprolite) production rate from modeling 
results. (b1 and b2) Relationship between soil thickness and natural logarithm of soil production rate for the south-facing and north-
facing hillslopes, respectively. The orange dots represent the soil thickness from field measurements. 

5 Conclusion  

Soil thickness plays a central role in the feedbacks among surface-subsurface water flow, vegetation, soil production, drainage 465 

density, and topography, and these in turn control soil thickness. In this study, we developed a data-driven hybrid model 

approach to predict the spatial distribution of soil thickness. The hybrid model that we introduced in this study overcomes the 

drawbacks of both mass-conservation laws and empirical relationships. To the authors’ knowledge, this is the first study to use 

a hybrid approach to estimate soil thickness.  
 470 

Our results show that this hybrid model provides slightly better accuracy than the Random Forest model (by ~13%) on soil 

thickness estimation. According to both the hybrid and Random Forest models, soil thickness is more strongly controlled by 

topographic metrics than vegetational features. The sensitivity analysis of the input parameters (seven in total) show that the 

diffusion coefficient of hillslope erosion is the most sensitive parameter. We found that smoothing lidar DEM over time has a 

higher efficiency than smoothing it over space to obtain the optimal topographic curvature values, which provides the least 475 

error between the modelling results and sampling soil thickness.  

 

This hybrid model is a flexible, generally applicable approach to predicting soil thicknesses. The hybrid model, with only 

seven parameters for calibration, can provide a relatively realistic soil thickness map at other study sites making use of a 

relatively small number of samples. It can also provide additional output as compared to machine learning algorithms, 480 

including surface soil transport and soil production rates. 

 

Based on field observation and the hybrid model simulation, the north-facing hillslope promotes deeper soil depth than the 

south-facing hillslope as a result of the different insolation at different aspects. The model analysis suggests that the south-

facing hillslope has a slightly faster actual surface transport rate and actual soil production rate than the north-facing hillslope. 485 

The potential soil production rate is higher on the north-facing hillslope, caused by relatively denser vegetation cover, less 

solar radiation, and wetter surface soil material as fundamentally controlled by aspect.  

 

The limitation of the hybrid modeling approach developed here is that it would fail in alluvial depositional sites (i.e., 

floodplains) where topography is controlled primarily by flooding events (Yan et al., 2018) and strong human intervention 490 

landscapes where the surface topography is intensively reshaped for farming and other purposes (Kuriakose et al., 2009; Yan 

et al., 2020). Integrating process-based modeling, inverse modeling, and statistical analysis provides a thorough understanding 

of the fundamental mechanisms for soil thickness prediction in hillslopes. Although the example applications in this paper are 
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at two hillslopes, this hybrid model framework should have little limitation to analyze soil-mantled mountainous hillslopes 

after calibration with sampling dataset.  495 

 

 

 

 

 500 

 

 

 

 

Table 1: Parameters used for fitting models of north-facing and south-facing, respectively 505 

symbol Physical meaning unit Value range North-facing  South-facing 

ℎ< Normalized soil depth m 0.12−0.22 *,a,b,c,d 0.20 0.18 

𝑃< 
Potential weathering rate or the 

maximum bedrock weathering rate 
m/yr 

4.0 × 10+N −

1.4 × 10+O	a,b,c,d 
1.0 × 10+O 6.0 × 10+N 

ℎF 
Spatially mean soil thickness among 

depositional area 
m 0.33−0.61 e 0.55 0.44 

𝑎 

The slope of the linear relationship 

between curvature and soil thickness 

among depositional area 

m2 42−55 e  50 45 

𝐾$ 

Topography diffusion coefficient, 

which is controlled by vegetation cover, 

grain size, animal disturbance, etc.  

m2/yr 
3.6 × 10+O −

2.4 × 10+P	d,f  
1.18 × 10+P 1.8 × 10+P 

𝐾% 

Soil erodibility by overland flow 

erosion, which is controlled by overland 

flow rate, soil cohesivity, grain size, etc.  

m/yr 
1.0 × 10+& −

1.0 × 10+N	g 
1 × 10+N 2 × 10+N 

𝐸#">B 

The threshold value of annual soil 

thickness erosion rate that determines 

which model to use -- mass conservation 

method or Patton’s method 

m/yr 
2.0 × 10+R −

3.2 × 10+S  
2 × 10+S 1.4 × 10+S 
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*:  we defined h as the distance along the norm direction to the land surface, which give 𝑒+"0<%=/"&, where 𝜃 is the slope of 

the land surface in degree (Pelletier and Rasmussen, 2009). In this case, ℎ< is adjusted to include 𝑐𝑜𝑠𝜃 when referring to other 

literatures.  

a: Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C.: The soil production function and landscape equilibrium, 

Nature, 388(July), 358–361, 1997. 510 

b: Heimsath, A. M., Chappell, J., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C.: Soil production on a retreating escarpment 

in southeastern Australia, Geology, 28(9), 787–790, doi:10.1130/0091-7613(2000)28<787:SPOARE>2.0.CO;2, 2000. 

c: Heimsath, A. M., Furbish, D. J. and Dietrich, W. E.: The illusion of diffusion: Field evidence for depth-dependent sediment 

transport, Geology, 33(12), 949–952, doi:10.1130/G21868.1, 2005 

d: Dietrich, W. E., Reiss, R., Hsu, M. and Montgomery, D. R.: A process-based model for colluvial soil depth and shallow 515 

landsliding using digital elevation data, Hydrol. Process., 9, 383–400, 1995. 

e: Patton, N. R., Lohse, K. A., Seyfried, M. S., Godsey, S. E. and Parsons, S. B.: Topographic controls of soil organic carbon 

on soil-mantled landscapes, Sci. Rep., 9(1), 6390, doi:10.1038/s41598-019-42556-5, 2019. 

f: Fernandes, N. F. and Dietrich, W. E.: Hillslope evolution by diffusive processes: The timescale for equilibrium adjustments, 

Water Resour. Res., 33(6), 1307–1318, doi:10.1029/97WR00534, 1997. 520 

g: Kilinc, M. Y. and Richardson, E. V.: Mechanics of soil erosion from overland flow generated by simulated rainfall, Hydrol. 

Pap., 63, 1973. 
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