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Thank you very much to both reviewers for the helpful comments and feedback on our 

manuscript. Below our replies to each comment and an explanation of how the manuscript will 

be revised to address each point. 

 

 

Reviewer #1 

 

(R1.1) This is a very interesting and thought-provoking article that I enjoyed reading. The main 

contribution of the paper is to set out a new method of classifying zones of homogenous 

morphology using a machine learning algorithm. The method is illustrated using an example from 

a delta, specifically the Ganges (GBM) delta. In essence, the approach works by using remote 

sensing imagery to identify the patterns of channels and islands in the delta, employs a range of 

morphological metrics, and then the ML algorithm builds and identifies a network of homogenous 

zones across the area of interest. The result in this study is a map that classifies the delta into 6 

main morphologically discrete zones (that are themselves further sub-divided), which in principle 

relate to different process dynamics in each area. Although in some respects we do not learn 

anything completely new about the morphological zones of the GBM (a point I return to below), 

the method is exciting and interesting and its potential is well illustrated with this particular case 

study. Specifically, the very large extent of this delta (and its complexity) illustrates very well the 

potential of the approach to identify process/morphological zones of variable dimensions and 

across a large area. There is no doubt that the approach has potential to be employed in other 

morphological settings and, taken together with the point that the methodological aspects of the 

paper appear to be delivered robustly, I do think that the criteria for publication (significance, 

scientific quality, and presentation quality) are met.  

 

Reply: Thank you for your positive assessment of our manuscript. We agree that overall the 

classification resulting from the proposed method is not too different from our previous one 

[Passalacqua et al., 2013]. However, there is an additional level of information resulting from this 

method that allows us to capture at a finer ‘resolution’ the morphological similarities among delta 

islands and create groupings of ‘similar’ islands. One of the motivations of this work is in fact 

capturing the unique aspects of a complex network so that individual islands, representative of 

each group, can be modeled at high resolution and results scaled up to the other islands in the 

same group. We did not necessarily expect this method to give us different results than our 

previous method (as those groups are related to processes acting on the delta), but rather to 

obtain a more detailed classification to inform numerical modeling and further interpret existing 

morphological zones. Revisions will be made to state more clearly the significance and novelty of 

this work as explained in our replies below to the reviewer’s specific comments.  

 



(R1.2) Having said that, there are some aspects of the paper where I did feel that the overall 

significance and originality of the work could be better highlighted. Specifically, I had the sense 

that the paper as it stands does a very good job of describing the method, but it is not as strong 

at explaining the significance of the work in terms of showing clearly how the method could be 

applied to gain insight into morphodynamic processes.  

 

Reply: Thank you for your comment; we have attempted to highlight how the method provides 

new insight in the Discussion section where we interpret the geomorphological meaning of each 

class. However, your comment clearly points us to the need to reinforce this aspect of the paper. 

As also mentioned in other replies below, we will add several statements in the revised 

manuscript: at the end of the introduction “In this paper, we propose a two-step unsupervised 

machine learning method to analyze spatial patterns in large river deltas. We apply this method 

to the Ganges-Brahmaputra-Meghna Delta and show that by clustering areas of the distributary 

system with common morphological characteristics, we are able to reliably extrapolate our 

understanding of the physical processes that locally dominate island and channel morphology 

across large areas of the delta. While our previous work highlighted three main regions in the 

GBMD delta (Passalacqua et al., 2013), here we are able to extract more information on the delta 

surface network, which can be used to increase the explanatory power of on-the-ground 

observations and guide future field work and the selection of representative islands for high-

resolution numerical modeling (and even for coastal zone management practices). Additionally, 

we provide a method for identifying which metrics are most useful in differentiating process 

signatures, thus providing guidance on what properties to measure in other systems.” 

 

(R1.3) The paper as it stands builds a classification of process/morpho zones based on a mosaic 

of satellite images dating from 1990 – if it were possible to repeat the method, using much more 

recent imagery, it would presumably be possible to demonstrate more clearly how these 

morphological zones have evolved in space-time in response to some of the changing process 

drivers that the authors speculate on in their discussion. I do accept that undertaking that analysis 

is not a trivial task and I emphasise that the paper is acceptable as it stands, it’s just that the 

paper could be magnificent if such an analysis were also included. Admittedly, that magnificence 

could equally be achieved in an additional paper somewhere down the line!  

 

Reply: Thank you for your comment; indeed you raise an important point. The imagery used in 

this paper is in fact the same satellite imagery used in our previous paper, as we could rely on 

the previously extracted network for comparison. We have performed the analysis that you 

suggest in another manuscript: we have developed a method for quantifying the variance of the 

network through time and validated it on experimental results [Jarriel et al., 2019] and then applied 

the method on LANDSAT imagery for the period 1989-2019 [Jarriel et al., 2020]. There are 

certainly changes detected, particularly along the main rivers and in the polder zone. We will cite 

this work in our revised manuscript and provide a brief discussion on how the analysis proposed 

in this paper can be applied through time to quantify whether local changes observed in the 

network are reflected in the machine learning classification.  

 



Jarriel, T., F. Isikdogan, A. Bovik, P. Passalacqua (2019), Characterization of deltaic channel 

morphodynamics from imagery time series using the Channelized Response Variance, Journal of 

Geophysical Research - Earth Surface, 124, 3022-3042, doi:10.1029/2019JF005118. 

 

Jarriel, T., L. F. Isikdogan, A. Bovik, P. Passalacqua (2020), System wide channel network analysis reveals 

hot-spots of morphological change in anthropogenically modified regions of the Ganges Brahmaputra 

Meghna Delta, Scientific Reports, 10, 12823, https://doi.org/10.1038/s41598-020-69688-3.   

 

This section of the Discussion will be edited as follows: “Perhaps the most surprising result of our 

work is the lack of a distinct signature of human intervention on the computed delta metrics. The 

anthropogenic modifications in the polder zone of the GBMD are known to have amplified tides 

and prevented floodplain sedimentation (Pethick and Orford, 2013; Auerbach et al., 2015), yet 

these modifications are not detectable in our analysis as the machine learning techniques do not 

identify the polders as a separate class. This result can be due to a variety of factors: first off, the 

mosaic used as input imagery is from the 1990s and while polders at that point had been in place 

for three decades (since the 1960’s), their signature may not be visible yet. Additionally, the 

resolution may be too coarse to detect human modifications, which could act at subgrid scale with 

respect to the Landsat imagery used here. We computed the delta metrics on the features as 

extracted from the imagery; the embankments are not visible and the island boundary and 

properties as extracted may appear more natural than they actually are. Furthermore, 

embankments are usually built to follow the natural edges and contours of the islands, in a way, 

embankments ‘freeze’ island geometry in place.. Other metrics such as the number of outlet 

channels have been affected by human modifications in a visible way but have not yet modified 

the PDF of the metric such that it is distinguishable from the PDF of the natural islands. The 

formation of new ‘kash’ land and siltation of channels in the inland tidal zone (Wilson et al., 2017) 

is thought to be related to poldering and thus human-induced modification of the tidal prism, but 

our cluster analysis also shows how infill of the channel network and amalgamation of young 

islands over time is an ongoing morphological change with maturation of the delta plain. 

Repeating this analysis on time series imagery of the GBMD with tools capable of quantifying 

change (Jarriel et al., 2019) provides additional information and points to the polder region as an 

area of change over the last three decades (Jarriel et al., 2020). These changes may have not 

impacted yet the overall classification presented in this work; the question of what disturbance 

size affects the system as a whole is an important one which is yet to be addressed.” 

 

 

(R1.4) Irrespective of that suggestion, I have a number of other specific suggestions that could 

potentially be addressed to clarify further some aspects of the discourse. I now list those here: 1) 

On p3, L13, the citation to Meshkova and Carling (2013) is slightly misleading. The sentence 

implies that their paper is about deltas, but it is about a stretch of river well upstream of one. It 

just needs to be rephrased to make it clear that the process they used could presumably be 

applied to deltas.  

 

Reply: Thank you for catching that - we will revise the text to better represent the goals of that 

work as follows:  “Spatial variability in the morphology of the channel network also results in 

diversity in the geometry of islands in multi-threaded systems (Meshkova and Carling, 2013), 



which in deltas have been quantified with multiple metrics of island and network morphology 

(Edmonds et al., 2011), with statistical analyses (Passalacqua et al., 2013), and in numerical 

models under various input conditions, sea level rise, and subsidence (Liang et al., 2016b, a).” 

 

(R1.5) 2) At the end of the introduction (the paragraph at p3-4), I think it would be helpful for the 

reader to have a stronger and explicit statement here concerning the overall aims and objectives 

of the paper, but also in particular the originality and significance of the work. How does the new 

method build on previous approaches and what does that mean for potentially enhancing our 

understanding of (delta) morphodynamics? In fact this is slightly a recurring theme through the 

paper. The main result (Figure 5) provides a classification that is not that dis-similar (it does have 

much more detail) to previous classifications (the authors recognise this as the classes are in 

essence taken from that prior work). So elsewhere in the paper too the extent to which the new 

work really offers new insight needs to be discussed and addressed (this concern partly motivates 

my main suggestion above).  

 

Reply: Thank you, we agree with you and we will add the following paragraph at the end of the 

introduction: “In this paper, we propose a two-step unsupervised machine learning method to 

analyze spatial patterns in large river deltas. We apply this method to the Ganges-Brahmaputra-

Meghna Delta and show that by clustering areas of the distributary system with common 

morphological characteristics, we are able to reliably extrapolate our understanding of the 

physical processes that locally dominate island and channel morphology across large areas of 

the delta. While our previous work highlighted three main regions in the GBMD delta 

(Passalacqua et al., 2013), here we are able to extract more information on the delta surface 

network, which can be used to increase the explanatory power of on-the-ground observations and 

guide future field work and the selection of representative islands for high-resolution numerical 

modeling (and even for coastal zone management practices). Additionally, we provide a method 

for identifying which metrics are most useful in differentiating process signatures, thus providing 

guidance on what properties to measure in other systems.” And we will also add this statement 

to the Discussion: “Which metrics are most effective at capturing the signature of geomorphic 

processes is an open question (Edmonds et al., 2011; Liang et al., 2016); our analysis results 

provide guidance on what to measure and the relative importance of these metrics in a delta as 

large and heterogeneous as the GBMD.”  

 

 

(R1.6) 3) In the methods section (p5, final paragraph) I felt that a little bit more detail could be 

provided regarding the source imagery, rather than relying exclusively on the citation to 

Passalacqua et al (2013). When I went and read that paper I only then realised that the imagery 

being used was acquired in 1990, which of course means that the classification that is developed 

of the GBM’s morphodynamic zones is one that is pertinent to conditions three decades ago. . 

..this point at least needs to be absolutely clear to the reader.  

 

Reply: Thank you for the comment and as stated above, you are absolutely correct. We will 

provide more details on the data source as follows: “We obtained the channel network and water 

surface mask from Orthorectified Landsat Thematic Mapper Mosaics (Landsat GeoCover TM 



1990 Edition Mosaics, tiles N–45–20 and N–46–20, 28.5 m resolution) as in Passalacqua et al., 

(2013).” 

 

 

(R1.7) 4) In turn, this point raises some further questions about the way in which the mapping 

results are interpreted. Throughout the paper it is implicitly and explicitly assumed that the 

distinctive morphological zones represent distinctive *process* zones. This is not an 

unreasonable assumption, but presumably the morphological zones represent the outcome of 

ongoing dynamic processes whose response and relaxation times vary according to spatial scale, 

such that the observed morphology is presumably not instantaneously responsive of process 

conditions in 1990, but rather also reflect process conditions years or decades before. I would like 

to see a clearer discussion of this point because this would aid in understanding how a 

classification approach such as this – which is geared towards working at large spatial scales 

because of the advantages of the remote sensing and ML techniques – can adequately reflect 

(lagged) processes operating over those large spatial scales. The answer to that question 

fundamentally conditions the utility and hence significance of the new approach in terms of 

understanding process dynamics.  

 

Reply: Thank you for raising such an important point; definitely, the morphology observed and 

detected at any given time, although the input data are in fact an instantaneous image of the 

system, does not represent only instantaneous conditions (e.g., discharge and thus river widths), 

but also characteristics of the system resulting from processes acting at long time scales. So 

effectively the imagery captures both instantaneous conditions as well as the long term signature 

of physical processes. We believe that classifications such as that proposed here, or in our 

previous work, capture predominantly the morphology resulting from long term processes: large-

scale delta plain progradation that defines the tidal impact and infill of the channel network, and 

main channel belt avulsions.  

While instantaneous conditions can modify the network, those variations would be observed in 

the monsoon season (when satellite imagery is cloudy) in terms of channel width, but statistically 

the network would remain the same. It is indeed a very interesting research question as to what 

scale a local disturbance is felt at the network scale and it is a question we are currently working 

on.  

We will revise this part of the Discussion as follows (see also reply to R1.3): The anthropogenic 

modifications in the polder zone of the GBMD are known to have amplified tides and prevented  

floodplain sedimentation (Pethick and Orford, 2013; Auerbach et al., 2015), yet these 

modifications are not detectable in our analysis as the ML techniques do not identify the polders 

are not identified as a separate class. This result can be due to a variety of factors: first off, the 

mosaic used as input imagery is from the 1990s and while polders at that point had been in place 

for three decades (since the 1960’s), their signature may not be visible yet. Additionally, the 

resolution may be too coarse to detect human modifications, which could act at subgrid scale with 

respect to the Landsat imagery used here. We computed the delta metrics on the features as 

extracted from the imagery; the embankments are not visible and the island boundary and 

properties as extracted may appear more natural than they actually are. Furthermore, 

embankments are usually built to follow the natural edges and contours of the islands, in a way, 



embankments ‘freeze’ island geometry in place.thus reducing their impact on island geometry. 

Other metrics such as the number of outlet channels have been affected by human modifications 

in a visible way but have not yet modified the PDF of the metric such that it is distinguishable from 

the PDF of the natural islands. The formation of new ‘kash’ land and siltation of channels in the 

inland tidal zone (Wilson et al., 2017) is thought to be related to poldering and thus human-induced 

modification of the tidal prism, but our cluster analysis also shows how infill of the channel network 

and amalgamation of young islands over time is an ongoing morphological change with 

maturation of the delta plain. Repeating this analysis on time series imagery of the GBMD with 

tools capable of quantifying change (Jarriel et al., 2019) provides additional information and points 

to the polder region as an area of change over the last three decades (Jarriel et al., 2020). These 

changes may have not impacted yet the overall classification presented in this work; the question 

of what disturbance size affects the system as a whole is an important one which is yet to be 

addressed.” 

 

(R1.8) Also on this theme, I wonder if the paragraph from L24 in section 5.2 should also be 

modified to reflect this point more closely. Specifically, the authors comment on their analysis not 

yet detecting the amplified tides and prevented sedimentation identified in previous work – but in 

relation to the Pethick and Orford study there is only a single gauge (at Khulna) that has any data 

before the 1990 acquisition date of this study, and actually the increase before and up to 1990 

(the period that is pertinent to the acquired imagery, as per point 3) is not very large. So, I am not 

surprised that they find this result, it’s just that my interpretation of why the authors do not is 

different from theirs (image resolution, feature discrimination, etc).  

 

Reply: Thank you for this comment and you are absolutely correct. As the imagery is from the 

1990s it is possible that anthropogenic modifications were not yet visible in the system. Our work 

in Jarriel et al. [2020] does suggest large changes in the polders. The extent to which these 

changes will impact the network classification, given the image resolution, needs to be quantified 

in future work. We will revise the abstract as follows: “The method is not able to distinguish 

between islands with embankments (polders) and natural islands in the nearby mangrove forest 

(Sundarbans), suggesting that human modifications have not yet altered the gross geometry of 

the islands beyond their previous ‘natural’ morphology or that the input data (time, resolution) 

used in this study are preventing the identification of a human signature.” and the Discussion as 

mentioned in previous replies (R1.3 and R1.7).  

 

(R1.9) Finally, I would like to suggest also that some minor modifications to some of the Figures 

(which in general are very good) may help the overall clarity of communication. In particular: I 

found it very hard to discriminate the two white lines demarking ´ the tidal extent and backwater 

extent on Figure 1. Perhaps the use of an alternative (bright) colour for one of these lines would 

help?  

 

Reply: Thank you, we will revise the figure. This point was also raised by Reviewer 2.  

 

(R1.10) On Figure 4, it was not clear to me (presumably they mark ranges of correlation 

coefficients) what the significance of the coloured shading of the cells in the matrix represents. 



Either a legend needs to be added to illustrate the meaning of the shading, or perhaps add some 

detailed text to the figure caption for the same? By the same token, there is not enough 

information in the figure caption to be able to understand what the line and scatter plots actually 

represent (at least without extensive cross-referencing to the text).  

 

Reply: We agree and we will add the following explanatory text to the Figure 4 caption:  “Matrix 

of correlation values for sets of metrics. Warm colors indicate pairs of metrics that are negatively 

correlated. Darker warm colors indicate stronger negative correlation relationships (e.g. the 

convexity-dry shape factor element). Cool colors indicate pairs of metrics that are positively 

correlated, with darker cool colors indicating stronger positive correlations (e.g. the average 

channel width-maximum channel width element). Overall, metrics used in this analysis show 

moderate degrees of correlation. Also shown are the distributions for each metric value (e.g. the 

area-area element) as well as the scatter plot distribution of the metric relationships (e.g. the area-

aspect ratio element).” 

 

 

(R1.11) I wondered – ´ this is not a critical point – if the logical sequence of diagrams should 

actually be that Figures 6 and 7 (which outline in effect the inputs into the overall classification) 

should precede Figure 5, which is the outcome of the classification process?  

 

Reply: Thanks for the comment; we think the current order is correct as information from Figure 

5 is used in the following ones. To aid the reader in following the workflow, we have revised the 

corresponding figure captions. Edits to the caption of Figure 5 are addressed in the next comment. 

 

Figure 6: “Dendrogram of classification and heatmap of variables. Warm colors indicate a high 

median value of a given parameter relative to the delta-wide median, whereas cool values indicate 

a low cluster median relative to the delta-wide median value.” 

 

Figure 7: “The U-matrix (unified distance matrix) visualizes the number of adjacent islands within 

a node. Larger dots represent a greater number of islands, as determined by the GeoSOM 

method. Smaller dots represent a smaller number of islands. The colored outlines and shaded 

areas correspond to the 6 main classes or groups.” 

  

Additionally, the following text was added to the manuscript section that discusses Figure 7:  

“The U-matrix, or unified distance matrix, shows the result of the GeoSOM analysis, illustrates the 

number of adjacent islands assigned to each node within a group (Fig. 7).” 

 

(R1.12) In any case, as with Figure 4 I felt that the figure caption and legend for Figure 5 could 

be a little bit more detailed. It took me a little bit of work to figure out exactly what the 6 classes in 

the caption are (and the 14 clusters) – adding the details of the 6 classes to the caption would be 

helpful. 

 

Reply: We agree and we will add the following text in the figure caption: 

 



Figure 5: “Island classification as a result of the hierarchical agglomerative clustering method, 

using a geographic constraint so that only adjacent islands can be grouped. Each island in the 

GBM delta is classified into 14 individual clusters. The 14 individual clusters are further grouped 

into 6 main classes, using a dendrogram (Fig. 6). The 6 main groups include estuarine (purples), 

tidal (blues), transitional (pinks), inactive (gray), fluvial (oranges) and other (green).” 

 

Reviewer #2 

 

(R2.1) The manuscript describes a data analysis workflow to classify regions of the Ganges-

Brahmaputra-Meghna Delta (GBMD) based on island morphometrics. These island and channel 

morphometrics correspond to processes and process zones. I found the paper well written, clear, 

and interesting.  

 

Reply: Thank you for your positive assessment of our manuscript.  

 

(R2.2) I have mostly minor comments (listed below). Before I get to these minor, specific 

comments, I have one larger comment focused on the extensibility of the analysis. As stated on 

P4 L5-6, the GBMD is the largest subaerial delta in the world. The manuscript describes working 

with a dataset of 1200 features (P5 L31). I am wondering about applying this to other deltas 

around the world – how many deltas would work with this technique? The manuscript doesn’t 

necessarily need to answer that question, but I think the paper would benefit from a paragraph 

where future use of this technique was specifically – specific ways in which this analysis could be 

extended to understand other deltas on earth (which will therefore have smaller sample sizes of 

island/channel features). How can researchers who study other deltas use this technique? Is there 

a threshold sample size where it stops being useful? Could a researcher assemble a large dataset 

of features from many different deltas then use a modified version of the workflow to do inference 

on new delta islands (from random deltas) to determine if the random island is dominated by 

certain processes? To be very clear – I like this work, it is interesting to me, I would just like an 

explicit moment where the manuscript steps back and looks at how this neat workflow could be 

used by others in other settings.  

 

Reply: Thank you for raising this important point, which is not easy to answer without a scaling 

analysis, which would be outside the scope of this work, and such analysis for other delta systems 

would increase the complexity of the paper. It’s an important point to bring up though and we will 

add the following paragraph to the Discussion: “The approach here proposed would be applicable 

to any system, provided that the island and channel sample is large enough to yield robust 

statistics and the application of a machine learning approach. The actual number of islands 

needed will also depend on the strength of the geomorphic signature (signal) versus the delta's 

heterogeneity (noise). This signal to noise ratio may also influence the applicability of our method 

to the classification of islands from many deltas to identify similarities and process signatures 

across systems, rather than within one system only as in the analysis we performed.” 

 

 

(R2.3) Specific Comments  



P1 L2: Can you define ‘resilient’ in this context?  

 

Reply: Thank you, we have added the definition later in the introduction as per your point about 

P2 L4.  

 

 

(R2.4) P1 L17-18: I think a more precise way to convey this idea is: the data, analysis techniques, 

and chosen morphometrics do able to detect human modifications to the system. This is said in 

a more defensible way in the discussion (P12 L24)  

 

Reply: Thank you, we will revise the text as follows: “The method is not able to distinguish between 

islands with embankments (polders) and natural islands in the nearby mangrove forest 

(Sundarbans), suggesting that human modifications have not yet altered the gross geometry of 

the islands beyond their previous `natural' morphology. However, the lack of a human signature 

may be due to the input data (time, resolution) used in this study.”  

 

 

(R2.5) P2 L4: Can you define ‘resilient’ in this context?  

 

Reply: Thank you for this comment, we use resilient as in Hoitink et al. [2020], a system that is 

capable of recovering from extreme events and of sustaining itself. We will add the following 

sentence: “. As in Hoitink et al. (2020), we define resilient a system that is capable of recovering 

from extreme events and of sustaining itself.” 

 

(R2.6) P4 L1-2: this is a really neat idea, but i did not see this discussed in the 

discussion/conclusion.  

 

Reply: Thank you, that is a good point and we have decided to move this statement to the 

Discussion. The text will be placed at the end of the Discussion, revised as follows: “Hierarchical 

clustering of delta islands according to their common characteristics can also allow the 

identification of areas of the landscape that would be affected by different forecasted scenarios 

of future environmental conditions.” 

  

 

(R2.7) P5 L15: this line is confusing because of the repetition of the words ‘cluster and ‘group’: “. 

. .island are clustered into groups. . . clusters are grouped’ Do I understand step 4 correctly that 

the groups are further combined and ordered?  

 

Reply: Thanks for raising this point; the line is indeed confusing and the methods names do not 

help. We will revise it as follows: “Each step in this methodology is explained further in the 

following sections: (1) data are first extracted from remotely-sensed imagery and morphometrics 

are calculated; (2) metrics are normalized and correlation between metrics is addressed with a 

principal component analysis; (3) island clusters are identified; and (4) clusters are grouped and 

ordered based on a nested, or hierarchical, clustering scheme.”  



 

 

(R2.8) P6 L6: I’m not sure I agree with this statement as it is written – can you provide a citation 

for this?  

 

Reply: Fair point, thanks for catching that. We have decided to remove the statement given that 

it was also placed in the middle of the PCA explanation. The text will be revised as follows: “PCA 

is a dimensionality reduction tool that preserves the variance within the data while eliminating 

colinearity between features. PCA reduces this dimensionality, while preserving 90% of the 

variance in the original dataset.” 

 

(R2.9) P7 L3: ClusterPy should be cited look at the ‘readme.md’ on the github page for the details: 

https://github.com/clusterpy/clusterpy Also – if there are any other software packages you used i 

would cite them (software is often not cited in text, but should be).  

 

Reply: Thank you for the suggestion. We have edited the readme file to include all required 

software packages. The code has been archived and released through Zenodo. The Zenodo DOI 

has been added to the Code and Data Availability Section. The citation for ClusterPy software 

package will be added to the text. 

 

Duque, J.C.; Dev, Boris; Betancourt, A.; Franco, J.L. (2011).ClusterPy: Library of spatially 

constrained clustering algorithms, Version 0.9.9. RiSE-group (Research in Spatial Economics). 

EAFIT University. http://www.rise-group.org. 

 

(R2.10) P6 and P7, generally: are there any subjective hyperparameters that you set? thresholds 

for the clustering algorithms? If so, please point those out or mention them.  

 

Reply: Thank you for the comment; we do not have hyperparameters set except those already 

mentioned in the paper. The main imposed limit was a connectivity constraint, ensuring that only 

adjacent nodes in the GeoSOM grid could be grouped together.  

 

(R2.11) P8 L 20: To me, figure 4 displays the results of the correlation analysis, not the results 

from the PCA.  

 

Reply: Thank you for catching that; you are correct and we will edit the text as follows:  

“The correlation analysis (Fig. 4) suggests that dimensional metrics that describe island area 

show a lesser correlation to factors that scale with area (e.g., dry shape factor, number of outflow 

channels per island, fractal dimension), whereas those factors are strongly correlated with each 

other.” 

 

(R2.12) P9 L9: I suggest removing the scare quotes on ‘sameness’, since the dissimilarity metric 

is discussed in sect. 3.4.  

 

Reply: We will remove the quotes.  

http://www.rise-group.org/


 

(R2.13) P12 L4: I think the word ‘proposed’ can be deleted.  

 

Reply: Thanks for the comment; we decided to keep it as if we remove ‘here proposed’ we need 

to refer to the analysis as ‘this analysis’ and it may not be clear if we are referring to the current 

classification or the one we previously proposed.  

 

(R2.14) Data and Software repository: I see this on github 

https://github.com/csdmscontrib/DeltaClassification. I would recommend a ‘Readme.md’ file to 

help explain the code to make it reproduceable/ extensible for future work. i.e., telling folks 

where to find the data (i see some ‘.shp‘ files in the ‘_input’ folder), and how they could use the 

code.. I would also provide a DOI for the code itself (via the Zenodo integration with Github) and 

provide the citation for the code in this manuscript.  

 

Reply: Thank you for the great suggestion. We have packaged the code and created a release in 

Zenodo. A README file was created and loaded into the repository. This README file contains 

the required software packages, detailed information about the inputs required to run the code, 

and an explanation about the code methods. We will provide the link to the repository in the 

revised manuscript. 

 

(R2.15) Figure 1: I cannot tell the difference between all of the white outlines.  

 

Reply: Thank you, we will revise this figure; this point was also raised by Reviewer 1.  
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Abstract. The morphology of deltas is determined by the spatial extent and variability of the geomorphic processes that shape

them. While in some cases resilient, deltas are increasingly threatened by natural and anthropogenic forces, such as sea level

rise and land use change, which can drastically alter the rates and patterns of sediment transport. Quantifying process patterns

can improve our predictive understanding of how different zones within delta systems will respond to future change. Available

remotely sensed imagery can help but appropriate tools are needed for pattern extraction and analysis. We present a method5

for extracting information about the nature and spatial extent of active geomorphic processes across deltas from ten parameters

quantifying the geometry of each of 1,239 islands and the channels around them using machine learning. The method consists

of a two-step unsupervised machine learning algorithm, that clusters islands into spatially continuous zones based on the

ten morphological metrics extracted from remotely sensed imagery. By applying this method to the Ganges-Brahmaputra-

Meghna Delta, we find that the system can be divided into six major zones. Classification results show that active fluvial island10

construction and bar migration processes are limited to relatively narrow zones along the main Ganges River and Brahmaputra

and Meghna corridors, whereas zones in the mature upper delta plain, with smaller fluvial distributary channels stand out as

their own morphometric class. The classification also shows good correspondence with known gradients in the influence of

tidal energy with distinct classes for islands in the backwater zone and in the purely tidally-controlled region of the delta.

Islands at the delta front, under the mixed influence of tides, fluvial-estuarine construction, and local wave reworking have15

their own characteristic shape and channel configuration. The method does not
:
is

:::
not

::::
able

::
to

:
distinguish between islands with

embankments (polders) and natural islands in the nearby mangrove forest (Sundarbans), suggesting that human modifications

have not yet altered the gross geometry of the islands beyond their previous ‘natural’ morphology
::
or

:::
that

:::
the

:::::
input

:::
data

::::::
(time,

:::::::::
resolution)

::::
used

::
in

::::
this

:::::
study

:::
are

:::::::::
preventing

:::
the

:::::::::::
identification

::
of

::
a

::::::
human

::::::::
signature. These results demonstrate that machine

learning and remotely sensed imagery are useful tools for identifying the spatial patterns of geomorphic processes across delta20

systems.
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1 Introduction

Deltaic environments are threatened by environmental change and anthropogenic activity. Predicting the response of deltas

to these future changes requires understanding the spatial variability of physical processes and their influence on landscape

morphology. The identification of the patterns of physical processes in deltas is therefore necessary to predict the resilience of

these environments and assure the sustainable use of the environmental services they provide.
::
As

::
in
:::::::::::::::::
Hoitink et al. (2020)

:
,
:::
we5

:::::
define

:::::::
resilient

:
a
::::::
system

::::
that

::
is

::::::
capable

::
of

:::::::::
recovering

:::::
from

:::::::
extreme

:::::
events

:::
and

:::
of

::::::::
sustaining

:::::
itself.

:
It has long been established

that the morphology of deltaic networks and landforms reflects the physical processes that created and continuously modified

them (e.g., Galloway, 1975). Although relationships between specific geomorphic processes, island morphology, and channel

geometry have been analyzed in less complex deltaic systems (Smart and Moruzzi, 1971; Edmonds et al., 2011), isolating

the effects of individual physical processes on morphology is challenging in large deltas where multiple processes interact or10

where the relative influence of each process can change over time. Here we propose the use of machine learning techniques to

identify the spatial patterns of geomorphic processes based on the morphology of islands, their internal drainage networks, and

the channels that bound them.

The morphology of deltas is set by interactions and feedbacks between water and sediment fluxes throughout the system

(Orton and Reading, 1993; Edmonds and Slingerland, 2010), including the physical processes that transport them across the15

landscape (Wright and Coleman, 1972; Galloway, 1975) and the boundary conditions that determine their pathways (Orton

and Reading, 1993; Syvitski and Saito, 2007). Many classification schemes have been proposed to qualitatively connect the

geometry of deltas to geomorphic processes. Early work by Wright and Coleman (1972) and Galloway (1975) used the plan-

view geometry of deltas to classify deltaic systems according to the relative influence of fluvial input, tidal currents, and wave

energy on their morphology. Others have expanded this classification scheme to account for the effects of sediment grain20

size (Postma, 1990; Orton and Reading, 1993; Caldwell and Edmonds, 2014), sediment cohesion (Edmonds and Slingerland,

2010), and base level change (Postma, 1990; Dalrymple et al., 1992; Wolinsky et al., 2010). Common relationships between

delta-scale morphological metrics and key factors that control delta morphology have been found at a global scale (Syvitski

et al., 2005; Syvitski and Saito, 2007).

The classification of deltas according to their bulk characteristics provides limited information about the geomorphic pro-25

cesses that locally modify each element of the system (Edmonds et al., 2011). Most deltaic environments display complex

morphologies that result from spatial variability in physical processes (Restrepo et al., 2002; Syvitski and Saito, 2007; Lewin

and Ashworth, 2014). Metrics of channel morphology have been widely used to characterize the influence of external forcings

acting in different parts of a delta. Fagherazzi et al. (1999) and Rinaldo et al. (1999) found that scaling relationships and topol-

ogy of tidal channel networks, unlike fluvial systems, can vary significantly among tidal basins due to the influence of multiple30

physical processes. In mixed fluvial-tidal systems, an along-channel break in geometric scaling relationships has been found

at the point where the influence of tides on channel morphology becomes stronger than the river influence (Sassi et al., 2012;

Kästner et al., 2017).
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The processes that dominate delta morphology may change over time as delta shape evolves or environmental conditions

change (Correggiari et al., 2005). By looking at the evolution of channel planform overlap, morphological metrics have been

used to quantify growth (Wolinsky et al., 2010) and channel network dynamics (Cazanacli et al., 2002; Liang et al., 2016b)

over time. Channel networks can also preserve information about their evolution; in fluvially-dominated deltas, Jerolmack

and Swenson (2007) identified differences in channel and network morphology for distributary systems that evolve through5

mouth-bar deposition and those formed by avulsions.

Approaches used to quantify spatial patterns in geomorphic processes have also relied on mathematical descriptions of the

system as a network (Passalacqua, 2017), which are helpful not only for the analysis of network structure and dynamics but also

for the quantification of connectivity between channels and islands (Hiatt and Passalacqua, 2015). For example, Trigg et al.

(2012) identified reaches along the Amazon River that were morphologically distinct and had mostly separate connectivity10

networks, suggesting spatial differences in hydrology. In the Jamuna River in Bangladesh, Marra et al. (2014) used a centrality

property of the channel network to quantify the importance of individual strands of the braided river and capture changes

in linkages over time. Tejedor et al. (2015a, b) developed a quantitative framework for studying delta channel networks and

the propagation of perturbations using spectral graph theory (Tejedor et al., 2016). Spatial variability in the morphology of

the channel network also results in diversity in the geometry of islands across a delta (Meshkova and Carling, 2013), that
::
in15

::::::::::::
multi-threaded

:::::::
systems

:::::::::::::::::::::::::
(Meshkova and Carling, 2013),

::::::
which

::
in

:::::
deltas

:
have been quantified with multiple metrics of island

and network morphology (Edmonds et al., 2011), with statistical analyses (Passalacqua et al., 2013), and in numerical models

under various input conditions, sea level rise, and subsidence (Liang et al., 2016b, a).

The use of machine learning in earth surface sciences is rapidly increasing as the volume and complexity of available data

grows (e.g., Rubin, 1992; Jaffe and Rubin, 1996; Werner, 1999; Murray et al., 2009, 2014; Goldstein et al., 2019). Machine20

learning algorithms generalize large samples of observations to identify and exploit patterns in the data. These techniques

are traditionally divided into supervised methods, where the system is trained to identify patterns based on a set of samples

with known labels, and unsupervised methods, where classes in the dataset have not been previously identified. Machine

learning techniques are used extensively to address a broad range of problems where grouping in data are not immediately

obvious or where the ability to predict behavior is required. Valentine and Kalnins (2016) and Goldstein et al. (2019) present25

comprehensive overviews of the use of machine learning in the geosciences. Applications span a wide range of topics, such

as: streamflow modeling and forecasting (Asefa et al., 2006; Rasouli et al., 2012; Shortridge et al., 2016), runoff modeling

(Gudmundsson and Seneviratne, 2015), flood risk assessment (Dibike and Solomatine, 2001; Tehrany et al., 2014; Mojaddadi

et al., 2017), sediment yield variability (Tamene et al., 2006), and sediment transport (Bhattacharya et al., 2007; Melesse et al.,

2011; Schmelter et al., 2011; Choubin et al., 2018). Particularly relevant to the analysis of river networks is the work on surface30

water extraction (Pekel et al., 2016; Donchyts et al., 2016; Isikdogan et al., 2017a, 2019) and on delta network extraction

(Isikdogan et al., 2018).

In this paper, we propose a two-step unsupervised machine learning method to analyze spatial patterns in large river deltas.

We apply this method to the Ganges-Brahmaputra-Meghna Delta
:::::::
(GBMD)

:
and show that by clustering areas of the distributary

system with common morphological characteristics, we are able to reliably extrapolate our understanding of the physical35
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processes that locally dominate island and channel morphology across large areas of the delta, greatly increasing the .
::::::
While

:::
our

:::::::
previous

:::::
work

::::::::::
highlighted

::::
three

:::::
main

::::::
regions

:::
in

:::
the

::::::
GBMD

:::::::::::::::::::::
(Passalacqua et al., 2013)

:
,
::::
here

:::
we

:::
are

::::
able

::
to

::::::
extract

:::::
more

:::::::::
information

:::
on

:::
the

::::
delta

:::::::
surface

:::::::
network,

::::::
which

:::
can

::
be

::::
used

:::
to

:::::::
increase

:::
the explanatory power of on-the-ground observations

or
:::
and

:::::
guide

::::::
future

::::
field

:::::
work

:::
and

:::
the

::::::::
selection

::
of

::::::::::::
representative

::::::
islands

:::
for

:
high-resolution numerical modeling

:::
(and

:::::
even

::
for

::::::
coastal

:::::
zone

:::::::::::
management

:::::::::
practices).

:::::::::::
Additionally,

:::
we

::::::
provide

::
a
::::::
method

:::
for

::::::::::
identifying

:::::
which

:::::::
metrics

:::
are

::::
most

::::::
useful

::
in5

:::::::::::
differentiating

:::::::
process

:::::::::
signatures,

::::
thus

::::::::
providing

::::::::
guidance

:::
on

::::
what

:::::::::
properties

::
to

:::::::
measure

::
in
:::::

other
:::::::
systems. This hierarchical

clustering of islands in the delta according to their common characteristics also allows us to identify areas of the landscape that

would be affected by different forecasted scenarios of future environmental conditions.

2 Case study: The Ganges-Brahmaputra-Meghna Delta

The Ganges-Brahmaputra-Meghna Delta (GBMD )
::::::
GBMD

:
covers more than 100,000 km2 of Bangladesh and eastern India,10

extending ∼400 km from its apex near the foothills of the Himalaya to the Bay of Bengal (Wilson and Goodbred, 2015). The

largest subaerial delta in the world, the GBMD system has been influenced by tectonic, climate, fluvial and tidal forcings. Most

of Bangladesh is underlain by alluvial deposits, sourced from the uplifting Himalaya orogen and deposited into accommodation

space created by local subsidence in the basin (Allison, 1997; Allison et al., 2003; Kuehl et al., 2005). Most of the region lies

within 20 m of mean sea level, and local relief is minimal. In the uppermost delta, the Ganges and Brahmaputra rivers formed15

a fan delta that has slopes of ∼10−4. The tidal plains, lying at or near sea level, have lower surface slopes, ∼10−5 (Wilson and

Goodbred, 2015).

Fluvial processes control the morphology of the eastern portion of the delta. The Ganges and Brahmaputra rivers are

sediment-laden. Together they transport about 109 tons of sediment per year to the Bay of Bengal and form a broad and

elevated braid plain extending 5-15 km from the present-day active rivers (Goodbred and Kuehl, 2000; Wilson and Goodbred,20

2015). Bars and channels evolve rapidly within the braid belts during high discharge events, and stabilize once they are colo-

nized by vegetation and amalgamate to form island complexes (Best et al., 2007; Wilson and Goodbred, 2015). Major avulsions

of the Ganges and Brahmaputra rivers occur every 1,500 - 2,500 years (Allison et al., 2003; Pickering et al., 2014; Reitz et al.,

2015). Backfilling and underfit meandering streams of the formerly active braid plains form the central and western portions

of the upper deltaic plains. This region receives minimal fluvial discharge from the active braid plain to the north and east.25

Away from the river-mouth estuary, the tidal plains are formed by dense networks of funnel-shaped tidal channels that receive

no upstream input of fluvial sediment. Strong tides, however, generate an onshore flux of suspended sediment originating from

the estuary. Population density in much of the lower tidal delta plain is high and several islands were embanked for agriculture

in the 1960s and 1970s (Auerbach et al., 2015; Rahman and Salehin, 2013). These embanked land masses, called ‘polders’,

have drastically reduced overbank sedimentation due to natural ebb-flood tidal cycles and are sediment starved relative to30

nearby natural islands (Auerbach et al., 2015; Wilson et al., 2017). The construction of embankments for agriculture within

the tidal plain has been shown to contribute to the amplification of the tidal signal (Pethick and Orford, 2013). The infilling of

small tidal channels in this inhabited region leads to new, or ‘khas’ land development (Wilson et al., 2017).
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The Sundarbans mangrove forest is located to the west and south of the poldered area. Relatively pristine, and covering

4,100 km2 of the western portion of the tidal plains, the Sundarbans continue to aggrade through the reworking and settling of

tidal sediments. Due to sediment deposition, the elevation of islands in the Sundarbans can exceed the elevation of the nearby

polders by ∼1 m (Auerbach et al., 2015).

Climate in the GBMD is sub-tropical and dominated by the South-East Asian monsoon, resulting in strongly seasonal fluvial5

discharges (Islam et al., 1999; Goodbred et al., 2003). Monsoonal rains between June and September are the primary source of

runoff to the Brahmaputra and Ganges rivers (Best et al., 2007; Singh, 2007). Approximately 80% of the total yearly sediment

load is transported due to monsoonally-driven increases in fluvial discharge (Goodbred and Kuehl, 2000). The southern portion

of the delta front is characterized by wide channels, due to the strong diurnal and mesotidal influence in the region (Goodbred

and Kuehl, 2000) (Figure 1). There is a change in tidal magnitudes across the delta front: in the Meghna Estuary, tidal amplitude10

exceeds 5 m. Moving westward across the delta front, mean tidal amplitude decreases to 1.9 m (Allison, 1998).

3 Methods

Our goal is to regionalize the study area into zones with common physical characteristics to differentiate the areas of influence

of various physical processes. Regionalization attempts to aggregate spatial units or observations into clusters based on spatial

continuity as well as attribute similarity (e.g., Guo, 2008; Duque et al., 2012b; Wu et al., 2013). By identifying clusters of15

islands in the GBMD with shared geomorphic characteristics generated by similar physical processes, we can extrapolate local

observations to larger areas of the delta as well as begin to predict how changes in the geomorphic drivers due to natural and

anthropogenic forcings might affect delta morphology.

Each step in this methodology is explained further in the following sections: (1) data are first extracted from remotely-

sensed imagery and morphometrics are calculated; (2) metrics are normalized and correlation between metrics is addressed20

with a principal component analysis; (3) islands are clustered into groups
::::
island

:::::::
clusters

:::
are

:::::::::
identified; and (4) clusters are

grouped and ordered based on a nested, or hierarchical, clustering scheme.

3.1 Metrics and data used

Borrowing from computer vision (e.g., Dryden et al., 1997) as well as previous research in surface processes (e.g., Edmonds

et al., 2011; Passalacqua et al., 2013), we identified a set of metrics (Fig. 2) that capture the shape of deltaic islands, their internal25

drainage networks, and the channels that bound them. Metrics used to study delta morphology commonly take a "sediment-

focused" approach (Edmonds et al., 2011), based on the idea that sediment dispersal across the system is the primary driver

of morphodynamics. To avoid unintentionally encoding geographic information into the feature matrix, we avoided metrics

related to the position of islands in the delta (e.g. distance from delta apex, distributary number). Similar methods have been

used before to characterize the shape of features such as lakes, icebergs, and streamlined islands in remote sensing imagery30

(Baker and Kochel, 1979; Komar, 1983; Kehew and Lord, 1986; Vila and Machado, 2004; Frohn et al., 2005; Silva and Bigg,

2005).
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We obtained the channel network and water surface mask from Orthorectified Landsat Thematic Mapper Mosaics (
:::::::
Landsat

::::::::
GeoCover

::::
TM

::::
1990

::::::
Edition

::::::::
Mosaics,

:::
tiles

:::
N–

::::::
45–20

:::
and

::::::::
N–46–20,

:
28.5 m resolution) as in Passalacqua et al. (2013). Typically,

the delta is cloud-covered for much of the monsoonal rainy season, so that composite imagery generally is representative for

the dry season state of the delta. A map of interchannel islands can be derived from the water surface map as the land masses

bounded by channels. Performing this operation on the GBMD results in 1,239 unique features.5

3.2 Feature normalization and principal component analysis

We normalized metrics by using a logarithmic normalization to differentiate between islands in the distribution and we then

scaled them from 0 to 1 (Fig. 3). Because the subset of metrics selected for this study shows moderate degrees of correla-

tion (Fig. 4), principal component analysis (PCA) is used to convert metrics into parameters that are uncorrelated from one

another. PCA is a dimensionality reduction tool that preserves the variance within the data while eliminating colinearity be-10

tween features. When too many features are used, the tendency of machine learning is to overfit the data. PCA reduces this

dimensionality, while preserving 90% of the variance in the original dataset.

3.3 Spatial clustering

Clustering is an application of machine learning where large volumes of multi-dimensional data are reduced into groups of

objects with similar properties (Jain et al., 1999; Fisher, 1987). Spatial clustering is a major challenge for geographic data15

analysis and increasingly of interest to the machine learning community (Duque et al., 2012a; Gehlke and Biehl, 1934; Guo,

2008; Openshaw et al., 1979). These algorithms are appropriate for applications that require spatially contiguous clusters that

contain regions as homogeneous as possible (within each cluster), separated from each other by discrete boundaries. Examples

are the creation of areas for precision farming (Fleming et al., 2004) and estuarine management areas (Bação et al., 2005a).

Spatial clustering is based on the idea that objects that are close to each other are more likely to be similar to one another than20

to objects that are farther away (Tobler, 1969).

Self-Organizing Maps (SOM) are a type of artificial neural network that is widely used for visualization and analysis of

high-dimensional non-spatial data (Kohonen, 2001). SOMs reduce high-dimensional data onto an often 2-dimensional grid of

nodes and map the input data onto the grid while preserving topological relations between samples. As a result, objects that

are close to one another in parameter space are mapped to nearby nodes on the grid (Kohonen, 2001). While training the SOM,25

the algorithm iteratively deforms the grid to best fit the n-dimensional parameter space. Initially, each node on the grid takes

a random value for each parameter in the input dataset. In each successive iteration, a SOM calculates the Euclidean distance

in parameter space between each object in the input dataset and the parameter values for each unit in the grid and assigns the

data point to the closest node, called Best Matching Unit. Once all data points are assigned to a node, the parameter values for

nodes in the grid are updated. With increasing iterations, the match between input data points and nodes in the grid improves30

(Haykin and Principe, 1998).

SOMs have been adapted to solve spatial clustering problems (Agarwal and Skupin, 2008). The GeoSOM algorithm adapts

self-organizing maps to consider the geographic distribution of objects when searching for a Best Matching Unit (BMU)
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(Bação et al., 2005b, 2008). Each node in a GeoSOM grid is in a fixed geographic location within the spatial extent of the input

data. At each iteration, the algorithm first identifies a subset of nodes in the grid that are within a given geographic distance

of an object in the input dataset, and then searches for a BMU for that object from only that subset of nodes (Feng et al.,

2014). The relative importance of geographic proximity and input parameter values for classification is therefore dependent on

a user-defined geographic tolerance (Bação et al., 2004). This operation results in clusters of data points that are close in both5

parameter and geographic space.

We adapted and expanded the implementation of GeoSOM in the ClusterPy Python library
:::::::::::::::::
(Duque et al., 2011) to improve

the search for potential BMUs when the size of objects in the input dataset is comparable to the spacing of the GeoSOM grid.

In the case of objects much larger than individual nodes in the grid, limiting the search for candidate BMUs to those within

a certain distance of the object’s centroid is likely to assign the object to a node that is within the outline of the object itself,10

decreasing the likelihood that a large object will be clustered with other objects. To better handle datasets with objects of

multiple sizes, we modified the search algorithm to consider as candidates for BMU all nodes that directly intersect the object

as well as their neighboring nodes, expanding to further neighbors if a higher geographic tolerance is desired. The resulting

algorithm is therefore able to group large objects with other nearby objects if they are similar in parameter space.

The number of output neurons in the neural network (the grid size) affects the quality of the clustering results. A coarse grid15

(too few neurons) leads to clusters that are too general and reduces the ability to find significant differences between them. A

grid that is very fine (too many neurons) overfits the input data and results in too many clusters that do not generalize variability

in the sample (Park et al., 2004; Céréghino and Park, 2009). Although there is no established method for selecting the optimal

number of neurons for a particular classification problem, Vesanto et al. (2000) proposed that the number of nodes in a SOM

should be 5
√
n, where n is the number of samples. For this study, the number of samples is given by the number of islands20

in the domain (n = 1,239), suggesting that 176 is the optimal number of nodes. Given the geographic constraints placed on

clusters by GeoSOM and the differences between the shape of the domain and the grid, we selected a larger grid of 40 neurons

per side (200 neurons) as appropriate for this problem.

3.4 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering builds nested clusters, starting with treating each observation as a separate cluster. Iter-25

atively, hierarchical agglomerative clustering then executes the following two steps: identifies clusters that are closest together

and merges the two most similar clusters according to a measure of dissimilarity. This process repeats until all clusters are

merged together, creating a classification of all islands (Fig. 5). The hierachy of clusters is represented as a ‘tree’ or dendro-

gram (Fig. 6). The ’root’ of the ‘tree’ is the unique cluster that gathers all samples, and the ‘leaves’ are the remaining clusters

with only one sample. The most common metric of dissimilarity between clusters is Ward’s linkage method. Ward’s method is30

used to minimize variance within a hierarchical approach. Variance minimization serves as a threshold that stops clusters from

grouping together. To enforce the formation of geographically contiguous clusters, connectivity constraints were imposed on

the agglomerative clustering algorithm so that only adjacent nodes in the GeoSOM grid could be merged together. Through
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this operation, the delta islands (Fig. 5) can be clustered into their adjacent groups(Figure .
::::
The

::::::::
U-matrix,

:::
or

::::::
unified

:::::::
distance

::::::
matrix,

::::::::
illustrates

:::
the

:::::::
number

::
of

:::::::
adjacent

::::::
islands

:::::::
assigned

::
to
:::::
each

::::
node

::::::
within

:
a
:::::
group

::::
(Fig.

:
7).

4 Results

4.1 Metric relationships: feature normalization and principal component analysis

Normalizing the metrics provides insight into the variability of spatial parameters across the delta (Fig. 3 shows the planview5

of the normalized values for all 10 metrics). Greater variability is observed in some parameters (e.g., aspect ratio, dry shape

factor, and number of outflow channels), whereas logarithmic normalization reduces spatial variability in others (e.g., island

area, minimum channel width). Spatial variance in process can be seen in these maps. For example, average channel widths

are smaller in the abandoned fluvial plains, but higher in the tidally-dominated portion of the delta. Similarly, the number

of outflow channels draining each island is heterogeneous, with large numbers in the inactive domain of the delta and small10

numbers in the tidal plain.

As expected, patterns of island and channel morphology broadly match distance from major rivers or the shoreline. The

largest islands are found in the central and western
:::::::
(inactive)

:
portions of the delta, while the smallest are rapidly changing

bars and islands along major rivers. Islands in the central and western portions of the tidal zone are homogeneously small and

bound by small rivers, although they form complexes that are themselves bound by larger tidal channels. Convexity captures15

the large scale roughness of island silhouettes. Large islands in the central and western portions of the delta, which formed by

the gradual agglomeration of islands bound by channels, have lower values of convexity. Small isolated islands in tidal regions

and many of those at the active river mouth have higher values of convexity. High values of island aspect ratio follow the major

fluvial pathways. Small mid-channel bars are frequently elongated, as are the bars that have accreted along the banks. Large

islands forming distributary junctions in the upstream reaches of the delta also tend to have high aspect ratios, as well as some20

islands in the tidal region.

The results of the principal component
:::::::::
correlation analysis (Fig. 4) show the correlation between the normalized metrics .

Dimensional metrics
:::::::
suggests

::::
that

::::::::::
dimensional

::::::
metrics

:
that describe island area show a lesser correlation to factors that scale

with area (e.g., dry shape factor, number of outflow channels per island, fractal dimension), whereas those factors are strongly

correlated with each other. These size metrics are inversely correlated with features that represent the shape of islands (convex-25

ity), indicating that island morphology varies systematically with island area, particularly for larger islands. The parameters that

are most independent from island area represent the characteristics of channels that bound each island (minimum, maximum,

and average channel width) or the roughness of the interface between channels and islands (solidity, aspect ratio).

4.2 Spatial variability in process: cluster analysis

From these metric relationships, the ensemble model identified six dominant groups of islands in the GBMD according to30

their morphology and connectivity. Island group names were selected based on previous work classifying the delta and field-
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based knowledge about the processes across the system: ‘estuarine’ (delta-front), ‘tidal’, ‘fluvial’, ‘inactive’ (upper delta plain),

‘transitional’ and ‘other’. The results of the cluster analysis indicate spatial variability in process (Fig. 5). The patterns of the

clusters fit within the three groupings presented in previous studies: there is a cluster of similar islands in the upper west (gray,

‘inactive’ as in Passalacqua et al., 2013), a cluster in the eastern delta plain (pinks, ‘transitional’ or ‘active’ in Passalacqua

et al., 2013) and tidal plains to the south along the Bay of Bengal (blues and purples, ‘tidal’ and ‘estuarine’, referred to as5

‘tidal’ in Passalacqua et al., 2013).

Beyond the three physiographic regions presented in Passalacqua et al. (2013), other island clusters are identified using this

method. Along the upper Ganges River, the bars formed by fluvial processes create one cluster (orange, ‘fluvial’), while below

the junction with the Brahmaputra, metrics are slightly different and create a separate cluster (yellow, ‘fluvial’). The Meghna

Estuary, where the high riverine discharges interact with the high tidal range (∼4 m), also stands out with its own clusters10

(blues, ‘tidal’ and pinks, ‘estuarine’). Finally, two large islands in the West Bengal region of India combine together to form a

unique class (green, ‘other’).

These spatial groupings (Fig. 5) were clustered based on a quantitative evaluation of their ‘sameness ’
:::::::
sameness

:
relative

to their neighbors. Each main cluster is made up of smaller, initial clusters, that share similar parameter values (Fig. 6). By

comparing cluster mean values to the delta-wide mean values, patterns emerge. For example, in the ’estuarine’ classes, median15

values for minimum, average, and maximum channel widths are much greater than the delta-wide median. The opposite is true

in the clusters making up the ‘transitional’ class, where channel widths are low relative to the delta-wide values. Island area is

also a useful parameter to explore when looking at similarities within clusters. ‘Inactive’ cluster values are above average, with

large island complexes, whereas ‘fluvial’ clusters are made up of small, and sometimes transient, bars and islands.

The spread of data within each cluster and the relationship to the delta-wide metrics also show that some groups have well-20

constrained parameters (e.g., convexity in the ‘estuarine’ clusters), whereas others are more variable (e.g., number of outflow

channels in the ‘inactive’ cluster) (Fig. 8). The similarity observed across each of the six dominant groupings provides evidence

that the methodology used creates quantitatively-similar clusters.

4.3 Feature importance across clusters

Based on the set of metrics analyzed, we were able to identify distinct morphological classes within the GBMD. In order25

to understand which analyzed metric is the most indicative of the underlying process, we use the Kullback-Leibler (KL)

divergence measure (Kullback and Leibler, 1951).

We compute the KL divergence between the probability density function (PDF) of each delta metric in a particular cluster

and those of all other clusters in the delta. The KL divergence measures the importance of that particular delta metric for

identifying islands in that cluster; divergence values greater than 1 indicate that the PDF of a delta metric for a given cluster30

differentiates it from the other clusters in the delta, while values less than 1 suggest that the PDF of a delta metric is similar to

the PDF for other clusters in the GBMD.

We find that channel width differentiates the ’estuarine’ class from the rest of the delta and dry shape factor differentiates

the ‘inactive’ island complexes (Fig. 9). The ‘other’ class provides the most interesting results for feature importance, where
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most metrics are significantly different than the rest of the population, although quantifying the importance of metrics in this

class is challenged by the small number of islands that belong to it. Differentiating between islands in the fluvial, tidal, and

transitional classes from the rest of the population is more difficult, but island area shows KL divergence values right above

1 for most of these classes. Islands in the fluvial-dominated corridors are smallest, followed by the tidally controlled region,

whereas the islands in the transitional and inactive upper delta plain are distinctly larger. Dry shape factor, number of outflow5

channel, and convexity also contribute to differentiating some of these classes from the rest of the delta, reflecting an increasing

amalgamation over the delta evolution (Fig. 9).

5 Discussion

5.1 Island clusters

5.1.1 Estuarine (delta-front) class10

Estuarine 1, 2, and 3 are similar and consist of the islands and mouth bars at the outlet of the Ganges and Brahmaputra Rivers.

These islands are characterized by a wide range of island sizes and channel widths. Most of the islands in these classes have

poorly developed internal drainages and few outlet channels and are characterized by high values of solidity and above average

values of convexity. Below average values of dry shape factor and of fractal dimension indicate that the outline of these islands

is not complex. Aspect ratio tends to be above average, indicating that the islands are elongated.15

Estuarine 4 is also composed of the islands at the mouth of rivers along the Bay of Bengal. On average, these islands are

larger than other active delta-front islands. This class specifically has low minimum channel widths but high maximum and

average channel widths because many of these islands are part of larger amalgamated landmasses between tidal channels that

are bisected by small channels. These islands often have complex internal drainage networks and a large numbers of small

outlet channels. The values of solidity are close to the overall average, while convexity values are usually below average.20

Higher values of dry shape factor and fractal dimension than other delta-front islands are due to the high sinuosity of the

small channels bisecting the island complexes. The values of aspect ratio tend to be below average indicating these islands

have a more ’stubby’ shape. In a report of the Bengal Survey of 1915, these island were already characterized as unusually

’blunt-faced’, due to strong ocean influence (Hirst, 1916), and perhaps wave reworking of their ocean-facing edges.

5.1.2 Tidal class25

Islands in the tidal class are located inland with respect to those in the estuarine class. Tidal islands in the western portion of the

delta are classified as Tidal 1, while those in the central portion of the delta are classified as Tidal 2. Tidal 1 islands are larger

than average and their outlines are complex, with high dry shape factors and fractal dimensions, but below average values of

solidity and convexity. Islands in the Tidal 1 class also have well developed internal drainage networks and large numbers of

outlet channels. Tidal 2 islands are generally smaller and show a range of morphological characteristics around the average for30

the delta. The two groups of islands classified as tidal are the most similar classes of islands within the delta.
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5.1.3 Fluvial class

Islands in the fluvial class are the smallest of the delta. The most upstream fluvial islands are part of subclass Fluvial 2,

characterized by small areas and high aspect ratios, an elongated shape attributed to the dominance of unidirectional flow.

These islands show above average values of solidity and convexity and low values of fractal dimension, indicating that their

outlines are simple and the channels around them are not highly sinuous. The minimum width of the channels that bound these5

islands is above average while the maximum and average channel widths are low, suggesting that most channels in this region

are of similar size.

Islands in the Fluvial 1 class are found at the confluence of the Ganges with the Brahmaputra to downstream of the Meghna

river. These small to medium islands are highly elongated and have average outline complexities. The channels in this region

are uniformly wide. Most of these islands are mid channel bars or islands formed by channel cutoffs of distributary channels10

branching south from the Ganges River between the junctions with the Brahmaputra and Meghna rivers.

5.1.4 Transitional class

Islands in the Transitional 1 class are located within the known backwater zone, i.e. the upstream zone in which river flow

is affected by hydrodynamic processes of the Bengal Basin. These islands are large, have many outlet channels and high dry

shape factors. Channels in this zone are generally narrow and sinuous with above average fractal dimension. These islands15

have very low values of convexity and average to below average values of solidity. Islands in the Transitional 2 class are

scattered diagonally between the estuary of the Hoogly river to the west and the junction with the Brahmaputra river to the

east, intermixing with other island classes. These islands show varied morphology but are uniformly bound by narrow channels.

These two subclasses of islands are most similar to one another and together they are most similar to islands in the Tidal class.

5.1.5 Inactive (upper delta plain) class20

The inactive upper delta plain region contains the largest islands in the delta. These islands have well developed internal

drainage networks with a high number of outlet channels. The fractal dimension of their outlines is high, reflecting the high

sinuosity of the channels bounding islands. Their dry shape factors are also large, indicating that the island outlines are complex.

This region spans the northern half of the delta bounded by the Hoogly and Ganges rivers
:::::
Rivers. While many channels in this

region are narrow, the channels that bound the islands of this class are of average width. These islands are also characterized25

by very low values of solidity and convexity due to their irregular shapes, while the aspect ratio varies across the group.

5.1.6 Other class

Two large islands in the West Bengal region of India form the class ’Other’. These are morphologically similar to islands in

the inactive upper delta plain region but show lower values of solidity and higher channel widths. When channel building is

restricted because of impoundment and reduced mobility of channels, large nearest edge distances and island sizes are usually30

observed (Syvitski and Saito, 2007; Edmonds et al., 2011).
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5.2 Metrics importance and applicability of the approach to other systems

The classification presented in this work does not substantially differ from previous work (Passalacqua et al., 2013) and known

zonations of this area (Alam, 1996) in terms of main behaviors, but a higher level of detail emerges from the analysis here

proposed. This additional information allows us to capture spatial differences even among islands subject to similar processes

(e.g., the tidal and backwater zone transitional) and to characterize the full probability distribution functions of delta morpho-5

logical metrics for each class. This information can be helpful for validating numerical modeling results (Angamuthu et al.,

2018) in terms of correspondence between the morphology of simulated deltas and real ones.

Our classification distinguishes between islands experiencing a full spectrum of fluvial - tidal energy. The islands throughout

the main corridors of the Ganges and the combined Ganges-Brahamaputra rivers
:::::
Rivers

:
stand out as having unique geometric

characteristics. Interestingly, the islands upstream and downstream of the main river confluence are slightly different morpho-10

metrically, suggesting that the relative proportion of bedload material (higher in the Brahmaputra river) or differences in bulk

grainsize could play a role in setting the bar and island shapes. Along the full gradient of tidal energy impact, islands fall in

different classes; tidal islands represent the dry season tidal flow extent, islands in the transitional backwater zone and islands

in the inactive upper delta plain that experience no tides at all, all are morphometrically distinct. Islands at the delta front are

morphometrically unique too, partly due to the lack of internal drainage, partly due to their bounding wide channels (the classic15

tidal funnel shape). And perhaps because wave and tidal currents rework the immediate coastline into a blunt, stubby island

shape.

Additionally our analysis provides information on which metric is most helpful at characterizing a given process. Channel

width, island area, and dry shape factor are identified as important metrics across most of the clusters, indicating how the island

boundary and the complexity of island shape can be related to processes. Notably, the main fluvial corridors of these large rivers20

have smaller islands than the more inactive upper delta plain, testifying to the process of amalgamation over the evolution and

progradation of a delta system. This same trend is apparent for the tidally-dominated zone as well, where nearshore tidal islands

are (still) smaller and the more inland tidal zone has larger agglomerates.
::::::
Which

::::::
metrics

:::
are

:::::
most

:::::::
effective

::
at
:::::::::

capturing
:::
the

:::::::
signature

::
of

::::::::::
geomorphic

:::::::::
processes

:
is
:::
an

::::
open

:::::::
question

:::::::::::::::::::::::::::::::::::
(Edmonds et al., 2011; Liang et al., 2016b)

:
;
:::
our

:::::::
analysis

:::::
results

:::::::
provide

:::::::
guidance

:::
on

::::
what

::
to

:::::::
measure

::::
and

:::
the

::::::
relative

:::::::::
importance

:::
of

::::
these

::::::
metrics

:::
in

:
a
::::
delta

::
as

:::::
large

:::
and

::::::::::::
heterogeneous

::
as

:::
the

:::::::
GBMD.

:
25

Perhaps the most surprising result of our work is the lack of a distinct signature of human intervention on the computed delta

metrics. The anthropogenic modifications in the polder zone of the GBMD are known to have amplified tides and prevented

sedimentation from previous work
::::::::
floodplain

::::::::::::
sedimentation

:
(Pethick and Orford, 2013; Auerbach et al., 2015), yet these

modifications are not detectable in our analysis as the polders are not identified
:::::::
machine

:::::::
learning

:::::::::
techniques

:::
do

:::
not

:::::::
identify

::
the

:::::::
polders

:
as a separate class. This result can be due to a variety of factors: firstoff, the image

:
,
:::
the

::::::
mosaic

:::::
used

::
as

:::::
input30

:::::::
imagery

:
is
:::::
from

:::
the

:::::
1990s

:::
and

:::::
while

::::::
polders

::
at
::::
that

::::
point

::::
had

::::
been

::
in

:::::
place

::
for

:::::
three

:::::::
decades

:::::
(since

:::
the

:::::::
1960’s),

::::
their

::::::::
signature

:::
may

::::
not

::
be

::::::
visible

::::
yet.

:::::::::::
Additionally,

::::
the resolution may be too coarse to detect human modifications, which could act at

subgrid scale with respect to the Landsat imagery used here. Also, we
:::
We

:
computed the delta metrics on the features as

extracted from the imagery; the embankments are not visible and the island boundary and properties as extracted may appear
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more natural than they actually are.
:::::::::::
Furthermore,

::::::::::::
embankments

:::
are

::::::
usually

::::
built

::
to
::::::
follow

:::
the

::::::
natural

:::::
edges

::::
and

:::::::
contours

:::
of

::
the

:::::::
islands;

::
in
::

a
::::
way,

::::::::::::
embankments

:::::::
’freeze’

:::::
island

:::::::::
geometry

::
in

:::::
place.

:
Other metrics such as the number of outlet channels

have been affected by human modifications in a visible way but have not yet modified the PDF of the metric such that it is

distinguishable from the PDF of the natural islands. The formation of kash
:::
new

::::::
’khas’ land and siltation of channels in the

inland tidal zone (Wilson et al., 2017)
:::::::::::::::::::::::::::::::::
(Wilson et al., 2017; Jarriel et al., 2020) is thought to be related to poldering and thus5

human-induced modification of the tidal prism, but our cluster analysis also shows how infill of the channel network and

amalgamation of young islands over time is an ongoing morphological change with maturation of the delta plain.
::::::::
Repeating

:::
this

:::::::
analysis

:::
on

::::
time

:::::
series

::::::::
imagery

::
of

:::
the

:::::::
GBMD

:::::
with

::::
tools

:::::::
capable

::
of
::::::::::

quantifying
:::::::

change
:::::::::::::::::
(Jarriel et al., 2019)

:::::::
provides

::::::::
additional

::::::::::
information

::::
and

:::::
points

::
to
::::

the
:::::
polder

::::::
region

::
as

:::
an

::::
area

::
of

:::::::
change

::::
over

:::
the

:::
last

:::::
three

:::::::
decades

::::::::::::::::
(Jarriel et al., 2020)

:
.

:::::
These

:::::::
changes

::::
may

::::
have

:::
not

::::::::
impacted

:::
yet

:::
the

::::::
overall

::::::::::::
classification

::::::::
presented

::
in

:::
this

::::::
work;

:::
the

:::::::
question

::
of

:::::
what

::::::::::
disturbance10

:::
size

::::::
affects

:::
the

::::::
system

::
as

:
a
::::::
whole

::
is

::
an

::::::::
important

::::
one

:::::
which

::
is

:::
yet

::
to

::
be

:::::::::
addressed.

:

The approach here proposed is
:::::
would

:::
be applicable to any system, provided that the island and channel sample is large

enough to yield robust statistics .
:::
and

:::
the

::::::::::
application

::
of

:
a
:::::::
machine

:::::::
learning

:::::::::
approach.

:::
The

:::::
actual

:::::::
number

::
of

::::::
islands

::::::
needed

::::
will

:::
also

:::::::
depend

::
on

:::
the

:::::::
strength

::
of

:::
the

::::::::::
geomorphic

::::::::
signature

:::::::
(signal)

::::::
versus

:::
the

:::::
delta’s

::::::::::::
heterogeneity

::::::
(noise).

:::::
This

:::::
signal

::
to

:::::
noise

::::
ratio

::::
may

:::
also

::::::::
influence

:::
the

::::::::::
applicability

:::
of

:::
our

::::::
method

::
to

:::
the

:::::::::::
classification

::
of

::::::
islands

:::::
from

::::
many

::::::
deltas

::
to

::::::
identify

::::::::::
similarities15

:::
and

::::::
process

:::::::::
signatures

:::::
across

::::::::
systems,

:::::
rather

::::
than

::::::
within

:::
one

::::::
system

::::
only

::
as

::
in

:::
the

:::::::
analysis

:::
we

:::::::::
performed.

:

Because of the difficulty in extracting delta networks and the manual labor involved, studies up to date have analyzed

metrics only in small systems or have focused on bulk metrics that do not capture how the characteristics of the delta may vary

spatially and temporally. We expect that further development in automatic approaches for delta network extraction (Isikdogan

et al., 2017b, 2018) and for the analysis of network change over time (Jarriel et al., 2019) will enable similar analyses at the20

global scale and over time.
:::::::::
Hierarchical

:::::::::
clustering

::
of

:::::
delta

::::::
islands

::::::::
according

:::
to

::::
their

:::::::
common

::::::::::::
characteristics

::::
can

::::
also

:::::
allow

::
the

::::::::::::
identification

::
of

:::::
areas

::
of

:::
the

:::::::::
landscape

:::
that

::::::
would

:::
be

:::::::
affected

::
by

::::::::
different

:::::::::
forecasted

::::::::
scenarios

::
of

::::::
future

::::::::::::
environmental

:::::::::
conditions.

6 Conclusions

In this work we presented a machine learning approach for the analysis of river deltas based on remotely sensed imagery. The25

approach relies on a set of delta metrics and their statistical distributions, to identify similarities among clusters of islands. The

approach identifies six major zones within the delta that can be related to the processes acting on the system. The method does

not distinguish between polders and natural islands, suggesting that at the resolution of Landsat imagery, human modifications

have not yet left an imprint on island morphology. The approach here proposed is applicable to any delta with a large enough

number of islands to compute statistical distributions and provides information relevant to the validation of numerical models30

and to understanding which delta metrics carry the most information on a given process.
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Figure 1.
:::::::
Overview

::::
map

::
of

::
the

:::::::::::::::::::::::
Ganges-Brahmaputra-Meghna

::::
Delta.

:
Natural color Landsat 8

:::::::
OLI/TRS

::::::::
composite image of the GBMD from

::
12/2018. Indicated on this map are polders (white solid lines),

::
the

:
Sundarbans

:::::::
mangrove

:::::
forest (white dot

::::
dotted

:
grid),

::
the

:
approximate dry

season tidal limit (white dash
::::
yellow

::::
solid

:
line) and the dry season backwater extent (white dash-dot line)

:::
from

::::::
mapped

::::
data

::
of

::
the

:::::::
Institute

:
of
:::::

Water
::::::::
Modelling.
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Figure 2. Illustration
:::
and

::::::::
definitions

:
of the

:::::::::
parameters,

::
or metrics,

:
used in this analysis. As we use max

:::
For

::::::
channel

:::::
width, average

::::
three

:::::
values

:::
(the

:::::::
minimum,

::::::
average and min for channel width

:::::::
maximum

::::::
values)

::
are

::::
used,

::::::
bringing

:
the total number of metrics is 10.

::::::::
parameters

:
to
::::
ten.
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Figure 3. Map view of metrics ,
::::
after

:::
they

::::
have

::::
been normalized , and scaled. The metrics are

:::
Each

:::::
metric

::
is normalized using a logarithmic

normalization,
:
and

:
is
:::::
shown

:
scaled between 0 and 1.
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Figure 4. Variable
:::::
Matrix

::
of
:

correlation matrix
:::::
values

:::
for

:::
sets

::
of

::::::
metrics. The

:::::
Warm

:::::
colors

::::::
indicate

::::
pairs

:::
of metrics

:::
that

:::
are

::::::::
negatively

::::::::
correlated.

:::::
Darker

:::::
warm

:::::
colors

:::::::
indicate

::::::
stronger

:::::::
negative

::::::::
correlation

::::::::::
relationships

:::::
(e.g.,

:::
the

::::::::::
convexity-dry

:::::
shape

:::::
factor

::::::::
element).

::::
Cool

::::
colors

:::::::
indicate

::::
pairs

::
of

::::::
metrics

::::
that

::
are

::::::::
positively

::::::::
correlated,

::::
with

::::::
darker

:::
cool

::::::
colors

:::::::
indicating

:::::::
stronger

::::::
positive

:::::::::
correlations

:::::
(e.g.,

:::
the

::::::
average

::::::
channel

::::::::::::
width-maximum

::::::
channel

:::::
width

:::::::
element).

::::::
Overall,

::::::
metrics used in this analysis show moderate degrees of correlation.

::::
Also

:::::
shown

::
are

:::
the

:::::::::
distributions

:::
for

:::
each

:::::
metric

::::
(e.g.,

:::
the

:::::::
area-area

:::::::
element)

::
as

:::
well

::
as

:::
the

:::::
scatter

:::
plot

:::::::::
distribution

:
of
:::
the

:::::
metric

::::::::::
relationships

::::
(e.g.,

::
the

:::::::::
area-aspect

:::
ratio

::::::::
element).
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Figure 5. Delta
:::::
Island classification . The

:
as

::
a
::::
result

::
of
:::

the
:::::::::
hierarchical

:::::::::::
agglomerative

::::::::
clustering

::::::
method,

:::::
using

:
a
:::::::::

geographic
::::::::
constraint

::
so

:::
that

::::
only

::::::
adjacent

:
islands are

::
can

:::
be

:::::::
grouped.

::::
Each

:::::
island

::
in

::
the

::::::
GBMD

::
is
:
classified into 14

::::
twelve

::::::::
individual

:
clustersbelonging to 6

:
.

:::
The

:::::
twelve

::::::::
individual

::::::
clusters

::
are

::::::
further

::::::
grouped

:::
into

:::
six main classes

::::
using

:
a
:::::::::
dendrogram

::::
(Fig.

:::
6).

:::
The

:::
six

::::
main

:::::
groups

::::::
include

:::::::
estuarine

:::::::
(purples),

::::
tidal

:::::
(blues),

:::::::::
transitional

::::::
(pinks),

::::::
inactive

:::::
(gray),

:::::
fluvial

::::::::
(oranges)

:::
and

::::
other

::::::
(green).
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Figure 6. Dendrogram of classification and heatmap of variables. Warm colors indicate a high median value of a given parameter relative to

the delta-wide median, while
::::::
whereas

:
cool values indicate a low cluster median relative to the delta-wide

:::::
median

:
value.
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Figure 7. U-matrix. Islands are clustered into their
:::
The

:::::::
U-matrix

::::::
(unified

:::::::
distance

:::::
matrix)

::::::::
visualizes

:::
the

::::::
number

::
of adjacent

:::::
islands

:::::
within

:
a
::::
node.

:::::
Larger

::::
dots

:::::::
represent

:
a
::::::
greater

::::::
number

::
of

::::::
islands,

::
as

::::::::
determined

:::
by

::
the

::::::::
GeoSOM

::::::
method.

::::::
Smaller

::::
dots

:::::::
represent

:
a
::::::
smaller

::::::
number

:
of
::::::

islands.
::::
The

:::::
colored

:::::::
outlines

:::
and

:::::
shaded

::::
areas

:::::::::
correspond

::
to

::
the

:::
six

::::
main

:::::
classes

::
or

:
groups.
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Figure 8. Violin plots of parameter values for each class. The analysis allows
:
In

:::::::
addition

:
to
:
the calculation

:::::::
minimum,

::::::
median

:::
and

::::::::
maximum

::::
value of the PDF of each metric

:
,
:::
the

:::
full

:::::
sample

:::::::::
distribution

::
is

:::
also

:::::
shown

:
for each cluster

::
of

::
the

:::
six

::::
main

::::::
classes

::
or

:::::
groups.

:::
For

:::::::
example,

::
the

::::::
number

::
of

::::::
outflow

:::::::
channels

::
in

:::
the

::::::
Inactive

::::
class

:::
has

:
a
::::
wide

:::::::::
distribution,

:::::::
whereas

:::::::
convexity

:::::
within

:::
the

:::::::
Estuarine

::::::
classes

::
has

::
a
:::::::
narrower

:::::::::
distribution.
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Figure 9. Kullback-Leibler divergence between the distribution of parameter values for islands of each class and all other islands for each

variable. A value greater than 1
::
one

:
indicates that the variable differentiates the population of islands in that class from those in other classes.

A value less than 1
:::
one shows that the distribution of values of that variable for that island class are similar to values for other islands.

29


	Perignon_etal_responseToReviewers
	latexdiff_output

