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We thank the referee for the stimulating questions and the important technical sugges-
tions.

Here we provide a response to the four main questions:

1. Apparently, there are no significant effects of the near-critical Froude number.
Specifically, at the beginning of the runs small two-dimensional bedforms are
sometimes observable. These can be associated with the formation of upstream-
migrating antidunes, which we clearly observed in experiments with similar
Shields number and relative roughness, but in a wider flume that allowed for
the formation of a multi-thread system (e.g., Redolfi et al., 2017). However, they
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seem to be suppressed by the formation of bars. In general, the fact that alternate
bars are not directly influenced by the Froude number is a very interesting topic,
which we are currently addressing (M. Redolfi, M. Musa, M. Guala, submitted to
Journal of Fluid Mechanics).

2. In our experiments, flow separation seems to occur at mid-to-low discharges, due
to the presence of sharp diagonal fronts. In these cases, we also observe that no
sediment transport occurs downstream of the fronts.

According to linear theories (see Colombini and Stocchino, 2012), flow separation
is not a necessary ingredient for the formation of alternate and diagonal bars,
which suggests that this effect probably plays a minor role at the early stages of
bar formation. However, separation may be potentially important in the dynamics
of fully-developed bars. For example, this effect may have an impact on the
reach-averaged sediment transport, as it can induce part of the shear stress to
be absorbed as form drag.

For alternate bars, the impact of flow separation is mainly “local”, thus having a
minor impact on the reach-averaged properties (Colombini et al., 1987). There-
fore the main effect of bars on sediment transport is rather related to the non-
uniform distribution of the shear stress, which tends to significantly increase the
net sediment flux (Francalanci et al., 2012).

For diagonal bars, the effect of the form drag may be more important, and may
eventually prevail over the effect of the non-uniform shear stress distribution. Our
measurements seem to suggest that the transport rate we measured at the high-
est flow rates is indeed lower than what is expected in flat bed conditions. How-
ever, we realized that data from our experiments are not sufficient to fully support
this idea, and a set of specific experimental runs would be needed.

3. We fully agree that it is interesting that transition to three dimensional dunes
(i.e. diagonal bars) occurs in conditions typical of gravel-bed rivers. Accord-
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ing to the Colombini and Stocchino (2012) theory, the key parameter control-
ling the transition from two- to three-dimensional dunes is actually the relative
roughness (d50/D) or equivalently the Chèzy coefficient (defined in plane-bed
conditions). Specifically, their perturbation theory reveals that two-dimensional
bedforms develop when the relative roughness is small, while three-dimensional
oblique dunes are expected when the sediment is comparatively coarse. This is
also consistent with the experiments of Jaeggi (1984), showing the formation of
diagonal bars in conditions that are typical of gravel bed rivers.

In our opinion, formation of diagonal bars in rivers is discouraged because of
their relatively small amplitude. In real conditions (unsteady discharge, presence
of channel curvature, poorly sorted sediment), the bed morphology is expected to
depend on a competition among different kinds of bedforms (diagonal bars, free
bars, forced bars, dunes). In this competition, diagonal bars can be easily sup-
pressed by the formation of other, more prominent bed features. Therefore, we
may expect that diagonal bars are rather ephemeral, and observable in particular
conditions only.

In the new version of the manuscript we have added a couple of sentences in the
Discussion Section, to briefly introduce these important considerations.

4. We agree that an experiment encompassing a wide range of conditions would be
very interesting. Specifically, the part that would deserve most attention is the
transition from two- to three-dimensional bedforms. To avoid excessive Shields
stress and Froude number, an optimal design would imply a variable slope, and
a discharge that is adjusted in order to maintain a nearly constant shear stress,
(which would also imply a relatively constant Froude number). In this case, theo-
retical analysis provides a very useful tool to guide the choice of the experimental
conditions. Our experimental facility is not ideal for this kind of experiment, be-
cause the slope of the flume is not easily adjustable, and the banks do not allow
for a lateral view of the bed profile. However, we think that in general this experi-
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ment is absolutely feasible.

In the revised manuscript we have addressed all the technical questions. Specifically:

• we have implemented all the suggested grammatical corrections, except for the
British spelling (ESurf allows the author to use their preferred spelling);

• we have added Shields parameter and Rouse number to Table 1;

• we have used a more neutral term instead of “this kind of bedform”;

• we have rearranged Section 2.4, to better explain what we changed with respect
to the original formulation of Colombini et al. (1987).

• we have better explained the definition of ensemble bar;

• since we didn’t find a memorable concluding message, we fully agree it is better
to end the paper with the specific conclusion points.
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We thank the referee for the interesting questions and for the extensive grammatical
and structural corrections. In the revised manuscript, we have included nearly all the
minor corrections.

Here we provide the response to the five general comments:

1. From a technical point of view, bars are actually a particular kind of bedform,
as they are the product on an altimetric instability of the bed. Specifically, they
are often referred as large-scale bedforms (e.g. Jaeggi, 1984; Fujita and Mu-
ramoto, 1985; Church and Rice, 2009). For example, this it clear from the paper
of Colombini and Stocchino (2012), titled “Three dimensional river bed forms”,
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which includes alternate bars, diagonal bars (i.e. 3-D oblique dunes), and 2-D
dunes in a unified theoretical framework. However, we understand that the use
of the word “bedforms” interchangeably may create confusion, as in most cases
this term is adopted to indicate small scale-bed features. To find a compromise
between being consistent with previous literature and avoiding confusion, we fol-
lowed the approach proposed by the Referee #1, employing a more neutral term
when possible.

2. In general the two-dimensional Fourier analysis can be used to study any spa-
tial signal, and has been often employed in river morphodynamic studies (e.g.,
Repetto et al., 2002; Porcile et al., 2020). Probably the main peculiarity of our
methodology is rather the definition of the “ensemble bar” as the average topog-
raphy of multiple bar wavelengths, which is then analysed through the Fourier
transform. In the revised manuscript, we have added a sentence in the last point
of the Conclusions, to highlight the usefulness of the approach for different appli-
cations.

3. From theoretical works, it clearly appears that the key parameter controlling the
formation of alternate bars is the channel width-to-depth ratio (e.g., Fredsoe,
1978; Colombini et al., 1987). This is because in relatively narrow channels the
effect of the lateral bed slope on the bedload transport is proportionally more im-
portant, and it acts as a stabilizing effect that tends to flatten the bottom. Other
parameters (especially the Shields number and the relative roughness) are also
important, but bars are expected to form for a wide range of these parameters,
provided the width-to-depth ratio is sufficiently large (see Figure 6 of Colombini
et al., 1987). Specifically, there is not an upper limit of the Shields number for
the formation of alternate bars. As a consequence, alternate bars are definitely
expected to form in sand bed rivers (e.g., Bertagni and Camporeale, 2018), often
coexisting with dunes, as also highlighted by the Referee #1.

Far less information exists on conditions for the existence of diagonal bars. How-
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ever, the analysis of Colombini and Stocchino (2012) suggests that diagonal bars
(i.e. 3-D oblique dunes) tend to form when the sediment is relatively coarse, while
classic, 2-D dunes are expected in sand bed channels. This is also consistent
with the experimental results of Jaeggi (1984), showing formation of diagonal
bars in conditions that are typical of gravel bed rivers.

4. Alternate bars and diagonal bars are not relegated to just bedload transport con-
ditions. We agree that increasing discharge in our experiments would induce sig-
nificant suspended transport (see values of the Rouse number we have added
to Table 1). However, as explained above, there is no reason to associate sus-
pended load with the disappearance of bars. Moreover, at high transport rates
the stabilizing effect of the transverse slope becomes weaker (see our Eq. (8)),
which tends to even promote the formation of bars. Therefore, interpreting the
disappearance of bars we observed at high discharge with the capacity of the
flow to “flatten” the bed is not correct. In general, bar formation is crucially de-
pendent on the width-to-depth ratio. For this reason, it is not possible to identify
limits merely based on transport rate, slope, or relative roughness.

We agree with the referee that a higher transport rate lessens the time to equilib-
rium conditions. This can be an important factor when studying the bar adaptation
to unsteady flow conditions, but not for determining the equilibrium bar properties.

5. The width-to-depth ratio is the key controlling parameter. Therefore, it is not
possible to reach identical results with a different width-to-depth ratio and other
conditions equal. In more practical terms, we can say that the bars dynamics
crucially depends on the channel width. Specifically, varying the channel width
by keeping the other conditions (slope, water depth, Shields number) fixed would
result in a very different response of bars.

We understand that thinking in terms of discharge may help to simplify the prob-
lem. However, knowing the percentage of bankfull discharge is not sufficient,
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because this parameter does not take into account the channel width. This is the
reason for which we introduced the scaled discharge ∆Q∗ = (Q−Qcr)/(Qcr−Qi).
Since the critical discharge Qcr highly depends on the channel width, the scaled
discharge ∆Q∗ contains the essential information needed to measure the possi-
bility of bars to form.
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Abstract. The formation of alternate bars in straightened river reaches represents a fundamental process of river morphody-

namics that has received great attention in the last decades. It is well-established that migrating alternate bars arise from an

autogenic, instability mechanism occurring when the channel width-to-depth ratio is sufficiently large. While several empirical

and theoretical relations for predicting how bar height and length depend on the key dimensionless parameters are available,

there is a lack of direct, quantitative information about the dependence of bar properties on flow discharge. We performed5

a series of experiments in a long, mobile-bed flume with fixed and straight banks, at different discharges. The self-formed

bed topography was surveyed, different metrics were analysed to obtain quantitative information about bar height and shape,

and results were interpreted in the light of existing theoretical models. The analysis reveals that the shape of alternate bars

highly depends on their formative discharge, with remarkable variations in the harmonic composition and a strong decreasing

trend of the skewness of the bed elevation. Similarly, the height of alternate bars clearly decreases with the water discharge,10

in quantitative agreement with theoretical predictions. However, the disappearance of bars when discharge exceeds a critical

threshold is not as sharp as expected, due to the formation of so-called “diagonal bars”. This work provides basic information

for modelling and interpreting short-term morphological variations during individual flood events and long-term trajectories

due to alterations of the hydrological regime.

1 Introduction15

Alternate bars are large-scale bedforms, characterized by a repetitive sequence of scour holes and depositional diagonal fronts

with longitudinal spacing of
::
on the order of several channel widths, which are often observed in both sand and gravel bed rivers

(e.g., Engels, 1914; Jaeggi, 1984; Rhoads and Welford, 1991; Church and Rice, 2009; Jaballah et al., 2015; Rodrigues et al.,

2015).

They have been extensively studied in the last fifty years, because of both their practical and theoretical relevance. From the20

point of view of river engineering, alternate bars are often undesired for their erosional effect on banks and bridge piers and the

::::
their depositional effect that can disturb navigation and increase flooding risk. From an ecosystem perspective, alternate bars

represent one of the relevant morphological units, creating suitable habitats for aquatic fauna and riparian vegetation, largely

contributing to habitat
::::
which

::::::::::
contributes

::
to

:::::::::
ecological diversity (Gilvear et al., 2007; Zeng et al., 2015). Finally

:::::
Lastly, from

a theoretical point of view, they represent a fascinating phenomenon, which plays a fundamental role in the dynamics of a25
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variety of fluvial systems, such as meandering rivers, channel bifurcations and braided rivers (e.g., Lewin, 1976; Parker, 1976;

Fredsoe, 1978).

A large
:
A

:
number of studies (e.g., Hansen, 1967; Callander, 1969; Sukegawa, 1972; Parker, 1976; Fujita and Muramoto,

1982; Nelson, 1990)
:::
have

:
demonstrated that downstream-migrating alternate bars can spontaneously develop in a straight,

channelized reach
::::::
reaches

:
as the result of instability mechanisms

:::
the

::::::::
instability

:
of a cohesionless bed. Due to this autogenic30

formation mechanisms, this kind of bedforms are
:::
bed

::::::::::
morphology

::
is

:
often referred to as “free bars” (Seminara and Tubino,

1989).

Specifically
:::::
More

:::::::::
specifically, theoretical and laboratory experiments (Fredsoe, 1978; Jaeggi, 1984; Fujita and Muramoto,

1985; Colombini et al., 1987; Lanzoni, 2000a) identified the channel width-to-depth ratio as the key controlling parameter

for the formation of free alternate bars: when the channel is relatively narrow, the effect of gravitational pull on the bed load35

transport is relatively strong and tends to suppress any transverse bed gradient; conversely, in relatively wide channels initially

small, periodic perturbations of the bed elevation generate a topographic steering of the flow field that in turn produces a

growth of the bed perturbation itself, which leads to the spontaneous, self-sustained development of alternate bars. Therefore,

it is possible to define a threshold value of the aspect ratio (i.e. the half width-to-depth ratio), βcr, representing the lower limit

for which alternate bars are expected to form.40

However, when the width-to-depth ratio is smaller than the threshold value, the equilibrium bed configuration is not neces-

sarily planar, as other kind of bedforms
:::
bed

:::::::
features may result from a different instability mechanisms, such as short, shallow

and fast migrating three-dimensional bedforms, usually called “diagonal bars” (Einstein and Shen, 1964; Jaeggi, 1984; Colom-

bini and Stocchino, 2012). Since the transition between alternate and diagonal bars is not always sharp, and since they are

both characterized by a diagonal pattern, they can be easily confused. However
:::::::::
Nonetheless, as highlighted by Colombini and45

Stocchino (2012), diagonal bars represent a clearly distinct kind of bedforms
::::::
bedform

:
and should be more properly regarded

as three-dimensional oblique dunes. In fact, they respond to a
:::
are

::
the

:::::::
product

::
of

:
different formation mechanisms (e.g., they can

not be described by shallow-water two-dimensional models), and they depend on different controlling parameters (e.g., they

are directly influenced by water depth and Froude number).

On the other hand
:::::::::
Conversely, when the aspect ratio becomes very large, transition to more complex, wandering and braiding50

multi-thread channels is observed (e.g., Fredsoe, 1978; Eaton et al., 2010; Ahmari and Da Silva, 2011; Garcia Lugo et al., 2015)

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Parker, 1976; Fredsoe, 1978; Eaton et al., 2010; Ahmari and Da Silva, 2011; Garcia Lugo et al., 2015), which poses an up-

per limit to the range of β values where free alternate bars are expected to form.

Under steady flow conditions, free bars can attain an equilibrium state, where they simply migrate downstream without

changing their morphology (Ikeda, 1984; Colombini et al., 1987). Different
::::::
Several

:
theoretical and empirical relations for55

estimating the equilibrium bar height and wavelength are available (e.g., Ikeda, 1984). Specifically, weakly nonlinear theories

(Colombini et al., 1987; ?)
::::::::::::::::::::::::::::::::::::::::::::::
(Colombini et al., 1987; Bertagni and Camporeale, 2018) allow for a physically based, analytical

prediction of how the equilibrium bar configuration depends on the dimensionless channel and flow parameters.

Nevertheless, there is basically no direct, quantitative analysis about
::::::::
regarding how equilibrium properties of alternate bars

depend on water discharge. In particular, very few data exist about the shape of alternate bars, as previous experiments manly60
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::::
have

::::::
mainly focused on bar height, wavelength,

:
and growth rate (e.g., Ikeda, 1984; Jaeggi, 1984; Fujita and Muramoto, 1985;

Lanzoni, 2000a). Moreover, there is little knowledge about the transition from alternate bars to plane-bed
:
,
:
or diagonal bars

configurationsthat ,
::::::
which may occur when varying the flow discharge. This lack of information makes it difficult to understand

how changes in the flow regime may alter the bed morphology.

In this work we follow an integrated experimental and theoretical approach, to address the following research questions: (i)65

how do geometrical properties of alternate bars depend on water discharge? (ii) is it possible to identify different bar styles

depending on flow conditions? (iii) is there a sharp transition from alternate bar morphology to a plane-bed configuration?

To answer these questions we performed a series of flume experiments
::::::::::
experiments

:::::
were

:::::::::
performed

::
in

:
a
:::::
flume

:
with identical

channel conditions and sediment characteristics, but different
:::::::
differing flow discharge, and we compared experimental results

::::::::::
experimental

::::::
results

:::::
were

::::::::
compared with theoretical predictions from the weakly nonlinear model of Colombini et al. (1987).70

2 Methods

2.1 Laboratory setup

Laboratory experiments were carried out
::::::::
conducted

:
in a 24m long flume at the Hydraulics Lab of the University of Trento.

The physical model consisted of a straight channel of width W = 0.3m
:::::::::::
W = 0.305m, with vertical banks built out of plywood

covered by a thick plastic tarp. Uniform sand with a median diameter of d50 = 1.01mm was used as feed and bed material.75

Discharge and sediment input to the flume was set automatically using a recirculating pump and a calibrated screw feeder. At

the downstream end of the flume, the output bed load accumulated in a large filtering crateresting on four load cells ,
::::::
which

was weighted every 10 seconds
::
by

::::::
means

::
of

::::
four

::::
load

::::
cells. A laser profiler moving on high-precision rails was used to map

::::::
mapped

:
the topography of the drained bed with vertical accuracy of 0.1mm and spatial resolution 50×5mm (longitudinal and

transversal
::::::::
transverse

:
direction, respectively).80

We performed a
:
A
:

set of 16 steady flow runs
::::
were

::::::::::
performed, with discharge ranging from Q= 0.5 to 4.2l s−1; all but

two of the discharge values (1.5 and 4.2l s−1) were repeated twice to obtain a larger dataset of bed topographies. The chosen

discharge values ensure a wide range of channel aspect ratios, and are associated with the hydraulic conditions reported in

Table 1.

At the beginning of each model run, the bed was screeded at
::::::
graded

::
to

:
a slope S = 0.01 using a blade mounted on a85

movable trolley. Sediment supply for each run was first assigned on the basis of previous experiments carried out with a similar

setup (Garcia Lugo et al., 2015)
:
, and gradually adjusted during the transient phase of the run to match bed load output. The

duration of experimental runs was chosen to ensure equilibrium conditions. Specifically, following the criteria proposed by

Garcia Lugo et al. (2015) the run duration was ,
::::::
which

:::::::
amounts

::
to 10–20 times the Exner timescale .

::::::::::::::::::::::::
(see Garcia Lugo et al., 2015).

:
Wetted width (Ww) and active width (Wa) were measured at 20 regularly spaced cross sec-90

tions, twice per each run, and averaged in space and time. Migration rate of the alternate bars was estimated by tracking the

position of up to 15 individual bar fronts at fixed time intervals. At the end of the
::::
each run the bed was drained to acquire
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topography data. Laser surveys covered a 20.5m long area starting 2m downstream of the inlet to exclude the effect of local

disturbances.

The average sediment flux, Qs, was estimated on the basis of the total weight of the transported material, excluding the first95

transitory part of the experiment (an equilibrium condition was considered achieved when the cumulative mean of the bed load

signal got
:::
fell within 5% of the global mean).

Table 1. Summary data of the laboratory experiments. Channel width, slope and median grain size are constant and equal to

W = 0.30m
:::::::::::
W = 0.305m, S = 1.0% and d50 = 1.01mm, respectively.

:::
The

:::::
Rouse

::::::
number

::
is

::::::
defined

::
as

:::::::::::::
Ro= ws/(κu∗), :::::

where
::::::
κ= 0.4

:
is
:::

the
::::

Von
::::::
Kármán

::::::::
constant,

::
u∗:::

is
:::
the

::::::
friction

:::::::
velocity,

:::
and

:::
ws::

is
:::
the

::::::
settling

:::::::
velocity

::
of

:::
the

:::
bed

::::::::
particles,

::::::::
computed

::::::::
according

::
to

:::::::::::::::::::::
Ferguson and Church (2004).

:
Water depth, Froude number,

:::::
Shield

::::::
number,

:::::
Rouse

::::::
number

:
and aspect ratio are computed by assuming uni-

form flow conditions over a plane bed
:
,
:::
and

:::::::::
considering

::
the

::::::
friction

::::::
formula

::
of

:::
Eq.

:::
(9).

Case # 1 2 3 4 5 6 7 8 9

Discharge Q [l s−1] 0.5 1.0 1.5 2.0 2.5 2.7 3.0 3.4 4.2

Run duration T [h] 20 10 6 5 5 5 5 5 2

Sediment transport Qs [cm
3 s−1] 0.08 0.45 1.22 1.81 2.47 2.59 3.04 3.63 4.97

Relative wetted area Ww/W [−] 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Relative active area Wa/W [−] 0.39 0.76 0.88 0.95 0.98 1.00 1.00 1.00 1.00

Water depth D [cm] 0.72 1.06 1.34 1.58 1.79 1.87 1.99 2.14 2.42

Froude number Fr [−] 0.86 0.96 1.02 1.06 1.09 1.10 1.12 1.13 1.17

::::::
Shields

:::::
number

:::::
θ [−]

::::
0.043

: ::::
0.064

: ::::
0.080

: ::::
0.095

: ::::
0.108

: ::::
0.112

: ::::
0.120

: ::::
0.129

: ::::
0.145

:

:::::
Rouse

::::::
number

:::::
Ro [−]

: :::
12.0

: ::
9.9

: ::
8.8

: ::
8.1

: ::
7.6

: ::
7.4

: ::
7.2

: ::
6.9

: ::
6.5

:

Aspect ratio β =W/(2D) [−] 21.3 14.4 11.4 9.7 8.5 8.1 7.7 7.1 6.3

Critical aspect ratio βcr [−] 3.2 5.0 5.9 6.5 7.0 7.1 7.3 7.5 7.9

Resonant aspect ratio βres [−] 4.2 7.0 8.7 10.0 11.0 11.4 11.9 12.6 13.8

2.2 Topography data processing

Laser surveys were first processed by removing points falling outside the channel bed and by subtracting the average longitu-

dinal slope. This allowed for obtaining DEMs of the detrended bed elevation.100

The investigation of the geometric properties of alternate bars required the identification of individual bedforms
::
bar

:::::
units. To

this aim, we applied the widely accepted definition of bar wavelength as the length between two successive troughs (Eekhout

et al., 2013) and developed an automatic procedure to map the position of troughs on DEMs. Elevation maps of individual bars

were obtained by splitting DEMs at trough points. Very irregular bars and bedforms that were
:::
Bars

::::
that

::::
were

::::
very

::::::::
irregular

::
or

only partially within the study area were excluded from further calculations. Bar DEMs were normalized by subtracting the105

elevation mean.
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Finally, to
::
To facilitate the comparison of the shape of individual bars,

:::::
spatial

::::::::::
coordinates

::
of

:
each bar DEM was resampled

along a64× 64 grid
::::
(x,y,

:::
see

::::
Fig.

:::
1a)

::::
were

::::::
scaled

:::
by

:::
the

:::
bar

::::::::::
wavelength

:::
(L)

:::
and

:::
the

:::::::
channel

:::::
width

:::::
(W ),

::::::
which

:::::::
resulted

::
in

:::::::
stretched

::::::
DEMs

:::::
where

:::::
both

:::::::::
coordinates

::::::
ranged

:::::
from

:
0
::
to
::
1.
:::::::::
Individual

::::::
DEMs

::::
were

::::
then

:::::::::
resampled

:
using an inverse distance

weighted routine. This also allowed for the definition of a characteristic bar shape, referred to as the ensemble bar, obtained110

by computing the average
:
,
::
to

:::::
obtain

::::::::
elevation

::::
data

:::
on

:::
the

:::::
same,

::::::
regular

::::
grid

::
of

:::::::
64× 64

::::::
points.

::
An

:::::::::
ensemble

:::
bar

:::
was

:::::::
defined

::
as

:::
the

:::::
mean elevation of each grid point across all the bars formed at the same discharge

:
,
::::
thus

::::::::::
representing

::
a
::::::::::::
characteristic,

::::::
average

:::
bar

:::::
shape

::::
that

:::
can

::
be

:::::
used

::
to

::::
study

:::
the

:::::
effect

:::
of

:::::::
different

:::::::::::
experimental

:::::::::
conditions.

Figure 1.
::::
Panel

:::
(a):

::::::::
reference

:::::
system

:::::
(x,y)

::
for

:::
and

::::::::
individual

:::
bar

::
of

:::::::::
wavelength

::
L

::
in

:
a
::::::
straight

::::::
channel

::
of

:::::
width

:::
W ,

:::
with

:::
the

:::::
curved

::::
line

:::::::
indicating

:::
the

:::::
typical

:::::::
position

::
of

:::
bar

:::::
fronts.

:::::
Panel

:::
(b):

::::::
picture

::
of

::
the

:::::
flume

::
at

:::
the

:::
end

::
of

:::
the

:::::::::
experiment

:::
with

:::::::::::
Q= 2.5l s−1,

:::::::
showing

:::
the

::::::
presence

::
of

:::::::
alternate

::::
bars.

::::
Flow

::
is

:::
from

:::
top

::
to

::::::
bottom.

:
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2.3 Different metrics to characterize bar properties

Alternate bars are commonly described in terms of their wavelength, height
:
, and migration rate. Bar wavelength is the distance115

between consecutive, corresponding points along the flow direction. Bar height is usually defined as the vertical distance

between the bottom of the pool and the top of the bar surface, with several method and metrics proposed in the literature.

Finally, for freely migrating bars, the migration rate is the speed at which the bar front moves downstream. However, the

geometrical properties of bars are not limited to their height and wavelength, as more detailed information about geometrical

shape of bedforms
::::
their

::::::::::
geometrical

:::::
shape can be derived by analyzing their elevation distribution. The geometrical properties120

of alternate bars in a river channel can be investigated at reach scale or at bedform scale. In the first case, information is derived

from the spatial distribution of bed elevation for the entire reach, while in the second case, the reach is divided into segments

corresponding to individual bars. The latter approach requires the identification of the spatial limits of individual bedforms and

therefore the results may be influenced by the procedure used to define these limits. However, the resulting dataset provides

not only reach-averaged values of geometry parameters but also information on their variability.
:::
the

:::
bed

:::::::::::
morphology.125

2.3.1 Metrics for bar height and bed relief

The most intuitive and widely used way to define bar height is the difference between the maximum and the minimum elevation

along a bar unit, where the bed elevation η is usually computed after removing the mean bed slope. Though different symbols

have been used in the literature, we refer to the Ikeda (1984) notation, namely:

HBM =max(η)−min(η), (1)130

where η indicates the (detrended) bed elevation.

A slightly different definition of bar height (e.g., Fujita and Muramoto, 1985) is based on computing the elevation difference

along individual
::::::::
transverse cross sections (HBsec) and then taking its maximum value (HB):

HBsec =maxsec(η)−minsec(η), HB =max(HBsec), (2)

where maxsec and minsec denote the maximum and the minimum elevation along individual cross sections.135

(a) reference system (x,y) for and individual bar of wavelength L in a straight channel of width W , with the curved line

indicating the typical position of bar fronts; (b) picture of the flume at the end of the experiment with Q= 2.5l s−1, showing

the presence of alternate bars. Flow is from top to bottom.

The above definitions have a clear physical meaning, as they directly represent the bar height, from the crest to the trough.

However, being based on extreme elevation values, such metrics are sensitive to outliers and measurement errors. Therefore,140

it is sometimes convenient to estimate the topographic effect of alternate bars through different metrics, which measure the

“relief” rather than the bar height.

Specifically, the bed relief can be defined through the standard deviation of the elevation distribution:

SD = std(η), (3)
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or, alternatively, through the Bed Relief Index (e.g., Hoey and Sutherland, 1991; Liébault et al., 2013), which is defined on a145

cross-sectional basis as follows:

BRIsec = stdsec(η), BRI =mean(BRIsec), (4)

where stdsec indicates the standard deviation calculated along individual cross sections.

All of these metrics are applied at bar scale, although it is possible to compute them for elevation maps containing more than

one barwavelength
:::
first

:::::::::
computed

::
for

:::::
each

::::::::
individual

::::
bar,

:::
and

::::
then

::::::::
averaged

:::::
among

:::
all

::::
bars

::::::
formed

::
at

:::
the

:::::
same

::::::::
discharge. It is150

important to note that, while HBM and SD are based on the full 2-D distribution of elevation, HB and BRI are based on the

elevation along individual cross sections. Since the highest and lowest points of a bar do not necessarily occur along the same

cross section, HB and BRI are expected to provide a lower estimate of height if compared to HBM and SD, respectively.

2.3.2 Metrics for the bar shape

The
:::
One

::::::
method

::
to
:::::::::::
characterize

:::
the shape of bars can be characterized in terms of

:
is
:::
via

:
the skewness parameter (SK), which155

measures the asymmetry of the bed elevation distribution, thus providing information on the relative proportion of high and

low areas within a bar. River bed elevation maps often show negative skewness, with deep, narrow channels carved into large,

higher elevation bars (e.g., Bertoldi et al., 2011; Garcia Lugo et al., 2015).

Being based on the relative frequency of the elevation values, the above metrics
:
,
::::::::
however, do not to provide information

about the spatial arrangement of the bedforms. To obtain synthetic information about the spatial structure of bars, we analysed160

the bed elevation maps through the two-dimensional Fourier transform (e.g., Garcia and Nino, 1994; Zolezzi et al., 2005). As

detailed in Appendix A, the topography of an individual bar of wavelength L (see Fig. 1
:
a) can be represented as follows:

η(x,y) =

∞∑
m=0

∞∑
n=0

|Anm|cos(πmy/W ) cos(2πnx/L+φnm) , (5)

where x is the longitudinal coordinate, y is the transverse coordinate (with origin at the right bank), while |Anm| and φnm rep-

resent amplitude and phase of each Fourier component. The amplitude
:::::::::
amplitudes of the main components provides

::::::
provide

:
in-165

formation about possible symmetry properties, the relative importance of two-dimensional and three-dimensional topographic

effects, and the deviation from the simple sinusoidal structure that arises from linear stability analyses (e.g., Fredsoe, 1978).

2.4 Application of the weakly nonlinear theory of Colombini et al. (1987)

The theory of Colombini et al. (1987) is based on a weakly nonlinear solution of the two-dimensional shallow water and Exner

model for a straight channel of constant width and downstream gradient.170

Application of the theory required to specify closure relations for flow resistance and sediment transport. First, the dimensionless

Chézy coefficient, c, was expressed through the widely used logarithmic friction formula of Engelund and Fredsoe (1982):

c= 6 + 2.5log

(
D

2.5d50

)
,
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where D indicates the water depth. Second, the
::::::::::
Specifically,

::::
they

:::::::::
considered

:::
the

::::::::
following

:::::::
relation

:::
for

:::
the bed load transport

rate per unit width, qb [m2 s−1], was quantified by means of the Parker (1978) formula: :
:

175

qb = 11.2
√
g∆d350 θ

1.51− θcr
θ

4.5Φ
:
, θcr = 0.03, (6)

where g is the gravitational acceleration, ∆ = 1.65 is the relative submerged weight of sediment,
:::
and

::
Φ

::::::::
represents

:::
the

::::::::::::
dimensionless

:::::::
sediment

::::::::
transport,

::::::
whose

:::::::::
expression

:::::::
depends

:::
on

:::
the

::::::
choice

::
of

:::
the

::::::::
transport

:::::::
formula.

:::::::::
Moreover,

:::
the

:::::
effect

:::
of

:::
the

:::::
lateral

::::
bed

::::
slope

:::
on

:::
the

:::::::
direction

::
of

:::
the

::::
bed

::::
load

:::::::
transport

::::
was

:::::::
modeled

:::::::::
according

::
to

:::
the

:::::::::::
Ikeda (1982)

::::::::::
formulation:

tan(γ) =− r√
θ

dη

dy
,

:::::::::::::::

(7)180

:::::
where

::
γ

::
is

:::
the

::::
angle

::::::::
between

:::
the

:::::::
velocity

:::::
vector

::::
and

:::
the

::::::::
sediment

:::::::
transport

::::::
vector,

:
θ is the Shields numberand θcr indicates

critical conditions for ,
::::
and

:
r
::
is

::
an

::::::::
empirical

::::::::::::
dimensionless

:::::::::
parameter,

::::::::
typically

::::::
ranging

:::::
from

:::
0.3

::
to

:::
0.6.

:

:::
The

::::::
model

::
of

::::::::::::::::::::
Colombini et al. (1987)

:::::
allows

:::
for

::::::::
different

:::::::
choices

::
of

:::
the

::::::::
transport

::::
and

::::::
friction

:::::::::
formulas.

:::
For

:::
the

:::::::
present

:::::::
analysis,

:::
we

::::::::::
considered

:::
the

::::::::::::
Parker (1978)

:::::::
relation,

::::::
which

:::::
gives

:::
the

:::::::::
following

:::::::::
expression

:::
for

:::
the

:::::::::::::
dimensionless

::::::::
sediment

::::::::
transport:185

Φ = 11.2θ1.5
(

1− θi
θ

)4.5

, θi = 0.03,

:::::::::::::::::::::::::::::::::

(8)

:::::
where

::
θi::::::::

indicates
:::
the

::::::
Shields

:::::::
number

::
of

:
incipient sediment motion. This transport formula was chosen for two reasons: (i)

it exhibits a critical threshold that is consistent with our experiments; (ii) it is suitable for analytical treatment, because for

θ > θcr::::::
θ > θi it is continuous and has continuous derivatives.

Finally, the effect of the lateral bed slope on the direction of the bed load transport was modeled according to the Ikeda (1982)190

formulation:
::::::::
Moreover,

::
as

::
in

:::
the

:::::::
original

::::::::::
formulation

::
of

::::::::::::::::::::
Colombini et al. (1987),

:::
we

::::
used

:::
the

::::::::::
logarithmic

:::::::
friction

::::::
formula

:::
of

::::::::::::::::::::::::
Engelund and Fredsoe (1982),

::::::
which

::::
gives

:::
the

::::::::
following

:::::::::
expression

:::
for

:::
the

::::::::::::
dimensionless

::::::
Chézy

:::::::::
coefficient:

:

tan(γ)c=− r√
θ

dη

dy
6 + 2.5log
::::::::

 D

2.5d50
:::::

 , (9)

where γ is the angle between the velocity vector and the sediment transport vector, and
::
D

:::::::
indicates

:::
the

:::::
water

:::::
depth.

:::::::
Finally,

:::
we

::::::::
calibrated

:::
the

::::::::
empirical

:::::::::
parameter r is an empirical parameter . Calibration based on

::
of

:::
Eq.

:::
(7)

::
by

:
minimizing the difference195

between experimental and analytical values of HBMgave a value r = 0.25, which is only slightly lower than that proposed by

Colombini et al. (1987) (r = 0.3).

Once closure relations, channel geometry and discharge are prescribed, the analytical model allows for the computation of

equilibrium bar topography and migration rate
:
,
:::::
which

:::::::
resulted

::
in

:
a
:::::
value

::
of

::::
0.40.
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3 Results200

The bed topographies obtained under different discharges are illustrated in Fig. 2. A regular pattern of
:::::::::
large-scale bedforms

can be recognized in all maps, with substantial differences in shape and relief.

At the lowest discharge (0.5l s−1) the bed shows a complex topography with alternate, elongated pools along the banks
:
, but

few clearly discernible bar fronts and several small channels cutting the main bedforms. In these conditionsthe top of the
:
,
:::
the

:::
tops

:::
of bars (3% of the area, see Table 1) begins

::::
begin to emerge and less than half of the bed surface is actively transporting205

sediments.

At higher flows (1.0 and 1.5l s−1), bed topography is dominated by a coherent pattern of bars with elongated pools and

a sharp front that is almost transversal
::::::::
transverse

:
to the flow direction. Between Q= 2.0 and 2.7l s−1, relief progressively

decreases and bar fronts becomes
::::::
become

:
curved and oblique in a regular fish-scale pattern. Finally, between Q= 3.0 and

4.2l s−1, bars are shorter and shallower. It is also important to note that for increasing discharge, well defined bars progressively210

disappear from the upstream end of the channel, where the bed shows a superimposition of low-relief, irregularly spaced oblique

fronts.

3.1 Bar height and bed relief

A comparison of metrics for bar height and bed relief is illustrated
:::::::
presented

:
in Fig. 3a and 3b. The bar height HBM is

maximum (almost 40mm) for the Q= 1.0l s−1 run, then it gradually decreases with discharge until it attains a relatively215

constant value of about 13mm for Q≥ 3.0l s−1. At the lowest discharge (0.5l s−1), bar height is lower than the peak value,

showing a value around 33mm. As expected, HB is smaller than HBM for all runs, but the difference is minimal and does not

show a clear trend with discharge.

An analogous behavior is observed for the bed relief metrics SD and BRI (Fig. 3b). Specifically, BRI tends to be only

slightly smaller than SD, and both metrics exhibit a variation with discharge that follows the same trend observed for the bar220

height metrics HBM and HB . However, the variation of SD and BRI with discharge is less gradual, with bars formed at

Q= 1.0 and 1.5l s−1 showing distinctively higher values (nearly +50%) than the other cases. In general, values of SD and

BRI are much lower than HBM and HB , as bed relief metrics cover a range of values that is about one fifth the observed

range of bar height.

Bars are downstream migrating with a speed of the order of a few millimeters per second. At the lowest discharge, migration225

rate was not measured because of the lack of easily recognizable fronts and the presence of complex patterns of erosion and

deposition. For higher flows, migration rate rapidly increases with discharge
::::::::
gradually

:::::::
increases

:
from almost zero to 3mm s−1

for Q= 3.0l s−1 (see Fig. 3c). Noteworthy, the two highest values of discharge exhibit a much higher migration rate of about

:
,
::::
while

::::::::
between

:::::::
Q= 3.0

:::
and

:::::::
3.4l s−1

::
it

:::::::
exhibits

:
a
::::::
sudden

::::::
growth

::
to

::::::
values

::::::
around 5mm s−1.

Mean bar wavelength (see Fig. 3d) is higher at low flows (about 3
:::
∼ 3 to 3.5m, corresponding to 10 to 12 channel widths)230

and decreases at higher discharges to approximately 1m (about three channel widths). Specifically, the bar wavelength shows

a rapid drop between Q= 1.5 and 2.0l s−1, followed by a gradual decrease.
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Figure 2. Maps of detrended bed elevation,
:::::::
showing

::
the

:::::::::
equilibrium

:::
bed

:::::::::
morphology

:
for increasing values of discharge. Flow is from top to

bottom. Longitudinal scale is compressed for clarity.
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Figure 3. Mean properties of bars depending on discharge: (a) bar heightHBM andHB ; (b) bed relief, as measured by the standard deviation

of the bed elevation distribution (SD) and the bed relief index (BRI); (c) bar migration rate C; (d) bar wavelength L.

3.2 Predictions by the weakly nonlinear theory

The values of the equilibrium bar height predicted by the weakly nonlinear theory are reported in Fig. 4, which shows a de-

creasing trend of HBM with the water discharge, until it vanishes when the channel aspect ratio, β, matches its threshold value235

βcr (no bars). Therefore, it is possible to define a corresponding threshold value of the flow discharge (a “critical discharge”,

Qcr = 3.17l s−1), which separates the formative conditions for alternate bars (Q<Qcr) from the region where bars do not

develop (Q>Qcr).

We note that the weakly nonlinear theory is formally valid near the critical conditions, although the comparison with exper-

imental data suggests its applicability within a wider range of conditions (Colombini et al., 1987; Lanzoni, 2000b). However,240

at relatively low values of discharge, the predicted equilibrium elevation of the top of the bars would exceed the water surface

elevation, which makes the equilibrium value of HBM no longer meaningful. Therefore, when the discharge is smaller than

the so-called fully-wet threshold, Qfw (see Adami et al., 2016) the system cannot reach equilibrium bar height. Under these

conditions it is then reasonable to assume that bar growth stops as bar tops start to emerge, and to set
:::::
which

::::::
means the maxi-
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mum bar elevation
::::
must

:::
be

::
set

:
equal to the water surface elevation. This concept of emersion-limited bar height is represented245

by the dash-dot line in Fig. 4, which shows an opposite (i.e. increasing with the discharge) trend with respect to the theoretical

equilibrium height.

As shown in Fig. 4 a third relevant threshold, i.e the
::::::::
Ultimately,

::
a
:::::
lower

::::
limit

:::
of

:::
the

:::::
region

::
of

::::::::
possible

:::
bar

::::::::
formation

::
is

:::
set

::
by

:::
the

:
flow discharge corresponding to incipient sediment motion, Qi = 0.26l s−1, defines the lowest limit of the region of

possible bar formation.
:::::
which

::::::
defines

:::
the

::::
third

:::::::
relevant

::::::::
threshold

:::::::::
illustrated

::
in

:::
Fig.

::
4.

:
250

0 1 2 3 4
0

10

20

30

40

50

BARS NO BARS

Figure 4. Bar height as a function of discharge, according to the weakly nonlinear theory of Colombini et al. (1987). Solid line represents

the equilibrium solution, while the dash-dot line indicate
:::::::
indicates the bar height we obtained by limiting the bar growth to the fully-wet

condition. The development of alternate bars highly depends on discharge state with respect to the three key thresholds (vertical dashed lines),

which represent: (i) the critical condition of incipient sediment motion, Qi = 0.26l s−1; (ii) the conditions for which bars at equilibrium are

fully wet, Qfw = 1.26l s−1; and (iii) the critical condition for bar formation, Qcr = 3.17l s−1.

The theoretical response of bar height to varying flow conditions is then compared with the laboratory data, which gives the

results illustrated in Fig. 5. Consistently with the theoretical analysis, all the metrics are represented in dimensionless form, by

scaling bar height and relief with the water depth D0 ::::::
median

::::
grain

::::
size

:::
d50, the bar wavelength by the channel width W , and

the migration rate by the flow velocity U0. Moreover, we define a dimensionless discharge as:

∆Q∗ =
Q−Qcr

Qcr −Qi
, (10)255

so that values from −1 to 0 cover the entire range of bar formation, from the threshold of incipient sediment transport Qi to

the critical threshold Qcr.

From this comparison it is apparent that bars observed at 3.4 and 4.2l s−1 are anomalous, for a number of reasons: (i)

they occur outside the region of bar formation (i.e. at Q>Qcr); (ii) they exhibit a much faster migration rate, and (iii) their

wavelength is much shorter with respect to the typically observed values (L= 5–12W , see Tubino et al., 1999). This type of260

bedform closely resembles the “diagonal bars” described by Jaeggi (1984) as three-dimensional mesoforms characterized by a
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wavelength of around three times the channel width, limited relief, shallow pools and a symmetrical elevation distribution,
::::
and

::
the

::::::::
presence

::
of

:::::::
shallow

:::::
pools. These bedforms were observed at Froude numbers close to one and did not match the region of

::
for

:
alternate bar formation.

Experimental observations by Jaeggi (1984) suggested that diagonal bars can be considered as intermediate bed forms265

::::::::
bedforms associated with the transition of dunes from two- to three-dimensional configurations. This idea was confirmed by the

theoretical work of Colombini and Stocchino (2012), which provided an interpretation of diagonal bars as three-dimensional

oblique dunes, distinct from alternate bars. In what follows
::::::
Herein,

:
we will therefore refer to bars observed at ∆Q∗ > 0 as

diagonal bars, reserving the term “alternate bars” to the remaining cases.

The analytical model reproduces remarkably well both the bar height and the bed relief of alternate bars (Figures 5a and270

5b). However, when the discharge approaches the critical threshold Qi the weakly nonlinear model is no longer valid and the

solution for the equilibrium amplitude diverges. As pointed out before
:::::::
discussed

:::::::::
previously, when discharge is lower than the

fully-wet threshold Qfw the singularity of the analytical solution can be mitigated by considering the fully-wet limited bar

height, which provides a reasonable estimate of HBM and SD.

Similarly, the bar migration rate (Fig. 5c) is well reproduced by the analytical model, both for the overall trend and for the275

absolute values, although the theory significantly overestimates the observed value at Q= 1.0l s−1. Furthermore, the theory

properly predicts the wavelength of bars only for intermediate values of discharge (see Fig. 5c
:
d), while it does not capture the

overall decreasing trend, and therefore sharply underestimates the length of bars observed in the three runs with Q≤ 1.5l s−1.

3.3 Quantitative analysis of the bar shape

In order to filter out the relatively small differences of single bar units, we computed for each discharge value an ensemble280

bar shape, defined as the average topography of all the bars formed under the same flow conditions. The resulting ensemble

topographies represented in Fig. 6 show a rather regular pattern. We then analysed the response of the bar shape to changing

discharge by computing the skewness and the Fourier components of the ensemble bars for each discharge value.

Fig.
:::::
Figure

:
7 shows that the skewness is always negative, which indicates a left-tailed bed elevation distribution. For the

lowest discharge the skewness is around −1.5, which matches typical values observed for wandering and braided channels285

(see Garcia Lugo et al., 2015). Highly negative values of the skewness can be
:::
are associated with the presence of narrow,

deep troughs and wide, relatively flat bar crests that are clearly detectable in Fig. 6 for the ensemble bars at Q≤ 1.5l s−1.

This morphological characteristic becomes progressively less pronounced, as the ensemble bars corresponding to the range

Q= 2.5–3.0l s−1 show a comparable extension of
::::::
regions

::
of scour and depositionareas

:
, and the presence of distinct diagonal

fronts.290

The observed trend of the skewness parameter is in qualitative agreement with the theory, which predicts an increase from

negative values at low flow to vanishing values (i.e. nearly symmetrical
:::
bed

::::::::
elevation

:
distribution) when approaching the

critical condition for bar formation (i.e. ∆Q∗ ' 0). However, the magnitude of the observed skewness is much larger than the

theoretical estimate, due to the limited capability of the theoretical model to fully represents the complex, highly nonlinear

morphodynamic processes (see Colombini et al., 1987).295
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Figure 5. Dimensionless bar parameters as a function of the scaled discharge, from theory (lines) and experiments (markers).
:::::
Panels

:
(a)

and (b): height and standard deviation of bed elevation distribution (scaled with the water depth D0 :::::
median

::::
grain

::::
size

:::
d50), with solid line

indicating equilibrium conditions and dash-dot line representing the bar height limited by the fully-wet condition.
:::::
Panels (c) and (d): bar

migration rate and wavelength (scaled with the flow velocity U0 and the channel width W , respectively).

The analysis of the Fourier spectral composition of bed topography provides the amplitude of each component along the

transverse and longitudinal direction. An example is shown in Fig. 8 for the ensemble bar of the Q= 2.5l s−1 run. The plot

shows
::::::::
illustrates

:
the amplitude of the first 36 (6× 6) harmonic components, identified by their longitudinal (n) and transverse

(m) mode. In this representation, n= 1 indicates a complete sinusoidal period in one bar wavelength, while m= 1 indicates

half a wave period in one channel width. Harmonic components with n= 0 and m= 0 are constant along the x and y axis,300

respectively. The component A00, which represents a horizontal plane, has amplitude equal to zero, because the original DEM

was normalized by removing the mean.

As revealed by their total energy content, En, the most important components of the spectrum are those with longitudinal

mode n= 1. Specifically, alternate bars are dominated by the component A11, which represents a double sinusoidal bed defor-

mation. Components with n= 1 and higher, odd transverse mode m, such as the A13 and the A15, also appear in the spectrum,305
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Figure 6. Maps of ensemble bars, representing variation of the average bar topography for increasing values of discharge. Spatial coordinates

(x,y) are normalized with respect to the bar wavelength (L) and the channel width (W ). Contour spacing is 5mm (upper panels) and 2mm

(lower panels), with the thicker contour indicating the mean (i.e. zero) elevation and white contours representing negative elevation values.

Flow is from top to bottom.

15



-1 -0.5 0 0.5
-2

-1.5

-1

-0.5

0

Figure 7. Skewness of the bed elevation distribution as a function of the scaled discharge. Markers indicate the skewness of the experimental

ensemble bars; lines illustrate results from the weakly nonlinear theory, with the dash-dot line referring to the solution obtained by limiting

the bar growth to the fully-wet condition.

contributing to the deviation of the cross section from a purely sinusoidal variation to a more complex (but still antisymmetric)

shape.

However, components with longitudinal modes n= 0 and n= 2 are also relevant. The longitudinal mode n= 0 is dominated

by the component A02, which represents a sinusoidal symmetric bed deformation that is constant in x, while the components

with longitudinal mode n= 2 include a number of (even) transverse modes (i.e. A22, A24:), which represent a symmetric bed310

deformation that completes two periods in one bar wavelength (see Fig. 9 for a schematic representation).

All m= 0 harmonics, which represent a purely longitudinal bed deformation, turn out to be negligible, showing that the

transversally averaged bed elevation is nearly zero for all the cross sections. Analogously, components with n= 0 and odd

transverse mode m are also vanishingly small, which implies that on average the bed structure does not exhibit any asymmetry

with respect to the channel axis.315

For all tested conditions, the Fourier spectrum exhibits a clear checkerboard pattern, where at least 98% of the energy is

contained in even-even and odd-odd modes, while other harmonics have negligible power (on average 0.7%). This distinctive

pattern indicates that despite their morphological complexity, both alternate and diagonal bars are “purely alternate”, in the

sense that the second half of the bar is nearly identical to the first half but mirrored across the channel axis.

We note that the above results are valid in general, regardless of the value of flow discharge. However, relevant variations320

of the Fourier spectrum composition occur when changing Q. The amplitude of the four dominant components A11, A13, A20

::::
A02,

::::
A22 and A22 is illustrated in Fig. 9 as a function of the dimensionless discharge previously defined in Eq. (10). The

amplitude of the fundamental harmonic, A11, which is illustrated in Fig. 9a, closely follows the trend observed for bar height

parameters (see
:::
Fig.

:
3a and 3b), with maximum values for Q= 1.0 and 1.5l s−1, a steady decrease up to Q= 3.0l s−1 and

lower, almost constant values afterwards. This is not surprising, as the A11 is the dominant component of the bed topography,325

which therefore mostly determines the bar height.
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Figure 9. Amplitude of the main Fourier components depending on discharge.
::::
Panel (a): amplitude of the fundamental harmonic (A11);

.
::::::

Panels (b),(c) and (
:
,d): ratio between the amplitudes A02, A22, A13 and the fundamental. The 3-D plots on the right illustrate the bed

deformation associated with each Fourier component.
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To quantify the shape of the bars, regardless of their absolute height, we then refer to the relative amplitude of the Fourier

modes, given as a proportion of the amplitude |A11| as illustrated in Fig. 9b,c,d. Excluding the first case (Q= 0.5l s−1), the

trend observed for alternate bars is rather clear, with a decreasing importance of both the symmetric component A02 and the

asymmetric component A13, from amplitudes of about 60–70% of |A11| to significantly smaller values when approaching the330

critical threshold Qcr. Specifically, the amplitude of the component A02 decreases by about an order of magnitude. However,

the component A22 shows an inverse (i.e. increasing) trend, from the nearly vanishing amplitude observed at Q= 1.0 and

1.5l s−1 to values of about 1/3 of |A11| when approaching Qcr.

The weakly nonlinear theory of Colombini et al. (1987) resolves the firsts
:::
first 2× 2 modes of the Fourier spectrum, thus

allowing for calculating
::::::::
calculation

:::
of the expected variation of the main components illustrated in Fig. 9, except for the A13.335

The amplitude of the fundamental harmonic A11 (Fig. 10b) is fairly well reproduced, at least for values of the flow discharge

that do not differ much from the critical threshold Qcr, that
:::::
which

:
is where the theory is expected to work best. However, for

lower discharge values the theoretical curve clearly overestimates the measured data, and the predicted equilibrium amplitude

diverges as discharge approaches the threshold value Qi. In this case, as also noticed earlier, an approximate solution can be

derived by assuming that the bar growth is limited by the fully-wet condition.340

To investigate the overall importance of the m= 2 components with respect to the fundamental, we first analyse the sum of

the absolute values of the coefficients A02 and A22, scaled with the amplitude of the fundamental harmonic A11. As illustrated

in Fig. 10b, this metric tends to decrease with discharge, theoretically approaching zero near the critical conditions (i.e at

∆Q∗ ' 0). Despite its limited capability to quantify the fully nonlinear interactions, the theory allows for a proper estimation

of the observed values. However, the main difference between theory and experimental data lies in the relative amplitude of345

the individual m= 2 components, A02 and A22. As illustrated in Fig. 10c, the values of the ratio A02/A11 ::::::::::
|A02|/|A11| are

strongly underestimated by the theory, with experimental values being roughly four times their theoretical counterpart. On

the other hand
:::::::::
Conversely, values of the ratio A22/A11 :::::::::

|A22|/|A11|:reported in Fig. 10d are significantly overestimated. This

indicates that the mode-2 component is not dominated by the presence of regular, periodic central bars (see map of Fig. 9c),

as suggested by the theory, but it is mainly associated with a bell-shaped distortion of the average cross section (Fujita and350

Muramoto, 1985), as represented in Fig. 9b.

Finally, it is worth noting that the ratio A22/A11::::::
Finally,

::
the

::::
ratio

:::::::::::
|A22|/|A11|, illustrated in Fig. 10d, does not tend to zero

as predicted by the theory. From a morphological point of view this implies that for Q→Qcr, while “theoretical” bars tend

to become purely sinusoidal (A11 component only) as the solution approaches its linear limit, observed bars retain a certain

degree of non-linearityand keep ,
::::::::
showing a m= 2 component that derives from the presence of clear diagonal fronts (see Fig.355

6).
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Figure 10. Amplitude of the main the Fourier components depending on the scaled discharge, from theory (lines) and experiments (markers).

Panel (a): amplitude of the fundamental component A11, scaled with the grain size d50. Panels (b,c,d): amplitude of the m= 2 components,

scaled with |A11|, with (b) reporting the sum of the absolute values of the coefficients A02 and A22; (c) , and (
:
c,d) referring to the individual

components A02 and A22. Solid line indicates theoretical results at equilibrium, while dash-dot line indicates theoretical results obtained by

limiting the bar growth to the fully-wet condition.

4 Discussion

4.1 Discharge and bar height

Experimental data reveal that bar height and relief generally decrease with
:::::::::
increasing discharge, and are therefore inversely

correlated with the sediment transport rate. This finding, which at a first sight may appear counterintuitive, is a direct conse-360

quence of the decrease of channel aspect ratio for progressively higher flows that is typical of single-thread rivers. This implies

that the largest bedforms
::::
bars tend to develop under moderate flow conditions, where discharge is high enough to mobilize the

bed material and at the same time is sufficiently low with respect to the critical discharge for bar formation, Qcr.
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The decreasing bed relief with discharge is expected to have a direct impact on the sediment transport rate. Specifically, for

relatively low values of discharge the presence of bars can promote a transversal
::::::::
transverse

:
variability of the Shields number,365

which leads to a net increase of the sediment transport rate with respect to equivalent, flat bed conditions (e.g., Paola, 1996;

Francalanci et al., 2012). This effect can mitigate the reduction of the average transport rate when decreasing discharge, thus

making the sediment rating curve more linear (Ferguson, 2003; Redolfi et al., 2016).

Our results reveal that the weakly nonlinear model allows for reproducing both qualitatively and quantitatively the observed

bar height. Despite the calibration of the parameter r, this is a significant result, as it highlights the capacity of the theoretical370

model to accurately capture the sharp decreasing trend of bar height from intermediate values of discharge to the critical

threshold.

However, the variation of the bar height with discharge is not everywhere monotone, as when discharge becomes relatively

low, bars tend to emerge, and their relief tends to reduce. In these conditions the equilibrium amplitude predicted by the

Colombini et al. (1987) model is clearly unphysical. This is not surprising, as the theory assumes a simply connected domain,375

where the bed is fully submerged. To mitigate this issue, we propose a modified curve for the bar height, obtained by limiting

the growth of the bars by the fully-wet condition.

Situations where bars emerge are expected to be more important for wider channels, due to the larger range of discharge

states between the threshold of incipient sediment transport and the fully-wet threshold. Specifically, as the channel width-to-

depth ratio grows, the equilibrium becomes increasingly complex, ultimately leading to wandering and braiding channels (see380

Ashmore, 2013; Garcia Lugo et al., 2015; Redolfi et al., 2016).

4.2 Discharge and bar shape

The definition of suitable metrics for quantifying variations of the bar shape allows us to highlight how the shape of alternate

bars at equilibrium changes with discharge.

The weakly nonlinear theory of Colombini et al. (1987), as well as the bar predictor of Crosato and Mosselman (2009),385

suggest that when discharge is relatively small (i.e. high width-to-depth ratio) the channel tends to form regular, periodic

central bars (also called double-row bars, see Ikeda, 1984; Crosato and Mosselman, 2020) where scour and deposition are

equally distributed between the center of the channel and the area near the banks.

However, as also evident from existing laboratory and numerical data (e.g., Fujita and Muramoto, 1985; Garcia Lugo et al.,

2015; Qian et al., 2017; Cordier et al., 2019) it is clear that deposition preferentially occurs near the center of the channel (mid-390

channel bars), while deep pools are mostly concentrated near the banks. This produces a bell-shaped distortion of the average

cross section, which gives a Fourier component A02 that at low flows is by far more important than the A22 component.

As highlighted by Colombini and Tubino (1991) this behavior can be explained by fully taking into account the nonlinear

effects, which tend to be progressively more important when the channel aspect ratio increases. Moreover, mid-channel bars

are typically not symmetric with respect to the channel centerline, but they often appear as compound bars, with the water395

flow mainly concentrating near the banks and sometimes cutting the entire channel width through the formation of channel

bifurcations (e.g., Schuurman and Kleinhans, 2015; Duró et al., 2016).
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In experimental modelling of wandering and braided rivers (e.g., Ashmore, 1982; Garcia Lugo et al., 2015) the tendency

of the channels to “stick to the banks” is often considered as a side effect of the physical model. However, this may be not

necessarily the result of
:
a scaling issue, nor a consequence of the low roughness of the banks, but it could be associated with400

a natural tendency of the flow to follow the banks when they are sufficiently straight, with the bars mainly occupying the mid

part of the channel.

The Fourier analysis also reveals that the component A22 (as well as the A13) does not vanish when approaching the critical

conditions, as the theory predicts. Considering that near Qcr the weakly nonlinear analysis should provide an accurate solution

of the shallow water and Exner equations, the
:::
this

:
mismatch is likely to originate from the model equations themselves.405

Specifically, this may be related to three-dimensional effects, which could be locally important in determining the formation

of relatively steep bar fronts that mark a significant difference with respect to the theoretical, sinusoidal bed structure.

4.3 The observed transition between different types of bars

Experimental observations presented in this paper
::::
study

:
provide detailed information on the relationship between bar charac-

teristics and discharge, while other relevant channel properties, such as grain size and slope, are kept constant. Within the tested410

flow range, bars exhibit a variety of sizes and shapes and pass smoothly from one shape to the other as discharge increases. On

the basis of their geometrical properties and migration rate it is possible to identify four main types of bars:

1. At low flows, when channel aspect ratio is high, alternate bars are very irregular, and the channel tends to switch to a

more complex, wandering morphology. Sediment transport occurs on a limited portion of the bed, and the bed evolution

is not dominated by the downstream migration of bar fronts, but rather by lateral erosion and cutoffs. This kind of bars415

can be associated to
::
bar

::
is

:::::::::
associated

::::
with conditions where the top of the bars emerges, so that the bed is not fully wet

(Ww <W , see Table 1). The emersion limits the possibility of bars to grow in
::::::
growth

::
of

:::
the

:::
bar height, and consequently

restricts the bed relief.

2. At low to intermediate flows, bars are dominant
:::::
clearly

:::::::::
delineated

:
and relief is high. Their transverse shape is highly

asymmetric, with narrow, deep, elongated pools and high, flat bar tops occupying a large proportion of the cross sec-420

tion, so that the elevation along the centerline of the channel is always above the median detrended elevation. The

distribution of elevation is strongly negatively skewed, and the Fourier components A02 (symmetrical deformation) and

A13 (asymmetrical deformation) are relatively strong. Bar fronts are clearly delineated, steep and almost orthogonal to

channel banks. Immediately downstream of fronts, where the deepest pools are located, there is no sediment in motion.

Moreover, bar migration is slow and the wavelength is significantly higher than the theoretically predicted values.425

3. At intermediate to high flows, relief and bar wavelength decrease with increasing discharge,
:::
and

:
bar fronts become

curved and oblique. The bed elevation distribution is less skewed and higher-order components of the Fourier spectrum

become less relevant with respect to the fundamental harmonic A11. As deep pools tend to disappear, sediment motion

occurs on the entire channel surface. This kind of bedforms
:::
bed

:::::::::::
morphology represents the typical shape of alternate
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bars (i.e. that sketched in Fig. 1a), and shows a very close match with theoretical predictions in terms of bar height,430

wavelength
:
, and migration rate.

4. Finally, at high flows we observe the formation of diagonal bars
:::::::
diagonal

::::
bars

::::
form. Despite preserving an alternate

shape, diagonal bars are rather different from alternate bars in terms of both geometrical properties and formation mech-

anism. The height of these bedforms is small and largely independent from
::
of

:
discharge, and their elevation distribution

is almost symmetrical. Diagonal bars are relatively short (less than five channel widths), with oblique, almost straight435

fronts that migrate downstream at high speed. They are observed outside the range of alternate bar formation (i.e. for

Q>Qcr)and should be regarded as a distinct kind of bedforms that can be interpreted as three-dimensional oblique dunes

(Colombini and Stocchino, 2012). Discharge values for which diagonal bars develop are ,
:::
for

::::::::
discharge

::::::
values

::::
that

:::
are

:::
also

:
consistent with the empirical criterion proposed by Jaeggi (1984).

::::::::
According

::
to

::::::::::::::::::::::::::::
Colombini and Stocchino (2012)

:::::::
diagonal

::::
bars

:::
are

::::::::
associated

::::
with

:::
the

::::::::
transition

::::
from

:::::
two-

::
to

::::::::::::::
three-dimensional

:::::::
oblique

:::::
dunes.

::::
This

::::::::
transition

::
is
::::::::
expected440

::::
when

::::::::
reducing

:::
the

::::::
relative

:::::::::
roughness

::::::
d50/D,

:::
i.e.

:::::
when

::::::::::
approaching

::::::
typical

:::::::::
conditions

::
of

::::::
gravel

:::
bed

::::::
rivers.

The three-dimensional character of the flow field is fundamental for explaining the morphology of diagonal bars. Specifically,

when Q>Qcr the two-dimensional, depth-averaged model of Colombini et al. (1987) would predict plane-bed conditions (no

bars), while a three-dimensional, non-hydrostatic analysis is needed to reproduce the observed formation of diagonal bars

(Colombini and Stocchino, 2012). For this reason, all depth-averaged numerical models for alternate bars (e.g., Crosato et al.,445

2011; Siviglia et al., 2013; Qian et al., 2017; Cordier et al., 2019) are likely suffering
::::
likely

::::::
suffer

::::
from

:
the same limitation.

Since diagonal bars are of small amplitude, they can be
::
are

:
expected to have a negligible

::::::
limited effect on sediment transport ,

flow resistanceand
:::
and

::::
flow

:::::::::
resistance.

::::::::
Moreover,

::::
they

::::
may

:::::
easily

::::::::
disappear

::
as

:::
the

:::::
result

::
of

:::
the

:
interaction with otherbedforms;

however, ,
:::::
more

::::::::
prominent

:::::::::
bedforms

::::
(e.g.,

::::
free

:::::::
alternate

::::
bars

:::
and

::::::
forced

::::
bars)

::::
that

:::
are

:::::::
expected

::
to
:::::
form

:::::::
because

::
of

:::
the

::::::
natural

::::::::
variability

:::
of

::::
flow

:::
and

:::::::
channel

::::::::
geometry

:::
in

:::::
rivers.

::::::::::::
Nevertheless, attention should be paid in the interpretation of numerical450

results and in their comparison with field and laboratory observations.

From a visual inspection of the topographies illustrated in Fig. 2, it is evident that bars forming at Q> 2.0l s−1 are not

spatially uniform, but they grow in the initial part of the channel, before adapting to fully developed conditions. This behavior

has been often observed by laboratory and numerical experiments (Fujita and Muramoto, 1985; Defina, 2003; Nicholas, 2010;

Qian et al., 2017) and has been associated to
:::
with

:
the fact that bar formation needs to be triggered by small perturbations,455

whose effect tends to propagate the downstream direction
::::::::
propagates

:::::::::::
downstream in the form of wave packages (i.e. trains of

bars). Specifically, the spatial adaptation is probably a consequence of the convective (rather than absolute) nature of bar insta-

bility highlighted by Federici and Seminara (2003), which implies that the effect of local perturbations tends to be convected

downstream rather than being spread throughout the whole domain.

On the basis of theoretical results, it is possible to define an additional threshold value of discharge, corresponding to460

conditions where the channel aspect ratio β equals the resonant value βR :::
βres, originally defined by Blondeaux and Seminara

(1985) (see Table 1). We name this threshold value “resonant discharge” , which assumes a value Qres = 1.94l s−1
::::::
(Qres),

:::::
which

::::
turns

:::
out

::
to
:::::
equal

::::::::
1.94l s−1. Although not directly affecting the theoretical solution for free migrating bars, the resonant
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threshold is fundamental for defining the propagation of morphological effects that can be generated by any flow disturbance

(e.g., that associated with boundary conditions). Specifically, as first highlighted by Zolezzi and Seminara (2001), under sub-465

resonant conditions (i.e. Q>Qres) morphological effects tend to manifest themselves downstream of the disturbance, while

an upstream propagation is possible in the super-resonant regime (i.e. when Q<Qres).

The different behavior of bars observed at relatively low flows, which tend to be well-developed along the entire flume (see

Fig. 2), may be associated with the super-resonant character of the experiments. In this case the possible upstream propagation

of the morphological information may favour an upstream diffusion of the bed instability, which can therefore reach the initial470

part of the channel.

4.4 The alternate nature of both alternate bars and diagonal bars

The checkerboard pattern of the Fourier spectra indicates that both alternate and diagonal bars are “purely alternate”, in the

sense that the elevation map of the upstream half wavelength is nearly identical to the downstream half but mirrored along

the channel centerline. Note that this does not imply a point symmetry with respect to the center of the bar (y =W/2 and475

x= L/2), but rather a switching of the same erosion and deposition pattern between the two sides of the channel. Interestingly,

this is valid even for the ensemble bars at the lowest discharge (Q= 0.5l s−1), despite the complexity of the bed topography

that can be appreciated
::::::::
displayed in Fig. 2.

This particular pattern is intrinsically linked to the bar formation mechanisms. To some extent, both alternate and diagonal

bars can be considered as “free bars”, in the sense that they both arise from an autogenic, three-dimensional instability of the480

erodible bed. This kind of instability does not break the overall symmetry of the problem; therefore, if a deposition patch tends

to form near one bank, a similar feature should appear somewhere else, but on the opposite side of the channel. This suggests

that if periodic, three-dimensional bedforms develop, they should follow an alternate pattern, at least in an average, statistical

sense.

From a mathematical point of view, the checkerboard pattern can be explained by considering that free bars tends
::::
tend to ini-485

tially appear as a bed deformation having a double sinusoidal shape (A11 component only), while as they grow, nonlinear inter-

actions gives rise to the second-order,A00,A02 A20,A22 harmonics (see Colombini et al., 1987; ?)
:::::::::::::::::::::::::::::::::::::::::::::::::
(see Colombini et al., 1987; Bertagni and Camporeale, 2018)

. Extending the analysis to higher order of approximation would give other even-even modes, but no odd-odd modes.

Finally, it is worth noting that the dominance of the even-even and the odd modes also
::::::
odd-odd

::::::
modes

:
has an experimental

significance, as it indicates that: (i) there are not systematic trends that may be
::
no

:::::::::
systematic

::::::
trends

:
associated with channel490

asymmetries (i.e.in the
:::
e.g.,

::::::
product

:::
of initial bed levelling); (ii) random effects resulting from measurement errors, experimen-

tal imperfectionsor associated with
:
,
::
or the intrinsic stochasticity of sediment transport processes, are not significantly affecting

the shape of the ensemble bar.

4.5 Suitable metrics for quantifying bar height and relief

The laboratory dataset used for this work allowed for the comparison of a number of methods and metrics to characterize bar495

height and relief.
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Historically, interest in the quantification of bedform
:::
bar height arose from their influence on human activities and interaction

with artificial structures (Jaeggi, 1984). Therefore, maximum scour and deposition were the most relevant parameters
::::::
utilized

to evaluate the risk of levee instability and levee overtopping, respectively. However, metrics of bar height based on maxima

and minima (HBM and HB) are highly sensitive to measurement errors and uncertainties that may derive from the presence500

of vegetation on the bar top and from the difficulty to measure
::
of

:::::::::
measuring the bottom elevation in deep pools. Moreover,

the estimation of both HBM and HB requires the identification of individual bar units, which introduces potential sources of

uncertainties and limits its application to bed configurations where a dominant longitudinal wavelength is clearly recognizable.

On the other hand
::::::::::::
Comparatively, SD and BRI are robust indices that do not depend on extreme values of elevation

:
, but

on the entire bed elevation distribution. Moreover, these bed relief metrics can be applied to a range of different morphologies,505

thus allowing for comparisons between bars and other bedforms. Since SD and BRI show the same trend observed for HBM

and HB , the formers can provide better data when the purpose is not to quantify the maximum scour and depositionposition

but rather to ,
:::
but

::
to

::::::
rather measure morphological trajectories and to compare study cases with experimental and numerical

simulations.

It is also important to note that metrics based on the comparison of elevation values at different longitudinal positions (i.e.510

HBM and SD) require detrending the bed elevation by removing an average slope that is often not obvious to define. Our

experiments show that results are very similar when considering instead the cross section based indices HB and BRI , with

the advantage that they are fully independent on how the average slope is detrended. This
::::::::
similarity is linked to the presence

of deep, small pools and large, flat bar tops. Cross-sectional relief is more strongly influenced by the former
::::::
formers,

:
and the

maximum elevation along the cross section where the lowest point is located is not very different from the highest point of the515

entire bar.

5 Conclusions

We explored how the equilibrium properties of free, migrating alternate bars depend on water discharge through a series of

laboratory experiments, where width, channel slope and bed material were kept constant. A proper definition of the most

suitable metrics, the analysis of the experimental results, and the comparison with existing theoretical models, allow us to draw520

the following conclusions:

1. the equilibrium bar height generally decreases with
::::::::
increasing discharge. However at low flows, when bars start emerging

from the water surface, an opposite trend is observed, which implies that moderate flows are mainly responsible of
:::
for

the formation of large alternate bedforms;

2. the shape of alternate bars significantly changes with discharge, with
::::
where

:
relatively low flow conditions

::
are

:
charac-525

terized by a high negative skewness of the bed elevation distribution and an important contribution of the higher-order

Fourier modes with respect to the fundamental harmonic;

25



3. at low discharge, when the width-to-depth ratio is relatively high, the mode-2 Fourier components tend to become

increasingly important. However, the channel does not tend to develop a regular central bars
:
,
:
but rather a bell-shaped

distortion of the average cross section, with deposition preferentially occurring near the center of the channel (mid-530

channel bars), and scour pools mainly located near the banks;

4. the significant variations of the bar morphology and the associated metrics, allows
:::::
allow for identifying four main types

of bars, which can be associate to
::
are

:::::::::
associated

::::
with

:
different flow conditions with respect to the relevant morphody-

namic thresholds;

5. the weakly nonlinear theory allows for a satisfactory prediction of bar height and migration speed, while their
::
its ca-535

pability to reproduce bar shape is limited to a qualitative analysis. Moreover, limiting the bar growth to the fully-wet

condition allows for correcting the theoretical predictions at low values of discharge, for which alternate bars tend to

emerge from the water surface;

6. the transition from alternate bar morphology to plane-bed configuration that is expected when discharge exceeds the crit-

ical thresholdQcr is not sharp, due to the formation of diagonal bars, which can
:::::
should be regarded as three-dimensional540

oblique dunes;

7. the definition of ensemble bars that represent the average bar topography enables us to clearly highlight
:::::
clearly

:::::::::
highlights

the “purely alternate” character of both alternate bars and diagonal bars, which manifests itself as
:
a checkerboard pattern

of the Fourier spectrum.
:
In
:::::::
general,

::::
our

::::::::
definition

::
of

::::::::
ensemble

::::::::::
topography

:::
can

::
be

::::
used

:::
for

::::::::
analysing

::::
any

::::::::::::
quasi-periodic

::::::::::::
morphological

::::::
pattern,

::::
such

:::
as

:::::::::::::
curvature-driven

:::::
point

::::
bars

:::::::
forming

::
in

::::::::::
meandering

:::::
rivers.

:
545

Overall, this work provide fundamental information for designing laboratory experiments and numerical simulations, for

predicting the bar evolution in different scenario of possible hydrological alterations, and for interpreting the observed morphological

changes depending on channel conditions and flow history.

Code and data availability. A Matlab code for the computation of the critical and resonant conditions (Redolfi et al., 2019) is available at

https://bitbucket.org/Marco_Redolfi/bars_res-crit, while a Matlab function for the Fourier analysis of bed topographies is provided at https://550

bitbucket.org/Marco_Redolfi/fourier_transform_bars. Laboratory data are available at https://doi.org/10.5281/zenodo.3929371 (Welber et al.,

2020).

Appendix A: Calculation of Fourier coefficients

Here we detail the procedure needed to expand the signal in the form of Equation
::
Eq.

:
(5), and to calculate the associated

coefficients Anm. We start by considering a generic real-valued, two-dimensional signal fjk, defined on a regular grid of555

J ×K points, whose indexes j and k run from 0 to J − 1 and from 0 to K − 1, respectively. The two-dimensional, discrete
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Fourier transform allows for expressing the signal as follows:

fjk =

J−1∑
m=0

K−1∑
n=0

Fnm exp

[
2πin

j

J
+ 2πim

k

K

]
, (A1)

where i is the imaginary unit and the complex Fourier coefficients Fnm can be calculated through standard Fast Fourier

Transform algorithms (e.g., the Matlab FFT2 function).560

Considering the L×W domain illustrated in Figure A1, with the system of reference (x,y) originating at the lower left

corner, the coordinates of the grid points can be determined as x= (j+ 0.5)dx and y = (k+ 0.5)dy, where dx= L/J and

dy =W/K are the grid spacing in the longitudinal and transverse directions, respectively. In this system of reference, the

Fourier expansion of the signal can be expressed as:

fjk =

J−1∑
m=0

K−1∑
n=0

F ∗nm exp
[
2πin

x

L
+ 2πim

y

W

]
, (A2)565

whose Fourier coefficients can be readily computed as:

F ∗nm = Fnm exp
[
−πi

(n
J

+
m

K

)]
. (A3)

Equation (A2) contains both sines and cosines in both the x and y directions, as evident when expanding the complex

exponential by means of the Euler’s identity:
570

fjk =

J−1∑
m=0

K−1∑
n=0

F ∗nm

[
cos
(

2πn
x

L

)
cos
(

2πm
y

W

)
− sin

(
2πn

x

L

)
sin
(

2πm
y

W

)
+

icos
(

2πn
x

L

)
sin
(

2πm
y

W

)
+ isin

(
2πn

x

L

)
cos
(

2πm
y

W

)]
. (A4)

Here we are interested to obtain an expression where, consistently with theoretical analyses (e.g., Colombini et al., 1987),

only cosines appear in the transverse structure. To obtain this
::::
such

::
an

:
expression, we can start by considering that the signal

fij can be represented in a different way by adding virtual, external points at which arbitrary values are assigned to the signal.575

This technique is rather common in signal analysis to obtain a different Fourier representation of the same signal: for example,

a zero padding is often used to increase the wavelengths of the fundamental harmonic. Specifically, if we extend the grid by

adding K virtual points in the y-direction as illustrated in Figure A1, and we compute the Fourier transform as detailed above,

we obtain the following expression:

fjk =

J−1∑
m=0

2K−1∑
n=0

F ∗nm exp
[
2πin

x

L
x+ 2πim

y

2W

]
, (A5)580

which is similar to Eq. (A2), except for the transverse wavelength of the fundamental harmonic being twice the channel

width (2W ). The key to eliminate the sine components along the y-direction, is to properly assign the values of fij at the

virtual points. Specifically, if the signal is mirrored with respect to the y =W axis, the sum
::
of all the terms containing sin(y)
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identically vanishes, so that the Fourier expansion (A5) can be written as follows:

fjk =

J−1∑
m=0

2K−1∑
n=0

F ∗nm cos
(

2πm
y

W

)[
cos
(

2πn
x

L

)
+ i sin

(
2πn

x

L

)]
. (A6)585

Equation (A6) contains redundant information, as components actually having an identical structure appear more than once

in the sum. Specifically, It
:
it
:
is possible to demonstrate that only M ×N components are needed to exactly represent a real

signal, where N =K and M equals J/2 + 1 or (J + 1)/2, depending on J being an even or an odd number, respectively.

Therefore, a proper definition of the coefficients Anm allows for expanding the signal fij in the following parsimonious way:

fjk =

M−1∑
m=0

N−1∑
n=0

cos
(

2πm
y

2W

)
Re
{
Anm

[
cos
(

2πn
x

L

)
+ i sin

(
2πn

x

L

)]}
, (A7)590

which can be equivalently written in the form of Equation
::
Eq.

:
(5) after expressing the complex coefficients in terms on their

amplitude and phase:

Anm = |Anm| exp(iφnm). (A8)

Figure A1. Illustration of the grid used to discretize a domain of size L×W , where W is the channel width. Grid points are identified by

the indexes j and k (x and y direction, respectively), and are equally spaced at intervals dx and dy. The original grid contains J ×K points

(closed circles), while the extended grid, obtained by adding virtual external points (open circles), is formed by J × 2K points that cover a

total width 2W .

The Fourier coefficients Amn can be directly derived from the F ∗nm coefficients, and can be computed for a generic fjk

signal using the Matlab code we made available at https://bitbucket.org/Marco_Redolfi/fourier_transform_bars.595
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