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Abstract. Physical scale experiments enhance our understanding of fluvial, tidal and coastal processes. However, it has proven
challenging to acquire accurate and continuous data on water depth and flow velocity due to limitations of the measuring
equipment and necessary simplifications during post-processing. A novel means to augment measurements is to numerically
model flow over the experimental digital elevation models. We investigated to what extent the numerical hydrodynamic model
Nays2D can reproduce unsteady, nonuniform shallow flow in scale experiments and under which conditions a model is pre-
ferred to measurements. To this end, we tested Nays2D for one tidal and two fluvial scale experiments and extended Nays2D
to allow for flume tilting which is necessary to steer tidal flow. The modelled water depth and flow velocity closely resembled
the measured data for locations where the quality of the measured data was most reliable, and model results may be improved
by applying a spatially variable roughness. The implication of the experimental data-model integration is that conducting ex-
periments requires fewer measurements and less post-processing in a simple, affordable and labour-inexpensive manner that

results in continuous spatio-temporal data of better overall quality. Also, this integration will aid experimental design.

Copyright statement. This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.

1 Introduction

Physical scale experiments greatly enhance our understanding of fluvial, estuarine and coastal processes and complement field
observations and numerical models. The benefits of experiments that complement the other two means of research are twofold.
Firstly, real material is used with its inherent laws and properties, as opposed to numerical models that require many parameters
and approximations of laws for water flow, sediment transport (e.g. Meyer-Peter and Miiller, 1948; Van Rijn, 2007; Baar et al.,
2019) and lifeforms (e.g. Baptist et al., 2007; Van Oorschot et al., 2016). Secondly, experiments enable full control of the initial
and boundary conditions and require little time to form entire systems, as opposed to the slow, ever-changing nature observed

remotely or in the field.
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Figure 1. Exemplary data of a physical scale experiment of a meandering river by Van Dijk et al. (2013a) show how data extraction may be
distorted. (a) Overhead imagery shows cases of light overexposure and the distribution of white silica flour. The water is dyed red where the
water colour saturation is a measure of water depth. Flow is from left to right. (b) Water levels, based on measured bed elevations and water
depths estimated from water colour saturation, are too high above the floodplain (z = 0 mm) at locations of abundant silica flour and too low

at locations of overexposure.

However, data collection in experiments is often difficult, infrequent and hindered by various practical problems (Figure 1).
Here we focus on landscape scale experiments that simulate biomorphodynamics with shallow water depths of a few centime-
tres. Typical data collection in such experiments targets the following three elements: (1) the morphological development from
overhead imagery and digital elevation models (DEMs) from laser scanning or stereo photography on a dry bed (e.g. Ashworth
et al., 2004; Hoyal and Sheets, 2009; Leduc et al., 2019); (2) water depth estimated from dye and light attenuation, possibly
combined with absolute water level point measurements (e.g. Peakall et al., 2007; Tal and Paola, 2007, 2010), and; (3) flow
velocity from particle imaging velocimetry on the water surface from floating particles or dye injections (e.g. Tambroni et al.,
2005; Braudrick et al., 2009). Due to the shallow water depths in landscape experiments, it is technically difficult to conduct
flow measurements by submerged instruments without disturbance of the sediment transport and with the same spatial resolu-
tion as of the bathymetry. To overcome the drawbacks of data collection and post-processing, there has so far been one research
team (Tesser et al., 2007; Stefanon et al., 2010, 2012) that modelled water depth and flow velocity over DEMs of tidal basin
scale experiments. However, the modelled data acquired by this novel method was not extensively validated against measured
data and the model only applies for uniform flow conditions (Marani et al., 2003).

Here we explore the possibility of extending the numerical flow model application by Tesser et al. (2007) and Stefanon
et al. (2010, 2012) for unsteady, nonuniform flows in landscape scale experiments. This will result in continuous, spatio-
temporally dense model data of hydrodynamic parameters and sediment mobility that can be integrated with the experimental

morphological data. This is similar to the practice of hydrodynamic modelling in real rivers and estuaries (e.g. Berends et al.,
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2019). An integration of experimental data and a numerical flow model would not only expand the possibilities for data analyses
of experiments, but would also open up fast methods of testing alternative experimental settings for either an experimental or
idealised DEM. This would save valuable time in the laboratory, especially for long-lasting experiments that include vegetation
(e.g. Braudrick et al., 2009; Van Dijk et al., 2013b; Lokhorst et al., 2019).

The numerical model Nays2D, explained in Sect. 3, was applied to two fluvial experiments and one tidal scale experiment
that are representative of other river flume setups with uni-directional flow (e.g. Ashmore, 1991a; Tal and Paola, 2010; Brau-
drick et al., 2009) and for estuary flume setups with reversing flow (e.g. Reynolds, 1889; Tambroni et al., 2005; Braat et al.,
2018). Below, a brief review is given on the main findings and general setup of the selected experiments, as well as on the

measuring and post-processing techniques used in scale experiment studies.

2 Review
2.1 Scale Experiments

The fluvial experiments in the Eurotank flume by Van Dijk et al. (2013a) demonstrated the importance of cohesive floodplain
formation for replicating a meandering channel in a physical scale-experiment. Floodplain formation by the deposition of fines
was found to be sufficient to maintaining a sinuous, single-thread channel in the absence of vegetation. In contrast, a weakly
braided river pattern developed in the control experiment without fines. Fines were represented by white, silt-sized silica flour
that was added to the river discharge. Additionally, regular floods were applied to the river discharge to enhance the deposition
of cohesive deposits on the floodplain, and the inflow was periodically perturbed to maintain meandering dynamics (Lanzoni

and Seminara, 2006; Van Dijk et al., 2012; Weisscher et al., 2019). The collected data constitutes overhead imagery and

Figure 2. The flume setups of the two scale experiments tested in this study. (a) The Eurotank flume was used to simulate meandering and
braided rivers in parallel on the left and right part of the flume, respectively (Van Dijk et al., 2013a). Water colour was converted to blue for
visual comparison with (b) the second scale experiment in the tilting flume the Metronome that was used to simulate estuaries (Leuven et al.,
2018).
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DEMs from line-laser altimetry. In parallel, floodplain has been formed experimentally with vegetation (Tal and Paola, 2010;
Braudrick et al., 2009), but this requires parameterisation of vegetation that, although possible (Baptist et al., 2007; Weisscher
et al., 2019), introduces uncertainties that would hamper model-data comparison for this study.

The tidal experiment in the Metronome flume by Leuven et al. (2018) showed the development of an entire estuary with
erodible boundaries and self-formed bars on a laboratory scale. The self-formed estuary planform was characterised by along-
channel alternations of shallow, wide sections that accommodated large bars, and deep bottlenecks where the main confluences
were found. The Metronome flume tilts over the short central axis (Fig. 2), which differs from previous stationary flume setups
with sea level fluctuations (Reynolds, 1889, 1891; Mayor-Mora, 1977; Tambroni et al., 2005; Tesser et al., 2007; Stefanon et al.,
2010, 2012; Vlaswinkel and Cantelli, 2011; Iwasaki et al., 2013). This tilting motion steers flows in both the flood and ebb
direction that are strong enough to move sediment (Kleinhans et al., 2017). The collected data constitutes overhead imagery,
DEMs from stereo-photography and flow measurements by large-scale particle imaging velocimetry (PIV) over a tidal cycle.
Earlier experiments had tidal flow driven by slow sea level fluctuations, which is closer to the cause of tidal currents in nature
but leads to lower sediment mobility (e.g. Tambroni et al., 2005; Stefanon et al., 2010). Moreover, such flows can be modelled
with simpler flow models (Marani et al., 2003; Stefanon et al., 2010) that provide a less rigorous test of the numerical model

applied here.
2.2 Experimental Data Collection and Post-Processing Techniques

In order to quantify the hydro- and morphodynamics of a flume experiment with shallow flow, the following three data types are
commonly measured: dry bed elevation, water depth and flow velocity (Table 1). Below, the data collection and post-processing
methods of these data are presented in conjunction with their drawbacks and achievable level of accuracy.

Firstly, bed elevation of experiments can be acquired through numerous techniques. These include a water level contour
survey (Reynolds, 1889, 1891), a manual/digital point gauge survey (e.g. Friedkin, 1945; Peakall et al., 2007), 3D/laser and
structured light (zSnapper®) scanning (e.g. Gran and Paola, 2001; Tambroni et al., 2005; Van de Lageweg et al., 2014; Klein-
hans et al., 2014; Marra et al., 2014), ultrasonic echosounding (e.g. Best and Ashworth, 1994; Hoyal and Sheets, 2009; Stefanon
etal., 2010, 2012), and structure-from-motion (SfM) photogrammetry through which photos are geo-referenced to ground con-
trol points (Agisoft PhotoScan) (e.g. Westoby et al., 2012; Leduc et al., 2019). The most accurate technique is the point gauge
survey (£ 0.1 mm) (Best and Ashworth, 1994), which does not require the flume to be drained. However, point gauging is terri-
bly slow to get full coverage, as is the case for the water level contour survey, in which dry bed-water boundaries are registered
for different water levels (Reynolds, 1889, 1891). In contrast, scanning, sounding and photogrammetry are much quicker and
typically result in a vertical accuracy of £ 0.5 to 1 mm (Peakall et al., 2007; Leduc et al., 2019). Yet, these three techniques
require a dry bed, apart from a few kinds of laser scanners (Tesser et al., 2007; Stefanon et al., 2010, 2012). Consequently, the
bed may be disrupted during the draining and refilling of the flume. Also, vegetation hampers their accurate reading of the bed
elevation (e.g. Gran and Paola, 2001). In consequence of these drawbacks, the number of DEMs is usually limited.

Secondly, water depth maps are acquired while the experiment runs in either of two approaches: water depth is derived from

the dyed water colour saturation, or from measured water levels. As for the first approach on dye, the water colour saturation
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Table 1. Data collection techniques in fluvial and tidal scale experiments with erodible boundaries and flows shallower than a few centimetres.
‘Overhead imagery’ constitutes imagery or video from a camera at a fixed position that potentially allows for the classification of the
experiment planform. Water depths ‘est. from physics’ are determined for a few cross-sections assuming uniform flow and a given discharge.

‘SfM’ is structure-from-motion photogrammetry. The field ‘Remarks’ contains additional sediments/vegetation on top of the main sediment

that may interfere with overhead imagery analyses.

Paper Type of experiment Measurements Remarks
Overhead Elevation DEM  Water depth Flow
imagery velocity
unidirectional flow
Friedkin (1945) meandering/braided river X point gauge X point gauge - silt, coal, loess
Schumm and Khan (1972) alternating bars - point gauge - point gauge - kaolinite
Schumm et al. (1987) alluvial fan X burial of pins - - - -
Ashmore (1991a, b) braided river X point gauge - point gauge - -
Ashworth et al. (1994) braided river X point gauge - point gauge - -
Gran and Paola (2001) braided river X laser/point gauge  x water colour PIV vegetation
Ashworth et al. (2004) braided river X laser X - - -
Peakall et al. (2007) braided river X point gauge - point gauge PIV -
Tal and Paola (2007, 2010) meandering river X laser - water colour - vegetation
Hoyal and Sheets (2009) alluvial fan X ultrasound X est. from physics  dye -
Van Dijk et al. (2009) alluvial fan X StM X est. from physics - -
Braudrick et al. (2009) meandering river X laser X point gauge dye vegetation
Gardner and Ashmore (2011) braided river X StM X - - -
Van Dijk et al. (2012, 2013a) meandering/braided river  x laser X water colour - silica flour
Van Dijk et al. (2013b) meandering river X laser X water colour - vegetation
Van de Lageweg et al. (2013,2014)  meandering river X laser X water colour - silica flour
Leduc et al. (2019) braided river X StM X StM - -
reversing flow
Reynolds (1889, 1891) estuary/tidal basin - contour-line X - - -
Mayor-Mora (1977) tidal channel X point gauge - point gauge - -
Tambroni et al. (2005) tidal channel - ultrasound X ultrasound PIV -
Tesser et al. (2007) tidal basin - laser X ultrasound model -
Stefanon et al. (2010, 2012) tidal basin - laser X ultrasound model -
Vlaswinkel and Cantelli (2011) tidal basin X laser X bathymetry - -
Kleinhans et al. (2012, 2015) tidal basin X - - water colour PIV -
Iwasaki et al. (2013) tidal basin X unclear - - - -
Kleinhans et al. (2014) tidal channel X zSnapper® X water colour - -
Braat et al. (2018) estuary X SftM X water colour PIV walnut shell
Leuven et al. (2018) estuary X StM X - PIV -
Leuven and Kleinhans (2019) tidal channel X StM X water colour PIV -
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is an indicator of water depth that is recorded by overhead cameras (e.g. Carbonneau et al., 2006; Tal and Paola, 2007, 2010).
To augment differences in colour saturation, some studies (e.g. Van Dijk et al., 2013a; Leuven and Kleinhans, 2019) converted
the overhead RGB imagery to the CIE L*a*b* colour space; L* is a scale for luminosity, a* is a scale from green to red, and
b* is a scale from blue to yellow. For calibration, the bed elevation of a map or transect is related to the corresponding values
of colour saturation, after which a regression is used to convert the overhead imagery to water depth maps. Ideally, a regression
is used that captures the exponential saturation of water colour with increasing water depth (Carbonneau et al., 2006). A high
accuracy up to I mm is mentioned in literature (Tal and Paola, 2007, 2010), but may be much lower for substrates with mixed
sediments with different colours and for lighting variations (Figure 1) (e.g. Van Dijk et al., 2013a).

Alternatively, water depth is readily derived from water levels and bed elevations. Water levels are recorded as point mea-
surements using an ultrasonic echosounder or water level gauge (e.g. Mayor-Mora, 1977; Tambroni et al., 2005) or are derived
from SfM photogrammetry (Leduc et al., 2019). Although sounding and gauging is more time-consuming to get full coverage,
the data has a much smaller claimed error of 0.2 mm (Tambroni et al., 2005). As for SfM photogrammetry, this only works up to
present for unidirectional flow with rigorous calibration and has a vertical accuracy of 1 mm (Leduc et al., 2019). Additionally,
few studies estimate water depth along cross-sections of the known bathymetry from uniform flow and an estimated discharge
(Hoyal and Sheets, 2009; Van Dijk et al., 2009; Vlaswinkel and Cantelli, 2011).

Thirdly, flow velocity maps are created by tracking floating particles (Peakall et al., 2007; Kleinhans et al., 2017), soap
bubbles (Gran and Paola, 2001) and dye (Hoyal and Sheets, 2009; Braudrick et al., 2009) with overhead cameras. Either the
data are partly manually digitised or a technique is used called particle imaging velocimetry (PIV) (e.g. Mori and Chang,
2003). Herein, small floating particles are seeded on the water surface, and their positions are recorded at a high frequency
by overhead cameras. Subsequently, surface flow velocity and direction are computed by tracking the displacement of the
particles from pairs of consecutive images. However, this technique falls flat for regions with either sparse or superabundant
particles where it is infeasible either to get sufficient coverage or to track individual particles. Also, PIV particles may become
stranded on bars, which culminates in much lower or absent measured flow velocities that are especially troublesome in tidal
experiments (Leuven et al., 2018). Another drawback is that the PIV particle removal is done by increasing the water depth and
drain the flume, which may disrupt the bed. For this reason, PIV measurements cannot be done in experiments with vegetation
and light-weight material, for the latter would be uprooted or displaced. This issue may be overcome by using soap bubbles
(Gran and Paola, 2001). The error of PIV measurements of mean flow velocities may be as small as 0.5 pixel size if particle
size and density are chosen correctly (Weitbrecht et al., 2002). Finally, measuring flow in the water column is infeasible with
the available equipment reported in literature; this is due to the shallow water depth of at most a few cm in the type of physical
scale experiments discussed here.

Thus far, only one research group has used a numerical model to create flow velocity maps for scale experiments with
shallow flow (Tesser et al., 2007; Stefanon et al., 2010, 2012). They used a tidal basin DEM and the boundary conditions as
input and solved the Poisson boundary value problem, which is valid for systems where the water surface can be assumed

horizontal (Marani et al., 2003). This resulted in maps of depth-averaged flow velocities over a tidal cycle. Although the model
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had been validated for the Venice Lagoon (e.g. Defina, 2000), the model was not calibrated for the experiment due to a lack of

flow velocity measurements.

3 Methods
3.1 Numerical Model Nays2D

The numerical model Nays2D was selected to simulate water flow of fluvial and tidal scale experiments for the following
reasons. Firstly, Nays2D is one of few models (as opposed to e.g. Delft3D) that accounts for shallow flow of at maximum a
few centimetres deep. Secondly, Nays2D is open source (as opposed to e.g. FLOW-3D), so the technique tested in this study is
freely available for third parties.

Nays2D solves the depth-averaged nonlinear shallow water equations, given by the following three equations in Cartesian
coordinates, in which Eq. (1) is the preservation of mass and Eq. (2-3) are the preservation of momentum in the streamwise

and transverse direction, respectively:

oh  O(hu) I(hv)

ot Ox dy =0 M)

ou _du _Ou OH  guvu?+ 02 O%u  0%u\
ayf+“m+”ag/+gax+c2h”t<ax2+8y?)0 @)
0v _0v _Ov OH gvvu2+ 02 v 0%
aﬁ“aﬁ“ayﬂay*m—”(axz*a@ﬂ)—o )

in which ¢ is time (s), % and @ are the depth-averaged flow velocity (ms~!) in the streamwise () and transverse (y) direction,

0.5

H is the water level (m), h is the water depth (m), C is the Chezy roughness (m®®s~1), g is the acceleration due to Earth’s

gravity (ms~2) and v; is the eddy viscosity coefficient (—). Eddy viscosity is approximated as

vy = gau*thb “4)

gu\/u? + v goVu? + v2
o=\ T & e =\ T ©)

in which u, , and u,, are the streamwise and transverse components of the shear velocity (ms™'). The hydrodynamics
were solved by dividing each time step into two parts, namely an advective part that was solved using a cubic-interpolated
pseudoparticle (CIP) method, and a nonadvective part that was solved with a conventional finite difference method (Yabe et al.,

1990).
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Figure 3. Workflow of integrating physical scale experiments and the numerical hydrodynamic model Nays2D to acquire water depth, flow
velocity and sediment mobility maps (i.e., excluding point measurements). The DEM and corresponding boundary conditions are input to
the model. Grey elements apply only to tilting flume experiments that simulate tidal systems. End products are on the bottom row and are

indicators of hydrodynamics and morphological change.

Input to Nays2D comprised a DEM of each experiment as initial condition and the corresponding boundary conditions
(Fig. 3; Table 2). For the river modelling, the two DEMs (meandering and braided rivers) corresponded to the final flood stage;
a constant bankfull discharge of 0.5 Ls~! entered at the upstream boundary, and the water level at the downstream boundary
was derived from uniform flow. For the estuary modelling, the DEM was used that corresponded to tidal cycle number 5887
(see Leuven et al., 2018), and a 0.1 L's~! river discharge entered only during the ebb phase; DEMs at later stages could not
be used since the ebb-tidal delta was incomplete due to the overhanging wave generator. The estuary DEM was interpolated
to a coarser rectangular grid with 2.5x2.5 cm grid cells to limit model runtime to at maximum one day. In agreement with
modelling practices for natural systems (Arcement and Schneider, 1989), a spatially uniform Manning roughness coefficient of
0.02 s m'/6 was applied of which the sensitivity will be assessed later. The model was cold started with an initial water slope
equal to the valley slope of the DEM with initial flow velocities calculated from uniform flow.

Nays2D was extended to enable periodical tilting of the estuary DEM and the downstream water level boundary to drive

tidal flow similar to the tilting flume the Metronome (Fig. 2). The domain was tilted sinusoidally with a period of 40 s and an
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Table 2. Model settings and boundary conditions of the physical scale experiments in Nays2D. The first block of parameters is retrieved

from the experiments, the second block is user-defined.

Parameter Unit Van Dijk et al. (2013a) Leuven et al. (2018)

meandering/braided rivers estuary
River discharge Ls* 0.5 0.1
Grain size dso m 0.51x107° 0.55x107°
Downstream water level m uniform flow 0.065
Tilting period (flume & weir) s | 40
Tilting amplitude (flume) m | 0.075
Tilting amplitude (weir) m | 0.004
Time step S 0.02 0.005
Manning’s n sm'/® 0.02 0.02

amplitude of 0.075 m, meaning a maximum gradient of 0.0075 m m~". In the Metronome, the water level at the downstream
boundary was set by a weir that moved in counterphase to the flume tilting so as to maintain a constant sea level of +0.065 m
during tilting (see Kleinhans et al., 2017; Leuven et al., 2018, for explanation). As the experiment progressed, the weir ampli-
tude was gradually reduced with the reduction of the length of the open sea due to the development of the large ebb-tidal delta;
5 attidal cycle number 5887, the weir had an amplitude of 0.004 m. To mimic the action of the weir in the model Nays2D, a sine
function was imposed on the water depth at the downstream boundary, and the sea around the ebb-tidal delta was assigned a

high diffusivity of b = 0.02 for numerical stability.
3.2 Data Analysis

Maps of water depth and flow velocity were compared to the measured data. For the two rivers, only water depth was compared,

10 as flow velocity was not systematically measured other than sparse estimates of mid-channel flow (see Fig. S1 for modelled

flow velocity maps). To explore the causes of the water depth differences between the model and the experiments, the river

planforms were classified into six classes (Fig. S2). The first two classes comprised the locations of white silica flour and

overhead light overexposure, which were based on the overhead imagery. The remaining four classes were morphological units

with increasing levels of inundation, from a soaked bed with negligible water depth to a channel. These units were based on

15 modelled flow, for which we used bed elevation times flow velocity to the power three that proved well to separate transporting
channels from inactive ones (Weisscher et al., 2019).

Maximum and minimum water depths in the estuary experiment were compared to bracket the tidal conditions. The 16 over-

head images taken during the tidal cycle were converted into measured water depth maps. To account for incoming light from

a window at the seaward side of the flume, two conversions were formulated for the upstream and downstream boundaries that

20 were linearly interpolated along the flume. The equation for the upstream boundary was h = 1.43.10~7 x Blueness™ 268 4
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0.004 and for the downstream boundary was h = 2.41.10~2 x Blueness~21'? +0.092, where Blueness is the b* band in the
CIE L*a*b* colour space.
Surface flow velocity measurements of the estuary experiment were compared with modelled depth-averaged velocities. To

this end, the modelled flow velocities were converted to surface flow velocity using

u, = 2Xin (Z> (6)
K Z0

in which u, is the flow velocity (ms~1) at depth z (m), with depth-averaged flow velocity at 0.36 h, and zq is the zero-velocity
level for rough flow (m). Modelled depth-averaged flow velocity and shear velocity were used to calculate zp, from which
u, was calculated at the water surface. Grid cells lacking one or more of the 16 PIV measurements during the tidal cycle
were filtered out to enable a fair comparison of experimental data and model throughout the entire tidal cycle. The comparison
focused on morphologically relevant variables; these include the tidal flow velocity maxima during the ebb and flood phases,
which are important for sand transport (Friedrichs, 2011), and the tidally averaged residual flows, which are important for mud
transport (Postma, 1961; Groen, 1967).

Finally, the sensitivity to the Manning roughness coefficient was tested for the range 0.016 — 0.024 s m'/ that agrees with
common coefficients for sand (Arcement and Schneider, 1989). The mean absolute error (MAE) and mean bias error (MBA)
quantify the difference between the model and the measurements. The MAE is computes as the average of absolute differences
between the modelled and measured data. The MBA is computed as the average difference to quantify how much the model

over- or underpredicts the measured data.

4 Results
4.1 Meandering and Braided Rivers
4.1.1 Water Depth

The modelled water depth resembles the measured data for both river types for locations where the quality of the experimental
data is good (Figs. 4a-f, 5a-d, S2). Similar to the meandering river experiment, the model produces a single sinuous channel
with swale channels and significant overbank flow. The flow is clearly focused in a single main channel for x > 4 m, which
is the same domain range in which swale channels are present on the inner bends of the meandering channel (Fig. 4b). This
distinction of a main sinuous channel and swale channels is less distinct in the model for z < 4 m. This is also the domain
range with slightly more modelled overbank flow over the floodplain compared to the experiment (Fig. 4c). The mean absolute
error is small, albeit larger for the channels (MAE = 1.73 mm) than the low/high inundated areas (MAE = 0.81 mm), and the
model bias error is negligible (MBE < 0.1- MAE) (Fig. 5a,b), given a maximum water depth of 20 mm.

The braided river model reproduces the division of flow over about two channels with little overbank flow (Fig. 4d-f).
However, the model predicts slightly more water flowing through the secondary channels and less through the main channel

(for example the secondary channel around x = 6 m, y = 1 m in Fig. 4f). Overall, the model error is slightly larger than of

10
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Figure 4. Measured and modelled water depth (a-c) for the meandering and (d-f) braided rivers by Van Dijk et al. (2013a) and (g-1) for the

estuary by Leuven et al. (2018). In case of the estuary, panels (g-i) show the maximum water depth during a tidal cycle, and panels (j-k) show

the minimum water depth during a tidal cycle. Maps of difference are determined by subtraction of modelled from measured water depth.
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frequency.

the meandering river, with an MAE = 2.31 mm and MBE = —0.65 mm for channels and an MAE = 1.30 mm and MBE =
—0.25 mm for low/high inundated areas (Fig. 5b,d); the bias errors indicate that modelled water depths are on average lower
than the measured values for the braided river.
The modelled flow is more reliable at locations with abundant white silica flour where the measured data are quite inaccurate
5 (Figs. 1b, S2c¢). It is at these locations that the measured water levels, calculated as water depth from water colour added on
the bathymetry, are unrealistically high above the surrounding floodplain. The reason for such large measured water depths for
the upper meandering river (Fig. 4a-c) is that the white silica flour enhanced the colour contrast with respect to the yellowish
sandy substrate. In consequence, higher redness values were recorded for floured regions on the a* band that Van Dijk et al.
(2013a) used to estimate water depths. However, as this effect was unaccounted for during post-processing, too large water

10 depths were assigned to these 'redder’ areas.
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4.2 Estuary
4.2.1 Water Depth

Periodic tilting of the estuary DEM that mimicked the motion of the tilting flume adequately reproduced the propagating
behaviour of the tidal wave (Supplementary movie). Moreover, the modelled tidal wave caused maximum and minimum water
depths close to those observed with an MAE = 1.96 mm for maximum water depths and an MAE = 2.64 mm for minimum
water depths (Figs. 4g-1, Se,f, S3). These errors are small compared to the largest water depths recorded in the estuary of about
35 mm.

Overprediction by the model mainly occurs at the ebb-tidal delta (z > 18 m in Fig. 4i,1). This is predominantly due to the
difference of the downstream boundary conditions between the experiment and the model. In particular, the amount of water
entering the flume during flood was somewhat limited by the pumping capacity in the experiment. In contrast, the influx of
water in the model was determined with a uniform flow assumption, causing larger inflow that increased the water depths on
the ebb-tidal delta. In turn, this larger influx likely contributed to the slightly larger maximum modelled water depths especially
in the downstream half of the estuary.

Underprediction by the model is primarily ascribed to two factors, namely the chosen hydraulic roughness coefficient
(model-based) and the water depth conversion from colour saturation (experimental data-based). Firstly, the observations
clearly show that the tidal wave propagated faster in the deeper channels than over the shallow bars, causing flow to curl
around bars (Supplementary movie). In the model, however, the partitioning of flow between channels and bars is less asym-
metrical. In consequence, flood-dominant channels that end in a shoal may receive more modelled inflow over their shoal
during ebb, resulting in overall slightly larger water depths (e.g. the red tidal channel at z = 8 m in Fig. 41). This implies that
the model diffusivity and/or hydraulic roughness on the bars are too small. Secondly, the experimental data-model comparison
is sensitive to the water depth conversions, which are less accurate for shallow water depths (Figs. 5f). Specifically, the non-
linear conversion equations used in this study and by Leuven et al. (2018) overpredict water depths for very shallow flow (i.e.,
h < 5 mm; Fig. 5f)) so as to get the deeper water depths right. Therefore, measured water depths of very shallow flow over

bars are too large, which explains most of the differences between model and experimental data for minimum water depths.
4.2.2 Ebb and Flood Flow

The modelled spatial pattern of peak flow velocities resembles that of the PIV measurements (Fig. 6). Both model and mea-
surements show that peak ebb and flood flow are relatively large in channels and around bottlenecks, while they are relatively
small on bars and in wider sections of the estuary. Furthermore, peak flow velocities decrease in the landward direction from
+ 40 cms™! at the estuary mouth to + 30 cms™! at z = 2 m (Fig. 7a,b). Over the entire tidal cycle, the model has a small
MAE = 6.45 cm s~ !, which is about 1/7 of the maximum surface flow velocity; in other words, the modelled order of magni-
tude is close to the measurements’. Also, a different manning roughness results in fairly similar water levels and flow velocities

along the estuary, with slightly smaller flow velocities and water level variations for a higher roughness (Fig. 7b,c).
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The model has full spatial cover, while experimental data are lacking particularly near the estuary mouth and for the shallower
areas (Fig. 6a,b,e). Near the estuary mouth, PIV particles occasionally clumped together, which resulted in incorrect flow
measurements that were excluded from comparison with the model. On the other hand, PIV measurements at shallow locations
were discontinuous since the PIV particles either stranded on the bars or were drained to deeper waters. Consequently, flow
velocity measurements on and around bars tend to be inaccurate, which explains the larger contrast of modelled and measured
velocities for shallower areas (Figs. 6, 8). For example, the model clearly shows the wetting and drying of a tidal bar with

peak flow velocities half of those in a bordering channel (Fig. 8b). The measurements in the channel are about similar, but are
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in Fig. 8 of channels and shoals, respectively.
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unrealistic for the tidal bar; the PIV measurements suggest negligible flow which is incongruent with the recorded tidal water
depth variations.

Residual flow maps of both modelled and measured flow show the expected ebb-dominance of channels and flood-dominance
of bars, especially at their seaward sides (Fig. 9). Also, the two circulation cells measured on the ebb-tidal delta are well-

reproduced by the model. However, the overall modelled residual flow is slightly less flood-dominated (MBE is positive) than
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flow velocities. Therefore, computation of the mean absolute/bias errors was done for x > 6 m.

the PIV-based residual flow. For example, the flood-dominance of the channel at x = 14 m is weaker but still recognisable in
the modelled data (Fig. 9). Further landward, a discrepancy arises in that the model suggests that the channel and bar between
x =4 m and 6 m are flood-dominant, while the measurements show they are mainly ebb-dominant. Inspection of the raw PIV
data shows that here the flood flow is underseeded with particles, suggesting that the measured data is inaccurate and leaving

the model untested in this zone.

5 Discussion

The numerical hydrodynamic model Nays2D reproduces water depths and flow velocities for physical scale experiments with
both unidirectional and reversing shallow flow (Figs. 4, 6, 9). Modelled water depths are within a mean absolute error of 10 %

maximum water depth (Fig. 5) and flow velocities within a mean absolute error of 15 % maximum flow velocity (Fig. 7). In
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other words, the errors of modelled flow fall within the range of errors that is expected in the measured data. The model results
are valuable because the spatio-temporal coverage and quality of experimental data are at present more limited in typical
laboratory conditions. Therefore, this experimental data-model integration opens up many opportunities for the analyses of
hydrodynamics in experiments in a time-efficient, cost-effective and labour-inexpensive manner. Thus far, this integration has
only been used to the authors’ knowledge for one set of tidal scale experiments with erodible boundaries by Tesser et al.
(2007) and Stefanon et al. (2010, 2012), who numerically computed flow velocity fields by solving the Poisson boundary
value problem (Marani et al., 2003). In addition to their findings, the results of this study demonstrate that an experimental
data-model integration extends to complex bathymetries with unsteady, nonuniform flows.

A major advantage of numerically modelled flow fields is the full coverage and the independence from imperfect lighting,
particle seeding and empirical relations through which flow properties are inferred (e.g. Van Dijk et al., 2013a; Braat et al.,
2018). Additionally, the model adheres to continuity of flow, which is not the case for experimental data with errors, bias and
uncertainty. Consequently, the modelled flow fields permit the study of flow partitioning between multiple channels and bars
(e.g. Bolla Pittaluga et al., 2003; Kleinhans et al., 2008), as well as of the sensitivity to roughness and turbulence. Additionally,
the tidal prism and tidal excursion length can be determined for tidal experiments, which are important system-scale charac-
teristics that are potentially strongly biased by measurement error and missing values in shallow areas (Fig. 10). Higher time
resolution and tests of effects of changing boundary conditions can also be quickly accomplished with the model. However,
this does not mean that data need no longer be collected because the model requires calibration for e.g. hydraulic roughness.

The hydraulic roughness is commonly used to calibrate water levels and flow velocities in hydrodynamic models (e.g.

Berends et al., 2019). Although a spatially constant Manning roughness of 0.02 s m'/6

already produced satisfying hydrody-
namics, the results could be improved by calibrating a spatially varying roughness; this is especially the case for experiments

with wide sediment distributions or fines (e.g. Van Dijk et al., 2013a; Braat et al., 2018). In particular, this may improve the
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Figure 10. Tidal prism along the estuary based on experimental data, bathymetry and the model scenarios. Measured flow velocities were
converted to depth-averaged velocities using Eq. (6). Tidal prism based on bathymetry (black dashed line) was computed as the cumulative
volume of water along the estuary between high and low water levels imposed at the weir (i.e. with an amplitude of 4 mm) (cf. Braat et al.,

2018); this calculation ignores effects of friction and river inflow.
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Figure 11. Effect of different hydraulic roughness predictors on the distribution of depth-averaged flow velocity « for (a) a constant Manning,
(b) a constant Chezy C and (c) a constant grain roughness ks (White-Colebrook). The cross-section is from the experimental estuary by
Leuven et al. (2018) at z = 15.3 m at maximum tilt in the ebb direction. Cross-sectional flow velocities were iterated for C' and ks assuming

the same total discharge and water levels as modelled in this study with Manning.

partitioning of water at bifurcations over the downstream channels (for example the secondary channel in the braided river
around x = 6 m [Fig. 4]). However, the partitioning of water over channels and bars also depends on which of the three classic
assumptions of friction is applied, namely a constant Manning, Chezy or White-Colebrook roughness coefficient (Fig. 11).
For example, using a constant Chezy instead of Manning would result in slightly slower flow in channels and faster flow over
bars. In contrast, a constant White-Colebrook would produce faster flow in channels and slower flow over bars. In turn, these
differences in flow velocity would have a considerable effect on the computed sediment mobility.

Sediment mobility is perhaps the most important measure of flow for morphodynamics (Kleinhans and Van den Berg, 2011)
(Fig. 12), but it is difficult to acquire from experiments with shallow flow. Firstly, the nondimensional mobility number allows
for the comparison to natural systems (Kleinhans, 2010). Secondly, it provides vital insight in sediment transport fields and
morphological activity that is especially valuable for studying multi-channel systems and channel-bar margin interactions
(De Vet et al., 2017; Van Dijk et al., 2018; Baar et al., 2019). For example, these data may be used to predict future locations
of erosion and deposition (Fig. 12a-d). Also, they may be indicative of grain size or may be coupled to grain size estimations

from imagery (e.g. Gardner and Ashmore, 2011).
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Figure 12. Complementary model data as maps of nondimensional bed shear stress (i.e. Shields numbers) and tidal zonation. (a) Shields
numbers for the meandering and (b) braided rivers with (c-d) the corresponding elevation-difference DEMs with the next time step. (¢) Max-
imum Shields numbers for the estuary in the ebb and (f) flood direction. (g) Classification of the estuary DEM in inundation classes based

on modelled tidal flow. A similar classification is also applicable to unidirectional flow in rivers, as illustrated in Fig. S2a.f.

The model is potentially applicable in conditions where data collection is hampered, such as in vegetated experiments (e.g.
Braudrick et al., 2009; Tal and Paola, 2007, 2010). Application on vegetation surfaces may require that the vegetation is filtered
out of the DEMs and that vegetation roughness effects are added to the model (Baptist et al., 2007; Weisscher et al., 2019).
Consequently, experimental data may be enriched with water depth maps and particularly flow fields that are often absent
(Table 1).

Water depth and sediment mobility maps enable unbiased classification of a river or estuary planform into inundation zones
(Fig. 12g). For instance, this enables the study of the development of intertidal areas in estuaries, which are of key importance to
a high biodiversity (e.g. Ysebaert et al., 2003). Moreover, such inundation classifications may effectively culminate in ecotopic

maps that indicate at what locations which faunal and floral species would be likely to thrive.
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6 Conclusion

Hydrodynamic modelling with Nays2D simulates unsteady, nonuniform flows for physical scale experiments with unidirec-
tional and reversing shallow flow. The modelling requires a DEM and the corresponding boundary conditions and produces
continuous spatio-temporal data on water depth and flow velocity, whilst ignoring substrate colour differences, lighting overex-
posure and under or oversampling of floating PIV modules that usually decrease the quality of experimental data. Additionally,
Nays2D computes sediment mobility, which is normally difficult to measure in shallow flows but is an important parameter for
morphological activity and the comparison to natural systems.

The implication of this experimental data-model integration is that fewer measurements and less post-processing are required
and are mainly meant for the calibration of model parameters such as the hydraulic roughness. In turn, this integration opens
up many opportunities for the analyses of hydro and morphodynamics in experiments. For example, the enhanced data enable
the objective classification of the experiment planform into inundation classes which are potentially indicative of different
ecotopes. Alternatively, the model allows for rigorous testing of different boundary conditions (e.g. discharge variability, sea

level rise, vegetation) which could strongly reduce the time in the laboratory.

Data availability. Data will be made available upon acceptance of the manuscript and a user manual is provided that explains how Nays2D
can be used to augment data of scale experiments. Modelled data in this study were derived from numerical modelling that can be repeated
with the open-source Nays2D model available at i-ric.org. The supplementary materials include the DEMs used in this study, the raw water
depth and flow velocity data, the novel Nays2DMetronome solver specifically for tilting flumes, and a user manual for iRIC (i.e., the User

Interface for Nays2D).
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