
Author’s Response

Short communication: Landlab v2.0: A software package for Earth surface
dynamics

Barnhart et al., submitted 2020

Note: The text shown here in the Author’s Response document is the same as the text in the
Public Author Comment.

1 General updates made independent of reviewer comments

The manuscript was updated to reflect the addition of one new component.

2 Response to reviewer Tristan Salles

We thank reviewer Salles for his review. As he recommended no changes be made, we have made no changes
in response to his review.

3 Response to reviewer Wolfgang Schwanghart

Reviewer Schwanghart’s review recommended that we revise the text to address the following issues:

1. Reduce the use of syntax and bulleted lists, and use more plain language in Section 4 in order to make
it more accessible.

2. Add one or more figures that illustrate example output of Landlab.

3. Change the subsection on citing Landlab to its own section.

We agree with all of reviewer Schwanghart’s recommendations and have revised the text accordingly. A new
Figure 1 provides six example applications from the literature and the subsection on citations is now its own
section.

Our revision in response to Point 1 aims to balance our efforts to increase readability and understandability
with the value of the technical aspects of the manuscript. We think there is value in providing the technical
detail, and in exposing some of the thinking that underlies technical choices. We agree, however, that is is
not useful or valuable if it is not understandable.

In our revision of this section, we have focused on improving accessibility wherever possible, and adding
context for why such technical text is present. Where possible we worked to connect why technical details
or changes matter for an end user. For example, we added background and context on what an interface
standard is and how it is useful to an end user to the start of Section 4.2 (Updates to the Component
Standard Interface). While we have not excised all use of inline syntax and bulleted lists in the text we have
removed much of it. We think our revision of Section 4 has made it more readable and accessible.

We note that we have intentionally not made substantial changes to Section 4.3 (Removed or Modified
Components and Utilities). One might argue that this section is reminiscent of a change log, yet in many
ways that is its intent. This section is designed to highlight major changes and removals and provide a
description of why they were removed.

In his review Reviewer Schwanghart states ”My only concern is that the paper mixes quite generic issues
in software development in the geosciences with very technical issues specific to Landlab.” This comment is
perceptive and clearly identifies two (potentially competing) goals that we had in drafting this manuscript: to
document and describe technical details of Landlab and to share general lessons learned in the development
of Landlab. Yet as the Reviewer Schwanghart points out, these joint goals yield a varyingly technical
manuscript. We think that through revisions in response to reviewer comments we have come closer to
accomplishing these joint goals.

1

Short communication: Landlab v2.0: A software package for Earth
surface dynamics
Katherine R. Barnhart1,2, Eric W. H. Hutton3, 4, Gregory E. Tucker1, 2, 3, Nicole M. Gasparini5,
Erkan Istanbulluoglu6, Daniel E. J. Hobley7, Nathan J. Lyons5, Margaux Mouchene8, Sai
Siddhartha Nudurupati6, Jordan M. Adams9, and Christina Bandaragoda6

1University of Colorado at Boulder, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado
2University of Colorado at Boulder, Department of Geological Sciences, Boulder, Colorado
3University of Colorado at Boulder, Community Surface Dynamics Modeling System Integration Facility, Boulder, Colorado
4University of Colorado at Boulder, Institute for Arctic and Alpine Research, Boulder, Colorado
5Tulane University, Department of Earth and Environmental Sciences, New Orleans, Louisiana
6University of Washington, Department of Civil and Environmental Engineering, Seattle, Washington
7Cardiff University, School of Earth and Ocean Sciences, Cardiff, Wales, United Kingdom
8Univ. Grenoble Alpes, INRAE, ETNA, F-38402 St-Martin-d’Hères, France
9Delgado Community College, Division of Science and Math, New Orleans, Louisiana

Correspondence: Katherine Barnhart (katherine.barnhart@colorado.edu)

Abstract. Numerical simulation of the form and characteristics of Earth’s surface provides insight into its evolution. Landlab

is an Open Source Python package that contains modularized elements of numerical models for Earth’s surface, thus reducing

time required for researchers to create new or reimplement existing models. Landlab contains a gridding engine which repre-

sents the model domain as a dual graph of structured quadrilaterals (e.g., raster) or irregular Voronoi polygon-Delaunay triangle

mesh (e.g., regular hexagons, radially symmetric meshes, fully irregular meshes). Landlab also contains components—modular5

implementations of single physical processes—and a suite of utilities which
:::
that

:
support numerical methods, input/output,

and visualization. This contribution describes package development since version 1.0 and backward-compatibility breaking

changes which necessitates
:::
that

:::::::::
necessitate

:
the new major release, version 2.0. Substantial changes include refactoring the

grid, improving the component standard interface, dropping Python 2 support, and creating 30
::
31

:
new components—for a total

of 57
::
58 components in the Landlab package. We describe reasons why many changes were made in order to provide insight to10

designers of future packages. We conclude by discussing lessons about the dynamics of scientific software development gained

from the experience of using, developing, maintaining, and teaching with Landlab.

Copyright statement.

1 Introduction

Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Numerical models support15

researchers to simulate past, present, and future dynamics of a system—this
::::::
system.

::::
This enables conceptual model validation,

1

testing of alternative hypotheses, and prediction under uncertainty. Numerical modeling is especially important for Earth sur-

face dynamics because of the timescale mismatch between human observation and system evolution. Landlab is an Open Source

Python-language package that provides the common elements of infrastructure needed to support the creation of new models.

These include a model domain representation (the model grid), physical process components, and utilities that support use and20

extension of the package. Landlab’s modular design lowers the barriers of entry to computational research, reduces researcher

time, and supports publication of reproducible scientific research products (e.g., Bandaragoda et al., 2019). Development and

maintenance of Landlab follows modern software development standards such as version control, integrated testing and docu-

mentation, continuous integration, and multi-platform binary distribution
:::
(e.g., Adorf et al., 2019; Hwang et al., 2017; Mandli et al., 2016; Poisot, 2015; Taschuk and Wilson, 2017; Wilson et al., 2014)

. Our open source development and use of semantic versioning (SemVer 2.0.0, https://semver.org) provides a necessary but not25

sufficient tool for reproducible research in Earth surface dynamics (e.g., Chen et al., 2018).

Landlab was designed as a key element in the Community Surface Dynamics Modeling System (CSDMS) suite of tools

(Peckham et al., 2013). Initial development of Landlab began in 2012 and culminated in a version 1.0 release (referred to as

v1.0) described by Hobley et al. (2017).
:::::
Figure

::
1

:::::::
provides

:::::::::
examples

::
of

:::
the

:::::::
breadth

::
of

::::::::
modeling

::::::
efforts

:::::::::::
implemented

:::::
with

:::::::
Landlab.30

Subsequent to the release of v1.0, the core development team and many community members have contributed additional

features and bug fixes to the software. Based on experience using and developing with Landlab, the development team identified

changes to Landlab that were not backwards compatible, indicating a major release was necessary to convey to Landlab users

to expect substantial changes. This motivated the creation of Landlab v2.0, the focus of this contribution. A new major version

was needed to support (a) backward-compatibility breaking changes associated with refactoring core data structures,
:
and (b)35

removal of Python<3 support.

The scope of this contribution is to review the core concepts that underpin Landlab’s design , (Section 3), describe the

changes and new features added since v1.0 (Section 4),
::::::
discuss

:::::::
citation

::
of

:::::::
software

:::::::
(Section

:::
5), and document lessons we have

learned about community software development from developing and maintaining Landlab (Section 6). Before concluding

we provide recommendations for those interested in being involved with Landlab (Section 7).
::
We

::::
note

::::
that

:::::
while

:::::
much

:::
of40

::
the

:::::::::::
contribution

::::::::
discusses

::::::
general

::::::
issues

::
of

::::::::
scientific

::::::::
software

:::::::::::
development,

:::::::
Section

:
4
::
is
:::::::::
inherently

:::::::
specific

::
to

:::::::
Landlab

::::
and

:::::::
describes

::::::::
technical

::::::
details

::
of

:::::::
changes

:::::::
between

::::
v1.0

:::
and

:::::
v2.0. For a comprehensive description of the design and theory behind

Landlab v1.0 the reader is referred to Hobley et al. (2017). Additionally, we will not present detailed description of the use

of the software, discuss numerical methods, or review the literature that supports each process implemented in Landlab. In

general, methods and supporting literature can be found in key publications introducing each component (see Section 5), and45

guidance on software usage can be found on the Landlab website.

Detailed documentation for Landlab is available on the Landlab ReadTheDocs page https://landlab.readthedocs.io. Code

availability is described at the end of the contribution. A PDF of the documentation and the source code for v2.0 are archived

as the supplemental information to this publication.

2

https://semver.org
https://landlab.readthedocs.io

Figure 1.
:::::::
Examples

::::
of

:::::::::
modeling

:::::::::::
applications

:::::::::::
implemented

::::::
with

::::::::
Landlab

:::::
span

:::
a
::::::

wide
::::::

range
::::

of
::::::::::

timescales

:::
and

:::::::
topics.

::::
A

::::::
recent

:::::::::
selection

::::
of

:::::::::
examples

:::::::::
intended

::::
to

:::::::::
highlight

:::::::::
diversity

:::
of
::::::::::::

applications
::::::::

includes
:::::

the

:::::::
following

::::::::::
examples:

:::::
(a)

::::::::::
sediment

:::::::::::
provenance

::::::::
studies

::
(Sharman et al., 2019, reproduction modified from their Figure 2)

,
:::::

(b)
::::::::::

landscape
:::::::::

evolution
::::

of
::::::::::

anticlines
:::::::::::::::::::::::::::::::::::::::

(Zebari et al., 2019, reproduction of their Figure 8)
:
,
::::

(c)
::::::::

cellular
:::::::::::

automaton

::::::::
simulation

::::
of

:::::::
normal

::::::
fault

:::::::
facets

::
(Tucker et al., 2020, reproduction of their Figure 9),

:::::
(d)

:::::
the

:::::::::
evolution

::::
of

::::::
post

:::::
glacial

::::::::
drainage

:::::::::
networks

::
(Lai and Anders, 2018, reproduction of their Figure 4),

:::::
(e)

:::::::::
estimates

::::
of

::::::::
landslide

:::::::::::
probability

::
(Strauch et al., 2018, reproduction modified from their Figure 9)

:
,
:::::

(f)
::::::

and
::::::::::::

coevolution
:::::

of
:::::::::::

vegetation
::::::

and
:::::::::

erosion

:::::::::::::::::::::::::::::::::::::
(Schmid et al., 2018, reproduction of their Figure 3)

:
.

2 The Three Landlab Audiences50

The design of the Landlab package, its development practices, and the changes made in v2.0 are best understood in light of

the three audiences who interact with the package. Unlike software which
:::
that is developed by dedicated software engineers

who do
:::
may

:
not use the software themselves, Landlab developers also use the software for their research and teaching. Thus,

the first audience is user-developers, people who modify
:::::
extend,

:::::::
modify,

::
or

:::::::::
otherwise

::::::::
contribute

:::
to the source code in order

to accomplish their goals. Notably, most of the Landlab user-developers have little to no background in software engineering.55

The second audience is users, :
:
people who use Landlab

::
to

:::::
write

::::
their

::::
own

::::::::
programs,

:
but do not modify the

::
or

:::::::::
contribute

::
to

3

::::::::
Landlab’s source code.

::::::
Among

:::
this

::::::
group,

:
it
::
is

::::::
natural

:::
for

:::::
some

::
to

::::::::
transition

::
to

::::::::
becoming

::::::::::::::
user-developers,

:::
who

:::::::::
contribute

::::
new

::::::::::
components

::
or

::::::
utilities

::
to
:::
the

:::::
main

:::::::
Landlab

::::
code

:::::
base. The final audience is teachers-students, people who use Landlab in an

instructional classroom setting as part of a course.

In creating the source code, writing the documentation, determining the development practices, and maintaining the pack-60

age, the needs, abilities, and time constraints of all three audiences must be balanced. This is particularly important for

packages like Landlab with a small active developer community (n<20) and a research-scale user community (e.g., tens

to hundreds of researchers and perhaps a few thousand students over the lifetime of the software, rather than millions of

users). Our approach is to adopt many of the key design principles underlying modern academic software design best-practice

(e.g., The Turing Way Community et al., 2019)
::
(e.g., Wilson et al., 2017; The Turing Way Community et al., 2019). These in-65

clude an extensive automatic test suite, integrated documentation, version control, continuous integration, lint checking, and

releasing binary packages for users. These design choices were made to ensure that Landlab is sustainable into the future

to support the user community (see Hobley et al., 2017). Users
:::::::::::::::::
user-developer-learner

:::::::::::
communities

:::::::::::::::::::::
(see Hobley et al., 2017)

:
.
::::::::::
Community

::::::::::
contributors

:
play an important role in developing community open source software—two

:::::::
software.

::::
Two

:
of

their most important roles are improving and refining documentation when it is unclear
:
, and identifying software bugs. Be-70

cause Landlab currently has a relatively small user base with limited experience contributing to documentation, it takes longer

(months to years) for documentation to be refined by users compared to software with more users (days to months). The

relatively long "
:
“refinement residence time"

:
”
:
means that a commitment to high quality tests is critically important (see Sec-

tion 6.1).

3 Landlab Core Concepts75

A core design principle behind the Landlab package is modularity. Separating the elements of a numerical model into reusable

parts decreases the human-time associated with creating a new model or extending a current one. The design of Landlab is

discussed extensively in Hobley et al. (2017). Here we briefly summarize the key points to provide context to the changes and

new features that are discussed further in Section 4.

The modular design of Landlab comprises the following categories of software infrastructure:80

1. Model Grids, data structures implemented as Python classes that represent the computational domain, connectivity be-

tween parts of the domain, and provide a centralized location to store state variables;

2. Utilities, functions that provide solutions to common problems (e.g., numerical functions for gradients, mapping, and

flux divergence; basic plotting; watershed delineation; and file input/output).

3. Components, representation of core surface processes (e.g, stream power, flow accumulation, precipitation) as a Python85

class with a common interface.

The grid represents a 2D domain as two sets of connected points, lines and polygons, offset and overlaid on each other; it

constitutes a formal dual-graph in graph theory terminology. Each graph in the dual-graph is a set of points, connected by lines,

4

and outlining polygons. Each graph is a planar graph
:
, meaning that the lines connecting points do not cross. In Landlab, we

refer to the first graph as composed of nodes connected by links which outline patches. Corners are located at the center of90

patches ,
::::
inside

:::::::
patches

:::
and

:
are connected by faces

:
, which outline cells. In such a way

::::
With

:::
this

:::::::::
framework, data identified at

a given point in space has both a connectivity to other points defined by its lines, and a uniquely associated spatial area and set

of bounding edges drawn the from enclosing polygon in the other graph.

There are four aspects of the grid that are worth highlighting. First is that the Landlab model grids provide information about

the connectivity and adjacency of all grid elements (nodes, links, patches, corners, faces, and cells). Second, the model grids95

use a consistent framework for the numbering of grid elements and identifying a direction for each link and face (note that

this is a topologic direction based on the orientation of the link in x-y space, not a flow direction). This permits consistent

application of numerical methods based on grid element ID that may be transferred to grids of different shapes and sizes.

Third, Landlab supports regular and irregular model grids through the same interface. The Landlab model grid library in-

cludes data structures for networks, regular rasters, general irregular meshes (Voronoi cells with Delaunay triangulated nodes),100

regular hexagons, and radially symmetric irregular meshes. Landlab v2.0 assumes all links and faces are straight. The model

grids were designed to accommodate extension to more exotic 2D geometries.

Finally, the model grid may be used to store data fields at any grid element. Fields represent state variables and are useful

when multiple components use or modify the state variables. When a field is stored on the grid, Landlab enforces characteristics

such as the number of elements
:
, and provides the ability to use adjacency information associated with the grid.105

The Landlab model grids keep track of boundary conditions using arrays of integers with flags indicating characteristics

such as fixed-value, fixed-gradient, or closed to flux (grid.status_at_X where X is the name of the grid element).
::::
Note

:::
that

:::
we

::::
will

:::
use

:::::::::::::::
preformatted

::::
style

::::
text

::
to

:::::::
indicate

:::::::
Landlab

::::::
syntax.

:
Thus far, most applications with Landlab use nodes

and links as the primary grid elements. Thus, sets of standard boundary condition flags are presently only implemented for

these two types of grid elements.110

Utilities fall into two subcategories: general numerical utilities, and application-focused utilities. In the first category are

functions which
:::
that

:
calculate quantities such as gradients or flux divergence, and map values from one grid element to another.

Development has created numerical utilities focused on finite-difference/volume numerical solutions to differential equations

and cellular automaton applications. This, however, reflects the interests of developers rather than the potential characteristics

of the package. In the second category are application-focused utilities,
:
which implement functions used multiple times in the115

package.

Components are Python objects with a standard interface that implement a single Earth surface process, set of equations,

or analysis compatible with the component interface (e.g. calculation of drainage density). All components require a Landlab

model grid to instantiate, and have a bound function that advances the component forward in time or updates it based on the

current values stored as fields. Components can be coupled by accessing and modifying the same fields stored on the model120

grid elements.

5

4 Changes and New Features Added Since Landlab v1.0

Landlab v2.0 contains many changes to the core source code that add new features. We have compiled Tables
:::::
tables describing

the pre-existing, refactored, and new core capabilities of the Landlab package. Specifically,
::::
These

:::::::
include

:
data structures

(Table 1), utilities (Table 2), new components (Table 3), and pre-existing or refactored components (Table 4). We list core125

package, development environment, testing, tutorial, and documentation dependencies in Table 5.

::::
This

::::::
section

:::::::
focuses

:::
on

:::
the

::::::::
technical

::::::
details

:::
of

:::::
what

:::
has

::::::::
changed

:::::::
between

::::::::
Landlab

::::
v1.0

::::
and

:::::
v2.0.

::::
One

::::::
might

:::::
glean

:::::::::
comparable

::::::::::
information

:::::
from

::::::
reading

:::
the

:::::::
software

:::::::::::
repositories’

::::::
change

::::
logs.

::::::::
Inclusion

::
of

:::
the

::::::::
technical

::::::
details

::::
here

:
is
::::::::
intended

::
to

:::::::::
summarize

:::
key

:::::::
changes.

::
In

::::::::
addition,

:::::
where

:::::::
relevant,

:::
we

:::::::
describe

::::
why

:::::::
changes

::
or

::::::::::::
improvements

::::
were

:::::
made.

::::
This

::::::::::
explanation

:
is
::::::::

intended
::::
both

:::
for

:::::::
current

:::
and

::::::
future

:::::
users

::
of

:::::::
Landlab

:::
as

::::
well

::
as

:::
for

:::::
those

:::::::::
interested

::
in

::::::::
scientific

::::::::
software

:::::::::::
development130

::::::::
generally.

Changes that broke backward compatibility were required to incorporate some of the new features in Landlab v2.0. This

necessitated a new major version. These changes included: (i) binding of the boundary condition flags to model grids (Sec-

tion 4.1.3), (ii) a revision to the Component standard interface (Section 4.2), (iii) deprecation and removal of
:::::
certain

:
compo-

nents and utilities (Section 4.3), (iv) dropping Python 2 support (following sunsetting of this version at the end of 2019 by the135

Python Software Foundation). Additionally, we completely revised the documentation structure (Section 4.4).

Citation of research software is a persistent challenge (e.g., Niemeyer et al., 2016). This is especially difficult for Landlab

because the package itself requires citations, and in addition, depending on the components used, other citations are required.

To address this issue, we have designed a Landlab tool that makes it easier for users to know what references to cite based on

what parts of Landlab they have used (Section 5).140

Landlab v2.0 is designed to work with a number of other Python tools for numerical modelling. They are summarized in

Section 4.5.

4.1 Improvements to the Landlab Model Grids

Here we highlight three improvements to the Landlab model grid in v2.0.

4.1.1 Grids Inherit from Graphs145

Each Landlab model grid combines a dual-graph topology with the ability to store fields at grid elements and keep track

of boundary conditions. While the concept of a dual-graph is not new in Landlab v2.0, the package architecture has been

revised to create a set of graph classes from which the Landlab model grids inherit (Table 1, located in the landlab.graph

submodule).

The Landlab graphs describe the topology and connectivity of a dual graph of nodes-links-patches/corners-faces-cells, and150

specify the x and y coordinates of the nodes and corners. It
:::
The

:::::::
package

:
contains support for 1D and 2D graphs, and for graphs

not yet used in Landlab grids (e.g., DualStructuredQuadGraph). It was designed to be re-usable by projects external to

Landlab. While the graph capabilities do not yet support 3D graphs, the package was designed with extension to 3D in mind.

6

Table 1. Major Data Structures in Landlab v2.0

Name Summary New/Refactored?

Graphs

NetworkGraph Graph with only nodes and links. New

DualVoronoiGraph
Unstructured dual-graph of node-link-patch
Delaunay triangles and corner-face-cell Voronoi
polygons.

New

DualHexGraph Dual-graph of node-link-patch triangles and
corner-face-cell regular hexagons.

New

DualRadialGraph Dual-graph with radially symmetric nodes. New

DualStructuredQuadGraph
Dual-graph of structured quadrilaterals. Link and
face lengths vary, and orthogonality of links and
faces is not required. This graph does not yet support
a grid.

New

DualRectilinearGraph
Dual-graph of quadrilaterals. Link and face lengths
may be variable but angles are orthogonal. This
graph does not yet support a grid.

New

DualUniformRectilinearGraph
Dual graph of constant-sized rectangles. x and y link
and face lengths may be different, but are constant
across the grid and are orthogonal.

New

Model Grids
NetworkModelGrid Model grid that inherits from the NetworkGraph New

VoronoiDelaunayModelGrid Model grid that inherits from the
DualVoronoiGraph

Refactored

HexModelGrid Model grid that inherits from the DualHexGraph Refactored

RadialModelGrid Model grid that inherits from the
DualRadialGraph

Refactored

RasterModelGrid Model grid that inherits from the
DualUniformRectilinearGraph

Refactored

Other data structures

EventLayers

Data structure that keeps track of a timeseries of
thicknesses and a generic set of properties at all of
one grid element (e.g., cells). In EventLayers
every time point is recorded, such that erosion of
layers retains a series of zero thickness.
EventLayers is more appropriate if a user is
interested in chronostratigraphy.

New

MaterialLayers
Same as EventLayers except that when erosion
occurs, no layer is recorded, and when equivalent
material is deposited, layers can be joined.

New

DataRecord Data structure to store a generic set of variables in
time and/or on grid elements.

New

Building the model grids to inherit from the graph data structure results in all model grids containing a complete set of

topology-derived attributes (e.g.,
::::::
grid.links_at_node) and attribute naming consistency between model grids. In addi-155

tion, all of the topology-derived attributes are only created when needed (just in time
:::::::::
just-in-time

:
memory allocation) and are

cached. This was inconsistently implemented in v1.0 and provides an improvement for memory management and speed.

7

Table 2. Major New Utilities in Landlab v2.0

Submodule Summary

landlab.utils.distance_to_divide Calculate distance between nodes and water-

shed divides.

landlab.utils.flow__distance Calculate distance between nodes and water-

shed outlets.

landlab.utils.watershed Identify and label nodes that belong to individ-

ual watershed.

landlab.values Create generic, reproducible, synthetic fields

based on Python dictionaries or yaml input files.

The graph and model grid data structures are all built on the xarray Python package’s Dataset (Hoyer and Hamman,

2016). Using xarray.Dataset provides a number of advantages including improved input and output to the NetCDF

format, use of xarray’s optimized data structures, and the possibility to take advantage of xarray-compatible parallelization160

related tools (e.g., dask, Dask Development Team, 2016; Rocklin, 2015) without breaking backwards compatibility.

4.1.2 Improved Treatment of Diagonals

The RasterModelGrid can optionally contain an additional grid element called a diagonalthat
:
,
:::::
which

:
connects nodes but

also crosses corners (Figure 2). Including this grid element violates the assumption of a plane graph because the diagonal ele-

ments cross one another. However use of diagonal elements has a long history in Earth surface dynamics modelling; in order to165

support historical algorithms (e.g., D8 flow routing, O’Callaghan and Mark, 1984)
:
, Landlab’s RasterModelGrid contains

support for diagonals. This permits studies , similar to similar to Shelef and Hilley (2013), that cross-compare implementations

with and without diagonals
::::::::::::::::::::::::
(e.g., Shelef and Hilley, 2013)

:
,.

Landlab v1.0 had a partial implementation of diagonals in which there was no consistent way to refer to the diagonals or the

group of linear elements composed of both links and diagonals. In addition, we had an incomplete set of adjacency structures170

describing diagonals, and we had no mechanism to store values at diagonals on fields. We now consistently call the set of links

and diagonals d8s, and have implemented adjacency structures and some numerical functions for diagonals and d8s that mirror

those for links. Landlab assigns a unique ID to each grid element (see Hobley et al., 2017, their Figure 4). For example, the

nodes are identified with ID numbers from zero to number of nodes minus one
:
, and links are identified with numbers from zero

to number of links minus one. The unique IDs assigned to the d8
:::
d8s

:
refer first to the links and then to the diagonals .175

In
::
(in

:
this contribution we will use “d8” to refer to the grid element and “D8” to refer to the flow routing approach

:
).

8

Figure 2. Grid elements of RasterModelGrid without (a) and with (b) diagonals.

4.1.3 Bound Boundary Condition Flags

Landlab v2.0 provides boundary condition status arrays for nodes, links, corners, faces, and, if applicable, diagonals and d8s.

Because cells and patches are uniquely associated with their own nodes and corners, we do not supply specific status arrays for

those elements. Boundary condition status is indicated by a set of flags that indicate the status (Table 6 indicates flag names, see Hobley et al., 2017, their Section 3.1.4 for discussion of boundary conditions)180

::
(Table 6 indicates flag names, see Hobley et al., 2017, their Section 3.1.4 for discussion of boundary conditions). Landlab does

not enforce whether a component honors boundary condition flags—the status arrays and flags are provided simply as a conve-

nience to developers. As in v1.0, we enforce internal consistency of boundary conditions across connected grid element types.

e.g.
:::
For

:::::::
example, an update to boundary conditions

::::
status

:
at a node will automatically propagate into the connecting links as

appropriate, and vice versa.185

Prior to v2.0, the flags used to indicate node and link status were not bound to the model grids. In v2.0 we bound these as

attributes of the model grid because we want these flags to be inseparable from the grids that use them. Along with binding the

flags to the grid, we modified the names for clarity (Table 6)
:
.

4.2 Updates to the Component Standard Interface

::::::::
Scientific

:::::::
software

::::
and

:::
data

::::
are

:::::
much

:::::
easier

::
to

:::::
work

::::
with

:::::
when

::::
they

::::::
follows

:::::::::
standards.

::::::::
Software

::::
tools

:::
in

::::::::
particular

:::::::
become190

::::
much

:::::
more

:::::::::
accessible

:::::
when

:::::
they

::::::
provide

::
a
::::::::
standard

::::::::
interface:

::
a
::::::::
common

:::
set

::
of

::::::::
functions

::::
that

:::::
look

:::
and

:::
act

:::
in

:
a
:::::::

similar

:::
way

::::::
across

:::::
many

::::::::
different

::::::::
elements

::
of

:::
the

::::::::
software.

:::::::::
Landlab’s

::::::::::
components

::::
use

:
a
::::::::::

lightweight
::::::::

interface
::::
that

::
is

:::::::
inspired

:::
by

::
the

::::::::
CSDMS

:::::
Basic

::::::
Model

::::::::
Interface

::::::
(BMI)

::
(Peckham et al., 2013; Hutton and Piper, 2020a),

::::
but

:::::
which

:::::
takes

:::::::::
advantage

:::
of

::::::::::::
object-oriented

:::::::
features

::
of

:::
the

::::::
Python

:::::::::
language,

:::::::
allowing

::
it

::
to

::
be

:::::
more

::::::::
compact.

::::::::
(Landlab

:::
also

::::::::
includes

::::::
built-in

:::::::::::
functionality

:::
that

:::::::
converts

::::
any

:::::::
Landlab

::::::::::
component

::::
into

:
a
:::::
BMI

::::::::::
component,

:::
for

:::
use

::
in
:::::::::::

frameworks
:::
like

:::::::::
CSDMS’

::::::
Python

::::::::
Modeling

:::::
Tool195

:::::::::::::::::::::
(Hutton and Piper, 2020b)

:
).
:::
In

:::::::
addition

::
to

:::
its

::::::::
interface,

:::::
each

:::::::
Landlab

::::::::::
component

::::
also

:::::::
encodes

::::::::
metadata

::
in

::
a
:::::::::::
standardized

::::::
format;

::::
these

::::::::
metadata

:::::::
include,

:::
for

::::::::
example,

::::::::::
information

:::::
about

:::
the

::::::::::
component’s

:::::
input

:::
and

::::::
output

:::::
fields.

:

9

We made changes to the expectations of component interface, metadata, and code standards based on our experience devel-

oping components, supporting community members, and using components in science applications. The enhanced interface

standard is designed to improve usability and documentation, and to make clearer expectations for contributed components.200

We have implemented automated tests that ensure existing and contributed components meet this interface standard.

4.2.1 Changes to the Component __init__Method

:::
The

::::::
design

::
of

:::::
many

::::::::
numerical

:::::
model

::::::::
programs

:::::::
follows

::
the

:::::::::::::::::::
“initialize-run-finalize”

::::::
pattern

:::
(e.g., Peckham et al., 2013; Hutton and Piper, 2020a)

:
.
::
In

:::
the

:::::
Basic

::::::
Model

:::::::::
Interface,

:::
the

:::::::::::
initialization

::::
step

::
is

:::::::
handled

:::
by

:::
the

:::::::
standard

::::::::::::::::
initialize()

:::::::
function,

::::
and

::::::::
stepwise

:::::::
updating

::
is

:::::::
handled

:::
by

:::
the

::::::::::
update()

:::::::
function.

::::
For

:::::::
Landlab

:::::::::::
components,

::::::
which

:::
are

:::::::::::
implemented

::
as

:::::::
Python

:::::::
objects,

:::
the205

::::
class

:
__init__

::::::
method

::::::::::
implements

::::::::::::
initialization,

::::
and

:::::::
stepwise

::::::::
updating

::
is
::::::::

normally
:::::::

handled
:::

by
::

a
:::::::
method

:::::
called

::::::
either

run_one_step
::
or

::::::::
update.

:
Hobley et al. (2017, their section 3.3.1) defined the interface for Landlab components with the

function signature for instantiation (
::::::::::::
Component.__init__) and advancing forward (

::::::::::::
Component.run_one_step).

The v1.0 component instantiation interface defined with the function definition of: __init__(self, grid, arg1,

arg2..., kwd1=a, kwd2=b, kwd3=c, ..., **kwds). Here arg1 represents a generic argument and kwd1=a210

represents a generic keyword argument. The **kwds was included so that a user could make a single dictionary (or yaml file)

containing all of the keyword arguments for all components used in a model, and pass the same dictionary to all components.

However, an undesirable side effect of this design was that a slight misspelling of a keyword argument would result in use of

the default value with no error raised. To remedy this flaw we revised the
::::::::::
instantiation

:
standard to remove the **kwds; that

is, a user may now only supply the component with input parameters that are explicitly declared in its signature.215

In addition we expanded the requirements for what a component ’s must do: Components must
:::::::::
component

:::::::::::
instantiation.

:::::
These

:::::::::::
requirements

::::
help

:::::::
promote

:::::::::::::
standardization

:::::
among

:::::::
Landlab

:::::::::::
components.

::::
One

::::
new

::::::::::
requirement

::
is

:::
that

::::::::::
components

:::::
must

inherit from the Component base class and call
:::
the

::::::::::
instantiation

:::::::
method

::
of

:::
the

::::
base

:::::
class

:
(superin their)

::
as
::::

part
::
of

:::::
their

::::::::::
instantiation. This ensures that all components take full advantage of the base class functionality and internal checking. By

:
;
:::
for

:::::::
example,

:::
the

::::
base

::::
class

::::
will

:::::::::::
automatically

:::::
make

::::
sure

:::
that

:::
all

::
of

:::
the

:::::
output

:::::
fields

:::::
listed

::
in

:::
the

:::::
header

::::::::
metadata

:::
are

:::::::
created,

::
so

:::
the220

:::::::::
component

::::::
author

::::
only

:::::
needs

::
to

:::::
ensure

::::
that

:::
the

::::::::
metadata

:::
are

::::::
present.

::
A
::::::
related

::::::::::
requirement

::
is
::::
that

::
by

:
the end of

::::::::::
instantiation,

all output fields made by the component must exist and have the data type specified by the component metadata. A
::::
This

:::::::
provides

:::
for

:::::
other

::::::::::
components

:::
that

:::::
may

:::::
check

:::
for

:::::
these

:::::
fields

::
as

:::::
input.

:::::::
Finally,

:
a
:
component must raise a ValueError if

unused keyword arguments are provided . A component must raise a ValueError if a grid type the component does not

support is provided.
:::::::
sensible

::::
error

:::::
when

::::
bad

:::::
values

:::
are

::::::::
provided

:::
(for

::::::::
example

:
if
:::
an

::::::::::
unsupported

::::
grid

::::
type

::
or

::::::
unused

::::::::
keyword225

::::::::
argument

:
is
:::::::::
provided).

:

4.2.2 Changes to the Component Run Method

The v1.0 component interface defined a run method with a function signature run_one_step(dt, *args, **kwds)

where dt represents the duration of time the model runs forward, *args represents a generic list of arguments, and **kwds

represents a generic set of keyword arguments. In practice, we found that many Landlab components were not able to follow230

10

this interface standard because it was not flexible enough. For example, some components do not require a dt and thus did

not take dt. We also found the presence of *args and **kwds in the run_one_step problematic because it complicated

wrapping components with a Basic Model Interface (BMI, Peckham et al., 2013; Hutton and Piper, 2020a) for use with the

Python Modeling Tool (PyMT, Hutton and Piper, 2020b).

The revised interface balances standardization and flexibility.
::::::::::
Components

:::
are

::
no

::::::
longer

:::::::
required

::
to

:::::::
provide

:
a
:::::::
method

::::
with235

::
the

:::::
name

:::::::::::::::
run_one_step

:
,
:::
but

::
if

::::
they

::
do

::::
not,

::::
then

:::
an

:::::::::
alternative

::::::::::::::
update/execution

:::::::
function

::::
must

:::
be

::::::::
provided

:::
and

:::
its

:::::
usage

:::::
clearly

:::::::::::
documented

::
in

:::
the

::::::::::
component’s

::::::
header

:::::::::
docstring. The new expectation is that if run_one_step is used it will either

take dt
:
a

::::
time

:::::::
duration or nothing. Thus components with a run_one_step method can be easily incorporated into PyMT.

Pre-existing components that took arguments or keyword arguments in the
::::
their run_one_step

::::::
method have been refactored

to either provide those values at instantiation, or to use properties, getters, and setters. Components are no longer required to240

provide a run_one_step method, but if they do not, then an alternative update/execution function must be provided andits

usage clearly documented in the component ’s header docstring
:::::::::
properties,

::::::
getters,

::
and

::::::
setters

:
.
:::
The

:::::
terms

:::::
getter

:::
and

:::::
setter

:::::
come

::::
from

:::::::::::::
object-oriented

:::::::::::
programming,

::::
and

::::
they

::::
refer

::
to

:::::
small

::::::::
functions

:::
that

:::::::
retrieve

:::
the

:::::
value

::
of

::::
(get)

::
or

::::::
assign

:
a
:::::
value

::
to

::::
(set)

::
a

::::::::
particular

:::::::
variable.

::::::::
Although

::
it

:::::
might

:::::
seem

:::
odd

::
to

::::::
create

::::::::
functions

::
to

:::::
handle

:::::
such

::::::::
seemingly

::::::
trivial

:::::
tasks,

:::
the

:::::::
practice

:::
has

:::
the

::::::::
advantage

::
of

::::::::
enabling

::::::::
defensive

::::::::::::
programming

::::
(e.g.,

::
a

:::::
setter

:::
can

:::::
check

:::
for

:::
the

:::::
right

::::
data

:::::
type),

:::::::
allowing

::
a
:::::::
program

::
to

::::::
create245

:
a
::::::::
particular

:::::::
variable

::::
only

:::::
when

::
it

::
is

::::::::
requested

::::::
(which

:::
can

:::::
save

::::::::
memory),

:::
and

::::::::::
supporting

::::::
built-in

::::::::::::
documentation

:::
(in

:::
the

:::::
form

::
of

:::::::
function

:::::::::::::
documentation)

:::
for

::::
each

:::::::
variable.

::
In

::::::::
Landlab

::
(as

::
in
:::::::
Python

::::::
practice

:::::::::
generally)

::::::
getters

:::
and

::::::
setters

:::
are

:::::::::::
implemented

::::
using

:::
the

:::::::
Python

:::::::::::
@property

::::::::
decorator.

:::::
Those

::::::::
variables

::::
that

:::
use

::::::
getters

::::
and

::::::
setters

:::
are

:::::::::
considered

::
to
:::

be
::::::
public,

::::::::
meaning

:::
that

:::::::::::
programmers

:::::
using

:::
the

::::::::::
component

:::
can

:::::
easily

::::::
inspect

::::
and,

::
if
:::::::
desired,

::::::
change

::::
their

:::::::
values.

:::::
Other

:::::::
variables

:::
are

::::::::::
considered

::::::
private:

::::
used

:::::
only

::
by

:::
the

::::::::::
component

:::::::::
internally,

:::
and

::::
not

::
to

::
be

::::::::
modified

:::
(to

:::::::
indicate

::::
this,

:::
the

::::::
names

:::
of

::::::
private

::::::::
variables

:::
are250

:::::::
preceded

:::
by

::
an

:::::::::
underscore

:::::::::
character).

4.2.3 New Component Metadata Standard

The data structure that stores metadata about the fields the component uses and creates was revised. Component metadata

describes

:::
For

::::
both

::::
data

:::
and

::::::::
software,

::::::::::
standardized

::::::::
metadata

:::::::
promote

:::::::::
efficiency,

:::::::::::::
interoperability,

:::
and

::::::
reuse.

::
To

::::
that

::::
end,

::::
each

:::::::
Landlab255

:::::::::
component

:::::::
includes

::
a

::
set

:::
of

:::::::
metadata

:::
in

:::
the

::::::
header

::
of

:::
the

::::
class

::::
that

::::::
defines

:::
the

::::::::::
component.

::::
Our

:::::::::
experience

::::
with

::::::::::
component

:::::::
metadata

::
in

:::::::
Landlab

:::
led

:::
us

::
to

:::::
revise

::
its

::::::
design

:::
for

::::::
version

::::
2.0.

:::
The

::::::::
metadata

::::::
section

::
of
::

a
:::::::
Landlab

::::::::::
component

::::::::
describes

::
its

:
input fields, output fields, field units, the type of grid element

associated with each field, and a long-format description of the field. Metadata are now organized into a single Python dic-

tionary, which has a key-value pair for each field used by the component. The new data structure makes it easier to test for260

completeness and consistency across components.

Each key is a string indicating the field name. The associated value is itself a dictionary that has a standard, required set of

keys :
:::::
(Table

:::
7).

11

4.2.4 Additional Component Content Requirements and Recommendations

Here we highlight the few remaining component requirements and recommendations. The use of must indicates a requirement265

while the use of may or should indicates a recommendation.

– All public attributes must be documented properties of the Component class, that is, they have the @property stan-

dard Python decorator. This ensures that other users are able to identify what each public attribute is, and prevents

variable modification unless the developer explicitly permits it. This change has little impact on developers time because

a developer may elect to use only private attributes.270

– If a developer envisions that a component’s public attribute may be modified, they must create a setter for it. This

provides a place for a component author to write checks that ensure a user cannot incorrectly assign invalid component

attributes.

– Field names shared between multiple components must use a consistent definition and dimensions. Some components

require parameters and fields to use a particular set of units while others are unit agnostic. This is flagged in the com-275

ponent attribute Component.unit_agnostic. It is up to the user to ensure that an application uses consistent units

across all fields, components, and input parameters.

– Arguments and keyword arguments should start with lower case letters.

– The grid should be the only argument to the component __init__. All other inputs are provided as keyword arguments.

– Keyword arguments should have reasonable default values so that all keywords are truly optional.280

– The component’s main method (either run_one_step or a custom-designed update/execution function) should return

either nothing, the grid, or a single calculated value.

4.3 Removed or Modified Components and Utilities

Several obsolete components and utilities have been removed from Landlab v2.0. Other components were substantially modi-

fied. Here we describe these changes.285

– The FlowRouter component, which did D8 and D4/Steepest Descent flow routing and accumulation, was removed and

replaced with the FlowAccumulator and a family of FlowDirector components. This change provides greater

flexibility in options for flow-routing algorithms (e.g., multiple flow directions, D∞).

– The routing-based surface-water erosion components (such as StreamPowerEroder) now use a single consistent

method for handling the input runoff rate. The keyword argument runoff_rate to the FlowAccumulator can290

now specify a float, array, or field name indicating the runoff rate. This is then accumulated to create the field

surface__water_discharge which can be used by components that model surface-water erosion.

12

– The ModelParameterDictionary was removed because it represents an old-style input file that has been su-

perceded by the yaml format.

– A new ChannelProfiler component replaces the previous channel-profiling submodule295

(landlab.plot.channel_profile).

– The noclobber keyword argument for field creation was changed to clobber because the original name required

double negatives and was not intuitive. noclobber=False is equivalent to clobber=True.

– The ability to pass an array of flooded nodes to the run_one_step method in surface-water erosion components was

removed and replaced with a keyword argument to __init__ called erode_flooded_nodes.300

4.4 Reorganization of the Landlab Documentation

The Landlab online documentation is now consolidated onto a single sphinx-based platform (https://landlab.readthedocs.io/).

Consolidating the documentation onto a single platform with a consistent interface reduces duplication of information, and

improves consistency
::::::::
improves

::::::::::
consistency,

:::
and

:::::::
permits

::::::::::::
comprehensive

::::::::
searches. The site’s design is similar to that of widely

used scientific Python packages and was modeled after that of pandas (McKinney, 2010). The revised documentation pages305

include installation instructions, a User Guide (including tutorials), a Guide for Developers, and an API Reference that contains

formatted versions of inline documentation within the source code. The documentation source is written in ReStructuredText

format, and the source files are provided as part of the Landlab package.

4.5 Citation of
::::::::
Packages

:::::
Built

::
to

:::::
Work

:::::
With

:
Landlaband Parts of Landlab

:::::::
Landlab

:::
was

::::::::
designed

::
as

::
a
:::::::
generic,

:::::::::
extensible

:::::::::
modelling

:::::::::
framework

:::
for

:::::
Earth

::::::
surface

:::::::::
dynamics.

::::::::
Because

:::::::
Landlab

:::::::
exposes310

::::
BMI

::::::::::::::::::::::::::
(BMI, Hutton and Piper, 2020a),

::
it
::
is

:::::::::
compatible

::::
with

:::
the

::::::
PyMT

:::::::
package

::::::::::::::::::::::
(Hutton and Piper, 2020b)

::
—a

:::::::
Python

:::::::
package

:::
that

:::::::
supports

:::::::
running

:::
and

::::::::
coupling

::::::
models

::::
that

::::::
expose

:
a
:::::
BMI.

::::::
PyMT

:::::::
provides

::::::
access

::
to

:
a
:::::
suite

::
of

::::::
models

::::::
written

:::
in

:::::::
multiple

::::::::
languages

:::::
(e.g.,

::::::
Python,

:::::::
fortran,

::::
c++)

:::
and

::
a
:::::::
standard

:::::::
interface

:::
for

:::::::::
initializing

::::
and

:::::::
running.

:

::
In

:::::::
addition,

:::
two

::::::::
packages

::::
have

::::
been

:::::
built

::::
using

:::::::
Landlab

::
to

:::::::
support

::::::::::
applications

::
in

::::::::
sensitivity

:::::::
analysis,

::::::::::
calibration,

:::::::::
validation,

:::
and

::::::::::
multi-model

::::::::::
comparison

::
(see, Barnhart et al., 2020a, b, c, for example applications)

:
.
::::
First,

:::::::::::::::
terrainbento

:
is

::
a

::::::
Python315

:::::::
package

::
for

:::::::::::
multi-model

:::::::
analysis

:::
that

::::::::
provides

::
an

:::::::::
extensible

::
set

:::
of

::
27

::::::::::::
Landlab-built

::::::
models

:::
for

::::::::
long-term

::::::::
drainage

::::
basin

::::
and

:::::::
landform

:::::::::
evolution,

:::::
along

:::
with

:::::::
general

::::::
classes

::
for

::::::::
handling

::::::::
boundary

::::::::
conditions

:::::::
through

::
an

::::::::
input-file

::::::
format

:::::::::::::::::::
(Barnhart et al., 2019b)

:
.
::::::
Second,

:::::::
umami

:
is
::::
used

::
to

::::::::
calculate

:::::::::
model-data

::::::::::
comparison

::::::
metrics

:::
for

:::::::
observed

::::
and

::::::::
simulated

:::::::::
topography

:::::::::::::::::::
(Barnhart et al., 2019a)

:
.

5
:::::::
Citation

:::
of

::::::::
Landlab

::::
and

:::::
Parts

::
of

::::::::
Landlab320

Citation of scientific software is an outstanding challenge (e.g., Niemeyer et al., 2016). Scientific software is cited less fre-

quently than it is used (e.g., Pan et al., 2015). Indicating a recommended citation for use of Landlab is additionally challenging

13

https://landlab.readthedocs.io/

because, depending on the portion of Landlab used, the
::
set

::
of
:

citations required may vary. We describe our recommendations

for which citations to use, and present a tool within Landlab to improve citation discoverability.

Any time any part of Landlab is used, Hobley et al. (2017) should be cited; if the version used is > 1.0, then this contribution325

should be additionally cited. These two citations acknowledge the development of the Landlab package itself. We also recom-

mend that authors state the specific version of Landlab used (the version can be found by evaluating landlab.__version__).

Each application of Landlab may use a different set of components, each with a different citation for the software itself and

general set of theory references (Table 3 and 4). Additionally, some parts of Landlab may internally use others; thus a user may

not easily be able to assess the entire set of elements of Landlab their application has used and what to cite for each part.330

This challenge is not new. For example, it is faced by the scipy package, which addresses it by providing a core-package

citation: Virtanen et al. (2019), and indicating that users should look to the Reference section of the documentation for ad-

ditional citations. Similarly, the codes distributed through the Computational Infrastructure for Geodynamics (CIG) have a

citation builder that distinguishes between citations specific to the software implementation, primary citations describing the

code development and numerical methods, and secondary citations that pertain to parts of the code a user may or may not335

have used (Kellogg et al., 2018). This example from CIG highlights a further challenge: a component may have one or more

citations for for each of the following categories: (i) the theory behind the implemented idea, (ii) a description of the software

implementation itself, (iii) any specialized algorithms developed for the implementation, and (iv) the first reported use of the

software in a publication.

Should one of these or all of these be the recommended and/or required citations for a given software component? We do not340

think it is our role to decide which citations, if any, a component author indicates as recommended or required. Additionally,

it is not our place—as the software developers behind Landlab—to determine which citations best represent the theory behind

an implementation. Instead we provide two places for a component author to indicate what they think the minimum required

citations are: a component attribute called Component.cite_as which lists required citations for a given component, and

a section in the component docstring that provides the broader reference context. These two categories are reflected by the two345

citation columns in Tables 3 and 4. Clearly, a component developer has the authority to decide exactly what to put in either of

these locations.

To aid discoverability of citations, we have created the Landlab citation registry, a tool that compiles citation-related meta-

data for the specific set of Landlab components used in an application (Listing 5). The citation registry compiles citation

information for all components currently instantiated in a Python session by automatically interrogating their cite_as prop-350

erties.

5.1 Packages Built to Work With Landlab

Landlab was designed as a generic, extensible modelling framework for Earth surface dynamics. Because Landlab exposes

BMI (BMI, Hutton and Piper, 2020a), it is compatible with the PyMT package (Hutton and Piper, 2020b)—a Python package

that supports running and coupling models that expose a BMI. PyMT provides access to a suite of models written in multiple355

languages (e.g., Python, fortran, c++) and a standard interface for initializing and running.

14

Listing 1. Using the Landlab citation registry.�
import landlab

Do your work, using the parts of

Landlab you need.

:
#
::
Do

:::::
your

::::
work

:
,

:::::
using

:::
the

:::::
parts

:::
of

::::::
Landlab

::::
you

::::
need

:
.

When you are done, write citations

to a file.

:
#
::::
When

:::
you

::::
are

::::
done

:
,
:::::
write

::::::::
citations

:::
to

:
a
:::::
file.

w = landlab.registry.format_citations()

with open("citations.bib", "w") as f:

f.write(w)

This will produce Bibtex-formatted

citations for all Landlab components

that you currently have instantiated.

:
#
::::
This

::::
will

:::::::
produce

::::::
Bibtex

:
-
:::::::
formatted

:::::::::
citations

:::
for

:::
all

:
#
:::::::
Landlab

:::::::::
components

::::
that

:::
you

:::::::::
currently

::::
have

:
#
:::::::::::
instantiated

:
.

For example, the Bibtex contents below

will result from a script that only

imports Landlab.

:
#
:::
For

:::::::
example

:
,
:::
the

::::::
Bibtex

::::::::
contents

:::::
below

:::::
lists

:::
the

:
#
:::::
first

:::::
entry

::::
from

::
a
::::::
script

::::
that

::::
only

:::::::
imports

:::::::
Landlab

:
#
::
(

:::
this

:::::::::::
contribution

:::::
would

::::
also

:::
be

:::::
listed

::
).

Citations

landlab

@article{hobley2017creative,

AUTHOR = {

Hobley, D. E. J. and Adams, J. M. and

Nudurupati, S. S. and Hutton,

E. W. H. and Gasparini, N. M. and

:::::
Hobley

:
,
::
D.

::
E
:
.
::
J.

::::
and

:::::
Adams

:
,
:
J
:
.
::
M
:
.
:::
and

:::::::::
Nudurupati

:
,

:
S
:
.
:
S
:
.
::::
and

:::::
Hutton

:
,
::
E
:
.
:
W
:
.
::
H
:
.
:::
and

:::::::::
Gasparini,

::
N
:
.
::
M.
::::
and

Istanbulluoglu, E. and Tucker, G. E.

},

TITLE = {

Creative computing with Landlab: an

open-source toolkit for building,

coupling, and exploring two-dimensional

numerical models of Earth-surface

dynamics

:::::::
Creative

::::::::
computing

::::
with

:::::::
Landlab

:
:
::
an

:::::
open-

:::::
source

::::::
toolkit

:::
for

::::::::
building

:
,
:::::::
coupling

:
,
:::
and

:::::::::
exploring

:::
two

:
-

:::::::::
dimensional

:::::::::
numerical

::::::
models

::
of

:::::
Earth

:
-
::::::
surface

:::::::
dynamics

},

JOURNAL = {Earth Surface Dynamics},

VOLUME = {5},

YEAR = {2017},

NUMBER = {1},

PAGES = {21--46},

URL = {

https://www.earth-surf-dynam.net/5/21/2017/

},

:::
URL

:
=
::
{
::::
https

:::
://

::
www

:
.
::::
earth

:
-
:::
surf

:
-
::::
dynam

:
.
:::
net

:::::::::::
/5/21/2017/},

DOI = {10.5194/esurf-5-21-2017}

}
� �

15

In addition, two packages have been built using Landlab to support applications in sensitivity analysis, calibration, validation,

and multi-model comparison (see, Barnhart et al., 2020b; ?, c, for example applications). First, terrainbento is a Python

package for multi-model analysis that provides an extensible set of 27 Landlab-built models for long-term drainage basin and

landform evolution, along with general classes for handling boundary conditions through an input-file format (Barnhart et al., 2019b)360

. Second, umami is used to calculate model-data comparison metrics for observed and simulated topography (Barnhart et al., 2019a)

.

6 Lessons on Geoscientific Software Development

In this section we highlight several lessons about software development we have learned in the processes of supporting and

improving Landlab v1.0 to its current v2.0 state and working with the growing community of users.365

We reflect on these lessons because the production of research software is itself research and there are many aspects of

scientific software which are distinct from other software, notably (i) that the development lifecycle includes additional stages

because the methods used to implement a piece of software may not exist at the outset of a project, (ii) requirements evolve

because they are part of the research, and (iii) the state of the scientific field may be complex and evolving (e.g., Carver et al.,

2016).370

6.1 Value of Testing

The development of docstring and unit tests within Landlab was motivated by following software development best practices

(e.g., Wilson et al., 2014, 2017). That is, our focus was on ensuring that the package behaves as described and, where an

analytical solution exists, that Landlab correctly solves it. While using a testing suite is standard in many software development

contexts, it is relatively uncommon in scientific software development (e.g., Prabhu et al., 2011). Tests do not ensure that375

elements of the Landlab software represent the truth, or guarantee that a model is appropriate for a specific application; in other

words, Landlab cannot and does not attempt to validate (sensu Schlesinger et al., 1979) the assumptions of its components.

Instead, the tests verify (Schlesinger et al., 1979) that the software is behaving as expected and that numerical methods are

solving stated equations reliably. Through coupled use of an automatic testing suite and continuous integration we ensure that

changes to the code base do not break existing tests.380

The process of developing Landlab, working with its user community, and revising it to v2.0 illustrated another, obvious in

retrospect, benefit of the tests: developing a set of tests for the package interface and numerical behavior make it possible to

refactor. Without these tests, it would have been much more difficult to implement beneficial revisions (such as refactoring the

model grid to derive from the graph-based class).

Writing effective unit tests that ensure Landlab components reliably solve their equations under a variety of initial and385

boundary conditions not a trivial task. When a set of equations that a component solves have an analytical solution then the

numerics of a component can be verified based on the ability to reproduce such a relationship (e.g., stream power erosion

produces a known slope-area relationship Willgoose et al., 1991). When such analytical predictions do not exist—as is often

16

the case—a more detailed analysis of the equations must be performed in order to create a full verification test. Even in the

absence of such analytical solutions, however, many existing Components have made headway during development simply by390

testing for mass balance and timestep consistency, and the value of such simplifications should not be ignored.

In contrast, it is much easier to design and implement tests for the Landlab interface (e.g., when a invalid value is passed

to a component, is the correct type of error raised). In general, designing a thorough set of tests is a learned skill that requires

thinking through many edge cases of model behavior.

6.2 Collaborative Development of Research Software Requires Many Skills395

Scientific software development requires distinct skills. Based on working with community user-developers and onboarding

new members of the core development team, we describe the set of skills that are needed to interact with a project like

Landlab as a user-developer. Our intention here is to document a concrete example so that efforts to create scientific software

development curricula can be based on use-cases. In the case of Landlab, the skills required to contribute to the project include:

1. Python programming, including functions, classes, and basic package organization.400

2. Fundamental elements of version control using git (branching, commits).

3. GitHub for collaboration (issues trackers, merging, pull requests, managing forks, code reviews).

4. Package dependency management (currently implemented with conda environments).

5. Conceptual design and practical implementation of unit tests.

6. ReStructured text syntax for creating documentation.405

In addition, there are a number of skills that not all user-developers need, but are necessary to have within the project team

in order to maintain continuous integration, documentation, building binaries, and distributing (e.g., sphinx, configuring and

debugging continuous integration platforms).

The importance of these skills is highlighted in the context of technical debt, or the cost of implementing a fast and easy

solution now, as opposed to a better approach that may take longer. For example, we have found that it is much easier to create410

content than to make it accessible (this observation motivated the restructuring of the documentation described in Section 4.4).

It is also easier to write code than to write thorough and effective tests for it, yet omitting tests greatly increases the risk of

serious bugs, which can invalidate the research that the software is meant to facilitate.

6.3 Balancing the Burden on Developers and Users

Open-source software (scientific or otherwise) commonly has many more users than developers or user-developers (e.g.,415

numpy). Under those circumstances, moderate investments in developer time are justified to make use faster or more intu-

itive for users. However, Landlab is a case with slightly different dynamics, which are worth reflecting on. Landlab is an

17

example of a niche scientific software package with a relatively small development community. Here we reflect on some of the

development dynamics of this type of scientific software and the relative burdens for use on developers and users.

Our goal is to create an extensible software package that solves a variety of Earth surface dynamics problems and is acces-420

sible to undergraduates and active researchers, and to support community members in contributing to the code (transitioning

from users to user-developers). Effectively serving the community requires a balance between minimizing technical debt (by

enforcing standards within the code base), while also making development and contribution accessible to inexperienced but

motivated community members.

One aspect of our approach, inspired by experience working with community members, is to be flexible with the software425

engineering and interface standards. This includes relaxing standards when necessary. For example, while a strict interface

standard for components would likely reduce technical debt, our experience is that such rigidity would raise a substantial barrier

to community contribution. This means that we need to strike a balance in our design principles between standardization and

flexibility (e.g., relaxing the standard for the run_one_step method described in Section 4.2).

Second, we embrace the idea that good is better than not at all. That is, some tests are better than none, meaningful tests are430

better than non-meaningful ones, and barebones documentation is better than none. We find that documentation improves the

most when users try to use it, find that it is insufficient or unclear, and interact with developers through the online and open

GitHub Issues forum. Users and developers then together revise the text. Because the development team is small and supported

primarily by grants, we rely on users to indicate where improvements must be made.

7 How Do I Get Started?435

We highly encourage all contributions to Landlab. The package is designed as an extensible piece of community software

and we look forward to it growing to meet community needs. Common ways that an interested individual might get started

include: identifying or making improvements to the documentation and example notebooks, finding and fixing bugs, and

describing and creating desired features—such as new components. For information about how to get started, visit the website

at https://landlab.readthedocs.io/.440

8 Conclusions

Landlab v2.0 provides the community with a robust and extensible package for modelling Earth surface dynamics. It is dis-

tributed as source code and as pre-packaged binaries for Linux, MacOS, and Windows. An extensive set of unit tests ensure

reliability of the code base. This version provides substantial improvements over the v1.0 including (i) a revised set of model

grid classes, (ii) updates to the component interface, (iii) 30
::
31 new components, (iv) expanded and consolidated documenta-445

tion, and (v) a tool for identifying appropriate citations. The backward-compatibility breaking changes made in Landlab v2.0

reflect changes necessary based on use and development of the package. The modular design of Landlab means that develop-

ers only need to create the new piece they need, and researchers can mix and match components to create a desired model.

18

https://landlab.readthedocs.io/

As a tested, version-controlled, and documented software package, Landlab reduces barriers to computational modelling and

supports reproducible research.450

Code availability. The Landlab source code is hosted on GitHub at https://github.com/landlab/landlab. Our documentation can be found at

https://landlab.readthedocs.io/. Prepackaged binaries are distributed through PyPI (https://pypi.org/project/landlab/) and conda-forge (https:

//anaconda.org/conda-forge/landlab). The v2.0 version of the software and a PDF of the documentation are provided as a supplement to this

contribution and are archived with Zenodo (Hutton et al., 2020).

Author contributions. KRB and EWHH led the design and v2.0 refactoring of the Landlab package with input from all co-authors. KRB455

wrote the original draft of the manuscript, with input from all co-authors. All authors edited the manuscript. KRB, EWHH, GET, NMG,

DEJH, NJL, MM, SSN, and JMA contributed to the Landlab code base. All authors designed and taught short courses which provided us-

ability testing and resulted in critical improvements to package architecture and documentation. CB expanded accessibility of Landlab using

advanced cyberinfrastructure by leading integration of Landlab with the Hydroshare platform. GET, NMG, EI, and EWHH conceptualized

Landlab and created its prototype. GET, NMG, EI, and DEJH acquired the core funding to support Landlab, with additional funding acquired460

by KRB, CB, and NJL.

Competing interests. The authors declare no competing interests.

Acknowledgements. Landlab was supported by the following US National Science Foundation awards: 1147454 (GET), 1450409 (GET),

1147519 (NMG), 1450338 (NMG), 1148305 (EI), 1450412 (EI), 1246761 (through an NCED2 postdoctoral fellowship to DEJH), 1725774

(an EAR postdoctoral fellowship to KRB), and 1902600 (CB). Landlab is additionally supported by the Community Surface Dynamics465

Modeling System (NSF Award Numbers 1226297 and 1831623). DEJH acknowledges the support from a Marie Curie/Ser Cymru II Cofund

Research Fellowship 663830-CU-035, and from a Software Sustainability Institute Fellowship. NJL and NMG acknowledge the support of a

Tulane University Oliver Fund Scholar Award.
:::
We

:::::
thank

:::::
Tristan

:::::
Salles

:::
and

:::::::
Wolfgang

::::::::::
Schwanghart

:::
for

:::::::
thoughtful

:::::::
reviews,

:::
and

:::::
Simon

:::::
Mudd

::
for

::::::
serving

::
as

:::::::
handling

::::
editor.

We acknowledge support from Tony Castronova and the HydroShare platform at Consortium of Universities for the Advancement of470

Hydrologic Science, Inc. (CUAHSI). CUAHSI supports use of Landlab on the HydroShare Platform (NSF EAR 1338606). Landlab Group

members on HydroShare have freely shared research, data, training and teaching resources with Landlab and HydroShare communities.

Landlab relies on free open-source package builds from TravisCI and Appveyor for our Continuous Integration. Our documentation is hosted

for free by ReadTheDocs.

Landlab would not exist without decades of Open Source software development. In this spirit, we thank all community members who have475

asked questions, made Issues, commented on documentation that didn’t make sense, and contributed code to the package. Below we list the

results of our best efforts to compile all non-author community contributors to the Landlab package. The are (in alphabetical order): Guiseppe

19

https://github.com/landlab/landlab
https://landlab.readthedocs.io/
https://pypi.org/project/landlab/
https://anaconda.org/conda-forge/landlab
https://anaconda.org/conda-forge/landlab
https://anaconda.org/conda-forge/landlab

Cippolla, Jon Czuba, Vanessa Gabel, Rachel Glade, Jenny Knuth, Abby Langston, David Litwin, Amanda Manaster, Allison Pfeiffer, Francis

Rengers, Charlie Shobe, and Rhonda Strauch.

20

References480

Adams, J. M., Gasparini, N. M., Hobley, D. E., Tucker, G. E., Hutton, E. W., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.

0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geoscientific Model Development, 10,

1645, https://doi.org/10.5194/gmd-10-1645-2017, 2017.

Adorf, C. S., Ramasubramani, V., Anderson, J. A., and Glotzer, S. C.: How to Professionally Develop Reusable Scientific Software—And

When Not To, Computing in Science & Engineering, 21, 66–79, https://doi.org/10.1109/mcse.2018.2882355, 2019.485

Ahnert, F.: Brief description of a comprehensive three-dimensional process-response model of landform development, Zeitschrift für Geo-

morphologie Supplement Band, 25, 29–49, 1976.

Albert, J. S., Schoolmaster Jr, D. R., Tagliacollo, V., and Duke-Sylvester, S. M.: Barrier Displacement on a Neutral Landscape: Toward a

Theory of Continental Biogeography, Systematic Biology, 66, 167–182, https://doi.org/10.1093/sysbio/syw080, 2016.

Armstrong, A. C.: A three dimensional simulation of slope forms, Zeitschrift für Geomorphologie, 25, 20–28, 1976.490

ASCE: The ASCE Standardized Reference Evapotranspiration Equation, in: Standardization of Reference Evapotranspiration Task Commit-

tee Final Report, edited by Allen, R. G. and Walter, I. A. and Elliot, R. L. and Howell, T. A. and Itenfisu, D. and Jensen, M. E., and Snyder,

R. L., Technical Committee report to the Environmental and Water Resources Institute of the American Society of Civil Engineers from

the Task Committee on Standardization of Reference Evapotranspiration, Reston, VA, USA, 2005.

Bandaragoda, C., Castronova, A., Istanbulluoglu, E., Strauch, R., Nudurupati, S., Phuong, J., Adams, J., Gasparini, N., Barn-495

hart, K. R., Hutton, E., Hobley, D., Tarboton, N. L., Tucker, G., David, Idaszak, R., and Wang, S.-W.: Enabling Col-

laborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure, Environmental Modelling and Software,

https://doi.org/https://doi.org/10.1016/j.envsoft.2019.03.020, 2019.

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation

models, Computers and Geosciences, 62, 117–127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014.500

Barnhart, K., Hutton, E., and Tucker, G.: umami: A Python package for Earth surface dynamics objective function construction, Journal of

Open Source Software, 4, 1776, https://doi.org/10.21105/joss.01776, 2019a.

Barnhart, K. R., Hutton, E., Gasparini, N., and Tucker, G.: Lithology: A Landlab submodule for spatially variable rock properties, Journal of

Open Source Software, 3, 979–2, https://doi.org/10.21105/joss.00979, 2018.

Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: Terrainbento 1.0: a Python package for multi-model analysis in long-term505

drainage basin evolution, Geoscientific Model Development, 12, 1267—1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape

evolution model process representation: Part 1. Conceptualization and sensitivity analysis, Journal of Geophysical Research-Earth Surface,

p. e2018JF004961, https://doi.org/10.1029/2018JF004961, 2020a.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape evolu-510

tion model process representation: Part 2. Calibration and validation, Journal of Geophysical Research-Earth Surface, p. e2018JF004963,

https://doi.org/10.1029/2018JF004963, 2020b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for land-

scape evolution model process representation: Part 3. Determining parameter ranges for select mature geomorphic transport laws and

connecting changes in fluvial erodibility to changes in climate, Journal of Geophysical Research-Earth Surface, p. e2019JF005287,515

https://doi.org/10.1029/2019JF005287, 2020c.

21

https://doi.org/10.5194/gmd-10-1645-2017
https://doi.org/10.1109/mcse.2018.2882355
https://doi.org/10.1093/sysbio/syw080
https://doi.org/https://doi.org/10.1016/j.envsoft.2019.03.020
https://doi.org/10.1016/j.cageo.2013.04.024
https://doi.org/10.21105/joss.01776
https://doi.org/10.21105/joss.00979
https://doi.org/10.5194/gmd-12-1267-2019
https://doi.org/10.1029/2018JF004961
https://doi.org/10.1029/2018JF004963
https://doi.org/10.1029/2019JF005287

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional

flood inundation modelling, Journal of Hydrology, 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.

Bras, R.: Hydrology: An introduction to hydrologic science, Addison-Wesley, 1990.

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision520

and landscape evolution, Geomorphology, 180-181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.

Carretier, S., Martinod, P., Reich, M., and Godderis, Y.: Modelling sediment clasts transport during landscape evolution, Earth Surface

Dynamics, 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, 2016.

Carver, J. C., Hong, N. P. C., and Thiruvathukal, G. K.: Software engineering for science, CRC Press, 2016.

Chen, X., Dallmeier-Tiessen, S., Dasler, R., Feger, S., Fokianos, P., Gonzalez, J. B., Hirvonsalo, H., Kousidis, D., Lavasa, A., Mele,525

S., Rodriguez, D. R., Šimko, T., Smith, T., Trisovic, A., Trzcinska, A., Tsanaktsidis, I., Zimmermann, M., Cranmer, K., Heinrich,

L., Watts, G., Hildreth, M., Iglesias, L. L., Lassila-Perini, K., and Neubert, S.: Open is not enough, Nature Physics, 15, 113–119,

https://doi.org/10.1038/s41567-018-0342-2, 2018.

Childs, E. C.: Drainage of Groundwater Resting on a Sloping Bed, Water Resources Research, 7, 1256–1263,

https://doi.org/10.1029/wr007i005p01256, 1971.530

Culling, W. E. H.: Soil Creep and the Development of Hillside Slopes, The Journal of Geology, 71, 127–161, https://doi.org/10.1086/626891,

1963.

Dask Development Team: Dask: Library for dynamic task scheduling, https://dask.org, 2016.

Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research, 114,

F03 007, https://doi.org/10.1029/2008jf001146, 2009.535

de Almeida, G. A. M., Bates, P., Freer, J. E., and Souvignet, M.: Improving the stability of a simple formulation of the shallow water equations

for 2-D flood modeling, Water Resources Research, 48, https://doi.org/10.1029/2011wr011570, 2012.

Eagleson, P. S.: Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm sequences, Water

Resources Research, 14, 713–721, https://doi.org/10.1029/wr014i005p00713, 1978.

Freeman, T. G.: Calculating catchment area with divergent flow based on a regular grid, Computers and Geosciences, 17, 413–422,540

https://doi.org/10.1016/0098-3004(91)90048-i, 1991.

Ganti, V., Passalacqua, P., and Foufoula-Georgiou, E.: A sub-grid scale closure for nonlinear hillslope sediment transport models, Journal of

Geophysical Research: Earth Surface, 117, https://doi.org/10.1029/2011jf002181, 2012.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and Cowie, P. A.: Field calibration of sediment flux dependent river incision, Journal of

Geophysical Research, 116, 20 161–18, https://doi.org/10.1029/2010jf001935, 2011.545

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative

computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface

dynamics, Earth Surface Dynamics, 5, 21–46, https://doi.org/10.5194/esurf-5-21-2017, 2017.

Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resources Research, 30, 2261–2285,

https://doi.org/10.1029/94wr00757, 1994.550

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, 5,

https://doi.org/10.5334/jors.148, 2016.

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90–95,

https://doi.org/10.1109/mcse.2007.55, 2007.

22

https://doi.org/10.1016/j.jhydrol.2010.03.027
https://doi.org/10.1016/j.geomorph.2012.10.008
https://doi.org/10.5194/esurf-4-237-2016
https://doi.org/10.1038/s41567-018-0342-2
https://doi.org/10.1029/wr007i005p01256
https://doi.org/10.1086/626891
https://dask.org
https://doi.org/10.1029/2008jf001146
https://doi.org/10.1029/2011wr011570
https://doi.org/10.1029/wr014i005p00713
https://doi.org/10.1016/0098-3004(91)90048-i
https://doi.org/10.1029/2011jf002181
https://doi.org/10.1029/2010jf001935
https://doi.org/10.5194/esurf-5-21-2017
https://doi.org/10.1029/94wr00757
https://doi.org/10.5334/jors.148
https://doi.org/10.1109/mcse.2007.55

Hutton, E. W. and Syvitski, J. P.: Sedflux 2.0: An advanced process-response model that generates three-dimensional stratigraphy, Computers555

& Geosciences, 34, 1319–1337, https://doi.org/10.1016/j.cageo.2008.02.013, 2008.

Hutton, E. W. H. and Piper, M.: csdms/bmi-python: v2.0, https://doi.org/10.5281/zenodo.3647556, 2020a.

Hutton, E. W. H. and Piper, M.: csdms/pymt: The Python Modeling Toolkit, https://doi.org/10.5281/zenodo.3644240, 2020b.

Hutton, E. W. H., Hobley, D. E. J., Barnhart, K. R., Tucker, G. E., Nudurupati, S. S., Adams, J. M., Gasparini, N. M., Shobe, C. M., Strauch,

R., Knuth, J., Lyons, N. J., Glade, R. C., Giuseppecipolla95, Manaster, A., Mouchene, M., and Rengers, F.: landlab/landlab v2.0.0 Mrs.560

Weasley, https://doi.org/10.5281/zenodo.595872, 2020.

Hwang, L., Fish, A., Soito, L., Smith, M., and Kellogg, L. H.: Software and the scientist: Coding and citation practices in geodynamics, Earth

and Space Science, 4, 670–680, https://doi.org/10.1002/2016EA000225, 2017.

Johnstone, S. A. and Hilley, G. E.: Lithologic control on the form of soil-mantled hillslopes, Geology, 43, 83–86,

https://doi.org/10.1130/g36052.1, 2015.565

Julien, P. Y., Saghafian, B., and Ogden, F. L.: Raster-based hydrologic modeling of spatially-varied surface runoff, Journal of the American

Water Resources Association, 31, 523–536, https://doi.org/10.1111/j.1752-1688.1995.tb04039.x, 1995.

Kellogg, L. H., Hwang, L. J., Gassmoller, R., Bangerth, W., and Heister, T.: The Role of Scientific Communities in Creating Reusable

Software: Lessons From Geophysics, Computing in Science & Engineering, 21, 25–35, https://doi.org/10.1109/mcse.2018.2883326, 2018.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,570

Avila, D., Abdalla, S., and Willing, C.: Jupyter Notebooks–a publishing format for reproducible computational workflows, in: Positioning

and Power in Academic Publishing: Players, Agents and Agendas, edited by Loizides, F. and Schmidt, B., pp. 87 – 90, IOS Press, 2016.

Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., and Bruhin, F.: pytest 5.3.2, https://github.com/pytest-dev/pytest,

2004.

Lai, J. and Anders, A. M.: Modeled Postglacial Landscape Evolution at the Southern Margin of the Laurentide Ice Sheet: Hydrological575

Connection of Uplands Controls the Pace and Style of Fluvial Network Expansion, Journal of Geophysical Research: Earth Surface, 123,

967–984, https://doi.org/10.1029/2017JF004509, 2018.

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and re-

sponse to water stress II. Probabilistic soil moisture dynamics, Advances in Water Resources, 24, 707–723, https://doi.org/10.1016/s0309-

1708(01)00005-7, 2001.580

Lambeck, K.: Geophysical Geodesy: The Slow Deformations of the Earth , Clarendon Oxford, 1988.

Langston, A. L. and Tucker, G. E.: Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape

evolution models, Earth Surface Dynamics, 6, 1—27, https://doi.org/10.5194/esurf-6-1-2018, 2018.

Litwin, D., Tucker, G., Barnhart, K., and Harman, C.: GroundwaterDupuitPercolator: A Landlab component for groundwater flow, Journal

of Open Source Software, 5, 1935, https://doi.org/10.21105/joss.01935, 2020.585

Lyons, N. J., Val, P., Albert, J. S., Willenbring, J. K., and Gasparini, N. M.: Topographic controls on divide migration, stream capture, and

diversification in riverine life, Earth Surface Dynamics, https://doi.org/10.5194/esurf-2019-55, 2019.

Lyons, N. J., Albert, J. S., and Gasparini, N. M.: SpeciesEvolver: A Landlab component to evolve life in simulated landscapes, Journal of

Open Source Software, https://doi.org/10.21105/joss.02066, 2020.

Mandli, K. T., Ahmadia, A. J., Berger, M., Calhoun, D., George, D. L., Hadjimichael, Y., Ketcheson, D. I., Lemoine, G. I., and LeVeque, R. J.:590

Clawpack: building an open source ecosystem for solving hyperbolic PDEs, PeerJ Computer Science, 2, e68, https://doi.org/10.7717/peerj-

cs.68, 2016.

23

https://doi.org/10.1016/j.cageo.2008.02.013
https://doi.org/10.5281/zenodo.3647556
https://doi.org/10.5281/zenodo.3644240
https://doi.org/10.5281/zenodo.595872
https://doi.org/10.1002/2016EA000225
https://doi.org/10.1130/g36052.1
https://doi.org/10.1111/j.1752-1688.1995.tb04039.x
https://doi.org/10.1109/mcse.2018.2883326
https://github.com/pytest-dev/pytest
https://doi.org/10.1029/2017JF004509
https://doi.org/10.1016/s0309-1708(01)00005-7
https://doi.org/10.1016/s0309-1708(01)00005-7
https://doi.org/10.1016/s0309-1708(01)00005-7
https://doi.org/10.5194/esurf-6-1-2018
https://doi.org/10.21105/joss.01935
https://doi.org/10.5194/esurf-2019-55
https://doi.org/10.21105/joss.02066
https://doi.org/10.7717/peerj-cs.68
https://doi.org/10.7717/peerj-cs.68
https://doi.org/10.7717/peerj-cs.68

Marçais, J., Dreuzy, J.-R. d., and Erhel, J.: Dynamic coupling of subsurface and seepage flows solved within a regularized partition formula-

tion, Advances in Water Resources, 109, 94–105, https://doi.org/10.1016/j.advwatres.2017.09.008, 2017.

McKinney, W.: Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, edited by595

van der Walt, S. and Millman, J., pp. 51 – 56, 2010.

Niemeyer, K. E., Smith, A. M., and Katz, D. S.: The Challenge and Promise of Software Citation for Credit, Identification, Discovery, and

Reuse, Journal of Data and Information Quality (JDIQ), 7, 16, https://doi.org/10.1145/2968452, 2016.

O’Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image

Processing, 28, 323–344, https://doi.org/10.1016/s0734-189x(84)80011-0, 1984.600

Pan, X., Yan, E., Wang, Q., and Hua, W.: Assessing the impact of software on science: A bootstrapped learning of software entities in full-text

papers, Journal of Informetrics, 9, 860–871, https://doi.org/10.1016/j.joi.2015.07.012, 2015.

Peckham, S. D., Hutton, E. W. H., and Norris, B.: A component-based approach to integrated modeling in the geosciences The design of

CSDMS, Computers and Geosciences, 53, 3–12, https://doi.org/10.1016/j.cageo.2012.04.002, 2013.

Pérez, F. and Granger, B. E.: IPython: A System for Interactive Scientific Computing, Computing in Science Engineering, 9, 21–29,605

https://doi.org/10.1109/mcse.2007.53, 2007.

Perron, J. T.: Numerical methods for nonlinear hillslope transport laws, Journal of Geophysical Research, 116, 23–13,

https://doi.org/10.1029/2010jf001801, 2011.

Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surface Processes and Landforms, 38, 570–576,

https://doi.org/10.1002/esp.3302, 2012.610

Poisot, T.: Best publishing practices to improve user confidence in scientific software, Ideas in Ecology and Evolution, 8,

https://doi.org/10.4033/iee.2015.8.8.f, 2015.

Polakow, D. A. and Dunne, T. T.: Modelling fire-return interval T: stochasticity and censoring in the two-parameter Weibull model, Ecological

Modelling, 121, 79–102, https://doi.org/10.1016/s0304-3800(99)00074-5, 1999.

Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J., Beard, S., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., Raman,615

A., Liu, F., and Walker, D.: A survey of the practice of computational science, 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), p. 1, https://doi.org/10.1145/2063348.2063374, 2011.

Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of hillslope flow paths for distributed hydrological modelling using

digital terrain models, Hydrological Processes, 5, 59–79, https://doi.org/10.1002/hyp.3360050106, 1991.

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and Hobley, D. E. J.: Model simulations of flood and debris flow timing in steep620

catchments after wildfire, Water Resources Research, 52, 6041–6061, https://doi.org/10.1002/2015wr018176, 2016.

Rocklin, M.: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, in: Proceedings of the 14th Python in Science

Conference, edited by Huff, K. and Bergstra, J., pp. 130 – 136, 2015.

Schlesinger, S., Crosbie, R. E., Gagné, R. E., Innis, G. S., Lalwani, C. S., Loch, J., Sylvester, R. J., Wright, R. D., Kheir, N., and Bartos, D.:

Terminology for model credibility, Simulation, 32, 103–104, https://doi.org/10.1177/003754977903200304, 1979.625

Schmid, M., Ehlers, T. A., Werner, C., Hickler, T., and Fuentes-Espoz, J.-P.: Effect of changing vegetation and precipitation on denudation–

Part 2: Predicted landscape response to transient climate and vegetation cover over millennial to million-year timescales, Earth Surface

Dynamics, 6, 859–881, https://doi.org/10.5194/esurf-6-859-2018, 2018.

Seabold, S. and Perktold, J.: statsmodels: Econometric and statistical modeling with python, in: 9th Python in Science Conference, 2010.

24

https://doi.org/10.1016/j.advwatres.2017.09.008
https://doi.org/10.1145/2968452
https://doi.org/10.1016/s0734-189x(84)80011-0
https://doi.org/10.1016/j.joi.2015.07.012
https://doi.org/10.1016/j.cageo.2012.04.002
https://doi.org/10.1109/mcse.2007.53
https://doi.org/10.1029/2010jf001801
https://doi.org/10.1002/esp.3302
https://doi.org/10.4033/iee.2015.8.8.f
https://doi.org/10.1016/s0304-3800(99)00074-5
https://doi.org/10.1145/2063348.2063374
https://doi.org/10.1002/hyp.3360050106
https://doi.org/10.1002/2015wr018176
https://doi.org/10.1177/003754977903200304
https://doi.org/10.5194/esurf-6-859-2018

Sharman, G. R., Sylvester, Z., and Covault, J. A.: Conversion of tectonic and climatic forcings into records of sediment supply and prove-630

nance, Scientific reports, 9, 1–7, https://doi.org/10.1038/s41598-019-39754-6, 2019.

Shelef, E. and Hilley, G. E.: Impact of flow routing on catchment area calculations, slope estimates, and numerical simulations of landscape

development, Journal of Geophysical Research-Earth Surface, 118, 2105–2123, https://doi.org/10.1002/jgrf.20127, 2013.

Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport,

bedrock erosion, and landscape evolution, Geoscientific Model Development, 10, 4577–4604, https://doi.org/10.5194/gmd-10-4577-2017,635

2017.

Singer, M. B., Michaelides, K., and Hobley, D. E. J.: STORM 1.0: a simple, flexible, and parsimonious stochastic rainfall generator for

simulating climate and climate change, Geoscientific Model Development, 11, 3713–3726, https://doi.org/10.5194/gmd-11-3713-2018,

2018.

Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C., Gasparini, N. M., and Tucker, G. E.: A hydroclimatological approach640

to predicting regional landslide probability using Landlab, Earth Surface Dynamics, 6, 49–75, https://doi.org/10.5194/esurf-6-49-2018,

2018.

Tarboton, D. G.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources

Research, 33, 309–319, https://doi.org/10.1029/96wr03137, 1997.

Taschuk, M. and Wilson, G.: Ten simple rules for making research software more robust, PLoS computational biology, 13,645

https://doi.org/10.1371/journal.pcbi.1005412, 2017.

The Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Herterich, P., Higman, R., Krystalli, A., Morley, A., O’Reilly, M., and

Whitaker, K.: The Turing Way: A Handbook for Reproducible Data Science, https://doi.org/10.5281/zenodo.3233986, This work was

supported by The UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particularly the "Tools, Practices and Systems"

theme within that grant, and by The Alan Turing Institute under the EPSRC grant EP/N510129/1., 2019.650

Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L.: Statistical analysis of drainage density from digital terrain data, Geomorphology, 36,

187–202, https://doi.org/10.1016/s0169-555x(00)00056-8, 2001a.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R. L.: The Channel-Hillslope Integrated Landscape Development Model (CHILD),

in: Landscape Erosion and Evolution Modeling, pp. 349—388, Springer US, Boston, MA, USA, 2001b.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., and Rybarczyk, S. M.: An object-oriented framework for distributed hydrologic655

and geomorphic modeling using triangulated irregular networks, Computers & Geosciences, 27, 959–973, https://doi.org/10.1016/s0098-

3004(00)00134-5, 2001c.

Tucker, G. E., Hobley, D. E. J., McCoy, S. W., and Struble, W. T.: Modeling the Shape and Evolution of Normal-Fault Facets, Journal of

Geophysical Research: Earth Surface, 125, e2019JF005 305, https://doi.org/10.1029/2019JF005305, 2020.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,660

van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C.,

Polat, İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,

Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S. . .: SciPy 1.0–Fundamental Algorithms for Scientific

Computing in Python, arXiv e-prints, arXiv:1907.10121, 2019.

Whitaker, J., Khrulev, C., Huard, D., Paulik, C., Hoyer, S., Filipe, Pastewka, L., Mohr, A., Marquardt, C., Couwenberg, B., Taves, M.,665

Whitaker, J., Cuntz, M., Bohnet, M., Brett, M., Hetland, R., Korenčiak, M., barronh, Onu, K., Helmus, J. J., Hamman, J., Barna, A.,

25

https://doi.org/10.1038/s41598-019-39754-6
https://doi.org/10.1002/jgrf.20127
https://doi.org/10.5194/gmd-10-4577-2017
https://doi.org/10.5194/gmd-11-3713-2018
https://doi.org/10.5194/esurf-6-49-2018
https://doi.org/10.1029/96wr03137
https://doi.org/10.1371/journal.pcbi.1005412
https://doi.org/10.5281/zenodo.3233986
https://doi.org/10.1016/s0169-555x(00)00056-8
https://doi.org/10.1016/s0098-3004(00)00134-5
https://doi.org/10.1016/s0098-3004(00)00134-5
https://doi.org/10.1016/s0098-3004(00)00134-5
https://doi.org/10.1029/2019JF005305

fredrik 1, Koziol, B., Kluyver, T., May, R., Smrekar, J., Barker, C., Gohlke, C., and Kinoshita, B. P.: Unidata/netcdf4-python: Version

1.5.3 release, https://doi.org/10.5281/zenodo.3516272, 2019.

Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geoscientific Model Development, 9, 997–1017,

https://doi.org/10.5194/gmd-9-997-2016, 2016.670

Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model, 1, Theory, Water

Resources Research, 27, 1671–1684, 1991.

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M.,

Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P.: Best Practices for Scientific Computing, PLoS Biology, 12, e1001 745,

https://doi.org/10.1371/journal.pbio.1001745, 2014.675

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T. K.: Good enough practices in scientific computing, PLOS

Computational Biology, 13, e1005 510, https://doi.org/10.1371/journal.pcbi.1005510, 2017.

Wobus, C., Whipple, K., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography:

Procedures, promise, and pitfalls, GSA Special Papers, pp. 55–74, https://doi.org/10.1130/2006.2398(04), 2006.

Zebari, M., Grützner, C., Navabpour, P., and Ustaszewski, K.: Relative timing of uplift along the Zagros Mountain Front Flex-680

ure (Kurdistan Region of Iraq): Constrained by geomorphic indices and landscape evolution modeling, Solid Earth, 10, 663–682,

https://doi.org/10.5194/se-10-663-2019, 2019.

Zhou, X., Istanbulluoglu, E., and Vivoni, E. R.: Modeling the ecohydrological role of aspect-controlled radiation on tree-grass-shrub coexis-

tence in a semiarid climate, Water Resources Research, 49, 2872–2895, https://doi.org/10.1002/wrcr.20259, 2013.

26

https://doi.org/10.5281/zenodo.3516272
https://doi.org/10.5194/gmd-9-997-2016
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1130/2006.2398(04)
https://doi.org/10.5194/se-10-663-2019
https://doi.org/10.1002/wrcr.20259

Table 3. New components added since Landlab v1.0

Component Summary Required Citation1 Additional References

ChannelProfiler Extract channel networks

DepthDependentDiffuser Linear, depth-dependent diffusion of topog-
raphy Barnhart et al. (2019b) Johnstone and Hilley

(2015)

DepthDependentTaylorDiffuser Nonlinear, depth-dependent diffusion of to-
pography Barnhart et al. (2019b) Johnstone and Hilley

(2015); Ganti et al. (2012)

DischargeDiffuser Diffuse sediment proportional to an implicit
water discharge value

ErosionDeposition Fluvial erosion and transport Barnhart et al. (2019b) Davy and Lague (2009)

ExponentialWeatherer Calculate weathering rate based on exponen-
tial function of soil thickness Barnhart et al. (2019b) Ahnert (1976); Armstrong

(1976)

Flexure1D 1D lithospheric flexure under loading

FlowAccumulator Calculate drainage area and discharge Braun and Willett (2013)

FlowDirectorD8 Direct flow based on D8 scheme O’Callaghan and Mark
(1984)

FlowDirectorDINF Direct flow based on D∞ scheme Tarboton (1997)

FlowDirectorMFD Direct flow to multiple downstream receivers Quinn et al. (1991); Free-
man (1991)

FlowDirectorSteepest Direct flow based on D4 scheme

GroundwaterDupuitPercolator Model flow in a shallow unconfined aquifer
using the Dupuit-Forcheimer approximation Litwin et al. (2020) Childs (1971); Marçais

et al. (2017)

HackCalculator Calculate Hack’s law parameters for
drainage basins

LakeMapperBarnes Identify and route flow through lakes Barnes et al. (2014)

LandslideProbability
Simulate landslide probability of failure,
mean relative wetness, and probability of
saturation

Strauch et al. (2018)

LateralEroder Lateral erosion of fluvial channels Langston and Tucker
(2018)

LithoLayers Manage layered material with variable prop-
erties Barnhart et al. (2018)

Lithology Manage material with spatially variable
properties Barnhart et al. (2018)

LossyFlowAccumulator
Calculate drainage area and discharge, while
permitting dynamic loss or gain of flow
downstream

Braun and Willett (2013)

NormalFault Vertical uplift on a generic fault

PotentialityFlowRouter Calculate a discharge field using a matrix so-
lution

Profiler Extract generic profiles across a Landlab
field

SinkFillerBarnes Fill depressions in a surface Barnes et al. (2014)

Space Fluvial erosion by stream power with allu-
vium conservation and entrainment Shobe et al. (2017)

SpatialPrecipitationDistribution Generate spatially resolved precipitation
events Singer et al. (2018)

SpeciesEvolver Evolve life in a landscape Lyons et al. (2020) Albert et al. (2016); Lyons
et al. (2019)

StreamPowerSmoothThresholdEroder Fluvial erosion with a smoothed-threshold
version of stream power Barnhart et al. (2019b) Braun and Willett (2013)

TaylorNonLinearDiffuser Nonlinear diffusion of topography Barnhart et al. (2019b) Ganti et al. (2012)

TransportLengthHillslopeDiffuser Non-local hillslope diffusion Davy and Lague (2009);
Carretier et al. (2016)

::::::::::::::::::
TrickleDownProfiler :::::

Extract
::::::
profiles

::::::::
downstream

:::
of

::::::
arbitrary

::::
points

1. In addition to Hobley et al. (2017) and this contribution

27

Table 4. Landlab components in v1.0 (after Hobley et al. (2017), their Table 5)

Component Summary Required Citation1 Additional References

ChiFinder Calculates the chi index along a channel net-
work Perron and Royden (2012)

DepressionFinderAndRouter A lake filler that can route flow across de-
pressions Tucker et al. (2001b)

DepthSlopeProductErosion
Detachment limited fluvial erosion calcu-
lated using depth-slope product for shear
stress

DetachmentLtdErosion General implementation of detachment lim-
ited fluvial erosion Howard (1994)

DrainageDensity Calculate drainage density Tucker et al. (2001a)

FastscapeEroder
Implements fluvial erosion according to
stream power, using the Fastscape algo-
rithms

Braun and Willett (2013)

FireGenerator Produces intervals between fire events, fol-
lowing a Weibull distribution

Polakow and Dunne
(1999)

Flexure Simple lithospheric flexure under loading Hutton and Syvitski
(2008) Lambeck (1988)

FractureGridGenerator Generate fractures in a model grid

gFlex A more complex flexure model, utilizing
gFlex Wickert (2016)

KinwaveImplicitOverlandFlow Locally implicit implementation of the two-
dimensional kinematic wave model

KinwaveOverlandFlowModel Simple implementation of the two-
dimensional kinematic wave model

LinearDiffuser Linear diffusion of topography Culling (1963)

OverlandFlow An inertial approximation of the shallow wa-
ter equations for overland flow applications Adams et al. (2017) de Almeida et al. (2012)

OverlandFlowBates An inertial approximation of the shallow wa-
ter equations for overland flow application Bates et al. (2010)

PerronNLDiffuse Nonlinear hillslope diffusion Perron (2011)

PotentialEvapotranspiration Calculate potential evapotranspiration across
a surface

ASCE (2005); Zhou et al.
(2013)

PrecipitationDistribution Generate a storm sequence of intervals and
intensities Eagleson (1978)

Radiation Calculate total incident shortwave solar radi-
ation Bras (1990)

SedDepEroder Sediment-flux-dependent shear stress based
fluvial incision Hobley et al. (2011)

SinkFiller An algorithm to fill depressions in a surface Tucker et al. (2001c)

SoilMoisture Compute local inter-storm water balance and
root-zone soil moisture saturation fraction Laio et al. (2001)

SoilInfiltrationGreenAmpt Infiltrate surface water into a soil following
the Green-Ampt method Rengers et al. (2016) Julien et al. (1995)

SteepnessFinder Calculates steepness indices for a channel
network Wobus et al. (2006)

StreamPowerEroder
Implements fluvial erosion according to
stream power, using the Fastscape algo-
rithms

Braun and Willett (2013)

VegCA Cellular automata algorithm to simulate spa-
tial organization of plant functional types Zhou et al. (2013)

Vegetation Calculate above-ground live and dead
biomass, and leaf area index Zhou et al. (2013)

1. In addition to Hobley et al. (2017) and this contribution.

28

Table 5. Dependencies and Citations

Category Name Citation

Core Package bmipy Peckham et al. (2013); Hutton and Piper

(2020a)
matplotlib Hunter (2007)
netcdf4 Whitaker et al. (2019)
pyyaml
pyshp
scipy Virtanen et al. (2019)
statsmodels Seabold and Perktold (2010)
pandas McKinney (2010)
xarray Hoyer and Hamman (2016)

Testing coveralls
pytest Krekel et al. (2004)
pytest-cov
pyyaml
pytest-datadir

Tutorials dask Dask Development Team (2016); Rocklin

(2015)
jupyter Pérez and Granger (2007); Kluyver et al. (2016)
holoviews
nbformat

Development black
flake8
isort

Documentation sphinx
sphinx_rtd_theme
pandoc
tornado
entrypoints

Table 6. Boundary Condition Flag Changes

Landlab v1.0 Name Landlab v2.0 Name
BAD_INDEX_VALUE ModelGrid.BAD_INDEX
CORE_NODE ModelGrid.BC_NODE_IS_CORE
FIXED_VALUE_BOUNDARY ModelGrid.BC_NODE_IS_FIXED_VALUE
FIXED_GRADIENT_BOUNDARY ModelGrid.BC_NODE_IS_FIXED_GRADIENT
LOOPED_BOUNDARY ModelGrid.BC_NODE_IS_LOOPED
CLOSED_BOUNDARY ModelGrid.BC_NODE_IS_CLOSED
ACTIVE_LINK ModelGrid.BC_LINK_IS_ACTIVE
INACTIVE_LINK ModelGrid.BC_LINK_IS_INACTIVE
FIXED_LINK ModelGrid.BC_LINK_IS_FIXED

29

Table 7.
:::::::
Metadata

:::
for

::::
fields

:::::::::
component

::::
fields

::::
Name

: ::::::::
Description

:

“dtype”: The data type for the items in the field indicated as a Python

data type (e.g., float, int).

“intent”: A string indicating the input/output intent of the field. Valid op-

tions are “in”, “out”, and “inout”.

“optional”: Boolean indicating whether the field is an optional input or out-

put.

“units”: String indicating the units of the field. Some components

are unit agnostic, in which case these units can be inter-

preted as dimensions (see item below describing the attribute

Component.unit_agnostic).

“mapping”: String indicating the type of grid element associated with the

field (e.g., node, link).

“doc”: String describing the field.

30

	main.pdf
	barnhart_et_al_landlab_2_diff.pdf

