
Dear Editor, 
 
We would like to thank the two Referees for their comments, which helped us to improve the 
paper. We are resubmitting a manuscript which has been changed as follows: 

- We changed the title to make it more effective (and avoid possible confusion related 
to the word ‘affects’). 

- We thoroughly reviewed the language, especially with respect to the sentence 
structure and the terminology. We made sure all variables used are properly defined 
and we avoided as much as possible confusing wording (guided by the comments of 
the reviewers). The final manuscript has been proofread by a native speaker. 

- We improved all the figures based on the reviewers’ comments. 
 
We believe the manuscript is now ready for publication in Earth Surface Dynamics. 
We also provide below a detailed reply to the Referees’ comments and a copy of the 
manuscript where all changes have been highlighted. 
 
Best regards, 
 
Matteo Saletti and Marwan A. Hassan 
 
 
REFEREE 1 
Thank you for the opportunity to review this article. The subject matter is important and 
interesting, dealing with the question of how sediment supply into a steep stream channel 
influences step dynamics in terms of step frequency, location, and stability. Some important 
conclusions are drawn from the results, that can be of value to the scientific community and 
practical use for river restoration efforts. I suggest a few points to improve the clarity of the 
MS:  
Line 88: instead of ‘feed capacity’ it would be better to use ‘transport capacity’ since this is 
the term used throughout the manuscript.  
 We agree that this terminology was confusing and we made sure to avoid that. As the 
reviewer correctly points out transport capacity is the term to be used here. 
 
The paragraph starting from line 97 could be moved up (possibly before the paragraph 
starting from line 84). 
 We did that. 
 
Line 99: Define ψ here.  
 We did that. 
 
Table 1 and figure 3 both provide the same information, so I suggest using only the table 
which provides values of unit discharge and feed rates. If there is a practical need to include 



both the table and the figure, the legend in figure 3 should be boxed, as it looks like another 
sediment feed! Also in the figure caption, instead of ‘In the last hours’ it would be better to 
say ‘after 7 hours’. 
 We feel like the figure provides a more effective visual summary, while the table reports 
the precise values that are also useful. We believe they should both be provided in the 
manuscript. If the Editor thinks there is too much overlap, we could move the Table in the 
supplementary material. 
We revised all the figures to make sure the legends do not create confusion. 
 
In table 1, if flow rates were increased by 20% every hour even after the sediment feed was 
stopped, why are the values same for some experiments (e.g. exp_07, exp_08, exp_09 in 
experiment 50, and exp_09 and exp_10 in experiment 100 and 150)? 
 The numbers of the Q increments are different because we increased them after one 
hour only if there was a change in the bed. Otherwise we applied the same flow rate for 
another hour. We now clarified this (line 97).  
 
In figures 3, 4, 5, 6, and 12, it is better to box the legend to avoid confusion. 
 The legend has been put in a box in all figures. 
 
Line 164: It would be helpful to the reader if you define jamming ratio here.  
 Done. 
 
The paragraph starting from line 176: Correct the figure numbers referred in the 3 points.  
 Thanks to the reviewer for catching this. We double-checked all references to the 
figures to make sure they are correct. 
 
Figure 7: Consider adding the results of the no-feed experiments also here, since it can 
provide a comparison between the step dynamics with and without sediment supply. 
 The reason why we did not include the no feed experiments in this figure is that the 
values of Q-Qs are different. In Fig 7-8 we focus on the difference between feed vs no feed 
in the same experiment as a function of time. Since in the no-feed experiments sediment 
input is always zero and Q values are different (i.e., they started at lower values of Q), the 
comparison in this case is not straightforward. 
 
Line 258: Can you explain how your results can be used to elucidate the difference between 
channel stability and morphological stability in steep mountain streams?  
 We agree with the reviewer that this point was misleading, so we decided to remove 
the sentence to avoid confusion and we address the stability issue in the discussion. 
 
The conclusion that ‘the maximum number of steps is achieved for average values of 
sediment feed’ can be misleading. If you consider the sediment feeds 50%, 100%, and 150% 
of the transport capacity, one can categorize them as low, average, and high sediment 



supplies, respectively. Then your conclusion implies that sediment feed corresponding to the 
100% transport capacity (which is the average sediment feed in this categorization) creates 
the maximum number of steps, which is not true. Moreover, according to this categorization, 
it is actually the low sediment feed (not the average) that creates the maximum number of 
steps. Therefore, I think the term ‘average value’ needs to be more explicitly stated. This is 
appropriately mentioned in line 287 where you have explained ‘average value’ in parenthesis 
(i.e., when the sediment feed is half of the transport capacity). But in other places including 
the abstract, the term ‘average values of sediment supply’ may lead to confusion. 

We do agree the use of average/low/high is misleading, so we avoided using that. We 
now always refer to the comparison between sediment feed and transport capacity. 
 
Needs proofreading for grammatical errors and typos throughout the MS. Some exam- ples 
are: Line 68: In hypothesis 3, qualitatively is mentioned twice Line 102: top of a moving chart 
(‘of’ is missing) Line 128: ‘average number of’ instead of ‘average num- bers of’ The 
paragraph starting from line 155: check grammar in this paragraph. e.g. flow rates increases 
Figure 8 caption: ‘. . .that formed and destroyed’ instead of ‘an’. Line 226: ‘...as it is. . .’ not ‘. 
. .at it is. . .’ Line 340: ‘. . .conceptual model that relates. . .’ not ‘the relates’  

The manuscript has been carefully revised and proofread by a native speaker. 
 
 
REFEREE 2 
Overview  
This paper presents the results of flume experiments investigating the effect of sed- iment 
supply on step-pool formation and stability. Despite I found it very similar to another paper 
recently publish by the authors (all results could have been published in a same paper?), the 
paper shows that there is an "optimum" level of sediment supply that maximizes the number 
of steps, which is a new result. The topic is interesting for field practice, and this work answers 
to a scientific question which has been pre- viously formulated by several authors. The paper 
is very well written and all results are presented in a comprehensive manner, with appropriate 
figures. I suggest minor revision.  
Comments   
I really regret that a paper focusing on step-pools does not presents one photo of this 
morphology observed in the flume. Like in Saletti and Hassan 2019, we must trust the author 
and what has detected the algorithm. It is really frustrating. 

We are sorry the reviewer feels we did not provide enough evidence for the identified 
steps. In the supplementary material (link in the ‘Assets’ webpage and at the end of the 
manuscript) we published all DEM maps and photos taken during the experiments. The 
algorithm we used has been tested and validated with different field and laboratory step-pool 
channels (see Zimmermann at al., 2008; Golly et al., 2019; Saletti and Hassan, 2020) and it 
has been applied in a systematic way to the data in all these experiments in order to reduce 
subjectivity related to bedform identification. 
 



Line 90: which did not you feed continuously? 
 The feed was continuous over the first 40 mins (line 94). 
 
Line 85-95 and Fig11: there is no evidence that you were at capacity. It seems that all runs 
were under capacity 
 We used ‘capacity’ in the sense of the transport capacity obtained with the Wilcock 
and Crowe (2003) model. One of the points we raised in the paper is precisely that these 
capacity formulations should be used with care in steep channels. 
 
Figure 3: what are the 3 points at the bottom of the figure? 
 They represent values of increased discharge and no sediment feed (see Table 1). 
 
Line 128: This results seems to contradict your hypothesis (Fig1)? 
 We do not understand in which sense this would contradict our hypothesis. As we 
showed further on (e.g., Fig. 4 and Fig. 13a) the relation between step frequency and 
sediment feed follows the qualitative conceptual model depicted in Figure 1.  
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Abstract. We present results from an experimental campaign conducted in a steep flume subject to longitudinal width variations

and different sediment feed rates. The experiments were designed to study how sediment supply influences step formation, step

location, and step stability. Our results show that steps are more likely to form in segments of the channel where the width

narrows because of particle jamming, and these steps are also more stable. Sediment feed increases particle activity which

generates a dynamic channel morphology with steps forming and collapsing. A comparison with experiments without sediment5

feed shows that sediment supply does not inhibit step formation. Time-series of step formation, evolution, and destruction show

that the maximum number of steps is achieved when the sediment feed is larger than zero but smaller than the transport capacity.

We summarize this outcome in a conceptual model where the dependence of step frequency on sediment supply is expressed

by a bell curve. Sediment yield measured at the channel outlet followed the sediment feed at the inlet closely, even when we

fed 50% more and 50% less than the calculated transport capacity. This outcome challenges the applicability of the concept of10

transport capacity to steep channels and highlights the key role played by sediment feed in dictating sediment yield and channel

response. Finally, we detected a positive correlation between sediment concentration and step destruction, which stresses the

importance of particle interactions for step formation and stability.

1 Introduction

Step-pool channels are often found in steep mountain streams, where large boulders and woody debris jam in the transverse15

direction, forming steps followed by pools of finer sediment (Chartrand et al., 2011; Grant et al., 1990; Montgomery & Buff-

ington, 1997). This morphology has been extensively studied because it appeals visually, provides good habitat for fish, and

an effective tool for energy dissipation that keeps the channel stable even at high flows (see reviews by Chin and Wohl, 2005;

Church and Zimmermann, 2007; Comiti and Mao, 2012). For these reasons, step-pool channels are often artificially designed

in stream restoration projects (e.g., Comiti et al., 2009b; Yu et al., 2010), instead of infrastructures made of concrete, such as20

check dams (Chin et al., 2009; Piton et al., 2017). Therefore, geomorphologists and engineers require understanding of the

conditions under which steps form, remain stable, and destabilize.

Several studies in the last decades have increased our knowledge on how step-pool systems function, especially with regard

to the step-forming mechanisms (Chin, 1999; Curran, 2007; Golly et al., 2019; Saletti et al., 2016; Zimmermann et al., 2010),

the stability of steps (Waters and Curran, 2012; Zhang et al., 2019, 2018; Zimmermann et al., 2010), the links between channel25
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and hillslope dynamics (Golly et al., 2017; Molnar et al., 2010), and the relations between flow magnitude, flow resistance

and sediment transport (Comiti et al., 2009a; Hohermuth & Weitbrecht, 2018; Saletti et al., 2015; Turowski et al., 2009;

Zimmermann, 2010). Field studies and flume experiments highlighted how boulder protrusion (Yager et al., 2018, 2007),

grain clustering (Johnson, 2017), and the supply of fine sediment (Johnson et al., 2015) impact flow resistance and therefore

channel stability and sediment transport in step-pool channels. Furthermore, the importance of granular interactions for step30

formation and stability has been previously recognized (Church and Zimmermann, 2007; Saletti et al., 2016) and it has been

suggested that steps are more stable than predicted because of the emergence of force-chains in the transversal direction that

keep them in place even when subjected to higher shear stress (Bouchard et al., 2001; Church and Zimmermann, 2007; Saletti

and Hassan, 2020). The basic questions of how and where steps form and under which conditions remain stable is paramount

for practitioners who are often asked to design steps (or similar structures) to stabilize steep channels while maintaining their35

ecological value and visual appeal (e.g., Chin et al., 2009; Thomas et al., 2000). Existing design criteria consider only flow

variables (e.g., flow rate and flow depth), grain-size and channel geometry, ignoring factors that might strongly impact the

stability of artificial step-pools (e.g., sediment supply and longitudinal width variations).

More recently, Golly et al. (2019) and Saletti and Hassan (2020) showed how longitudinal variations in channel width

regulate both the process leading to step formation and the locations where steps preferentially form. More specifically, the ex-40

periments of Saletti and Hassan (2020) demonstrated that steps formed by particle jamming in narrow and especially narrowing

locations tend to be more frequent and more stable. A limitation of these experiments is that they were conducted in absence

of sediment feed, a condition that is not always realistic in mountain streams, especially in those coupled with active hillslopes

(e.g., Recking et al., 2012; Turowski et al., 2009) or linked to a source of sediment such as a melting glacier (e.g., Comiti at

al., 2019). Sediment supply has been shown to be a very important control on the development and evolution of bedforms in45

gravel-bed streams (e.g., Hassan et al., 2020; Hassan and Church, 2000; Venditti et al., 2017), but no direct study has addressed

the impact of different sediment feed rates on step formation and evolution in a steep channel subject to longitudinal width

variations.

To address this issue, we ran experiments with the same flume geometry, same flume discharges, and sediment mixture

as used by Saletti and Hassan (2020) but we fed sediment at different rates, in order to study how steps develop and evolve50

under different sediment supply regimes. At the end of each experimental run, we turned off the sediment supply and increased

the flow rate until the bed was completely scoured, to assess channel stability in sediment-starved conditions. Field evidence

(Recking et al., 2012) shows that step-pool channels directly connected to sediment sources are less stable, and previous re-

search (e.g., Chin, 1998; Curran, 2007; Saletti et al., 2016; Zimmermann et al., 2010) suggested that low sediment supply is

necessary for step stability, because a high sediment supply would bury the steps. More recently, Waters and Curran (2012)55

conducted experiments with different sediment and water discharges finding a complex relationship between sediment supply,

flow resistance and step stability. In one of the most cited conceptual models for step stability, the jammed-state hypothesis

proposed by Church and Zimmermann (2007), one of the three parameters that control step stability is the sediment concen-

tration, defined by the authors as the ratio between sediment supply and water discharge (i.e., cs =Qs/Q). They hypothesized

that the sediment concentration needs to be small in order to achieve step stability, since a large sediment concentration would60
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Figure 1. Conceptual model that shows step frequency as a function of sediment supply (i.e., particle activity).

bury the steps. Our experiments, conducted keeping all conditions the same except for the feed rate, can be used to test this

specific hypothesis. We expect that large sediment concentration would also increase particle activity, which is the degree of

interaction between the different particles in motion and between these particles and the bed. A large particle activity could

possibly enhance both step formation due to granular interactions, and step instability due to grain dislodgment.

We frame our study in terms of three main research hypotheses. (1) With sediment feed, narrowing locations should generate65

more steps because of particle jamming enhanced by a larger particle activity (Golly et al., 2019; Saletti and Hassan, 2020).

(2) An increasing sediment feed rate should cause more sediment transport and a more dynamic channel, therefore leading to

increasing chances of step collapse. (3) The relation between step frequency and sediment feed should be described by a curve

qualitatively similar to that shown in Figure 1, where step frequency should be small when sediment supply is too low (as there

is an absence of enough particles to form steps) or too high (as there is too much particle activity leading to step collapse and70

burial), while reaching a maximum for intermediate values of sediment supply.

The specific research questions we aim to answer are: (1) Does sediment feed rate influence the frequency and location of

steps in steep streams? (2) Does the stability of steps (i.e., their survival time) depend on the sediment feed rate and the step

location? (3) How do the outcomes of no-feed experiments compare to those of feed experiments in terms of step frequency,

location and dynamics? Given the increasing changes in sediment supply regimes due to urbanization and climate change and75

the widespread use of step-pool channels in stream restoration projects, we believe this is a timely and important topic for both

river scientists and practitioners.

2 Experimental Setup and Methods

We performed three experiments (Exp 50, Exp 100, and Exp 150) in the Mountain Channel Hydraulic Experimental Laboratory

at The University of British Columbia, using the same flume geometry and sediment grain size distribution as in Saletti and80

Hassan (2020). We used a 5-m long, 0.5-m wide and 1-m deep flume at a slope of 8%. We included trapezoidal concrete
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(b) Width variations

Figure 2. (a) Top view of the flume geometry used in the experiments. Grains of different sizes were painted in different colors to facilitate

grain-size recognition and surface structure detection. (b) Channel segments of longitudinal width variations. The flow is right to left.

elements (Fig. 2a) to create narrow and wide segments (of 20 cm and 40 cm, respectively), in addition to narrowing and

widening segments (Fig. 2b).

Before starting each experiment, the flume was filled with a 15-cm deep layer of sediment whose bulk grain-size distribution

was the same used by Saletti and Hassan (2020), having d50=15 mm, d16=3 mm, and d84=29 mm. The mixture included85

sediment sized between 0.5 mm and 64 mm, which was divided into 14 ψ/2 classes (where ψ is defined with respect to the

grain size d as d= 2ψ). Each class of stone was painted in a different color to facilitate surface grain-size analyses.

After one hour of conditioning flow (q = 5 l·s−1 ·m−1) which produced little or no sediment transport, the three experiments

were subjected to the same step-wise increasing flow rates (increased by 20% each hour as done by Saletti and Hassan, 2020)

but different sediment feed rates. We estimated the sediment feed rates using the Wilcock and Crowe (2003) sediment transport90

model for the bulk grain size distribution and the different flow rates. These values constituted the feed rates for Experiment

100 (as to 100% of the transport capacity); the feed rates for Experiment 50 and 150 were obtained by multiplying the feed

rates of Experiment 100 by 0.5 and 1.5 respectively. The three experiments represent three different sediment supply regimes,

rather than simulate precise values of transport capacity. During each hour, sediment was fed over the first 40 minutes with a

conveyor belt located at the flume inlet; the grain-size distribution of the sediment feed was the same as the bulk one used for95

the bed. After 7 hours, we turned off the supply of sediment and increased the flow rate by 20% each hour until the bed was

scoured, which we define as exposing the bottom of the flume in at least one location. The increase in flow rate was applied

every 2 hours if during the first hour no major changes in bed stability were observed. We refer to the feed phase in the 3

experiments as 50F, 100F and 150F, while we refer to the subsequent no feed phase as 50N, 100N and 150N. Table 1 and

Figure 3 report the flow and sediment feed rates used in the three experiments. The starting value of flow rate is larger than that100

used in Saletti and Hassan (2020) because the three lowest flow rates used there did not produce significant changes.

Every hour the flow was stopped to collect topographic and grain-size data using a green laser and a camera mounted on

the top of a moving cart. Digital elevation models of the bed surface were obtained from the laser at 2-mm resolution in the

horizontal direction and 1-mm resolution in the vertical direction. Photos were used to estimate bed grain-size distribution and

identify keystone location as explained in Saletti and Hassan (2020). A uniformly spaced grid of 200 points was overlapped105
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Table 1. Values of unit discharge q and sediment feed rate Qs used in the experiments

Exp_hour q [l/s/m] Qs [kg/h] Exp_hour q [l/s/m] Qs [kg/h] Exp_hour q [l/s/m] Qs [kg/h]

50F_01 17.5 2.9 100F_01 17.5 5.8 150F_01 17.5 8.7

50F_02 21.0 6.6 100F_02 21.0 13.2 150F_02 21.0 19.8

50F_03 25.0 13.7 100F_03 25.0 27.3 150F_03 25.0 41.0

50F_04 30.0 26.8 100F_04 30.0 53.6 150F_04 30.0 80.4

50F_05 36.0 47.8 100F_05 36.0 95.5 150F_05 36.0 143.3

50F_06 43.2 83.8 100F_06 43.2 167.5 150F_06 43.2 251.3

50F_07 51.9 138.8 100F_07 51.9 277.6 150F_07 51.9 416.4

50N_08 51.9 0 100N_08 51.9 0 150N_08 51.9 0

50N_09 51.9 0 100N_09 62.3 0 150N_09 62.3 0

50N_10 62.3 0 100N_10 62.3 0 150N_10 62.3 0

100N_11 74.7 0

20 30 40 50 60 70
Unit discharge [l/s/m]

0

100

101

102

103
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ed

 ra
te

 [k
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Flow rate and feed rate
Exp 150
Exp 100
Exp 50

Figure 3. Flow rates and feed rates used in the 3 experiments. The marker size is proportional to the feed rate. After 7 hours in each

experiment (see Table 1) we increased the flow rate without feeding sediment.

to the picture and grains at each node were manually identified. Sediment transport rates were measured at the flume outlet at

1-Hz resolution for the 14 grain size fractions with a light table (Zimmermann at al., 2008a).
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Steps were extracted from digital elevation models using a scale-free rule-based algorithm (Saletti and Hassan, 2020; Zim-

mermann at al., 2008b) that accounts for spatial variability of step structures. Only steps that occupied more than half of the

total channel width were mapped.110

3 Results

The experiments conducted with sediment feed produced more steps than those without it (Saletti and Hassan, 2020) but higher

feed rates decreased the average number of steps. Step formation/collapse and local scour/deposition continually occurred. Nar-

rowing segments formed steps preferentially, as large particles often deposited and jammed. Sediment feed enhanced particle

activity for all grain sizes, increasing the frequency of particle-particle and particle-bed interactions, raising the propensity for115

jamming. Even Experiment 150, where we fed 50% more of the evaluated transport capacity, did not show significant sediment

aggradation. Light-table measurements of sediment transport rates demonstrated that sediment yield matched sediment feed

quite closely. Despite large particle activity, localized areas of scour/deposition, and bed surface structure break-up/formation,

sediment transport demonstrated steady-state characteristics, with sediment feed and yield differing by at most 10%. Sediment

concentration cs clearly played a role in terms of steps stability, as more steps collapsed with increasing values of cs.120

In the following sections, we present results from Experiments 50, 100 and 150 (hereafter referred to as "feed experiments")

and from the experiments reported in Saletti and Hassan (2020) (hereafter referred to as "no-feed experiments") in terms of (a)

step frequency, (b) step location, (c) step dynamics, (d) grain-size and sediment yield, and (e) sediment concentration and step

stability.

3.1 Step frequency125

The steps were identified and tracked from digital elevation models and images in the experiments with the algorithm described

in Saletti and Hassan (2020). All the feed experiments generated a step-pool morphology with the number of steps depending

on both flow and feed rates. Experiment 50 had an average number of 9.4 steps per hour (10.3 during the feed part and 7.3

during the no feed part), Experiment 100 had an average number of 8 steps per hour (9.1 during the feed part and 6 during the

no feed part), Experiment 150 had an average number of 6.4 steps per hour (7.6 during the feed part and 3.7 during the no feed130

part). As a comparison, the no-feed experiments (i.e., experiments N3a and N3b in Saletti and Hassan, 2020) had an average

number of 5.4 steps. The relationship between the number of steps and flow rate for the feed experiments is shown in Fig. 4,

together with the no-feed experiments.

Two main points can be made. (1) There is a large variability in the step count that ranges between 3 and 14 in the feed

experiments, and between 3 and 8 in the no-feed experiments. This suggests a very dynamic channel morphology, a point135

that will be explored in the next sections. (2) The number of steps in the feed experiments decreases with both flow rate (i.e.,

moving left to right in the x axis in Fig. 4) and feed rate (i.e., moving top to bottom in the 3 different colors in Fig. 4). This

decreasing trend becomes stronger as the feed rate increases, as suggested by the R2 values. On the other hand, in the no-feed

experiments there is no clear trend between the number of steps and the flow rate.
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Figure 4. Number of steps detected at the end of each 1-hour run in the feed experiments, shown with circles, and in the no-feed experiments

from Saletti and Hassan (2020), shown with squares. The size of the circles is proportional to the sediment feed rate. Dashed lines are the

best-fit lines for the experiments; the values of R2 are 0.36, 0.60, and 0.91 for Experiment 50, 100, and 150 respectively. The best-fit line for

the no-feed experiments is almost flat but with R2 < 0.1.

3.2 Step location140

The no-feed experiments of Saletti and Hassan (2020) showed that steps are more likely to form in narrow and narrowing

segments rather than in wide and widening segments. The feed experiments reported here show a very similar result (Fig. 5).

Steps in narrow and narrowing segments (Fig. 5a, b) are generally more common than steps in wide and widening segments

(Fig. 5c, d). The number of steps formed in narrowing segments (Fig. 5b) remains high and larger than zero throughout all

the experiments, while steps in other segments display a decreasing trend with time and flow rate (Fig. 5a, c, d). As it was145

observed in the no-feed experiments, the number of steps in narrow segments (Fig. 5a) is quite high at the beginning for low

values of flow rate but then it decreases as narrow segments (whose unit discharge is 2 times larger than that in wide segments)

are subject to more erosion.

The likelihood of steps forming in certain segments can be explored by comparing the fraction of steps in a certain segment

(i.e., step fraction) with the fraction of channel length occupied by those segments (i.e., area fraction), as done in Saletti and150

Hassan (2020). Steps fractions differing significantly from area fractions indicate that width variations matter and that certain

segments are more likely than others to have steps. More specifically, step fractions significantly larger than area fractions

indicate a high likelihood to find steps in that segment, while step fractions significantly smaller than area fractions indicate a

low likelihood to find steps in that segment.

Width variations control step location, with narrowing segments being the predominant place where steps form and remain155

stable (Fig. 6). The comparison between step fractions and area fractions yields three main results. (1) Narrowing segments

are much more likely than others to have steps, and this effect becomes more pronounced as flow rates increase (Fig. 6b). (2)
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Figure 5. Number of steps detected in the feed and in the no-feed experiments at the end of each hour in (a) narrow segments, (b) narrowing

segments, (c) wide segments, and (d) widening segments. Portions of experiments with sediment feed are shown with circles, while portions

without sediment feed are shown with squares.

Steps in narrow segments are more common for low to moderate flow rates, but this effect vanishes as flow rates increase and

sediment feed is turned off (Fig. 6a). (3) Steps are less likely to form in wide and widening segments (Fig. 6c, d).

These observed trends can be connected to the step-forming mechanisms due to a competition of granular and fluid forces160

(Saletti and Hassan, 2020). Narrow and narrowing segments are characterized by a larger bed shear stress but also a lower

jamming ratio (i.e. the ratio between channel width and size of the step-forming keystones), and steps there tend to form

because of particle jamming. In wide and widening segments, the shear stress is lower but the jamming ratio is higher, and

steps there tend to form due to particle deposition around keystones (see Golly et al., 2019). The results of the feed experiments

suggest that jamming steps are more frequent than depositional steps. This reinforces the idea that granular interactions are165

a key process to explain the occurrence and location of steps in steep channels, as previously suggested (e.g., Church and

Zimmermann, 2007; Saletti et al., 2016; Saletti and Hassan, 2020; Zimmermann et al., 2010).

3.3 Step dynamics

We tracked individual steps and their evolution throughout the experiments. To describe step dynamics, we categorize each

step into one of five groups for each time interval: (1) steps newly formed, (2) steps that expanded in the transversal direction,170
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Figure 6. Fraction of steps in the feed and no-feed experiments at the end of each hour in (a) narrow segments, (b) narrowing segments,

(c) wide segments, and (d) widening segments. Portions of experiments with sediment feed are shown with circles, while portions without

sediment feed are shown with squares. The area fraction is shown with a dashed black line for comparison. Markers plotting above the dashed

line indicate steps are more likely to occur in these segments, markers plotting below that line indicate instead that steps are less likely to

occur in these segments.

(3) steps that contracted in the transversal direction, (4) steps that remained the same, and (5) steps that were destroyed. We

show the temporal trends of these categories in Fig. 7.

This analysis revealed that: (1) All experiments were very dynamic, as very few steps remained the same (Fig. 7f). (2) Step

formation and destruction were predominant during the feed phase and became less important when sediment feed was cut off

(Fig. 7b, c); (3) Step expansion and contraction varied considerably in all the runs, both with flow and sediment feed rate (Fig.175

7d, e).

To assess the stability of channel morphology, we categorized steps that were formed and destroyed as events of channel

instability and steps that contracted, expanded, or stayed the same as events of channel stability. We show the temporal trends of

these categories in Fig. 8. Two observations emerge from this analysis. (1) Instability was predominant during the feed part of

the experiments, but, as soon as the sediment supply was shut off, the modification of pre-existing steps became more important180

(i.e., the two time-series in Fig. 8 became closer). (2) The difference between the instability and the stability of steps depends

on sediment feed, as the two lines during the feed phase become more separated as the feed rate increases (i.e., moving from
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Figure 7. Step activity in the feed experiments expressed as number of (a) total steps, (b) newly-formed steps, (c) destroyed steps, (d) steps

that have expanded, (e) steps that have contracted, and (f) steps that remained the same. The vertical dashed line separates the feed periods

(on the left) from the no-feed periods (on the right).
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Figure 8. Stability of the step-pool morphology in time expressed as comparison between number of steps that formed and destroyed (i.e.,

unstable in red squares) and number of steps that remained the same or expanded/contracted (i.e., stable in blue circles) in (a) Experiment

50, (b) Experiment 100, and (c) Experiment 150. The vertical dashed line separates the feed periods (on the left) from the no-feed periods

(on the right).

panel a to c in Fig. 8). This separation indicates that larger sediment input enhances step formation and destruction. Turning

off the sediment feed suppresses step formation and destruction, making changes to existing steps the predominant process of

morphological change.185

The stability of steps can be explored also in terms of step survival time (i.e., for how many consecutive hours a step remains

stable), and its dependence on the key variables explored in this study: the location within the channel and the magnitude of

sediment supply. In Figure 9 we show violin plots of survival times as a function of (a) step location and (b) feed rate. In the

case of step location, the distribution of survival times demonstrates that steps in narrowing segments are more stable than

those in other segments (Fig. 9a). None of the steps in narrow, wide, and widening segments survived for more than 5 hours,190

whereas a few steps in narrowing segments survived for the total duration of the experiment (i.e., 10 hours). With respect to

the relationship between survival times and feed rate (Fig. 9b), the maximum survival time occurs for Experiment 50, whose
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Figure 9. Violin plots of step survival times as a function of (a) step location and (b) sediment feed rate, with no-feed experiments shown for

comparison.

sediment feed rate is larger than zero but smaller of the calculated transport capacity. Both experiments with no-feed and with

larger feed rates have smaller survival times. These trends suggest that step stability is enhanced when sediment supply is larger

than zero but below transport capacity, an interesting point that will be addressed in the discussion.195

3.4 Grain size and sediment yield

The grain-size distribution of the bed was obtained by analyzing the images and manually identifying 200 stones on a uniformly

spaced grid. The time series of d16, d50, and d84 of the bed surface for the feed experiments are shown in Figure 10. The d50

and the d16 did not change much during either of the 3 experiments, whereas the d84 was more dynamic, showing a consistent

coarsening which became sharper 4-6 hours into the experiments.200

The sediment yield measured at the flume outlet is dictated by the sediment feed at the inlet (Fig. 11). However, the cor-

relation between sediment input and output does not mean that the channel morphology did not change, as evidenced by the

observed step dynamics (Fig. 7-8). We evaluated the feed rates to be used in the experiments by calculating the channel trans-

port capacity with the Wilcock and Crowe (2003) model. We expected net degradation in Experiment 50 (where we fed 50%

less of the calculated transport capacity) and net aggradation in Experiment 150 (where we fed 50% more of the calculated205

transport capacity). This did not occur. In our experiments the sediment transport rate at the flume outlet tracks the feed rate

at the flume inlet closely. Surprisingly, in Experiment 150 there is more degradation than aggradation, as it can be seen in Fig.

11c, where sediment yield is almost always equal or larger than the sediment feed.
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Figure 11. Sediment yield (red squares) measured at the channel outlet and sediment feed (blue circles) at the channel inlet in Experiment

(a) 50, (b) 100, and (c) 150. The vertical dashed line indicates when the sediment feed was turned off.

3.5 Sediment concentration and step collapse

Considering that (a) we know the amount of sediment supplied to the channel, (b) we measured the amount of sediment that left210

the channel, and (c) we tracked all the steps that have been destroyed, it is possible to directly test the hypothesis proposed by

Church and Zimmermann (2007) that a small sediment concentration is necessary for step stability. We calculated the sediment

concentration cs in terms of both sediment feed (cs,feed =Qs,input/Q) and sediment yield (cs,yield =Qs,output/Q) as the

ratio between solid and liquid discharge, and compared it with the fraction of steps that were destroyed in each run (number of

steps destroyed at time t divided by the total number of steps at time t−1). We show these trends in Figure 12, where sediment215

concentrations are plotted in log scale.

The fraction of destroyed steps increases with increasing sediment concentration. In the feed experiments, the trend is clearer

when plotted using the sediment concentration of the output (R2 = 0.54 in Fig. 12b) than the sediment concentration of the

input (R2 = 0.28 in Fig. 12a). Unlike what was proposed in the jammed-state hypothesis (Church and Zimmermann, 2007), we

suggest that cs,yield should be used instaed of cs,feed, as it is a better proxy for the particle activity that lead to step instability.220
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Figure 12. Fraction of steps that were destroyed in each run as a function of the logarithm of sediment concentration of (a) sediment input

and (b) sediment yield. Feed experiments are shown with circles (whose size is proportional to the feed rate), and no-feed experiments are
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4 Discussion

4.1 Width variations and step location

In the no-feed experiments of Saletti and Hassan (2020), the authors demonstrated that longitudinal variations in channel

width form steps in narrowing and narrow segments because of particle jamming, and that high flow rates scour away steps

in narrow segments while preserving steps in narrowing segments. This outcome brought us to conclude that granular forces225

are predominant over fluid forces, since more steps occur in narrowing/narrow locations where the shear stress is larger and

jamming ratio is smaller. The same behaviour can be observed in the feed experiments reported here, where steps in narrowing

segments are even more likely to occur than in the experiments without sediment feed (Fig. 6), and they are definitely more

stable than steps in all other segments (Fig. 9). We attribute this outcome to the step-forming mechanism. Steps in narrowing

segments are created by particle jamming enhanced by geometrical constraints, similarly to granular materials in a hopper (To230

et al., 2001). This process is strongly dependent on particle activity (i.e., the more particles that are in transport, the more likely

they are to jam) which is a direct consequence of sediment supply. Based on these experiments, we should expect that when

sediment feed is large enough to maintain an active level of sediment transport, more particles will jam, and more steps will be

found in narrowing segments. This is consistent with the reduced-complexity modelling results of Saletti et al. (2016), where

the frequency of step-creating jamming events is directly dependent on particle activity and sediment supply. More generally,235

this highlights the importance of considering granular effects and granular interactions in descriptions of channel morphology

and sediment transport in steep coarse-bedded streams (Booth et al., 2014; Ferdowsi et al., 2017; Frey & Church, 2011).

These experimental observations have important implications for step-pool design and mountain channel stability. They

suggest that steps should be built where natural width constrictions favour keystone jamming to increase the success of stream

restoration projects.240
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4.2 Step dynamics and channel stability

By tracking step evolution, we demonstrated that step-pool channels are more dynamic when subjected to sediment feed.

During the feed experiments, when sediment was fed the dominant processes were step formation and collapse, whereas when

sediment feed was turned off, contraction and expansion of existing steps became important (Fig. 7-8). These results are in

agreement with the field study of Recking et al. (2012), who showed that natural step-pool channels directly connected to245

sediment sources have less stable steps (they are destabilized by smaller floods).

Our experiments showed that step instability (i.e., more steps collapsing) triggered by large sediment input does not neces-

sarily mean fewer steps, as the increased particle activity implies also more step formation. For example, Figure 4 shows how

in some instances, Experiment 150 had more steps than Experiments 50 and 100, despite the larger sediment feed. As soon

as the sediment input was turned off, both the numbers of steps that were created and destroyed clearly dropped in all three250

experiments. This confirms our starting hypothesis that particle activity (enhanced by sediment feed) is a key variable for step

formation and stability.

We found that increasing sediment concentration caused more step collapses (Fig. 12), in agreement with the jammed-state

hypothesis (Church and Zimmermann, 2007). Based on our results, we propose that sediment concentration in this context

should be measured with respect to the sediment output rather than the input, since values of sediment yield are a better255

proxy for the degree of stability of the channel. Experiments conducted by Waters and Curran (2012) did not find a consistent

relationship between sediment concentration and step collapse, although their study considered temporal stability of sequences

rather than individual steps, and their flow rates remained constant for a longer period of time.

4.3 What maximizes step frequency?

Our experiments showed that the number of steps generated in feed experiments is larger than otherwise equivalent no-feed260

experiments (Saletti and Hassan, 2020). However, during feed experiments the average number of steps decreased with feed

rate (both in the same experiment and between different experiments). Our results suggest that there is an "optimum" level of

sediment supply that maximizes the number of steps. The experiments suggest that the relation between step frequency and

sediment supply can be conceptually expressed by a curve similar to that displayed in Fig. 1, where the maximum number

of steps is achieved for values of sediment input larger than zero but smaller than the evaluated transport capacity. For lower265

values of sediment input there is not enough sediment available to build this maximum number of steps (i.e., particle activity

is too low). Instead, for higher values of sediment input the system becomes too active (i.e., particle activity is too high), so

that many steps form but they are immediately destroyed. Increasing values of sediment concentration showed an increasing

fraction of steps destroyed (Fig. 12). However, the larger particle activity also increases the chances of step formation because

of granular interactions. This yields the relationship displayed in Figure 1, where the maximum number of steps is achieved270

for values of sediment feed below capacity but larger than zero.

Using the data from both the no-feed and the feed experiments, we show how step frequency changes as a function of

sediment feed rate and location in terms of channel width (Figure 13). To generalize our results, we show step frequency
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Figure 13. Step frequency (expressed as number of steps per number of channel widths) plotted as a function of (a) sediment supply and (b)

longitudinal channel width variation. Dashed lines represent mean values, and the shaded area is the 25-75 percentile. The excess sediment

feed in (a) is expressed as the sediment feed divided by the transport capacity.

as number of steps per reach length expressed as number of average channel widths. We quantify the sediment supply with

excess sediment feed, defined as the ratio between the sediment feed and the transport capacity (evaluated in our case with the275

model of Wilcock and Crowe, 2003). In Figure 13 we plot both the average values from all our experiments and the 25 and 75

percentiles to show the variability around these values. The comparison between Figure 13a and b suggests that the effect of

width variations on step frequency is much stronger than that of sediment supply, although also much more variable.

It is important to note that sediment feed rate and longitudinal channel width variations are only two of the variables that

influence step frequency. Flow rates and the hydrological regime (e.g., Zhang et al., 2019, 2018), grain-size distribution for280

the availability of large grains acting as keystones (e.g., Hohermuth & Weitbrecht, 2018), and channel geometry and slope

(Chartrand et al., 2011) are also expected to be important controls. Sediment supply can also vary not only with respect to

the magnitude, but also in terms of duration and frequency (e.g., Hassan et al., 2020). Since in steep mountain channels the

sediment input is often episodic, these aspects should be further investigated. Finally, channel width variations in steep channels

are expected to occur in a less systematic way than those designed in our experiments, as well as with different angles and285

potentially with different material.

4.4 What is transport capacity in steep channels?

The values of sediment yield measured at the channel outlet during the experiments were very similar to the values of sediment

feed imposed at the channel inlet (Fig. 11). The feed rates chosen in the three experiments spanned one order of magnitude and

were below, equal, and above the calculated transport capacity, yet the sediment yield was still determined by the supply. This290

suggests that: (1) the channel adjusts its morphology to be able to carry the imposed load, and (2) standard formulations of

transport capacity are not applicable in steep mountain channels where sediment transport rates are a function of the imposed

feed and changes in channel morphology (e.g., Saletti et al., 2015).
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It is important to note that this might be a consequence of the flume length. Changes in channel morphology and in storage

and release of sediment could require longer flumes to be captured in physical experiments. Our flume length was ~15 times295

the average channel width, a measure that is usually considered to be enough to represent a channel reach (Montgomery &

Buffington, 1997, suggest for example 10-20 channel widths). However, these results would need to be tested in longer flumes

in order to determine whether the pattern observed here depends on flume length or not.

4.5 Outlook

Our results highlight the important control of sediment supply and channel width variations on step formation, evolution, and300

stability in steep streams. However, some aspects deserve further investigations. First, these experiments were conducted under

a constant feed rate, a condition that may not represent those typical of mountain streams, where mass movements and climate

variability often make the sediment input highly variable. Therefore, experiments should be conducted with episodic sediment

supply, to check whether and how this would influence the outcome. Second, this set of experiments did not explore other

possibly important variables such as: channel slope, angle of channel width variations, and grain-size distribution. Finally, to305

provide practitioners with a more quantitate criterion for step-pool channel design, precise measurements of flow depth, flow

velocity and flow structure should be taken. The combination of hydraulic and morphological variables will help to better

understand the full set of conditions making steps unstable.

5 Conclusions

We reported results from flume experiments conducted to study the effect of sediment supply on the formation, evolution310

and stability of steps in steep mountain streams subject to longitudinal width variations. Our feed experiments, together with

no-feed experiments previously conducted in the same flume (Saletti and Hassan, 2020), showed that more steps were created

when sediment was fed into the channel; however, the number of steps was inversely related to the feed rate suggesting that the

maximum number of steps is achieved when sediment supply is below transport capacity.

Steps formed in different locations due to distinct mechanisms and with different likelihoods. Steps in narrow and especially315

narrowing segments were more likely to form due to particle jamming and remain more stable than steps due to particle depo-

sition around keystones in wide and widening segments. This was more prevalent at high flow rates, when steps in narrowing

segments were the predominant morphological feature in all experiments. This has important implications for stream restora-

tion projects in steep streams, where step-pools are often artificially designed to maintain channel stability and ecological

functioning, especially during large floods.320

The evolution of step formation, expansion/contraction and destruction revealed that when sediment was fed into the chan-

nel, formation and destruction were the predominant means of channel evolution. However, when the input was turned off,

changes in existing steps (i.e., expansion/contraction) became very similar to step formation and destruction, indicating that

the channel seemed to have achieved a more stable morphology. The difference between the trends of expansion/contraction

16

Matteo Saletti

Matteo Saletti

Matteo Saletti



versus formation/destruction was stronger for larger feed rates, confirming that sediment supply enhances particle activity and325

morphological changes.

The distributions of step survival showed that steps in narrowing segments were more stable than those in other segments.

Channels subject to sediment feed rates smaller than the evaluated transport capacity had steps that were more stable than

those generated both without and with larger values of sediment feed. This outcome, combined with step count results, led us

to propose a conceptual model that relates step frequency to sediment supply in a functional way that resembles a bell curve.330

The maximum number of steps is achieved for values of sediment supply below transport capacity. The low particle activity

due to no sediment input generates fewer steps, while the high particle activity due to high sediment input generates more steps

that are more unstable.

Sediment yields tracked sediment input in all feed experiments, despite the order of magnitude variation in sediment feed

rate. This observation suggests that the concept of transport capacity needs to be reevaluated in steep channels, where the335

magnitude of sediment supply seem to be the first-order control on sediment transport rates.

Finally, we compared data from feed and no-feed experiments to test the hypothesis proposed by Church and Zimmermann

(2007) that a low sediment concentration is necessary to achieve step stability. Step instability in our experiments increased

with sediment feed, especially when the sediment concentration was computed with respect to the sediment yield.

Our results help to better understand the important role of sediment input in the evolution of stepped channel morphology in340

steep streams, with the potential of being used by practitioners designing step-pool channels in stream restoration projects.
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