
Short communication: Landlab v2.0: A software package for Earth
surface dynamics
Katherine R. Barnhart1,2, Eric W. H. Hutton3, 4, Gregory E. Tucker1, 2, 3, Nicole M. Gasparini5,
Erkan Istanbulluoglu6, Daniel E. J. Hobley7, Nathan J. Lyons5, Margaux Mouchene8, Sai
Siddhartha Nudurupati6, Jordan M. Adams9, and Christina Bandaragoda6

1University of Colorado at Boulder, Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado
2University of Colorado at Boulder, Department of Geological Sciences, Boulder, Colorado
3University of Colorado at Boulder, Community Surface Dynamics Modeling System Integration Facility, Boulder, Colorado
4University of Colorado at Boulder, Institute for Arctic and Alpine Research, Boulder, Colorado
5Tulane University, Department of Earth and Environmental Sciences, New Orleans, Louisiana
6University of Washington, Department of Civil and Environmental Engineering, Seattle, Washington
7Cardiff University, School of Earth and Ocean Sciences, Cardiff, Wales, United Kingdom
8Univ. Grenoble Alpes, INRAE, ETNA, F-38402 St-Martin-d’Hères, France
9Delgado Community College, Division of Science and Math, New Orleans, Louisiana

Correspondence: Katherine Barnhart (katherine.barnhart@colorado.edu)

Abstract. Numerical simulation of the form and characteristics of Earth’s surface provides insight into its evolution. Landlab

is an Open Source Python package that contains modularized elements of numerical models for Earth’s surface, thus reduc-

ing time required for researchers to create new or reimplement existing models. Landlab contains a gridding engine which

represents the model domain as a dual graph of structured quadrilaterals (e.g., raster) or irregular Voronoi polygon-Delaunay

triangle mesh (e.g., regular hexagons, radially symmetric meshes, fully irregular meshes). Landlab also contains components—5

modular implementations of single physical processes—and a suite of utilities which support numerical methods, input/output,

and visualization. This contribution describes package development since version 1.0 and backward-compatibility breaking

changes which necessitates the new major release, version 2.0. Substantial changes include refactoring the grid, improving

the component standard interface, dropping Python 2 support, and creating 30 new components—for a total of 57 compo-

nents in the Landlab package. We describe reasons why many changes were made in order to provide insight to designers of10

future packages. We conclude by discussing lessons about the dynamics of scientific software development gained from the

experience of using, developing, maintaining, and teaching with Landlab.

1 Introduction

Landlab is a Python package to support the creation of numerical models in Earth surface dynamics. Numerical models support15

researchers to simulate past, present, and future dynamics of a system—this enables conceptual model validation, testing of

1

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

alternative hypotheses, and prediction under uncertainty. Numerical modeling is especially important for Earth surface dy-

namics because of the timescale mismatch between human observation and system evolution. Landlab is an Open Source

Python-language package that provides the common elements of infrastructure needed to support the creation of new models.

These include a model domain representation (the model grid), physical process components, and utilities that support use and20

extension of the package. Landlab’s modular design lowers the barriers of entry to computational research, reduces researcher

time, and supports publication of reproducible scientific research products (e.g., Bandaragoda et al., 2019). Development and

maintenance of Landlab follows modern software development standards such as version control, integrated testing and doc-

umentation, continuous integration, and multi-platform binary distribution. Our open source development and use of semantic

versioning (SemVer 2.0.0, https://semver.org) provides a necessary but not sufficient tool for reproducible research in Earth25

surface dynamics (e.g., Chen et al., 2018).

Landlab was designed as a key element in the Community Surface Dynamics Modeling System (CSDMS) suite of tools

(Peckham et al., 2013). Initial development of Landlab began in 2012 and culminated in a version 1.0 release (referred to as

v1.0) described by Hobley et al. (2017). Subsequent to the release of v1.0, the core development team and many community

members have contributed additional features and bug fixes to the software. Based on experience using and developing with30

Landlab, the development team identified changes to Landlab that were not backwards compatible, indicating a major release

was necessary to convey to Landlab users to expect substantial changes. This motivated the creation of Landlab v2.0, the focus

of this contribution. A new major version was needed to support (a) backward-compatibility breaking changes associated with

refactoring core data structures and (b) removal of Python<3 support.

The scope of this contribution is to review the core concepts that underpin Landlab’s design, (Section 3), describe the changes35

and new features added since v1.0 (Section 4), and document lessons we have learned about community software development

from developing and maintaining Landlab (Section 5). Before concluding we provide recommendations for those interested

in being involved with Landlab (Section 6). For a comprehensive description of the design and theory behind Landlab v1.0

the reader is referred to Hobley et al. (2017). Additionally, we will not present detailed description of the use of the software,

discuss numerical methods, or review the literature that supports each process implemented in Landlab. In general, methods40

and supporting literature can be found in key publications introducing each component (see Section 4.5), and guidance on

software usage can be found on the Landlab website.

Detailed documentation for Landlab is available on the Landlab ReadTheDocs page https://landlab.readthedocs.io. Code

availability is described at the end of the contribution. A PDF of the documentation and the source code for v2.0 are archived

as the supplemental information to this publication.45

2 The Three Landlab Audiences

The design of the Landlab package, its development practices, and the changes made in v2.0 are best understood in light

of the three audiences who interact with the package. Unlike software which is developed by dedicated software engineers

who do not use the software themselves, Landlab developers also use the software for their research and teaching. Thus, the

2

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

first audience is user-developers, people who modify the source code in order to accomplish their goals. Notably, most of the50

Landlab user-developers have little to no background in software engineering. The second audience is users, people who use

Landlab but do not modify the source code. The final audience is teachers-students, people who use Landlab in an instructional

classroom setting as part of a course.

In creating the source code, writing the documentation, determining the development practices, and maintaining the package,

the needs, abilities, and time constraints of all three audiences must be balanced. This is particularly important for packages55

like Landlab with a small active developer community (n<20) and a research-scale user community (e.g., tens to hundreds of

researchers and perhaps a few thousand students over the lifetime of the software, rather than millions of users). Our approach

is to adopt many of the key design principles underlying modern academic software design best-practice (e.g., The Turing Way

Community et al., 2019). These include an extensive automatic test suite, integrated documentation, version control, continuous

integration, lint checking, and releasing binary packages for users. These design choices were made to ensure that Landlab is60

sustainable into the future to support the user community (see Hobley et al., 2017). Users play an important role in developing

community open source software—two of their most important roles are improving and refining documentation when it is

unclear and identifying software bugs. Because Landlab currently has a relatively small user base with limited experience

contributing to documentation, it takes longer (months to years) for documentation to be refined by users compared to software

with more users (days to months). The relatively long "refinement residence time" means that a commitment to high quality65

tests is critically important (see Section 5.1).

3 Landlab Core Concepts

A core design principle behind the Landlab package is modularity. Separating the elements of a numerical model into reusable

parts decreases the human-time associated with creating a new model or extending a current one. The design of Landlab is

discussed extensively in Hobley et al. (2017). Here we briefly summarize the key points to provide context to the changes and70

new features that are discussed further in Section 4.

The modular design of Landlab comprises the following categories of software infrastructure:

1. Model Grids, data structures implemented as Python classes that represent the computational domain, connectivity be-

tween parts of the domain, and provide a centralized location to store state variables;

2. Utilities, functions that provide solutions to common problems (e.g., numerical functions for gradients, mapping, and75

flux divergence; basic plotting; watershed delineation; and file input/output).

3. Components, representation of core surface processes (e.g, stream power, flow accumulation, precipitation) as a Python

class with a common interface.

The grid represents a 2D domain as two sets of connected points, lines and polygons, offset and overlaid on each other;

it constitutes a formal dual-graph in graph theory terminology. Each graph in the dual-graph is a set of points, connected by80

lines, and outlining polygons. Each graph is a planar graph meaning that the lines connecting points do not cross. In Landlab,

3

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

we refer to the first graph as composed of nodes connected by links which outline patches. Corners are located at the center

of patches, are connected by faces which outline cells. In such a way, data identified at a given point in space has both a

connectivity to other points defined by its lines, and a uniquely associated spatial area and set of bounding edges drawn the

from enclosing polygon in the other graph.85

There are four aspects of the grid that are worth highlighting. First is that the Landlab model grids provide information about

the connectivity and adjacency of all grid elements (nodes, links, patches, corners, faces, and cells). Second, the model grids

use a consistent framework for the numbering of grid elements and identifying a direction for each link and face (note that

this is a topologic direction based on the orientation of the link in x-y space, not a flow direction). This permits consistent

application of numerical methods based on grid element ID that may be transferred to grids of different shapes and sizes.90

Third, Landlab supports regular and irregular model grids through the same interface. The Landlab model grid library in-

cludes data structures for networks, regular rasters, general irregular meshes (Voronoi cells with Delaunay triangulated nodes),

regular hexagons, and radially symmetric irregular meshes. Landlab v2.0 assumes all links and faces are straight. The model

grids were designed to accommodate extension to more exotic 2D geometries.

Finally, the model grid may be used to store data fields at any grid element. Fields represent state variables and are useful95

when multiple components use or modify the state variables. When a field is stored on the grid, Landlab enforces characteristics

such as the number of elements and provides the ability to use adjacency information associated with the grid.

The Landlab model grids keep track of boundary conditions using arrays of integers with flags indicating characteristics such

as fixed-value, fixed-gradient, or closed to flux (grid.status_at_X where X is the name of the grid element). Thus far,

most applications with Landlab use nodes and links as the primary grid elements. Thus, sets of standard boundary condition100

flags are presently only implemented for these two types of grid elements.

Utilities fall into two subcategories: general numerical utilities, and application-focused utilities. In the first category are

functions which calculate quantities such as gradients or flux divergence, and map values from one grid element to another.

Development has created numerical utilities focused on finite-difference/volume numerical solutions to differential equations

and cellular automaton applications. This, however, reflects the interests of developers rather than the potential characteristics105

of the package. In the second category are application-focused utilities which implement functions used multiple times in the

package.

Components are Python objects with a standard interface that implement a single Earth surface process, set of equations,

or analysis compatible with the component interface (e.g. calculation of drainage density). All components require a Landlab

model grid to instantiate, and have a bound function that advances the component forward in time or updates it based on the110

current values stored as fields. Components can be coupled by accessing and modifying the same fields stored on the model

grid elements.

4

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

4 Changes and New Features Added Since Landlab v1.0

Landlab v2.0 contains many changes to the core source code that add new features. We have compiled Tables describing

the pre-existing, refactored, and new core capabilities of the Landlab package. Specifically, data structures (Table 1), utilities115

(Table 2), new components (Table 3), and pre-existing or refactored components (Table 4). We list core package, development

environment, testing, tutorial, and documentation dependencies in Table 5.

Changes that broke backward compatibility were required to incorporate some of the new features in Landlab v2.0. This

necessitated a new major version. These changes included: (i) binding of the boundary condition flags to model grids (Sec-

tion 4.1.3), (ii) a revision to the Component standard interface (Section 4.2), (iii) deprecation and removal of components and120

utilities (Section 4.3), (iv) dropping Python 2 support (following sunsetting of this version at the end of 2019 by the Python

Software Foundation). Additionally, we completely revised the documentation structure (Section 4.4).

Citation of research software is a persistent challenge (e.g., Niemeyer et al., 2016). This is especially difficult for Landlab

because the package itself requires citations, and in addition, depending on the components used, other citations are required.

To address this issue, we have designed a Landlab tool that makes it easier for users to know what references to cite based on125

what parts of Landlab they have used (Section 4.5).

Landlab v2.0 is designed to work with a number of other Python tools for numerical modelling. They are summarized in

Section 4.6.

4.1 Improvements to the Landlab Model Grids

Here we highlight three improvements to the Landlab model grid in v2.0.130

4.1.1 Grids Inherit from Graphs

Each Landlab model grid combines a dual-graph topology with the ability to store fields at grid elements and keep track

of boundary conditions. While the concept of a dual-graph is not new in Landlab v2.0, the package architecture has been

revised to create a set of graph classes from which the Landlab model grids inherit (Table 1, located in the landlab.graph

submodule).135

The Landlab graphs describe the topology and connectivity of a dual graph of nodes-links-patches/corners-faces-cells, and

specify the x and y coordinates of the nodes and corners. It contains support for 1D and 2D graphs, and for graphs not yet used

in Landlab grids (e.g., DualStructuredQuadGraph). It was designed to be re-usable by projects external to Landlab.

While the graph capabilities do not yet support 3D graphs, the package was designed with extension to 3D in mind.

Building the model grids to inherit from the graph data structure results in all model grids containing a complete set of140

topology-derived attributes (e.g., links_at_node) and attribute naming consistency between model grids. In addition, all

of the topology-derived attributes are only created when needed (just in time memory allocation) and are cached. This was

inconsistently implemented in v1.0 and provides an improvement for memory management and speed.

5

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Table 1. Major Data Structures in Landlab v2.0

Name Summary New/Refactored?

Graphs

NetworkGraph Graph with only nodes and links. New

DualVoronoiGraph
Unstructured dual-graph of node-link-patch
Delaunay triangles and corner-face-cell Voronoi
polygons.

New

DualHexGraph Dual-graph of node-link-patch triangles and
corner-face-cell regular hexagons.

New

DualRadialGraph Dual-graph with radially symmetric nodes. New

DualStructuredQuadGraph
Dual-graph of structured quadrilaterals. Link and
face lengths vary, and orthogonality of links and
faces is not required. This graph does not yet support
a grid.

New

DualRectilinearGraph
Dual-graph of quadrilaterals. Link and face lengths
may be variable but angles are orthogonal. This
graph does not yet support a grid.

New

DualUniformRectilinearGraph
Dual graph of constant-sized rectangles. x and y link
and face lengths may be different, but are constant
across the grid and are orthogonal.

New

Model Grids
NetworkModelGrid Model grid that inherits from the NetworkGraph New

VoronoiDelaunayModelGrid Model grid that inherits from the
DualVoronoiGraph

Refactored

HexModelGrid Model grid that inherits from the DualHexGraph Refactored

RadialModelGrid Model grid that inherits from the
DualRadialGraph

Refactored

RasterModelGrid Model grid that inherits from the
DualUniformRectilinearGraph

Refactored

Other data structures

EventLayers

Data structure that keeps track of a timeseries of
thicknesses and a generic set of properties at all of
one grid element (e.g., cells). In EventLayers
every time point is recorded, such that erosion of
layers retains a series of zero thickness.
EventLayers is more appropriate if a user is
interested in chronostratigraphy.

New

MaterialLayers
Same as EventLayers except that when erosion
occurs, no layer is recorded, and when equivalent
material is deposited, layers can be joined.

New

DataRecord Data structure to store a generic set of variables in
time and/or on grid elements.

New

The graph and model grid data structures are all built on the xarray Python package’s Dataset (Hoyer and Hamman,

2016). Using xarray.Dataset provides a number of advantages including improved input and output to the NetCDF145

format, use of xarray’s optimized data structures, and the possibility to take advantage of xarray-compatible parallelization

related tools (e.g., dask, Dask Development Team, 2016; Rocklin, 2015) without breaking backwards compatibility.

6

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Table 2. Major New Utilities in Landlab v2.0

Submodule Summary

landlab.utils.distance_to_divide Calculate distance between nodes and water-

shed divides.

landlab.utils.flow__distance Calculate distance between nodes and water-

shed outlets.

landlab.utils.watershed Identify and label nodes that belong to individ-

ual watershed.

landlab.values Create generic, reproducible, synthetic fields

based on Python dictionaries or yaml input files.

Figure 1. Grid elements of RasterModelGrid without (a) and with (b) diagonals.

4.1.2 Improved Treatment of Diagonals

The RasterModelGrid can optionally contain an additional grid element called a diagonal that connects nodes but also

crosses corners (Figure 1). Including this grid element violates the assumption of a plane graph because the diagonal elements150

cross one another. However use of diagonal elements has a long history in Earth surface dynamics modelling; in order to

support historical algorithms (e.g., D8 flow routing, O’Callaghan and Mark, 1984) Landlab’s RasterModelGrid contains

support for diagonals. This permits studies, similar to similar to Shelef and Hilley (2013), that cross-compare implementations

with and without diagonals.

Landlab v1.0 had a partial implementation of diagonals in which there was no consistent way to refer to the diagonals or the155

group of linear elements composed of both links and diagonals. In addition, we had an incomplete set of adjacency structures

describing diagonals, and we had no mechanism to store values at diagonals on fields. We now consistently call the set of links

and diagonals d8s, and have implemented adjacency structures and some numerical functions for diagonals and d8s that mirror

7

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

those for links. Landlab assigns a unique ID to each grid element (see Hobley et al., 2017, their Figure 4). For example, the

nodes are identified with ID numbers from zero to number of nodes minus one and links are identified with numbers from zero160

to number of links minus one. The unique IDs assigned to the d8 refer first to the links and then to the diagonals.

In this contribution we will use “d8” to refer to the grid element and “D8” to refer to the flow routing approach.

4.1.3 Bound Boundary Condition Flags

Landlab v2.0 provides boundary condition status arrays for nodes, links, corners, faces, and, if applicable, diagonals and d8s.

Because cells and patches are uniquely associated with their own nodes and corners, we do not supply specific status arrays165

for those elements. Boundary condition status is indicated by a set of flags that indicate the status (Table 6 indicates flag

names, see Hobley et al., 2017, their Section 3.1.4 for discussion of boundary conditions). Landlab does not enforce whether a

component honors boundary condition flags—the status arrays and flags are provided simply as a convenience to developers.

As in v1.0, we enforce internal consistency of boundary conditions across connected grid element types. e.g., an update to

boundary conditions at a node will automatically propagate into the connecting links as appropriate, and vice versa.170

Prior to v2.0, the flags used to indicate node and link status were not bound to the model grids. In v2.0 we bound these as

attributes of the model grid because we want these flags to be inseparable from the grids that use them. Along with binding the

flags to the grid, we modified the names for clarity (Table 6)

4.2 Updates to the Component Standard Interface

We made changes to the expectations of component interface, metadata, and code standards based on our experience developing175

components, supporting community members, and using components in science applications. The enhanced interface standard

is designed to improve usability and documentation, and to make clearer expectations for contributed components. We have

implemented automated tests that ensure existing and contributed components meet this interface standard.

4.2.1 Changes to the Component __init__Method

Hobley et al. (2017, their section 3.3.1) defined the interface for Landlab components with the function signature for instan-180

tiation (__init__) and advancing forward (run_one_step). The v1.0 component instantiation interface defined with the

function definition of: __init__(self, grid, arg1, arg2..., kwd1=a, kwd2=b, kwd3=c, ..., **kwds).

Here arg1 represents a generic argument and kwd1=a represents a generic keyword argument. The **kwds was included

so that a user could make a single dictionary (or yaml file) containing all of the keyword arguments for all components used in

a model, and pass the same dictionary to all components. However, an undesirable side effect of this design was that a slight185

misspelling of a keyword argument would result in use of the default value with no error raised. To remedy this flaw we revised

the __init__ standard to remove the **kwds; that is, a user may now only supply the component with input parameters that

are explicitly declared in its signature. In addition we expanded the requirements for what a component’s __init__ must do:

8

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

– Components must inherit from the Component base class and call super in their __init__. This ensures that all

components take full advantage of the base class functionality and internal checking.190

– By the end of __init__, all output fields made by the component must exist and have the data type specified by the

component metadata.

– A component must raise a ValueError if unused keyword arguments are provided.

– A component must raise a ValueError if a grid type the component does not support is provided.

4.2.2 Changes to the Component Run Method195

The v1.0 component interface defined a run method with a function signature run_one_step(dt, *args, **kwds)

where dt represents the duration of time the model runs forward, *args represents a generic list of arguments, and **kwds

represents a generic set of keyword arguments. In practice, we found that many Landlab components were not able to follow

this interface standard because it was not flexible enough. For example, some components do not require a dt and thus did

not take dt. We also found the presence of *args and **kwds in the run_one_step problematic because it complicated200

wrapping components with a Basic Model Interface (BMI, Peckham et al., 2013; Hutton and Piper, 2020a) for use with the

Python Modeling Tool (PyMT, Hutton and Piper, 2020b).

The revised interface balances standardization and flexibility. The new expectation is that if run_one_step is used it

will either take dt or nothing. Thus components with a run_one_step method can be easily incorporated into PyMT.

Pre-existing components that took arguments or keyword arguments in the run_one_step have been refactored to either205

provide those values at instantiation, or to use properties, getters, and setters. Components are no longer required to provide

a run_one_step method, but if they do not, then an alternative update/execution function must be provided and its usage

clearly documented in the component’s header docstring.

4.2.3 New Component Metadata Standard

The data structure that stores metadata about the fields the component uses and creates was revised. Component metadata210

describes input fields, output fields, field units, the type of grid element associated with each field, and a long-format description

of the field. Metadata are now organized into a single Python dictionary, which has a key-value pair for each field used by the

component. The new data structure makes it easier to test for completeness and consistency across components.

Each key is a string indicating the field name. The associated value is itself a dictionary that has a standard, required set of

keys:215

1. “dtype”: The data type for the items in the field indicated as a Python data type (e.g., float, int).

2. “intent”: A string indicating the input/output intent of the field. Valid options are “in”, “out”, and “inout”.

3. “optional”: Boolean indicating whether the field is an optional input or output.

9

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

4. “units”: String indicating the units of the field. Some components are unit agnostic, in which case these units can be

interpreted as dimensions (see item below describing the attribute Component.unit_agnostic).220

5. “mapping”: String indicating the type of grid element associated with the field (e.g., node, link).

6. “doc”: String describing the field.

4.2.4 Additional Component Content Requirements and Recommendations

Here we highlight the few remaining component requirements and recommendations. The use of must indicates a requirement

while the use of may or should indicates a recommendation.225

– All public attributes must be documented properties of the Component class, that is, they have the @property stan-

dard Python decorator. This ensures that other users are able to identify what each public attribute is, and prevents

variable modification unless the developer explicitly permits it. This change has little impact on developers time because

a developer may elect to use only private attributes.

– If a developer envisions that a component’s public attribute may be modified, they must create a setter for it. This230

provides a place for a component author to write checks that ensure a user cannot incorrectly assign invalid component

attributes.

– Field names shared between multiple components must use a consistent definition and dimensions. Some components

require parameters and fields to use a particular set of units while others are unit agnostic. This is flagged in the com-

ponent attribute Component.unit_agnostic. It is up to the user to ensure that an application uses consistent units235

across all fields, components, and input parameters.

– Arguments and keyword arguments should start with lower case letters.

– The grid should be the only argument to the component __init__. All other inputs are provided as keyword arguments.

– Keyword arguments should have reasonable default values so that all keywords are truly optional.

– The component’s main method (either run_one_step or a custom-designed update/execution function) should return240

either nothing, the grid, or a single calculated value.

4.3 Removed or Modified Components and Utilities

Several obsolete components and utilities have been removed from Landlab v2.0. Other components were substantially modi-

fied. Here we describe these changes.

– The FlowRouter component, which did D8 and D4/Steepest Descent flow routing and accumulation, was removed and245

replaced with the FlowAccumulator and a family of FlowDirector components. This change provides greater

flexibility in options for flow-routing algorithms (e.g., multiple flow directions, D∞).

10

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

– The routing-based surface-water erosion components (such as StreamPowerEroder) now use a single consistent

method for handling the input runoff rate. The keyword argument runoff_rate to the FlowAccumulator can

now specify a float, array, or field name indicating the runoff rate. This is then accumulated to create the field250

surface__water_discharge which can be used by components that model surface-water erosion.

– The ModelParameterDictionary was removed because it represents an old-style input file that has been su-

perceded by the yaml format.

– A new ChannelProfiler component replaces the previous channel-profiling submodule

(landlab.plot.channel_profile).255

– The noclobber keyword argument for field creation was changed to clobber because the original name required

double negatives and was not intuitive. noclobber=False is equivalent to clobber=True.

– The ability to pass an array of flooded nodes to the run_one_step method in surface-water erosion components was

removed and replaced with a keyword argument to __init__ called erode_flooded_nodes.

4.4 Reorganization of the Landlab Documentation260

The Landlab online documentation is now consolidated onto a single sphinx-based platform (https://landlab.readthedocs.io/).

Consolidating the documentation onto a single platform with a consistent interface reduces duplication of information, and

improves consistency. The site’s design is similar to that of widely used scientific Python packages and was modeled after that

of pandas (McKinney, 2010). The revised documentation pages include installation instructions, a User Guide (including

tutorials), a Guide for Developers, and an API Reference that contains formatted versions of inline documentation within the265

source code. The documentation source is written in ReStructuredText format, and the source files are provided as part of the

Landlab package.

4.5 Citation of Landlab and Parts of Landlab

Citation of scientific software is an outstanding challenge (e.g., Niemeyer et al., 2016). Scientific software is cited less fre-

quently than it is used (e.g., Pan et al., 2015). Indicating a recommended citation for use of Landlab is additionally challenging270

because, depending on the portion of Landlab used, the citations required may vary. We describe our recommendations for

which citations to use, and present a tool within Landlab to improve citation discoverability.

Any time any part of Landlab is used, Hobley et al. (2017) should be cited; if the version used is > 1.0, then this contribution

should be additionally cited. These two citations acknowledge the development of the Landlab package itself. We also recom-

mend that authors state the specific version of Landlab used (the version can be found by evaluating landlab.__version__).275

Each application of Landlab may use a different set of components, each with a different citation for the software itself and

general set of theory references (Table 3 and 4). Additionally, some parts of Landlab may internally use others; thus a user may

not easily be able to assess the entire set of elements of Landlab their application has used and what to cite for each part.

11

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

This challenge is not new. For example, it is faced by the scipy package, which addresses it by providing a core-package

citation: Virtanen et al. (2019), and indicating that users should look to the Reference section of the documentation for ad-280

ditional citations. Similarly, the codes distributed through the Computational Infrastructure for Geodynamics (CIG) have a

citation builder that distinguishes between citations specific to the software implementation, primary citations describing the

code development and numerical methods, and secondary citations that pertain to parts of the code a user may or may not

have used (Kellogg et al., 2018). This example from CIG highlights a further challenge: a component may have one or more

citations for for each of the following categories: (i) the theory behind the implemented idea, (ii) a description of the software285

implementation itself, (iii) any specialized algorithms developed for the implementation, and (iv) the first reported use of the

software in a publication.

Should one of these or all of these be the recommended and/or required citations for a given software component? We do not

think it is our role to decide which citations, if any, a component author indicates as recommended or required. Additionally,

it is not our place—as the software developers behind Landlab—to determine which citations best represent the theory behind290

an implementation. Instead we provide two places for a component author to indicate what they think the minimum required

citations are: a component attribute called Component.cite_as which lists required citations for a given component, and

a section in the component docstring that provides the broader reference context. These two categories are reflected by the two

citation columns in Tables 3 and 4. Clearly, a component developer has the authority to decide exactly what to put in either of

these locations.295

To aid discoverability of citations, we have created the Landlab citation registry, a tool that compiles citation-related meta-

data for the specific set of Landlab components used in an application (Listing 4.5). The citation registry compiles citation

information for all components currently instantiated in a Python session by automatically interrogating their cite_as prop-

erties.

4.6 Packages Built to Work With Landlab300

Landlab was designed as a generic, extensible modelling framework for Earth surface dynamics. Because Landlab exposes

BMI (BMI, Hutton and Piper, 2020a), it is compatible with the PyMT package (Hutton and Piper, 2020b)—a Python package

that supports running and coupling models that expose a BMI. PyMT provides access to a suite of models written in multiple

languages (e.g., Python, fortran, c++) and a standard interface for initializing and running.

In addition, two packages have been built using Landlab to support applications in sensitivity analysis, calibration, validation,305

and multi-model comparison (see, Barnhart et al., 2020a, b, c, for example applications). First, terrainbento is a Python

package for multi-model analysis that provides an extensible set of 27 Landlab-built models for long-term drainage basin and

landform evolution, along with general classes for handling boundary conditions through an input-file format (Barnhart et al.,

2019b). Second, umami is used to calculate model-data comparison metrics for observed and simulated topography (Barnhart

et al., 2019a).310

12

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Listing 1. Using the Landlab citation registry.�
import landlab

Do your work, using the parts of

Landlab you need.

When you are done, write citations

to a file.

w = landlab.registry.format_citations()

with open("citations.bib", "w") as f:

f.write(w)

This will produce Bibtex-formatted

citations for all Landlab components

that you currently have instantiated.

For example, the Bibtex contents below

will result from a script that only

imports Landlab.

Citations

landlab

@article{hobley2017creative,

AUTHOR = {

Hobley, D. E. J. and Adams, J. M. and

Nudurupati, S. S. and Hutton,

E. W. H. and Gasparini, N. M. and

Istanbulluoglu, E. and Tucker, G. E.

},

TITLE = {

Creative computing with Landlab: an

open-source toolkit for building,

coupling, and exploring two-dimensional

numerical models of Earth-surface

dynamics

},

JOURNAL = {Earth Surface Dynamics},

VOLUME = {5},

YEAR = {2017},

NUMBER = {1},

PAGES = {21--46},

URL = {

https://www.earth-surf-dynam.net/5/21/2017/

},

DOI = {10.5194/esurf-5-21-2017}

}
� � 13

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

5 Lessons on Geoscientific Software Development

In this section we highlight several lessons about software development we have learned in the processes of supporting and

improving Landlab v1.0 to its current v2.0 state and working with the growing community of users.

We reflect on these lessons because the production of research software is itself research and there are many aspects of

scientific software which are distinct from other software, notably (i) that the development lifecycle includes additional stages315

because the methods used to implement a piece of software may not exist at the outset of a project, (ii) requirements evolve

because they are part of the research, and (iii) the state of the scientific field may be complex and evolving (e.g., Carver et al.,

2016).

5.1 Value of Testing

The development of docstring and unit tests within Landlab was motivated by following software development best practices320

(e.g., Wilson et al., 2014, 2017). That is, our focus was on ensuring that the package behaves as described and, where an

analytical solution exists, that Landlab correctly solves it. While using a testing suite is standard in many software development

contexts, it is relatively uncommon in scientific software development (e.g., Prabhu et al., 2011). Tests do not ensure that

elements of the Landlab software represent the truth, or guarantee that a model is appropriate for a specific application; in other

words, Landlab cannot and does not attempt to validate (sensu Schlesinger et al., 1979) the assumptions of its components.325

Instead, the tests verify (Schlesinger et al., 1979) that the software is behaving as expected and that numerical methods are

solving stated equations reliably. Through coupled use of an automatic testing suite and continuous integration we ensure that

changes to the code base do not break existing tests.

The process of developing Landlab, working with its user community, and revising it to v2.0 illustrated another, obvious in

retrospect, benefit of the tests: developing a set of tests for the package interface and numerical behavior make it possible to330

refactor. Without these tests, it would have been much more difficult to implement beneficial revisions (such as refactoring the

model grid to derive from the graph-based class).

Writing effective unit tests that ensure Landlab components reliably solve their equations under a variety of initial and

boundary conditions not a trivial task. When a set of equations that a component solves have an analytical solution then the

numerics of a component can be verified based on the ability to reproduce such a relationship (e.g., stream power erosion335

produces a known slope-area relationship Willgoose et al., 1991). When such analytical predictions do not exist—as is often

the case—a more detailed analysis of the equations must be performed in order to create a full verification test. Even in the

absence of such analytical solutions, however, many existing Components have made headway during development simply by

testing for mass balance and timestep consistency, and the value of such simplifications should not be ignored.

In contrast, it is much easier to design and implement tests for the Landlab interface (e.g., when a invalid value is passed340

to a component, is the correct type of error raised). In general, designing a thorough set of tests is a learned skill that requires

thinking through many edge cases of model behavior.

14

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

5.2 Collaborative Development of Research Software Requires Many Skills

Scientific software development requires distinct skills. Based on working with community user-developers and onboarding

new members of the core development team, we describe the set of skills that are needed to interact with a project like345

Landlab as a user-developer. Our intention here is to document a concrete example so that efforts to create scientific software

development curricula can be based on use-cases. In the case of Landlab, the skills required to contribute to the project include:

1. Python programming, including functions, classes, and basic package organization.

2. Fundamental elements of version control using git (branching, commits).

3. GitHub for collaboration (issues trackers, merging, pull requests, managing forks, code reviews).350

4. Package dependency management (currently implemented with conda environments).

5. Conceptual design and practical implementation of unit tests.

6. ReStructured text syntax for creating documentation.

In addition, there are a number of skills that not all user-developers need, but are necessary to have within the project team

in order to maintain continuous integration, documentation, building binaries, and distributing (e.g., sphinx, configuring and355

debugging continuous integration platforms).

The importance of these skills is highlighted in the context of technical debt, or the cost of implementing a fast and easy

solution now, as opposed to a better approach that may take longer. For example, we have found that it is much easier to create

content than to make it accessible (this observation motivated the restructuring of the documentation described in Section 4.4).

It is also easier to write code than to write thorough and effective tests for it, yet omitting tests greatly increases the risk of360

serious bugs, which can invalidate the research that the software is meant to facilitate.

5.3 Balancing the Burden on Developers and Users

Open-source software (scientific or otherwise) commonly has many more users than developers or user-developers (e.g.,

numpy). Under those circumstances, moderate investments in developer time are justified to make use faster or more intu-

itive for users. However, Landlab is a case with slightly different dynamics, which are worth reflecting on. Landlab is an365

example of a niche scientific software package with a relatively small development community. Here we reflect on some of the

development dynamics of this type of scientific software and the relative burdens for use on developers and users.

Our goal is to create an extensible software package that solves a variety of Earth surface dynamics problems and is acces-

sible to undergraduates and active researchers, and to support community members in contributing to the code (transitioning

from users to user-developers). Effectively serving the community requires a balance between minimizing technical debt (by370

enforcing standards within the code base), while also making development and contribution accessible to inexperienced but

motivated community members.

15

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

One aspect of our approach, inspired by experience working with community members, is to be flexible with the software

engineering and interface standards. This includes relaxing standards when necessary. For example, while a strict interface

standard for components would likely reduce technical debt, our experience is that such rigidity would raise a substantial barrier375

to community contribution. This means that we need to strike a balance in our design principles between standardization and

flexibility (e.g., relaxing the standard for the run_one_step method described in Section 4.2).

Second, we embrace the idea that good is better than not at all. That is, some tests are better than none, meaningful tests are

better than non-meaningful ones, and barebones documentation is better than none. We find that documentation improves the

most when users try to use it, find that it is insufficient or unclear, and interact with developers through the online and open380

GitHub Issues forum. Users and developers then together revise the text. Because the development team is small and supported

primarily by grants, we rely on users to indicate where improvements must be made.

6 How Do I Get Started?

We highly encourage all contributions to Landlab. The package is designed as an extensible piece of community software

and we look forward to it growing to meet community needs. Common ways that an interested individual might get started385

include: identifying or making improvements to the documentation and example notebooks, finding and fixing bugs, and

describing and creating desired features—such as new components. For information about how to get started, visit the website

at https://landlab.readthedocs.io/.

7 Conclusions

Landlab v2.0 provides the community with a robust and extensible package for modelling Earth surface dynamics. It is dis-390

tributed as source code and as pre-packaged binaries for Linux, MacOS, and Windows. An extensive set of unit tests ensure

reliability of the code base. This version provides substantial improvements over the v1.0 including (i) a revised set of model

grid classes, (ii) updates to the component interface, (iii) 30 new components, (iv) expanded and consolidated documenta-

tion, and (v) a tool for identifying appropriate citations. The backward-compatibility breaking changes made in Landlab v2.0

reflect changes necessary based on use and development of the package. The modular design of Landlab means that develop-395

ers only need to create the new piece they need, and researchers can mix and match components to create a desired model.

As a tested, version-controlled, and documented software package, Landlab reduces barriers to computational modelling and

supports reproducible research.

Code availability. The Landlab source code is hosted on GitHub at https://github.com/landlab/landlab. Our documentation can be found at

https://landlab.readthedocs.io/. Prepackaged binaries are distributed through PyPI (https://pypi.org/project/landlab/) and conda-forge (https:400

//anaconda.org/conda-forge/landlab). The v2.0 version of the software and a PDF of the documentation are provided as a supplement to this

contribution and are archived with Zenodo (Hutton et al., 2020).

16

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Author contributions. KRB and EWHH led the design and v2.0 refactoring of the Landlab package with input from all co-authors. KRB

wrote the original draft of the manuscript, with input from all co-authors. All authors edited the manuscript. KRB, EWHH, GET, NMG,

DEJH, NJL, MM, SSN, and JMA contributed to the Landlab code base. All authors designed and taught short courses which provided us-405

ability testing and resulted in critical improvements to package architecture and documentation. CB expanded accessibility of Landlab using

advanced cyberinfrastructure by leading integration of Landlab with the Hydroshare platform. GET, NMG, EI, and EWHH conceptualized

Landlab and created its prototype. GET, NMG, EI, and DEJH acquired the core funding to support Landlab, with additional funding acquired

by KRB, CB, and NJL.

Competing interests. The authors declare no competing interests.410

Acknowledgements. Landlab was supported by the following US National Science Foundation awards: 1147454 (GET), 1450409 (GET),

1147519 (NMG), 1450338 (NMG), 1148305 (EI), 1450412 (EI), 1246761 (through an NCED2 postdoctoral fellowship to DEJH), 1725774

(an EAR postdoctoral fellowship to KRB), and 1902600 (CB). Landlab is additionally supported by the Community Surface Dynamics

Modeling System (NSF Award Numbers 1226297 and 1831623). DEJH acknowledges the support from a Marie Curie/Ser Cymru II Cofund

Research Fellowship 663830-CU-035, and from a Software Sustainability Institute Fellowship. NJL and NMG acknowledge the support of415

a Tulane University Oliver Fund Scholar Award.

We acknowledge support from Tony Castronova and the HydroShare platform at Consortium of Universities for the Advancement of

Hydrologic Science, Inc. (CUAHSI). CUAHSI supports use of Landlab on the HydroShare Platform (NSF EAR 1338606). Landlab Group

members on HydroShare have freely shared research, data, training and teaching resources with Landlab and HydroShare communities.

Landlab relies on free open-source package builds from TravisCI and Appveyor for our Continuous Integration. Our documentation is hosted420

for free by ReadTheDocs.

Landlab would not exist without decades of Open Source software development. In this spirit, we thank all community members who have

asked questions, made Issues, commented on documentation that didn’t make sense, and contributed code to the package. Below we list the

results of our best efforts to compile all non-author community contributors to the Landlab package. The are (in alphabetical order): Guiseppe

Cippolla, Jon Czuba, Vanessa Gabel, Rachel Glade, Jenny Knuth, Abby Langston, David Litwin, Amanda Manaster, Allison Pfeiffer, Francis425

Rengers, Charlie Shobe, and Rhonda Strauch.

17

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

References

Adams, J. M., Gasparini, N. M., Hobley, D. E., Tucker, G. E., Hutton, E. W., Nudurupati, S. S., and Istanbulluoglu, E.: The Landlab v1.

0 OverlandFlow component: a Python tool for computing shallow-water flow across watersheds, Geoscientific Model Development, 10,

1645, https://doi.org/10.5194/gmd-10-1645-2017, 2017.430

Ahnert, F.: Brief description of a comprehensive three-dimensional process-response model of landform development, Z. Geomorphol.

Suppl., 25, 29 – 49, 1976.

Albert, J. S., Schoolmaster Jr, D. R., Tagliacollo, V., and Duke-Sylvester, S. M.: Barrier Displacement on a Neutral Landscape: Toward a

Theory of Continental Biogeography, Systematic Biology, 66, 167–182, https://doi.org/10.1093/sysbio/syw080, 2016.

Almeida, G. A. M. d., Bates, P., Freer, J. E., and Souvignet, M.: Improving the stability of a simple formulation of the shallow water equations435

for 2-D flood modeling, Water Resources Research, 48, https://doi.org/10.1029/2011wr011570, 2012.

Armstrong, A. C.: A three dimensional simulation of slope forms, Zeitschrift für Geomorphologie, 25, 20 – 28, 1976.

ASCE: The ASCE Standardized Reference Evapotranspiration Equation, in: Standardization of Reference Evapotranspiration Task Commit-

tee Final Report, edited by Allen, R. G. and Walter, I. A. and Elliot, R. L. and Howell, T. A. and Itenfisu, D. and Jensen, M. E., and Snyder,

R. L., Technical Committee report to the Environmental and Water Resources Institute of the American Society of Civil Engineers from440

the Task Committee on Standardization of Reference Evapotranspiration, Reston, VA, USA, 2005.

Bandaragoda, C., Castronova, A., Istanbulluoglu, E., Strauch, R., Nudurupati, S., Phuong, J., Adams, J., Gasparini, N., Barn-

hart, K. R., Hutton, E., Hobley, D., Tarboton, N. L., Tucker, G., David, Idaszak, R., and Wang, S.-W.: Enabling Col-

laborative Numerical Modeling in Earth Sciences using Knowledge Infrastructure, Environmental Modelling and Software,

https://doi.org/https://doi.org/10.1016/j.envsoft.2019.03.020, 2019.445

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation

models, Computers and Geosciences, 62, 117 – 127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014.

Barnhart, K., Hutton, E., and Tucker, G.: umami: A Python package for Earth surface dynamics objective function construction, Journal of

Open Source Software, 4, 1776, https://doi.org/10.21105/joss.01776, 2019a.

Barnhart, K. R., Hutton, E., Gasparini, N., and Tucker, G.: Lithology: A Landlab submodule for spatially variable rock properties, Journal of450

Open Source Software, 3, 979 – 2, https://doi.org/10.21105/joss.00979, 2018.

Barnhart, K. R., Glade, R. C., Shobe, C. M., and Tucker, G. E.: Terrainbento 1.0: a Python package for multi-model analysis in long-term

drainage basin evolution, Geoscientific Model Development, 12, 1267—1297, https://doi.org/10.5194/gmd-12-1267-2019, 2019b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for land-

scape evolution model process representation: Part 2, calibration and validation, Journal of Geophysical Research-Earth Surface,455

https://doi.org/10.1029/2018JF004963, 2020a.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography for landscape

evolution model process representation: Part 1, conceptualization and sensitivity analysis, Journal of Geophysical Research-Earth Surface,

https://doi.org/10.1029/2018JF004961, 2020b.

Barnhart, K. R., Tucker, G. E., Doty, S., Shobe, C. M., Glade, R. C., Rossi, M. W., and Hill, M. C.: Inverting topography460

for landscape evolution model process representation: Part 3, Determining parameter ranges for select mature geomorphic trans-

port laws and connecting changes in fluvial erodibility to changes in climate, Journal of Geophysical Research-Earth Surface,

https://doi.org/10.1029/2019JF005287, 2020c.

18

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Bates, P. D., Horritt, M. S., and Fewtrell, T. J.: A simple inertial formulation of the shallow water equations for efficient two-dimensional

flood inundation modelling, Journal of Hydrology, 387, 33–45, https://doi.org/10.1016/j.jhydrol.2010.03.027, 2010.465

Bras, R.: Hydrology: an introduction to hydrologic science, Addison-Wesley, 1990.

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision

and landscape evolution, Geomorphology, 180-181, 170 – 179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.

Carretier, S., Martinod, P., Reich, M., and Godderis, Y.: Modelling sediment clasts transport during landscape evolution, Earth Surface

Dynamics, 4, 237–251, https://doi.org/10.5194/esurf-4-237-2016, 2016.470

Carver, J. C., Hong, N. P. C., and Thiruvathukal, G. K.: Software engineering for science, CRC Press, 2016.

Chen, X., Dallmeier-Tiessen, S., Dasler, R., Feger, S., Fokianos, P., Gonzalez, J. B., Hirvonsalo, H., Kousidis, D., Lavasa, A., Mele,

S., Rodriguez, D. R., Šimko, T., Smith, T., Trisovic, A., Trzcinska, A., Tsanaktsidis, I., Zimmermann, M., Cranmer, K., Heinrich,

L., Watts, G., Hildreth, M., Iglesias, L. L., Lassila-Perini, K., and Neubert, S.: Open is not enough, Nature Physics, 15, 113–119,

https://doi.org/10.1038/s41567-018-0342-2, 2018.475

Childs, E. C.: Drainage of Groundwater Resting on a Sloping Bed, Water Resources Research, 7, 1256–1263,

https://doi.org/10.1029/wr007i005p01256, 1971.

Culling, W. E. H.: Soil Creep and the Development of Hillside Slopes, The Journal of Geology, 71, 127–161, https://doi.org/10.1086/626891,

1963.

Dask Development Team: Dask: Library for dynamic task scheduling, https://dask.org, 2016.480

Davy, P. and Lague, D.: Fluvial erosion/transport equation of landscape evolution models revisited, Journal of Geophysical Research, 114,

F03 007, https://doi.org/10.1029/2008jf001146, 2009.

Eagleson, P. S.: Climate, soil, and vegetation: 2. The distribution of annual precipitation derived from observed storm sequences, Water

Resources Research, 14, 713–721, https://doi.org/10.1029/wr014i005p00713, 1978.

Freeman, T. G.: Calculating catchment area with divergent flow based on a regular grid, Computers and Geosciences, 17, 413 – 422,485

https://doi.org/10.1016/0098-3004(91)90048-i, 1991.

Ganti, V., Passalacqua, P., and Foufoula-Georgiou, E.: A sub-grid scale closure for nonlinear hillslope sediment transport models, Journal of

Geophysical Research: Earth Surface, 117, n/a–n/a, https://doi.org/10.1029/2011jf002181, 2012.

Hobley, D. E. J., Sinclair, H. D., Mudd, S. M., and Cowie, P. A.: Field calibration of sediment flux dependent river incision, Journal of

Geophysical Research, 116, 20 161 – 18, https://doi.org/10.1029/2010jf001935, 2011.490

Hobley, D. E. J., Adams, J. M., Nudurupati, S. S., Hutton, E. W. H., Gasparini, N. M., Istanbulluoglu, E., and Tucker, G. E.: Creative

computing with Landlab: an open-source toolkit for building, coupling, and exploring two-dimensional numerical models of Earth-surface

dynamics, Earth Surface Dynamics, 5, 21 – 46, https://doi.org/10.5194/esurf-5-21-2017, 2017.

Howard, A. D.: A detachment-limited model of drainage basin evolution, Water Resources Research, 30, 2261–2285,

https://doi.org/10.1029/94wr00757, 1994.495

Hoyer, S. and Hamman, J.: xarray: N-D labeled Arrays and Datasets in Python, Journal of Open Research Software, 5,

https://doi.org/10.5334/jors.148, 2016.

Hunter, J. D.: Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, 9, 90–95,

https://doi.org/10.1109/mcse.2007.55, 2007.

Hutton, E. W. and Syvitski, J. P.: Sedflux 2.0: An advanced process-response model that generates three-dimensional stratigraphy, Computers500

& Geosciences, 34, 1319–1337, https://doi.org/10.1016/j.cageo.2008.02.013, 2008.

19

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Hutton, E. W. H. and Piper, M.: csdms/bmi-python: v2.0, https://doi.org/10.5281/zenodo.3647556, https://doi.org/10.5281/zenodo.3647556,

2020a.

Hutton, E. W. H. and Piper, M.: csdms/pymt: The Python Modeling Toolkit, https://doi.org/10.5281/zenodo.3644240, https://doi.org/10.

5281/zenodo.3644240, 2020b.505

Hutton, E. W. H., Hobley, D. E. J., Barnhart, K. R., Tucker, G. E., Nudurupati, S. S., Adams, J. M., Gasparini, N. M., Shobe, C. M., Strauch,

R., Knuth, J., Lyons, N. J., Glade, R. C., Giuseppecipolla95, Manaster, A., Mouchene, M., and Rengers, F.: landlab/landlab v2.0.0, 2020.

Johnstone, S. A. and Hilley, G. E.: Lithologic control on the form of soil-mantled hillslopes, Geology, 43, 83–86,

https://doi.org/10.1130/g36052.1, 2015.

Julien, P. Y., Saghafian, B., and Ogden, F. L.: Raster-based hydrologic modeling of spatially-varied surface runoff, Journal of the American510

Water Resources Association, 31, 523–536, https://doi.org/10.1111/j.1752-1688.1995.tb04039.x, 1995.

Kellogg, L. H., Hwang, L. J., Gassmoller, R., Bangerth, W., and Heister, T.: The Role of Scientific Communities in Creating Reusable

Software: Lessons From Geophysics, Computing in Science & Engineering, 21, 25–35, https://doi.org/10.1109/mcse.2018.2883326, 2018.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P.,

Avila, D., Abdalla, S., and Willing, C.: Jupyter Notebooks – a publishing format for reproducible computational workflows, in: Positioning515

and Power in Academic Publishing: Players, Agents and Agendas, edited by Loizides, F. and Schmidt, B., pp. 87 – 90, IOS Press, 2016.

Krekel, H., Oliveira, B., Pfannschmidt, R., Bruynooghe, F., Laugher, B., and Bruhin, F.: pytest 5.3.2, https://github.com/pytest-dev/pytest,

2004.

Laio, F., Porporato, A., Ridolfi, L., and Rodriguez-Iturbe, I.: Plants in water-controlled ecosystems: active role in hydrologic processes and re-

sponse to water stress II. Probabilistic soil moisture dynamics, Advances in Water Resources, 24, 707–723, https://doi.org/10.1016/s0309-520

1708(01)00005-7, 2001.

Lambeck, K.: Geophysical geodesy, Clarendon Oxford, 1988.

Langston, A. L. and Tucker, G. E.: Developing and exploring a theory for the lateral erosion of bedrock channels for use in landscape

evolution models, Earth Surface Dynamics, 6, 1—27, https://doi.org/10.5194/esurf-6-1-2018, 2018.

Litwin, D., Tucker, G., Barnhart, K., and Harman, C.: GroundwaterDupuitPercolator: A Landlab component for groundwater flow, Journal525

of Open Source Software, 5, 1935, https://doi.org/10.21105/joss.01935, https://doi.org/10.21105/joss.01935, 2020.

Lyons, N. J., Val, P., Albert, J. S., Willenbring, J. K., and Gasparini, N. M.: Topographic controls on divide migration, stream capture, and

diversification in riverine life, Earth Surface Dynamics, https://doi.org/10.5194/esurf-2019-55, 2019.

Lyons, N. J., Albert, J. S., and Gasparini, N. M.: SpeciesEvolver: A Landlab component to evolve life in simulated landscapes, Journal of

Open Source Software, https://doi.org/10.21105/joss.02066, https://doi.org/10.21105/joss.02066, 2020.530

Marçais, J., Dreuzy, J.-R. d., and Erhel, J.: Dynamic coupling of subsurface and seepage flows solved within a regularized partition formula-

tion, Advances in Water Resources, 109, 94–105, https://doi.org/10.1016/j.advwatres.2017.09.008, 2017.

McKinney, W.: Data Structures for Statistical Computing in Python, in: Proceedings of the 9th Python in Science Conference, edited by

van der Walt, S. and Millman, J., pp. 51 – 56, 2010.

Niemeyer, K. E., Smith, A. M., and Katz, D. S.: The Challenge and Promise of Software Citation for Credit, Identification, Discovery, and535

Reuse, Journal of Data and Information Quality (JDIQ), 7, 16, https://doi.org/10.1145/2968452, 2016.

O’Callaghan, J. F. and Mark, D. M.: The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image

Processing, 28, 323 – 344, https://doi.org/10.1016/s0734-189x(84)80011-0, 1984.

20

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Pan, X., Yan, E., Wang, Q., and Hua, W.: Assessing the impact of software on science: A bootstrapped learning of software entities in full-text

papers, Journal of Informetrics, 9, 860–871, https://doi.org/10.1016/j.joi.2015.07.012, 2015.540

Peckham, S. D., Hutton, E. W. H., and Norris, B.: A component-based approach to integrated modeling in the geosciences The design of

CSDMS, Computers and Geosciences, 53, 3 – 12, https://doi.org/10.1016/j.cageo.2012.04.002, 2013.

Pérez, F. and Granger, B. E.: IPython: A System for Interactive Scientific Computing, Computing in Science Engineering, 9, 21–29,

https://doi.org/10.1109/mcse.2007.53, 2007.

Perron, J. T.: Numerical methods for nonlinear hillslope transport laws, Journal of Geophysical Research, 116, 23 – 13,545

https://doi.org/10.1029/2010jf001801, 2011.

Perron, J. T. and Royden, L.: An integral approach to bedrock river profile analysis, Earth Surface Processes and Landforms, 38, 570–576,

https://doi.org/10.1002/esp.3302, 2012.

Polakow, D. A. and Dunne, T. T.: Modelling fire-return interval T: stochasticity and censoring in the two-parameter Weibull model, Ecological

Modelling, 121, 79–102, https://doi.org/10.1016/s0304-3800(99)00074-5, 1999.550

Prabhu, P., Zhang, Y., Ghosh, S., August, D. I., Huang, J., Beard, S., Kim, H., Oh, T., Jablin, T. B., Johnson, N. P., Zoufaly, M., Raman,

A., Liu, F., and Walker, D.: A survey of the practice of computational science, 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC), p. 1, https://doi.org/10.1145/2063348.2063374, 2011.

Quinn, P., Beven, K., Chevallier, P., and Planchon, O.: The prediction of hillslope flow paths for distributed hydrological modelling using

digital terrain models, Hydrological Processes, 5, 59–79, https://doi.org/10.1002/hyp.3360050106, 1991.555

Rengers, F. K., McGuire, L. A., Kean, J. W., Staley, D. M., and Hobley, D. E. J.: Model simulations of flood and debris flow timing in steep

catchments after wildfire, Water Resources Research, 52, 6041 – 6061, https://doi.org/10.1002/2015wr018176, 2016.

Rocklin, M.: Dask: Parallel Computation with Blocked algorithms and Task Scheduling, in: Proceedings of the 14th Python in Science

Conference, edited by Huff, K. and Bergstra, J., pp. 130 – 136, 2015.

Schlesinger, S., Crosbie, R. E., Gagné, R. E., Innis, G. S., Lalwani, C. S., Loch, J., Sylvester, R. J., Wright, R. D., Kheir, N., and Bartos, D.:560

Terminology for model credibility, Simulation, 32, 103–104, https://doi.org/10.1177/003754977903200304, 1979.

Seabold, S. and Perktold, J.: statsmodels: Econometric and statistical modeling with python, in: 9th Python in Science Conference, 2010.

Shelef, E. and Hilley, G. E.: Impact of flow routing on catchment area calculations, slope estimates, and numerical simulations of landscape

development, Journal of Geophysical Research-Earth Surface, 118, 2105 – 2123, https://doi.org/10.1002/jgrf.20127, 2013.

Shobe, C. M., Tucker, G. E., and Barnhart, K. R.: The SPACE 1.0 model: a Landlab component for 2-D calculation of sediment transport,565

bedrock erosion, and landscape evolution, Geoscientific Model Development, 10, 4577 – 4604, https://doi.org/10.5194/gmd-10-4577-

2017, 2017.

Singer, M. B., Michaelides, K., and Hobley, D. E. J.: STORM 1.0: a simple, flexible, and parsimonious stochastic rainfall generator for

simulating climate and climate change, Geoscientific Model Development, 11, 3713–3726, https://doi.org/10.5194/gmd-11-3713-2018,

2018.570

Strauch, R., Istanbulluoglu, E., Nudurupati, S. S., Bandaragoda, C., Gasparini, N. M., and Tucker, G. E.: A hydroclimatological approach

to predicting regional landslide probability using Landlab, Earth Surface Dynamics, 6, 49–75, https://doi.org/10.5194/esurf-6-49-2018,

2018.

Tarboton, D. G.: A new method for the determination of flow directions and upslope areas in grid digital elevation models, Water Resources

Research, 33, 309–319, https://doi.org/10.1029/96wr03137, 1997.575

21

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

The Turing Way Community, Arnold, B., Bowler, L., Gibson, S., Herterich, P., Higman, R., Krystalli, A., Morley, A., O’Reilly, M., and

Whitaker, K.: The Turing Way: A Handbook for Reproducible Data Science, https://doi.org/10.5281/zenodo.3233986, https://doi.org/10.

5281/zenodo.3233986, This work was supported by The UKRI Strategic Priorities Fund under the EPSRC Grant EP/T001569/1, particu-

larly the "Tools, Practices and Systems" theme within that grant, and by The Alan Turing Institute under the EPSRC grant EP/N510129/1.,

2019.580

Tucker, G. E., Catani, F., Rinaldo, A., and Bras, R. L.: Statistical analysis of drainage density from digital terrain data, Geomorphology, 36,

187–202, https://doi.org/10.1016/s0169-555x(00)00056-8, 2001a.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., and Bras, R. L.: The Channel-Hillslope Integrated Landscape Development Model (CHILD),

in: Landscape Erosion and Evolution Modeling, pp. 349—388, Springer US, Boston, MA, USA, 2001b.

Tucker, G. E., Lancaster, S. T., Gasparini, N. M., Bras, R. L., and Rybarczyk, S. M.: An object-oriented framework for distributed hydrologic585

and geomorphic modeling using triangulated irregular networks, Computers & Geosciences, 27, 959–973, https://doi.org/10.1016/s0098-

3004(00)00134-5, 2001c.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J.,

van der Walt, S. J., Brett, M., Wilson, J., Jarrod Millman, K., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C.,

Polat, İ., Feng, Y., Moore, E. W., Vand erPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero, E. A., Harris, C. R.,590

Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and Contributors, S. . .: SciPy 1.0–Fundamental Algorithms for Scientific

Computing in Python, arXiv e-prints, arXiv:1907.10121, 2019.

Whitaker, J., Khrulev, C., Huard, D., Paulik, C., Hoyer, S., Filipe, Pastewka, L., Mohr, A., Marquardt, C., Couwenberg, B., Taves, M.,

Whitaker, J., Cuntz, M., Bohnet, M., Brett, M., Hetland, R., Korenčiak, M., barronh, Onu, K., Helmus, J. J., Hamman, J., Barna, A.,

fredrik 1, Koziol, B., Kluyver, T., May, R., Smrekar, J., Barker, C., Gohlke, C., and Kinoshita, B. P.: Unidata/netcdf4-python: Version595

1.5.3 release, https://doi.org/10.5281/zenodo.3516272, https://doi.org/10.5281/zenodo.3516272, 2019.

Wickert, A. D.: Open-source modular solutions for flexural isostasy: gFlex v1.0, Geoscientific Model Development, 9, 997–1017,

https://doi.org/10.5194/gmd-9-997-2016, 2016.

Willgoose, G. R., Bras, R. L., and Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model, 1, Theory, Water

Resources Research, 27, 1671–1684, 1991.600

Wilson, G., Aruliah, D. A., Brown, C. T., Hong, N. P. C., Davis, M., Guy, R. T., Haddock, S. H. D., Huff, K. D., Mitchell, I. M.,

Plumbley, M. D., Waugh, B., White, E. P., and Wilson, P.: Best Practices for Scientific Computing, PLoS Biology, 12, e1001 745,

https://doi.org/10.1371/journal.pbio.1001745, 2014.

Wilson, G., Bryan, J., Cranston, K., Kitzes, J., Nederbragt, L., and Teal, T. K.: Good enough practices in scientific computing, PLOS

Computational Biology, 13, e1005 510, https://doi.org/10.1371/journal.pcbi.1005510, 2017.605

Wobus, C., Whipple, K., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from topography:

Procedures, promise, and pitfalls, GSA Special Papers, pp. 55–74 – 74, https://doi.org/10.1130/2006.2398(04), 2006.

Zhou, X., Istanbulluoglu, E., and Vivoni, E. R.: Modeling the ecohydrological role of aspect-controlled radiation on tree-grass-shrub coexis-

tence in a semiarid climate, Water Resources Research, 49, 2872–2895, https://doi.org/10.1002/wrcr.20259, 2013.

22

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Table 3. New components added since Landlab v1.0

Component Summary Required Citation1 Additional References

ChannelProfiler Extract channel networks

DepthDependentDiffuser Linear, depth-dependent diffusion of topog-
raphy Barnhart et al. (2019b) Johnstone and Hilley

(2015)

DepthDependentTaylorDiffuser Nonlinear, depth-dependent diffusion of to-
pography Barnhart et al. (2019b) Johnstone and Hilley

(2015); Ganti et al. (2012)

DischargeDiffuser Diffuse sediment proportional to an implicit
water discharge value

ErosionDeposition Fluvial erosion and transport Barnhart et al. (2019b) Davy and Lague (2009)

ExponentialWeatherer Calculate weathering rate based on exponen-
tial function of soil thickness Barnhart et al. (2019b) Ahnert (1976); Armstrong

(1976)

Flexure1D 1D lithospheric flexure under loading

FlowAccumulator Calculate drainage area and discharge Braun and Willett (2013)

FlowDirectorD8 Direct flow based on D8 scheme O’Callaghan and Mark
(1984)

FlowDirectorDINF Direct flow based on D∞ scheme Tarboton (1997)

FlowDirectorMFD Direct flow to multiple downstream receivers Quinn et al. (1991); Free-
man (1991)

FlowDirectorSteepest Direct flow based on D4 scheme

GroundwaterDupuitPercolator Model flow in a shallow unconfined aquifer
using the Dupuit-Forcheimer approximation Litwin et al. (2020) Childs (1971); Marçais

et al. (2017)

HackCalculator Calculate Hack’s law parameters for
drainage basins

LakeMapperBarnes Identify and route flow through lakes Barnes et al. (2014)

LandslideProbability
Simulate landslide probability of failure,
mean relative wetness, and probability of
saturation

Strauch et al. (2018)

LateralEroder Lateral erosion of fluvial channels Langston and Tucker
(2018)

LithoLayers Manage layered material with variable prop-
erties Barnhart et al. (2018)

Lithology Manage material with spatially variable
properties Barnhart et al. (2018)

LossyFlowAccumulator
Calculate drainage area and discharge, while
permitting dynamic loss or gain of flow
downstream

Braun and Willett (2013)

NormalFault Vertical uplift on a generic fault

PotentialityFlowRouter Calculate a discharge field using a matrix so-
lution

Profiler Extract generic profiles across a Landlab
field

SinkFillerBarnes Fill depressions in a surface Barnes et al. (2014)

Space Fluvial erosion by stream power with allu-
vium conservation and entrainment Shobe et al. (2017)

SpatialPrecipitationDistribution Generate spatially resolved precipitation
events Singer et al. (2018)

SpeciesEvolver Evolve life in a landscape Lyons et al. (2020) Albert et al. (2016); Lyons
et al. (2019)

StreamPowerSmoothThresholdEroder Fluvial erosion with a smoothed-threshold
version of stream power Barnhart et al. (2019b) Braun and Willett (2013)

TaylorNonLinearDiffuser Nonlinear diffusion of topography Barnhart et al. (2019b) Ganti et al. (2012)

TransportLengthHillslopeDiffuser Non-local hillslope diffusion Davy and Lague (2009);
Carretier et al. (2016)

1. In addition to Hobley et al. (2017) and this contribution 23

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Table 4. Landlab components in v1.0 (after Hobley et al. (2017), their Table 5)

Component Summary Required Citation1 Additional References

ChiFinder Calculates the chi index along a channel net-
work Perron and Royden (2012)

DepressionFinderAndRouter A lake filler that can route flow across de-
pressions Tucker et al. (2001b)

DepthSlopeProductErosion
Detachment limited fluvial erosion calcu-
lated using depth-slope product for shear
stress

DetachmentLtdErosion General implementation of detachment lim-
ited fluvial erosion Howard (1994)

DrainageDensity Calculate drainage density Tucker et al. (2001a)

FastscapeEroder
Implements fluvial erosion according to
stream power, using the Fastscape algo-
rithms

Braun and Willett (2013)

FireGenerator Produces intervals between fire events, fol-
lowing a Weibull distribution

Polakow and Dunne
(1999)

Flexure Simple lithospheric flexure under loading Hutton and Syvitski
(2008) Lambeck (1988)

FractureGridGenerator Generate fractures in a model grid

gFlex A more complex flexure model, utilizing
gFlex Wickert (2016)

KinwaveImplicitOverlandFlow Locally implicit implementation of the two-
dimensional kinematic wave model

KinwaveOverlandFlowModel Simple implementation of the two-
dimensional kinematic wave model

LinearDiffuser Linear diffusion of topography Culling (1963)

OverlandFlow An inertial approximation of the shallow wa-
ter equations for overland flow applications Adams et al. (2017) Almeida et al. (2012)

OverlandFlowBates An inertial approximation of the shallow wa-
ter equations for overland flow application Bates et al. (2010)

PerronNLDiffuse Nonlinear hillslope diffusion Perron (2011)

PotentialEvapotranspiration Calculate potential evapotranspiration across
a surface

ASCE (2005); Zhou et al.
(2013)

PrecipitationDistribution Generate a storm sequence of intervals and
intensities Eagleson (1978)

Radiation Calculate total incident shortwave solar radi-
ation Bras (1990)

SedDepEroder Sediment-flux-dependent shear stress based
fluvial incision Hobley et al. (2011)

SinkFiller An algorithm to fill depressions in a surface Tucker et al. (2001c)

SoilMoisture Compute local inter-storm water balance and
root-zone soil moisture saturation fraction Laio et al. (2001)

SoilInfiltrationGreenAmpt Infiltrate surface water into a soil following
the Green-Ampt method Rengers et al. (2016) Julien et al. (1995)

SteepnessFinder Calculates steepness indices for a channel
network Wobus et al. (2006)

StreamPowerEroder
Implements fluvial erosion according to
stream power, using the Fastscape algo-
rithms

Braun and Willett (2013)

VegCA Cellular automata algorithm to simulate spa-
tial organization of plant functional types Zhou et al. (2013)

Vegetation Calculate above-ground live and dead
biomass, and leaf area index Zhou et al. (2013)

1. In addition to Hobley et al. (2017) and this contribution.

24

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

Table 5. Dependencies and Citations

Category Name Citation

Core Package bmipy Peckham et al. (2013); Hutton and Piper

(2020a)
matplotlib Hunter (2007)
netcdf4 Whitaker et al. (2019)
pyyaml
pyshp
scipy Virtanen et al. (2019)
statsmodels Seabold and Perktold (2010)
pandas McKinney (2010)
xarray Hoyer and Hamman (2016)

Testing coveralls
pytest Krekel et al. (2004)
pytest-cov
pyyaml
pytest-datadir

Tutorials dask Dask Development Team (2016); Rocklin

(2015)
jupyter Pérez and Granger (2007); Kluyver et al. (2016)
holoviews
nbformat

Development black
flake8
isort

Documentation sphinx
sphinx_rtd_theme
pandoc
tornado
entrypoints

Table 6. Boundary Condition Flag Changes

Landlab v1.0 Name Landlab v2.0 Name
BAD_INDEX_VALUE ModelGrid.BAD_INDEX
CORE_NODE ModelGrid.BC_NODE_IS_CORE
FIXED_VALUE_BOUNDARY ModelGrid.BC_NODE_IS_FIXED_VALUE
FIXED_GRADIENT_BOUNDARY ModelGrid.BC_NODE_IS_FIXED_GRADIENT
LOOPED_BOUNDARY ModelGrid.BC_NODE_IS_LOOPED
CLOSED_BOUNDARY ModelGrid.BC_NODE_IS_CLOSED
ACTIVE_LINK ModelGrid.BC_LINK_IS_ACTIVE
INACTIVE_LINK ModelGrid.BC_LINK_IS_INACTIVE
FIXED_LINK ModelGrid.BC_LINK_IS_FIXED

25

https://doi.org/10.5194/esurf-2020-12
Preprint. Discussion started: 4 March 2020
c© Author(s) 2020. CC BY 4.0 License.

