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Abstract. Depressions—inwardly-draining regions—are common to many landscapes. When there is sufficient moisture, de-1

pressions take the form of lakes and wetlands; otherwise, they may be dry. Hydrological flow models used in geomorphology,2

hydrology, planetary science, soil and water conservation, and other fields often eliminate depressions through filling or breach-3

ing; however, this can produce unrealistic results. Models that retain depressions, on the other hand, are often undesirably ex-4

pensive to run. In previous work we began to address this by developing a depression hierarchy data structure to capture the full5

topographic complexity of depressions in a region. Here, we extend this work by presenting a Fill-Spill-Merge algorithm that6

utilizes our depression hierarchy data structure to rapidly process and distribute runoff. Runoff fills depressions, which then7

overflow and spill into their neighbors. If both a depression and its neighbor fill, they merge. We provide a detailed explanation8

of the algorithm as well as results from two sample study areas. In these case studies, the algorithm runs 90–2,600× faster9

(with a 2,000–63,000× reduction in compute time) than the commonly-used Jacobi iteration and produces a more accurate10

output. Complete, well-commented, open-source code with 97% test coverage is available on Github and Zenodo.11

1 Introduction12

Depressions (see Lindsay (2015) for a typology) are inwardly-draining regions of a DEM that lack any outlet to an ocean or13

other designated base elevation. Depressions occur naturally, and can be formed by glacial erosion and/or deposition (Brecken-14

ridge and Johnson, 2009), compressional and/or extensional tectonics (Reheis, 1999; Hilley and Strecker, 2005), and cratering15

(Cabrol and Grin, 1999). They often host lakes and wetlands by retaining water locally. Depressions may themselves contain16

depressions. Such regions confound algorithms for geomorphological and terrain analysis, as well as those for hydrological17

modeling, because many such algorithms simply route water down topographic slope following the local gradient: depressions18

neither fill with water, nor drain.19

Many hydrological models deal with the complexity of depressions by removing them. This can be done either by filling the20

depressions with earth so that they form a flat region of landscape (e.g. Jenson and Domingue (1988); Martz and Jong (1988));21

breaching (Martz and Garbrecht, 1998) or carving them (Soille et al., 2003) so that water flows from their lowest point through22
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the carved channel and onward to downstream regions; or some combination of these (Lindsay and Creed, 2005b; Schwanghart23

and Scherler, 2017; Soille, 2004; Lindsay, 2016). This approach is justified for situations in which spatiotemporal aspects of24

the analysis allow depressions to be ignored or for cases in which all depressions can be considered to be data errors (Lindsay25

and Creed, 2005a). Historically, many DEMs were constructed from sparse data, and small data errors produced depressions,26

especially in flat areas (O’Callaghan and Mark, 1984). Such an assumption is no longer justified, as improved and increasingly27

high-resolution data have become available (Li et al., 2011). Even coarse-resolution data are capable of resolving real-world28

depressions (e.g. Riddick et al., 2018; Wickert, 2016). With this in mind, new approaches are beginning to be examined,29

particularly in post-glacial landscapes where depressions have a significant impact on local hydrology (e.g., Lai and Anders,30

2018) and therefore cannot be ignored during modeling.31

FlowFill (Callaghan and Wickert, 2019) began to combat this problem by routing water across landscapes in a way that32

conserved water volume, creating flow-routing surfaces that could still contain real depressions. Under reasonable runoff con-33

ditions, their results show landscapes that still contain depressions and disrupted flow routes. The FlowFill method iteratively34

routes water from higher to lower terrain. As depressions fill, they pose an extreme challenge to such a method: since water35

seeks a level surface, the surface of a filled depression must eventually become flat and any fluid flowing onto the surface36

diffuses across it. Even for moderately-sized surfaces it can take many iterations for a solver to reach steady state; we provide37

a theoretical analysis of this in Section 4.1. Runtimes for FlowFill ranged from seconds to days: large datasets quickly became38

unwieldy. Of those examples tested by Callaghan and Wickert (2019), the slowest was a dataset of 4,176,000 cells which took39

approximately 33 hours for FlowFill to process. In contrast, the Fill-Spill-Merge algorithm presented here fills a similarly-sized40

dataset in 8.7 s.41

Other authors have considered the problems of extracting nested depression hierarchies and dynamically routing water42

through them. However, these previous approaches are either slow, inexact, or both; additionally, most previous efforts were43

not accompanied by source code, limiting their utility. Barnes et al. (2020) provide a more thorough literature review which44

we briefly recap here. A hierarhical segmentation by Beucher (1994) did not produce a data structure on which flow could45

be routed. Salembier and Pardas (1994) generated a hierarchical segmentation by repeatedly simplifying source images; hy-46

drologically speaking, this can lead to unacceptable degradation of terrain information. Arnold (2010) developed an algorithm47

similar to the one here, but without source code; the algorithm also generates looping topologies that require correction. Wu48

et al. (2015) and Wu and Lane (2016) constructed depression hierarchies by first smoothing a DEM and then extracting vector49

contour lines from it. Wu et al. (2018) build on this approach by discretizing the DEM into a number of horizontal slices. Both50

approaches sacrifice exactness and the latter requires O(N2) time. Cordonnier et al. (2018) use planar graph minimum span-51

ning trees to construct a hierarchy of depressions, but do not produce a data structure water can be routed on. In contrast, the52

Fill-Spill-Merge algorithm relies on a well-defined data structure (Barnes et al., 2020); has complete, well-commented source53

code with extensive correctness tests (Barnes and Callaghan, 2019, 2020); has strong efficiency guarantees (§4.1) which are54

realized on actual and simulated datasets (§4.2); and provides exact answers.55

To achieve this, we developed a data structure—the depression hierarchy—which represents the topologic and geographic61

structure of depressions. In an accompanying paper, we provide details concerning how a depression hierarchy is constructed (Barnes62
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Figure 1. A single subtree of a depression hierarchy and the depression it represents. Depressions 1–4 are leaf depressions. Depression

6 is a parent depression (also termed a meta-depression) that contains depressions 1 and 2. Water from the plateau on the left above cells A

and B might fill Depression 1 (cell C), causing it to spill into Depression 2 (cell E). Only when both depressions are full do they merge and

begin filling Depression 6 (cells C, D, and E). Modified from Barnes et al. (2020).
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et al., 2020). In this paper, we explain how a depression hierarchy can be leveraged to accelerate hydrological models using a63

paradigm we call Fill-Spill-Merge.64

2 Using The Depression Hierarchy80

Many of the techniques in this paper are based on binary tree data structures and their traversals. Although we define terms81

below, more complete explanations and visual examples can be found in the text for any introductory undergraduate course82

on data structures. We recommend Skiena (2008) and Sedgewick and Wayne (2011) as good references. In particular, a good83

understanding of recursion will be helpful.84

2.1 Terminology85

Depressions can themselves contain depressions, as shown in Figure 1. A depression hierarchy (DH) is a data structure repre-86

senting a forest of binary trees, as shown in Figure 2a, that represents the relationships between depressions (Figure 2a–d). Each87

node in the DH represents a depression. Nodes higher in the DH are depressions that themselves contain depressions; we term88

these meta-depressions. Although the depression hierarchy could be generalized to n-ary trees using multiple flow direction89

routing, the binary simplification is sufficient to cover most use cases. A node in the DH can have several classifications:90

– Parent: A node, such as #10 and #12 in Figure 2a, that represents a meta-depression, and whose topological descendants91

therefore also form depressions.92

– Child: A depression, such as both #10 and #1 in Figure 2a, that geographically and topologically exists within the93

meta-depression formed by its parent.94

3



(a)

Link

Example
Parent

Descendants (12)
Leaves

Children Geolink
Oceanlink

Roots

3

21

12

54

11

0

10

Ocean

LL
P

Water Volume

Marginal Volume

11

1 2

10 3

12

4 5
0

Spillover point

L

L L

P

P

O
c
e
a
n

(e) P Parent L Leaf

11

12

0

O
c
e
a
n

(b)

Leaves

(11)

10

3

(12)

4 5 0

O
c
e
a
n

(c)

(11)

1 2

(10) 3

(12)

4 5 0

O
c
e
a
n

(d)

Meta-depression
Parent to 10,3

Parent to 4,5
Meta-dep.

Parent to 1,2
Leaf

depression
Leaf

depressions

Meta-depression

Leaf
depressionLeaf

depressions
Leaf

depressions

Marginal Depression

Marginal Depression

Marg. Dep. Marg. Dep.

Marg. Dep.

65

Figure 2. Terminology for the depression hierarchy and water flow through it. The depression hierarchy shown here is drawn from the

left hand side of Figure 1 from the companion paper by Barnes et al. (2020). (a) Topology. A parent and its descendants are associated with

depressions (b–d). Direct descendants are called children. Leaves are the terminal members of the depression hierarchy; they have no children

and represent simple depressions (i.e., those that are not meta-depressions). Members of a single binary tree are joined in their hierarchy

through links; directional links that represent water-spillover directions between geospatially adjacent depressions are called geolinks. Flow

from one binary tree into another and towards the ocean follows the oceanlinks. Though only one binary tree is shown, the ocean may be the

parent to an arbitrarily large forest of binary trees. (b) Parents in the hierarchy form meta-depressions — depressions that encompass other

depressions. (c) These meta-depressions contain leaf depressions — depressions that themselves contain no depressions. These are associated

with leaves in the depression hierarchy. Meta-depression 12 also contains another meta-depression, 10. The regions of Depressions 11 and

12 that lie above their child depressions are termed “marginal depressions”. (d) Meta-depression 10 contains leaf depressions 1 and 2. (e)

Using the depression hierarchy to simulate water flow. Water first fills leaf depressions before flooding into neighboring depressions. Once

a depression and its neighbor are completely filled, their parent begins to flood. The depression volume is the full geometric volume of the

depression. The water volume, naturally, is the volume of water within a given depression. The marginal volume is the volume of water

partially filling the top-level meta-depression; appropriately spreading this water across the landscape is the topic of Section 3.3.
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– Leaf: A depression, such as #1 and #2 in Figure 2a and Figure 2d, that has no children. The leaves of the binary trees95

represent the smallest, most deeply-nested depressions. If a landscape were initially devoid of water, then water flowing96

down slopes would begin to collect in some subset of these leaf depressions before it would begin to fill their parent97

depressions.98

– Root: A depression, such as #0, #11, and #12 in Figure 2, that has no parent. This term may also refer to any node that99

is used as the starting point for a traversal that only considers the node and its descendants.100

– Descendant: A child of a given parent, or the child of a child of that parent, and so on. In Figure 2a, #1, #2, #3, and #10101

are all descendants of #12.102

– Sibling: Every node has either no children (leaf nodes) or two children. Nodes which share a parent are siblings. In103

Figure 2a, #1 and #2 are siblings, as are #4 and #5.104

As depressions fill, their water surfaces eventually reach a spill elevation (Figure 2e) at which they overflow into neigh-105

boring depressions. During this spilling, water flows from a depression into a geographically neighboring leaf depression,106

topologically connected by a geolink. The spill elevations in Figure 1 are the highest points of each band of color.107

Each node in the DH is associated with several properties:108

– Depression volume: This is the total volume of water that the depression, including all of its descendants, can contain109

before spilling over.110

– Water volume: This is the total volume of water actually being stored in the depression. A parent depression will have111

a non-zero water volume only if both of its children are completely full and the parent itself contains some additional112

volume of water. In this case, the water volume will be the sum of the water volumes of the children and the additional113

margin of water contained within the parent (i.e., the “marginal volume” indicated on Figure 2e). Parents whose children114

are not both filled with water will have a water volume equal to zero. In this way, we can use this property to determine115

which portions of the DH are fully or partially filled, and which are the highest water-containing nodes in any of the116

binary trees.117

– Geolink: When a depression spills, its water passes into the subtree rooted by its sibling. However, in a full model of118

flow, the water would move downslope from the spill cell into whichever leaf depression of the sibling is geographically119

proximal to the spill cell. Geolinks are pointers from depressions higher in the DH to the leaf depressions that receive120

their water if they overflow. These are the dashed lines shown in Figure 2a. Geolinks are similar to the connections used121

in a threaded binary tree (Fenner and Loizou, 1984).122

– Oceanlink: Depressions high in the mountains may overflow down escarpments to depressions far below. In this case,123

the depressions do not overflow into each other: the relationship is one-way. There can be multiple such escarpments, so124

this can happen multiple times. In such cases, each group of depressions forms a proper binary tree. However, the root125
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of one of the trees has an oceanlink to a leaf node of the downstream binary tree. In Figure 2, both #11 and #12 are the126

root nodes of a set of nested depressions. #12 has an oceanlink (heavy arrow) to #4, one of the leaf depressions of #11.127

#11 itself has an oceanlink to the ocean. In many of the algorithms discussed below, oceanlinked nodes are processed128

similarly to children.129

Within the algorithm, oceanlinks and geolinks are used for different purposes: an oceanlink tells us that the depression in130

question has grafted onto the leaf node of another tree of the depression hierarchy, locating a route for overflowing water to131

eventually reach the ocean. The depression to which it is oceanlinked is considered its parent, but it is not the child of that132

depression because water flows only one way along an oceanlink. In Figure 2a, depression #4 can be considered the parent133

of #12, but #12 is not the child of #4. This is because #12 is not physically contained within #4, but #12 will send all of its134

overflowing water to #4, as shown in Figure 2b–e. #4 will not contain the total water volume contained within #12, unlike other135

parents. Geolinks route water within geographically adjacent depressions contained in the same meta-depression.136

2.2 Traversals137

With these linkages in place, we can consider various ways of traversing the trees. Given a binary tree T with left and right138

children T.L and T.R, a breadth-first traversal considers both T.L and T.R before considering any of T.L.L, T.L.R, T.R.L,139

or T.R.R. A depth-first traversal, on the other hand, will consider T.L and all of its descendants before considering T.R or any140

of its descendants. The tree traversals we perform in this paper are all depth-first.141

Depth-first traversals are most naturally expressed via recursion and come in three types: in-order, pre-order, and post-order.142

Let a recursive traversal function be called r(·) and the processing we perform on a particular node in the tree p(·), then the143

traversals are given by:144

– in-order: r(T.L) then p(T ) then r(T.R)145

– pre-order: p(T ) then r(T.L) then r(T.R)146

– post-order: r(T.L) then r(T.R) then p(T )147

3 The Algorithm148

The Fill-Spill-Merge algorithm consists of several steps, outlined here, depicted in Figures 3 and 4, and shown in flowchart195

form in Figure 5. This paper is also accompanied by complete, well-commented source code; the reader may find it helpful to196

download this code and refer to it as an additional reference. First (§3.1), surface water needs to move downhill, either to the197

ocean (i.e., a designated sink region or the map edge) or to collect in pit cells – the deepest points within leaf depressions. Note198

that the landscape may already have standing water at this stage. This operation takes place across all the cells of the DEM.199

Second (§3.2), water is redistributed across the depression hierarchy such that any depressions that have filled sufficiently spill200

over into neighboring depressions and, if both depressions are full, flood their parent to merge into a single, larger body of201
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Figure 3. Fill-Spill-Merge process. Water moves through topographic depressions by filling them, spilling over sills, and merging to form

meta-depressions. (a) Topographic cross section with labeled leaf depressions and their parents, following the left-hand side of the de-

pression hierarchy in Figure 2. “0” represents the ocean; other numbers represent leaves and parents that together form depressions and

meta-depressions. (b) Map showing this depression structure; the cross-section in (a) follows the dotted gray line. (c) A water source to the

left begins to fill Depression 1. (d) Continued water input causes Depression 1 to overflow and spill into Depression 2. (e) Depression 2 fills,

causing Depressions 1 and 2 to fill their parent (10) and merge to form a metadepression. This metadepression overflows into Depression 3.

(f) Depression 3 fills and merges with Meta-Depression 10 (1 and 2 being implied members based on their position in the hierarchy) to flood

their parent, 12. After Meta-Depression 12 overspills, it enters Depression 4, which then fills and spills into Depression 5. After Depression

5 floods, its waters join with those from Depression 4 to fill Meta-Depression 11, which then spills to the ocean. Figures 4 and 5 describe the

algorithm in more specific detail.
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Figure 4. Visual Overview of the Algorithm. Black outlines repre-

sent the elevations of the cells. Blue areas are the heights of water in

each cell or depression within the depression hierarchy. Capital let-

ters label cells, and numbers on colored dots label depressions. Col-

ors at the base of each panel match the colored dots and indicate to

which depression each cell belongs. The algorithm consists of three

major stages (Figure 5). From its initial distribution (a), water is moved

downhill following flow directions in the steepest downslope direction

from each cell, as indicated by the arrows. Water continues to move

downslope until it reaches the pit cells (b, §3.1). Water is then moved

within the depression hierarchy (c–f, §3.2). (c) shows the initial distri-

bution of water within the depression hierarchy, based on how much

water was in the pit cell of each depression. Water in depressions with

insufficient volume overflow first into their sibling depressions and

then – if the sibling depression becomes filled – passes to their par-

ents. All of the leaf depressions in (c) are completely filled, so no sib-

ling depressions can accommodate more water. Therefore, depressions

1 and 2 pass their overflowing water up to their parent, depression 6,

and depressions 3 and 4 pass their overflowing water up to their par-

ent, depression 5. (d) Depression 6 is now overflowing, but its sibling,

depression 5, is not full, so depression 6 passes as much of its over-

flowing water as it can to depression 5. (e) Once depression 5 is full,

some overflowing water still remains, so this is passed to the parent,

depression 7. (f) In this case, depression 7 is able to accommodate the

remainder of the water. Had depression 7 also overflowed, the leftover

water would have overflowed into the ocean and been disregarded. De-

pressions to be flooded are then identified and flooded (§3.3). Since

depression 7 contains water, we know that all of its descendants must

be completely full. Therefore, we can flood these all at the same time,

on the level of depression 7. Any one of the pit cells within depression

7 is arbitrarily selected as the starting point (g). More cells are added

until all of the water has been accommodated. (h–j) are a visual rep-

resentation of this process, although the algorithm would first locate

affected cells C–J, and then calculate the final height of water in all of

these cells in a single step.
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Figure 5. Flowchart showing the main steps taken by the algorithm. These steps are described in more detail in §3.1 to §3.3.206

water within a meta-depression. This operation is done without explicitly considering the cells of the DEM, which makes it202

very fast. Third and finally (§3.3), the water within the depression hierarchy is translated into an extent and depth of flooding203

across the topographic surface (DEM).204

Computing a depression hierarchy (Barnes et al., 2020) is a necessary precursor to running Fill-Spill-Merge. The specific207

outputs from the depression hierarchy algorithm that are used in the Fill-Spill-Merge algorithm are:208

– DH: the depression hierarchy itself.209

– Flowdirs: a matrix of flow directions, indicating which of a cell’s neighbors receives its flow. Because Priority-Flood210

(Barnes et al., 2014) is used to generate the depression hierarchy, flat areas are automatically resolved.211

– Labels: a matrix indicating the leaf depression to which each cell belongs.212
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By routing water according to the DH, we significantly accelerate the compute speed and ensure that the full network of213

depressions is a topologically correct directed tree. Each of the following subsections details one of the numbered steps along214

the central path of the flowchart shown in Figure 5.215

3.1 Move Water Downhill to Pits216

We route water in a similar way to standard flow-accumulation algorithms (Mark, 1988; Wallis et al., 2009; Barnes, 2017), but217

for completeness summarize our approach here. Flow directions for each cell have already been identified by the depression218

hierarchy algorithm. Each cell calculates how many of its neighbors flow into it. We call this value the cell’s dependency count,219

as it describes the number of immediate upstream cells whose flow accumulation must be resolved before flow accumulation220

at the given cell can be computed. Local maxima in the DEM are identified as those cells that receive no flow from any221

neighbor. These local maxima are placed in a queue. Cells are then popped (i.e., noted while being removed) from this queue.222

The cells determine how much flow they generate locally (perhaps referring to a matrix of rainfall values, but also including223

existing stores of standing water) and add this to their flow accumulation value. They then add their flow accumulation to224

their downstream neighbor’s and set their own flow accumulation value to zero. The neighbor’s dependency count is then225

decremented. If the neighbor’s dependency count has reached zero during this step, it is added to the end of the queue. This226

process of accumulating flow, passing it downstream, decrementing the dependency count, and adding cells to the queue227

continues until the queue is empty, at which point every cell on the map has been visited and any water has been moved228

downslope. Braun and Willett (2013) present an alternative formulation based on a depth-first traversal, but Barnes (2019)229

demonstrates that a breadth-first ordering, such as that presented here, is better suited to parallelism.230

When the accumulated flow reaches the pit cell of a depression, the downhill-directed flow routing stops because there is no231

downhill neighbor to receive the flow. At this point, all of the flow-accumulated water in the pit cell is moved into the pit cell’s232

associated leaf depression in the DH. That is, the water is moved out of the geographic space and into the topologic space. This233

then enables mass-conserving depression flooding via rapid Fill-Spill-Merge calculations, as detailed below.234

3.2 Overflow and Merge Depressions235

At this point, the Fill-Spill-Merge algorithm has routed all of the surface water into either the ocean or into the leaf nodes of the236

DH. The next step is to redistribute this water through the DH to nodes with enough volume to contain the water, and to send237

any excess water to the ocean. This set of operations can be performed entirely in the depression hierarchy without reference238

to the digital elevation model.239

Intuitively, the process of filling, spilling, and merging can be visualized as occurring from leaf nodes to their parents240

(Figure 3). When a leaf depression initially contains more water than it can hold, the water will be redistributed by spilling241

over into the neighboring depression. If this neighboring depression is already full, then the excess water must pass to the242

parent of both the depression and its neighbor. This process continues recursively until either the supplied water is exhausted243

or this water reaches the ultimate parent, the ocean. In this latter case, all excess water is dropped from the model and the ocean244

is unaffected.245
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To effect the intuition developed above, we need a well-defined way to visit all of the nodes in the depression hierarchy. A246

post-order traversal allows us to visit both of a node’s children and their descendants before calculating any quantities on the247

node itself. The result is that leaves get processed before their parents. However, a single traversal is insufficient: we need one248

traversal (the “outer" traversal) to identify nodes that have excess water and another traversal (the “inner traversal") to distribute249

this water. The outer traversal may launch the inner traversal many times as it works its way up hierarchy. Pseudocode showing250

these travels is available in §6.1 and §6.2.251

To efficiently redistribute water, the Fill-Spill-Merge algorithm performs nested depth-first traversals of the DH. The outer252

traversal (§6.1) is post-order and considers each meta-depression in turn, from the most deeply nested to the least. For each253

meta-depression, an inner traversal (§6.2) handles its overflows by moving water to its sibling (starting by filling the sibling’s254

descendants) and, if there’s any left, passing it to the depression’s parent. In this way, the outer traversal maintains an invariant255

(a property which is true before and after each call a function): any meta-depression it has processed does not contain an256

overflow. Put another way, the outer traversal finds problems and the inner traversal fixes them.257

The outer traversal of the DH (which is, after all, a forest of binary trees) begins with the ocean. For each depression,258

the algorithm first recurses into its oceanlinks, if any, and then into the left and then right child. In the post-order portion of259

the traversal (which starts from the leaves and moves back up through the depression hierarchy), the algorithm identifies any260

depressions containing more water than they can accommodate. This process continues until the recursion returns to the ocean,261

at which point any additional water is assumed to be added to the ocean without impacting sea level, though this total discharge262

to the sea is recorded within the “ocean” depression.263

When an overfilled depression is located by the outer traversal above, its water needs to be redistributed to neighbouring264

depressions. If we call the overfilled depression D, then the water can be redistributed by starting a second, inner post-order265

traversal at D. This inner traversal carries Excess Water from one depression to another until it has found a home for all266

of it. When we pass water into a depression, it can go to one of three places: the depression itself, its sibling, or its parent.267

Distributing the water to any of these places may itself cause an overflow. Therefore, the inner (pre-order) traversal comprises268

the following steps:269

1. Call the depression that we are currently considering B. This may be the depression we originally considered, depression270

D, or it may be some other depression reached during the steps detailed below. If B is overflowing, we add the overflow271

to the Excess Water the inner traversal is carrying. If B has spare capacity we add water from the Excess to B until either272

it fills or all of the Excess Water the inner traversal is carrying is used.273

2. At this point, the inner traversal can terminate if: (i) there is no water left, (ii) B is the parent of D, or (iii) B was reached274

via an oceanlink.275

3. Otherwise, if B has a sibling and the sibling’s water volume is less than its depression volume, then start from Step 1276

with the new B set as the depression pointed to by the current B’s geolink.277

4. Otherwise, if B has no sibling or the sibling’s water volume is equal to its depression volume, then start from Step 1 with278

the new B set as the parent of the current B or, if B has no parent, then use the depression to which B oceanlinks.279
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The next step of the outer traversal, which begins one level in the DH closer to the ocean, identifies a less nested metade-280

pression for which the inner traversal might need to be run. If this step were not supplied with information about prior water281

redistribution, it could cause the inner traversal to cover the same nodes repeatedly, which would be computationally wasteful.282

To prevent this, the inner traversal returns the ID of the final node in which it placed water: this node is the only node in the283

traversal with spare capacity so future traversals can begin there. Therefore, on subsequent overflows, if such a cached value is284

available, then the recursion skips directly to that node. This ensures that all the calls to this part of the algorithm take no more285

than O(N) time collectively.286

The following examples uses the geometry from Figure 2 to describe a set of inner traversals, starting with an overflowing287

Depression #12. Step numbers mirror those above; numbers in parentheses indicate the number of recursions – that is, the288

number of times that the inner-traversal algorithm has returned to Step 1:289

1 Depression #12 fills and overflows.290

2 Depression #12’s water overflows into Depression #4, which is not full, following its geolink.291

1(r1) Depression #4 acts as Depression #12’s parent via an oceanlink. The inner traversal terminates.292

At this point, the outer traversal moves one level closer to the ocean, and the inner traversal repeats, this time starting at293

Depression #4.294

1 Depression #4 fills and overflows.295

2 Depression #4’s water overflows into its sibling, Depression #5, which is not full and is a leaf depression. If Depression296

#5 had descendants, water overflowing from Depression #4 would have followed a geolink to one of these.297

1(r1) Depression #5s fills and overflows.298

2(r1) Depression #4 is full.299

3(r1) Depression #5 overflows into its parent, Depression #11.300

1(r2) Depression #11 overflows into the ocean; the inner traversal terminates.301

Now the outer traversal moves yet another level closer to the ocean, and the new inner traversal starts at Depression #11.302

1 Depression #11 fills and overflows.303

2 Depression #11 has no sibling.304

3 Depression #11 overflows into its parent, the ocean; all remaining excess water is absorbed into an infinite sink.305

1(r1) The now-selected node is the ocean; the inner traversal terminates.306

At this point, the outer traversal moves one level closer to the ocean, and arrives at the ocean. The outer traversal also terminates.307
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3.3 Flood the landscape308

After water moves through the DH (Section 3.2, above), each node in the DH exists in one of the three following states:309

1. Empty: The depression’s water volume is equal to zero. In this case, nothing needs to be done. The depression’s descen-310

dants might contain water, but the water never propagates to this level of the DH.311

2. Full: The depression’s water volume is equal to the volume of the depression itself. In this case, the depression is entirely312

full. If the depression’s parent contains water, then the calculation of water depth is dealt with at a higher stage in the313

DH. If the depression’s parent is empty, or if the depression’s parent is the ocean, then the calculation is performed at314

this level as described below.315

3. Partially filled: The depression’s water volume is less than its depression volume. In this case, the depth of water across316

the depression and all its descendants’ cells must be calculated at this level so that the depression fills to an appropriate317

level. This is described below and indicated as the marginal volume on Figure 2e.318

The next step is to distribute this water across the DEM, appropriately flooding geographic depressions.319

Given the three states described above, the algorithm locates the highest-level nodes which contain water. It does so via a320

post-order traversal. Each time the traversal reaches a leaf, the algorithm notes its label and pit cell. After identifying each of321

these, the algorithm reverses direction, moving from child to parent so long as the parent node contains water. Call the highest322

water-bearing node within a tree L.323

In many cases, the water volume contained within the depression will be less than the total depression volume; therefore,324

we must calculate what the water level in the depression will be. To do this, we pick an arbitrary pit cell within L and its325

descendants, and then use this as a seed from which to start building a priority queue which will traverse the cells of the326

depression. The priority queue returns cells ordered from lowest to highest elevation. At each step through the priority queue,327

the algorithm checks whether the cells visited so far collectively have enough volume to hold the water. If so, the algorithm328

exits, having successfully defined the flooded area. If not, it continues to use the priority queue to traverse the depression cell329

by cell. The filling procedure is shown in pseudocode in §6.3.330

To expand this brief conceptual discussion into a more formal set of steps, let us begin by calling the active cell – that is,331

the one that is currently being considered by the algorithm – cp. This cell is initially the arbitrary pit mentioned above, and is332

added to the priority queue. The algorithm marks cp, which stands for “cell of current highest priority”, as visited; all other333

cells remain unvisited. The algorithm then follows these steps:334

1. Pop cp from the priority queue, call it c, and use its elevation to calculate the volume of water that can be accommodated335

in the set of cells processed so far (Equation 3, below). If this volume is enough to accommodate the volume of water336

available, exit the loop and compute the final water level (Equation 6, below). Otherwise, proceed to Step 2.337

2. Add c (which was popped in Step 1) to a plain queue, which records all of the cells scanned so far; these cells will later338

be inundated.339
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3. Add the cells neighboring c that are not marked as visited to the priority queue if they belong to one of the descendant340

depressions of the one being filled. Each of these neighboring cells is then marked as visited.341

4. Choose the lowest-elevation cell in the priority queue and label it as the new cp and return to Step 1. If the priority queue342

is empty, then all cells in the same meta-depression as cp or its descendants have been visited and we are now guaranteed343

to have sufficient depression volume to hold all of the water.344

Step 1 in this approach requires an efficient way to determine the volume of a depression below any given elevation. If we345

call this elevation zo and the depression below the outlet contains N cells with elevations {z1,z2,z3,z4, . . .} and unit cell area,346

the volume of water that the depression can accommodate simply equals the sum of the depth of water in each of its cells:347

(zo− z1)+ (zo− z2)+ (zo− z3)+ (zo− z4)+ . . .=No− z1− z2− z3− z4− . . . (1)348

=No−
N∑
i=1

zi (2)349

Now, consider cells ci = c1, . . . , cN in the plain queue; that is, those cells that have been visited and popped from the priority350

queue. We can calculate the volume of water that can be accommodated in the depression below the elevation zs of the last cell351

cN (the sill) as:352

Vdep,zs = zs

N∑
i=1

ai−
N∑
i=1

ziai (3)353

where zi is the elevation of cell ci and ai is the area of cell ci. Thus, if we keep running sums while traversing the depression,354

it is possible to directly calculate the volume of water the depression can hold at each point in the traversal.355

Once Vdep,zs is greater than or equal to the volume of water in the depression, Vw, the plain queue contains all the cells356

to be flooded. At this point, the algorithm updates zw, which is the water level within this depression. If Vw = Vdep,zs , the357

algorithm sets zw = zN . If instead Vw < Vdep,zs , the available volume in the depression is greater than the water volume, and358

the algorithm calculates zw in the depression as follows:359

Vw = zw

N∑
i=1

ai−
N∑
i=1

ziai (4)360

zw

N∑
i=1

ai = Vw +

N∑
i=1

ziai (5)361

zw =

(
N∑
i=1

ai

)−1(
Vw +

N∑
i=1

ziai

)
(6)362

We call Equation 6 the Lake-Level Equation (LLE). If all cells have a unit area, this simplifies to:363

zw =
1

N

(
Vw +

N∑
i=1

zi

)
(7)364
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The conditional usage of the LLE described above is purely for computational efficiency: if Vw = Vdep,zs , its solution is that365

zw = zN .366

After solving for the water-surface elevation, the algorithm pops each cell in the plain queue (ci = c1, . . . , cN ), corresponding367

to the flooded region, and sets its water elevation to the computed zw. This is the final step of the Fill-Spill-Merge algorithm. At368

this point, it outputs a file representing the topography plus water thickness across the domain (i.e., topography with depressions369

filled or partially filled with water).370

Because Fill-Spill-Merge routes water cell-by-cell to the pit cells of depressions and manages an array of water depths, it371

can be adapted for use with groundwater models, such as that described by Fan et al. (2013).372

4 Algorithm performance373

4.1 Theory374

Here we use computational complexity as a means of contrasting the expected run-time of our algorithm against previous375

algorithms such as FlowFill (Callaghan and Wickert, 2019). To do so, we describe a simple iterative solver similar to FlowFill376

whose goal is to determine an appropriate water level for a depression. The solver operates on a one-dimensional domain of377

cells bounded by high cliffs on either side in which each cell may have a column of water. At each step, if the solver finds a378

discontinuity in water levels between two cells, it responds by averaging the heights of the cells’ water columns. (The solver379

we describe is known as Jacobi’s method.) The challenge we present to this solver is a direct analogue of routing flow along a380

stretch of river with negligible gradient and is very similar to routing flow across the surface of a lake or ocean.381

For our analysis, we imagine that the system is initialized with a high column of water on the left and no water anywhere382

else. We call the cell with the water Cell 1. We call the cells to its right 2, 3, 4, and so on. During the solver’s first step, Cell 1383

is initialized. On its second step, Cell 1 averages its height with Cell 2. On the third step, Cell 2 averages with Cell 3 and Cell384

1 then averages with Cell 2. On the fourth step, Cell 3 averages to 4, 2 averages to 3, and 1 averages with 2. Thus, the number385

of cells affected at each step are: 1, 2, 3, 4, and so on. Since there must be at least as many steps as there are cells, we can say386

that there are N steps. The total time, tcompute, is then387

tcompute =

N∑
i=1

i=
N(N +1)

2
(8)388

Thus, for any model (Callaghan and Wickert, 2019; Fan et al., 2013) that uses a scheme similar to our simple solver, the time389

required to solve the model is in O(N2).390

In contrast, the new algorithm runs in O(N logN) time in the worst case. Moving water downhill (Section 3.1) is a flow-391

accumulation algorithm. This is known to take O(N) time (Mark, 1988) and efficient variants exist for performing flow392

accumulation in parallel on large datasets (Barnes, 2017) and on GPUs (Barnes, 2019), though for simplicity we do not use393

these techniques here. Moving water within the depression hierarchy (Section 3.2) requires a depth-first post-order traversal of394

the entire hierarchy. This type of traversal is a foundational algorithm in computer science and takes O(N) time. Each node395
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Figure 6. Performance on synthetic data. The left-hand plot shows the data on linear axes and the right-hand plot on log-log axes. The number

of cells in each dataset is the square of the side length. The lines show N logN fits to each algorithm’s time (R2 ≈ 0.99 for each). “DH"

shows the performance of the Depression Hierarchy algorithm while “FSM" shows that of the Fill-Spill-Merge algorithm; “Both" shows the

addition of these two values.

in this traversal has the potential to overflow, which also results in a depth-first traversal, thereby requiring up to O(N) time.396

However, by using a jump table that persists between calls to the overflow function, we ensure that it is able to identify the397

target of the overflow in amortized constant time; that is, the function is able to skip over fully-filled depressions. Finally, the398

algorithm floods the digital elevation model from the pit cells up. This requires a depth-first post-order traversal, which calls399

a flooding function (Section 3.3) on select subtrees of the DH. The depth-first traversal takes O(N) time, as described above.400

The priority queue used for flooding nominally takes O(N logN) time in the worst case for floating-point data and O(N)401

time in the worst case for integer data (Barnes et al., 2014). However, with specialized data structures the time can be reduced402

to O(N) for both floating-point and integer data (Barnes et al., 2014). Most real datasets consist of many small depressions403

whose cell counts Ncells−in−dep are much smaller than the total number of cells in the digital elevation model. Therefore, the404

actual time is for this step is O(NdepNcells−in−dep), where Ndep is the total number of depressions and NdepNcells−in−dep can405

be much less than N . Because the worst-case time complexity of any operation is O(N), this bounds the time of the algorithm406

as a whole. However, to reduce the potential for bugs, we use the C++ standard library’s O(N logN) priority queue in our407

implementation, at the cost of reduced performance.408

To put this in more concrete terms, consider a long stretch of low-gradient river. Such a feature poses a lower bound on the409

time of our simple solver. North America’s Red River of the North runs for 885 km with a gradient that is often on the order of410

0.03 m km−1. On a 90 m grid of floating-point data, the river would be 9,833 cells long. Our simple (Jacobi) solver would then411

take an estimated 97 million time units to reach a solution, whereas the new solver that we describe in this paper would take412

9,833 time units, a 10,000× speed-up. Our empirical results, below, support both the theory and this expected value.413
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Dataset Dimensions Cells FSM Time [s] Total Time [s]

Madagascar 2000×1000 2.0 · 106 0.1 0.4

U.S. Great Basin 1920×2400 4.6 · 106 0.2 8.7

Australia 5640×4200 2.3 · 107 9.1 15.6

Africa 9480×9000 8.5 · 107 65.3 118.0

N&S America 18720×17400 3.2 · 108 53.2 231.6

Minnesota 30m topobathy 34742×23831 8.2 · 108 307.8 792.6

415

Table 1. Datasets used, their dimensions, and algorithm wall-times. Tests were performed on the Comet cluster run by XSEDE (see

main text for full specifications). Times for Fill-Spill-Merge (“FSM Time") alone and this time plus the depression hierarchy construction

time (“Total Time") are shown. Topographic data for Madagascar, the U.S. Great Basin, Australia, Africa, and North & South America,

were clipped from the global GEBCO_08 30-arcsecond global combined topographic and bathymetric elevation data set (GEBCO, 2010).

The Minnesota 30m topobathy data is the merged result of two data sources. The topography is resampled from the Minnesota Geospatial

Information Office’s 1m LiDAR Elevation Dataset (MNGEO - Minnesota Geospatial Information Office, 2019). Bathymetric data were

provided by the Minnesota Department of Natural Resources (MNDNR - Minnesota Department of Natural Resources, 2014). Richard

Lively of the Minnesota Geological Survey merged and combined these data sets.

416

417

418

419

420

421

422

423

4.2 Computational Performance414

We have implemented the algorithm described above in C++17 using the Geospatial Data Abstraction Library (GDAL) (GDAL424

Development Team, 2016) to read and write data. There are 924 lines of code of which 50% are or contain comments. The425

code can be acquired from https://github.com/r-barnes/Barnes2020-FillSpillMerge and Zenodo (Barnes and Callaghan, 2020).426

The code contains extensive unit and end-to-end tests, which leverage both deterministic and random testing; the code passes427

a total of 214,990 test assertions and achieve 97% test coverage. The missed lines flag emergency situations which can only428

arise if there is a logic error, so they (in theory) cannot be reached.429

Tests were run on the Comet machine of the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns430

et al., 2014). Each node of the machine has 2.5 GHz Intel Xeon E5-2680v3 processors with 24 cores per node and 128 GB of431

DDR4 DRAM. Code was compiled using GNU g++ 7.2.0 with full optimizations enabled.432

We ran two sets of scaling tests, one on actual data and one on synthetic data. On actual data, our scaling tests cover datasets433

spanning three orders of magnitude in terms of their number of cells, as shown in Table 1. The R package GuessCompx Agenis-434

Nevers et al. (2019) shows that an O(N logN) scaling relationship gives the best fit to the data, which agrees with the theory.435

To more precisely demonstrate performance, we run Fill-Spill-Merge on synthetic landscapes of various sizes generated436

using RichDEM’s Perlin noise random terrain generator (Barnes, 2018). Multiple landscapes are generated and timed at each437

size to smooth timing variation due to both the data and fluctuations in the testing environment. This results in Figure 6, which438

again shows that the performance data gives a good fit to an N logN function.439
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4.3 Model intercomparison440

Given a depression hierarchy data structure, Fill-Spill-Merge provides an efficient method to route water across any surface441

while taking depressions into account. Furthermore, Fill-Spill-Merge can be used to assess which depressions are most impor-442

tant in day-to-day or seasonal changes to the hydrologic system. For example, small depressions will become flooded and spill443

over even with relatively small amounts of water reaching them, while larger depressions may not be completely filled. These444

depressions impact the hydrologic connectivity of the landscape (Callaghan and Wickert, 2019). If standing water is retained445

between invocations of Fill-Spill-Merge, and new water added at each invocation, the algorithm can be used to simulate the446

movement of water across landscapes; we will explore this further in future work.447

We have compared Fill-Spill-Merge with a prior algorithm, FlowFill, at the same two sites used by Callaghan and Wickert460

(2019): a reach of the Sangamon River in Illinois (Figure 7) and the Río Toro basin in Argentina (Figure 8). Like Fill-Spill-461

Merge, FlowFill can be used to route water across a landscape while preserving real depressions, but the latter algorithm is462

significantly slower (Table 2). The two selected study sites provide very different landscapes for testing the performance of the463

algorithm. The Sangamon River site is located at 39.97◦N, 88.72◦W, in Illinois, USA. It is a low-relief, post-glacial landscape464

containing many closed depressions, which may impact hydrologic connectivity as a function of runoff (Lai and Anders,465

2018). It furthermore contains a grid of roads and associated embankments whose elevations are significant when compared to466

regional relief and impact water flow paths and storage. Callaghan and Wickert (2019) resampled the 2.5 ft (0.76 m) resolution467

LiDAR DEM (Illinois Geospatial Data Clearinghouse, 2020) to 15 m resolution for analysis and manually removed several468

road bridges using GRASS GIS (Neteler et al., 2012) to prevent artificial pooling behind these; here we use the same modified469

DEM to enable a direct comparison between the algorithms. The Río Toro site is located mainly in Salta Province, Argentina,470

around 24.5◦S, 65.8◦W. This site exhibits more rugged fluvially sculpted topography (Hilley and Strecker, 2005). Callaghan471

and Wickert (2019) resampled the 12-m TanDEM-X DEM of this region (Krieger et al., 2013; Rizzoli et al., 2017) to 120 m472

resolution. Here we use this same resampled DEM for comparison. The runoff depths used at each of the two study sites were473

selected to show a range of water levels present in the depressions. The depths shown were therefore scaled based on the474

amount of water required to completely fill depressions in the landscape.475

As shown in Table 2, wall-times using Fill-Spill-Merge ranged from 0.227–0.243 s for the Sangamon River site and 0.300–476

0.319 s for the Río Toro site. This compares with times ranging from 20–643 s and 31-155 s, respectively, for FlowFill. These477

times for both sites correspond to a 86–2,645× reduction in wall-time using FSM. Since FlowFill was run with 24 processors,478

this translates to a 2,064–63,480× reduction in compute time. Considering that each of these example DEMs is quite small479

relative to modern full-resolution LiDAR-derived elevation data sets or continental-scale 30-meter DEMs (Table 1), this speed-480

up and its associated O(N logN) scaling provides a significant advantage for topographic analysis and solving associated481

problems in hydrology and geomorphology.482

Although both FlowFill and Fill-Spill-Merge route water downslope, flooding depressions based on the quantity of available492

water, our FSM results differ in some ways from those of FlowFill (Callaghan and Wickert, 2019). In both Figures 7 and 8,493

Fill-Spill-Merge flooded some depressions more deeply than FlowFill did and flooded some depressions with less water. At494
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Figure 7. The difference between results of Fill-Spill-Merge and FlowFill at the Sangamon River site. The values for panels (a) to (e)

indicate the depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts

with 0.001 m of surface water. Orange to yellow colors indicate locations where Fill-Spill-Merge had more water, and purple to blue colors

indicate locations where FlowFill had more water. Differences of less than 3 mm have been masked out. Differences are generally small,

and are likely a result of the iterative nature of the FlowFill algorithm which causes it to asymptotically approach the correct values. In

some locations, Fill-Spill-Merge retains slightly more water in depressions that FlowFill does. This could be due to water which has not yet

finished moving downslope and into these depressions in the FlowFill algorithm. In other locations, FlowFill has retained more water. One

possible reason for this is that some depressions have a narrow outlet, through which Fill-Spill-Merge is able to move all water as appropriate

but the cell-by-cell movement of water with FlowFill can produce transient dams that reroute additional water towards these subcatchments.

This DEM was prepared by Lai and Anders (2018) and Callaghan and Wickert (2019) from LiDAR topographic data provided by the Illinois

State Geological Survey (Illinois Geospatial Data Clearinghouse, 2020).

449

450

451

452

453

454

455

456

457

458

459

19



(a) 0.1 m (b) 0.2 m (c) 1.0 m

(d) 5.0 m (e) 15.0 m

Fi
ll-

S
p

ill
-M

e
rg

e
 m

in
u
s 

Fl
o
w

Fi
ll 

[m
]

483

Figure 8. The difference between results of Fill-Spill-Merge and FlowFill at the Río Toro site. The values for panels (a) to (e) indicate the

depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts with 0.1

m of surface water. Orange to yellow colors indicate locations where Fill-Spill-Merge had more water, and purple to blue colors indicate

locations where FlowFill had more water. Differences of less than 3 mm have been masked out. In panel (e), 15 m of water was enough to fill

all depressions with both algorithms, so there are no differences between the two. The most significant difference is seen in panel (c), where

FlowFill retained additional water in a large depression. This is likely due to transient damming of its narrow inlet in FlowFill’s cell-by-cell

method of moving water, which may have prevented the full volume of water from leaving the depression. This DEM was generated with

data acquired from the TanDEM-X mission (Krieger et al., 2013; Rizzoli et al., 2017).
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Sangamon Río Toro

Runoff depth [m] FlowFill [s] FSM [s] Speed-up [x] FlowFill [s] FSM [s] Speed-Up [x]

15 642.65 0.243 2645 154.70 0.317 488

10 626.59 0.241 2600 124.37 0.309 402

5 570.02 0.241 2365 93.56 0.300 312

1 472.33 0.241 1960 53.09 0.316 168

0.2 508.87 0.235 2165 38.30 0.316 121

0.1 464.15 0.230 2018 35.75 0.301 119

0.05 418.71 0.243 1723 33.62 0.316 106

0.01 200.81 0.227 885 32.06 0.315 102

0.001 20.12 0.235 86 30.99 0.319 97

507

Table 2. Time comparison of Fill-Spill-Merge vs FlowFill. Wall-times are in seconds comparing FlowFill (Callaghan and Wickert, 2019)

parallelized across 24 cores versus Fill-Spill-Merge on a single core; “Speed-Up" is a multiplicative factor. Using FlowFill, wall-times

increased with the depth of applied runoff and on flatter landscapes. Using FSM, wall-time is independent of depth of applied runoff and

ruggedness of landscape, but increases for larger domains. FSM’s wall-times were 86–2,645 times faster than FlowFill for these examples;

compute times were 2,064–63,480 times faster.

508

509

510

511

512

both study sites, the differences between the two algorithms are minimized at the extreme high and extreme low starting runoff495

values. For the highest runoff values, this is because both algorithms successfully fill all depressions in the landscape, so that496

no differences are possible. For the lowest runoff values, both algorithms simulate only a small amount of water filling any497

depression, so that that significant differences between the two algorithms are not possible. The biggest differences are therefore498

seen for moderate starting runoff values, when depressions contain substantial water volumes, but are still only partially filled.499

One possible cause for these discrepancies is FlowFill’s asymptotic approach to an equilibrium water level, which may prevent500

small volumes of water from reaching the depression to which they belong. On the other hand, depressions with a narrow501

outlet could be especially prone to being overfilled by FlowFill because its cell-by-cell algorithm could dynamically dam502

this outlet, routing additional water into the depression. Both of these possibilities are further linked to the fact that FlowFill503

dynamically evolves a land-plus-water flow-routing surface, whereas Fill-Spill-Merge routes flow just over the land surface.504

These differences make FlowFill more useful for understanding temporal changes in surface water distribution, while Fill-505

Spill-Merge provides a more accurate snapshot of surface hydrology under equilibrium conditions.506

5 Conclusions513

Here we leverage the depression hierarchy data structure (Barnes et al., 2020) to route flow through surface depressions in514

a realistic, yet efficient, manner. In comparison to previous approaches, such as Jacobi iteration, the new algorithm runs in515

log-linear time in the input size and is accompanied by extensively commented source code. This computationally efficient al-516
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gorithm may help us to better understand hydrologic connectivity and water storage across the land surface, and is an important517

step forwards in recognising the importance of depressions as real-world features in digital elevation models.518
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6 Pseudocode538

6.1 MoveWaterInDepHier539

1: function MoveWaterInDepHier(root, DH, JumpTable)540

2: Let root be the id of the depression we’re currently con-541

sidering542

3: Let DH be a Depression Hierarchy543

4: Let JumpTable be a hash table mapping DH labels to DH544

labels545

5:546

6: . For “children" of leaves547

7: if root=NOVALUE then return548

8:549

9: . The traversal550

10: for each ocean-linked child c of root do551

11: Call MoveWaterInDepHier(c, DH, JumpTable)552

12: end for553

13: Call MoveWaterInDepHier(c.left_child, DH, JumpTable)554

14: Call MoveWaterInDepHier(c.right_child, DH, JumpTable)555

556

15:557

16: if root=OCEAN then return558

17:559

18: if root has children and both their depression volumes560

equal their water volumes and root’s water volume is zero561

then562

19: root.water_vol += root.left_child.water_vol563

20: root.water_vol += root.right_child.water_vol564

21: end if565

22:566

23: if root.water_vol>root.dep_vol then567

24: Call OverflowInto(root, root.parent, DH, JumpTable, 0)568

25: end if569

6.2 OverflowInto570

1: function OverflowInto(root, StopNode, DH, JumpTable,571

ExtraWater)572

2: Let root be the id of the depression we’re currently con-573

sidering574

3: Let StopNode be the id of the depression that ends the575

traversal. It is the parent of the depression that first called576

this function.577

4: Let DH be a Depression Hierarchy578

5: Let JumpTable be a hash table mapping DH labels to DH579

labels580

6: Let ExtraWater be the water that needs to be distributed581

in DH582

7:583

8: . If depression is too full, get its excess so we can find a584

home for it585

9: if root.water_vol>root.dep_vol then586

10: ExtraWater += root.water_vol - root.dep_vol587

11: root.water_vol = root.dep_vol588

12: end if589

13:590

14: if root=StopNode or root=OCEAN then591

15: root.water_vol += ExtraWater592

16: return root593

17: end if594

18:595

19: . 1st place to stash water: in this depression596

20: if root.water_vol<root.dep_vol then597

21: Let C=root.dep_vol - root.water_vol598

22: if ExtraWater<C then599

23: root.water_vol = root.water_vol+ExtraWater600

24: ExtraWater = 0601

25: else602

26: root.water_vol = root.dep_vol603
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27: ExtraWater -= C604

28: end if605

29: end if606

30:607

31: if ExtraWater=0 then608

32: return root609

33: end if610

34:611

35: if root∈JumpTable then612

36: return JumpTable(root) = OverflowInto(JumpTable(root),613

StopNode, DH, JumpTable, ExtraWater)614

37: end if615

38:616

39: . 2nd place to stash water: in the depression’s sibling617

40: if root.sib6=NOVALUE then618

41: if root.sib.water_vol<root.sib.dep_vol then619

42: return JumpTable(root) = OverflowInto(root.geolink,620

StopNode, DH, JumpTable, ExtraWater)621

43: else if root.sib.water_vol>root.sib.dep_vol then622

44: e=root.sib.water_vol-root.sib.dep_vol623

45: ExtraWater += e624

46: root.sib.water_vol = root.sib.dep_vol625

47: end if626

48: end if627

49:628

50: . 3rd place to stash water: in the depression’s parent629

51: if root.parent.water_vol=0 and root is not oceanlinked to630

root.parent then631

52: root.parent.water_vol += root.water_vol632

53: if root.sib6=NOVALUE then633

54: root.parent.water_vol += root.sib.water_vol634

55: end if635

56: end if636

57: return JumpTable(root) = OverflowInto(root.parent, StopN-637

ode, DH, JumpTable, ExtraWater)638

6.3 FillDepressions639

1: function FillDepressions(PitCell, OutCell, DepLabels, Wa-640

terVol, dem, labels, wtd)641

2: Let PitCell be the cell to start filling from642

3: Let OutCell be the outlet/spill cell643

4: Let DepLabels be the labels contained within the metade-644

pression we are trying to fill645

5: Let WaterVol be the amount of water that needs to be646

spread throughout the depression647

6: Let dem be the topography.648

7: Let labels be the labels from the Depression Hierarchy649

8: Let wtd be the depth of water in each cell.650

9: Let visited be a hash set of cell ids651

10: Let PQ be a priority queue sorted by increasing elevation652

11: Let affected be a plain queue653

12: Let Te be the total elevation; initially 0654

13:655

14: if WaterVol=0 then return656

15:657

16: Place PitCell into PQ and mark it visited658

17: while PQ is not empty do659

18: Let c=pop(PQ)660

19: Let V = |affected| · c.elev−Te661

20:662

21: if WaterVol< V then663

22: WL = (WaterVol+Te)/|affected|664

23: Set wtd for all cells in affected to WL665

24: return666

25: end if667

26:668

27: if c 6= OutCell then669

28: Place c into affected670

29: Te += c.elev671

30: end if672
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31: Add all of c’s neighbours that belong to depressions in673

DepLabels and are not the outlet cell to PQ and mark674

them visited675

32: if PQ is empty then676

33: Add OutCell to PQ and mark it visited677

34: end if678
35: end while679
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