
Computing water flow through complex landscapes, Part 3:
Fill-Spill-Merge: Flow routing in depression hierarchies
Richard Barnes1,2,3, Kerry L. Callaghan4,5, and Andrew D. Wickert4,5

1Energy & Resources Group (ERG), University of California, Berkeley, USA
2Electrical Engineering & Computer Science, University of California, Berkeley, USA
3Berkeley Institute for Data Science (BIDS), University of California, Berkeley, USA
4Department of Earth & Environmental Sciences, University of Minnesota, Minneapolis, USA
5Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, USA

Correspondence: Richard Barnes (richard.barnes@berkeley.edu)

Abstract. Depressions—inwardly-draining regions—are common to many landscapes. When there is sufficient moisture, de-1

pressions take the form of lakes and wetlands; otherwise, they may be dry. Hydrological flow models used in geomorphology,2

hydrology, planetary science, soil and water conservation, and other fields often eliminate depressions through filling or breach-3

ing; however, this can produce unrealistic results. Models that retain depressions, on the other hand, are often undesirably4

expensive to run. In previous work we began to address this by developing a depression hierarchy data structure to capture the5

full topographic complexity of depressions in a region. Here, we extend this work by presenting a Fill-Spill-Merge algorithm6

that utilizes our depression hierarchy to rapidly process and distribute runoff. Runoff fills depressions, which then overflow7

and spill into their neighbors. If both a depression and its neighbor fill, they merge. We provide a detailed explanation of the8

algorithm as well as results from two sample study areas. In these case studies, the algorithm runs 90–2,600× faster (with a9

2,000–63,000× reduction in compute time) than the commonly-used Jacobi iteration and produces a more accurate output.10

Complete, well-commented, open-source code is available on Github and Zenodo.11

1 Introduction12

Depressions (see Lindsay (2015) for a typology) are inwardly-draining regions of a DEM that lack any outlet to an ocean or13

other designated base elevation. Depressions occur naturally, and can be formed by glacial erosion and/or deposition (Brecken-14

ridge and Johnson, 2009), compressional and/or extensional tectonics (Reheis, 1999; Hilley and Strecker, 2005), and cratering15

Cabrol and Grin (1999). They often host lakes and wetlands by retaining water locally. Depressions may themselves contain16

depressions. Such regions confound algorithms for geomorphological and terrain analysis, as well as those for hydrological17

modeling, because many such algorithms simply route water down topographic slope following the local gradient: depressions18

neither fill with water, nor drain.19

Many hydrological models deal with the complexity of depressions by removing them. This can be done either by filling the20

depressions with earth so that they form a flat region of landscape (e.g. Jenson and Domingue (1988); Martz and Jong (1988));21

breaching (Martz and Garbrecht, 1998) or carving them (Soille et al., 2003) so that water flows from their lowest point through22

1

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

42

Figure 1. A single subtree of a depression hierarchy and the depression it represents. Depressions 1–4 are leaf depressions. Depression

6 is a parent depression (also termed a meta-depression) that contains depressions 1 and 2. Water from the plateau on the left above cells A

and B might fill Depression 1 (cell C), causing it to spill into Depression 2 (cell E). Only when both depressions are full do they merge and

begin filling Depression 6 (cells C, D, and E). Modified from Barnes et al. (2020).

43

44

45

46

the carved channel and onward to downstream regions; or some combination of these (Lindsay and Creed, 2005b; Schwanghart23

and Scherler, 2017; Soille, 2004; Lindsay, 2016). This approach is justified for situations in which spatiotemporal aspects of24

the analysis allow depressions to be ignored or for cases in which all depressions can be considered to be data errors (Lindsay25

and Creed, 2005a). Historically, many DEMs were constructed from sparse data, and small data errors produced depressions,26

especially in flat areas (O’Callaghan and Mark, 1984). Such an assumption is no longer justified, as improved and increasingly27

high-resolution data have become available (Li et al., 2011). Even coarse-resolution data are capable of resolving real-world28

depressions (e.g. Riddick et al., 2018; Wickert, 2016). With this in mind, new approaches are beginning to be examined,29

particularly in post-glacial landscapes where depressions have a significant impact on local hydrology (e.g. Lai and Anders30

(2018)) and therefore cannot be ignored during modeling.31

FlowFill (Callaghan and Wickert, 2019) began to combat this problem by routing water across landscapes in a way that32

conserved water volume, creating flow-routing surfaces that could still contain real depressions. Under reasonable runoff con-33

ditions, their results show landscapes that still contain depressions and disrupted flow routes. The FlowFill method iteratively34

routes water from higher to lower terrain. As depressions fill, they pose an extreme challenge to such a method: since water35

seeks a level surface, the surface of a filled depression must eventually become flat and any fluid flowing onto the surface36

diffuses across it. Even for moderately-sized surfaces it can take many iterations for a solver to reach steady state; we provide37

a theoretical analysis of this in Section 4. Runtimes for FlowFill ranged from seconds to days: large datasets quickly became38

unwieldy. Of those examples tested by Callaghan and Wickert (2019), the slowest was a dataset of 4,176,000 cells which took39

approximately 33 hours for FlowFill to process. In contrast, the Fill-Spill-Merge algorithm presented here fills a similarly-sized40

dataset in 8.7 s.41

To achieve this, we developed a data structure—the depression hierarchy—which represents the topologic and geographic47

structure of depressions. In an accompanying paper, we provide details concerning the depression hierarchy and its construc-48

2

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

tion (Barnes et al., 2020). In this paper, we explain how the depression hierarchy can be leveraged to accelerate hydrological49

models using a paradigm we call Fill-Spill-Merge.50

2 Using The Depression Hierarchy66

Depressions can themselves contain depressions, as shown in Figure 1. A depression hierarchy (DH) is a forest of binary trees,67

as shown in Figure 2a, that represents the relationships between depressions (Figure 2a–d). Each node in the DH represents a68

depression. Nodes higher in the DH are depressions that themselves contain depressions; we term these meta-depressions. A69

node in the DH can have several classifications:70

– Parent: A node, such as #10 in Figure 2, that represents a meta-depression, and whose topological descendants therefore71

also form depressions.72

– Child: A depression, such as both #10 and #1 in Figure 2, that geographically and topologically exists within the meta-73

depression formed by its parent.74

– Leaf: A depression, such as #1 and #2 in Figure 2, that has no children. The leaves of the binary trees represent the75

smallest, most deeply-nested depressions. If a landscape were initially devoid of water, then water flowing down slopes76

would begin to collect in some subset of these leaf depressions before it would begin to fill their parent depressions.77

– Root: A depression, such as #0 in Figure 2, that has no parent. This term may also refer to any node that is used as the78

starting point for a traversal that only considers the node and its descendants.79

– Descendant: A child of a given parent, or the child of a child of that parent, and so on. In Figure 2, #1, #2, #3, and #1080

are all descendants of #12.81

– Sibling: Every node has either no children (leaf nodes) or two children. Nodes which share a parent are siblings. In82

Figure 2, #1 and #2 are siblings, as are #4 and #5.83

As depressions fill, their water surfaces eventually reach a spill elevation (Figure 2e) at which they overflow into neigh-84

boring depressions. During this spilling, water flows from a depression into a geographically neighboring leaf depression,85

topologically connected by a geolink. The spill elevations in Figure 1 are the highest points of each band of color.86

Each node in the DH is associated with several properties:87

– Depression volume: This is the total volume of water that the depression, including all of its descendants, can contain88

before spilling over.89

– Water volume: This is the total volume of water actually being stored in the depression. A parent depression will have90

a non-zero water volume only if all of its children are completely full and the parent itself contains some additional91

volume of water. In this case, the water volume will be the sum of the water volumes of the children and the additional92

3

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

(a)

Link

Example
Parent

Descendants (12)
Leaves

Children Geolink
Oceanlink

Roots

3

21

12

54

11

0

10

Ocean

LL
P

Water Volume

Marginal Volume

11

1 2

10 3

12

4
5 0

Spillover point

L

L L

P

P

O
c
e
a
n

(e) P Parent L Leaf

11

12

0

O
c
e
a
n

(b)

Leaves

(11)

10

3

(12)

4 5 0

O
c
e
a
n

(c)

(11)

1 2

(10) 3

(12)

4 5 0

O
c
e
a
n

(d)

Meta-depression
Parent to 10,3

Parent to 4,5
Meta-dep.

Parent to 1,2
Leaf

depression
Leaf

depressions

Meta-depression

Leaf
depressionLeaf

depressions
Leaf

depressions

Marginal Depression

Marginal Depression

Marg. Dep. Marg. Dep.

Marg. Dep.

51

Figure 2. Terminology for the depression hierarchy and water flow through it. The depression hierarchy shown here is drawn from the

left hand side of Figure 1 from the companion paper by Barnes et al. (2020). (a) Topology. A parent and its descendants are associated with

depressions (b–d). Direct descendants are called children. Leaves are the terminal members of the depression hierarchy; they have no children

and represent simple depressions (i.e., those that are not meta-depressions). Members of a single binary tree are joined in their hierarchy

through links; directional links that represent water-spillover directions between geospatially adjacent depressions are called geolinks. Flow

from one binary tree into another and towards the ocean follows the oceanlinks. Though only one binary tree is shown, the ocean may be the

parent to an arbitrarily large forest of binary trees. (b) Parents in the hierarchy form meta-depressions — depressions that encompass other

depressions. (c) These meta-depressions contain leaf depressions — depressions that themselves contain no depressions. These are associated

with leaves in the depression hierarchy. Meta-depression 12 also contains another meta-depression, 10. The regions of Depressions 11 and

12 that lie above their child depressions are termed “marginal depressions”. (d) Meta-depression 10 contains leaf depressions 1 and 2. (e)

Water flow in the depression hierarchy. Water first fills leaf depressions before flooding into neighboring depressions. Once a depression and

its neighbor are completely filled, their parent begins to flood. The depression volume is the full geometric volume of the depression. The

water volume, nautrally, is the volume of water within a given depression. The marginal volume is the volume of water partially filling the

top-level meta-depression; appropriately spreading this water across the landscape is the topic of Section 3.3.

52

53

54

55

56

57

58

59

60

61

62

63

64

65

4

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

margin of water contained within the parent (i.e., the “marginal volume” indicated on Figure 2). Parents whose children93

are not all filled with water will have a water volume equal to zero. In this way, we can use this property to determine94

which portions of the DH are fully or partially filled, and which are the highest water-containing nodes in any of the95

binary trees.96

– Geolink: When a depression spills, its water passes into the subtree rooted by its sibling. However, in a full model of97

flow, the water would move downslope from the spill cell into whichever leaf depression of the sibling is geographically98

proximal to the spill cell. Geolinks are pointers from depressions higher in the DH to the leaf depressions that receive99

their water if they overflow. These are the dashed lines shown in Figure 2. Geolinks are similar to the connections used100

in a threaded binary tree (Fenner and Loizou, 1984).101

– Ocean link: Depressions high in the mountains may overflow down escarpments to depressions far below. In this case,102

the depressions do not overflow into each other: the relationship is one-way. There can be multiple such escarpments, so103

this can happen multiple times. In such cases, each group of depressions forms a proper binary tree. However, the root104

of one of the trees has both an ocean link and a geolink to a leaf node of the downstream binary tree. In Figure 2, both105

#11 and #12 are the root nodes of a set of nested depressions. #12 has an ocean link (heavy arrow) to #4, one of the leaf106

depressions of #11. #12 also has a geolink (dotted arrow) to #4. #11 itself has an ocean link and a geolink to the ocean. In107

many of the algorithms discussed below, ocean-linked nodes are processed similarly to children; however, information108

is usually not passed across ocean links. Oceanlinks are used solely for guiding traversals of the depression hierarchy109

whereas water is passed through geolinks.110

3 The Algorithm111

The Fill-Spill-Merge algorithm consists of several steps, outlined here, depicted in Figures 3 and 4, and shown in flowchart130

form in Figure 5. First (Section 3.1), surface water needs to move downhill, either to the ocean (i.e., a designated sink region131

or the map edge) or to collect in pit cells – the deepest points within leaf depressions. This operation takes place across all the132

cells of the DEM. Second (Section 3.2), water is redistributed across the depression hierarchy such that any depressions that133

have filled sufficiently must spill over into neighboring depressions and, if both depressions are full, flood their parent to merge134

into a single, larger body of water within a meta-depression. This operation is done without explicitly considering the cells of135

the DEM, which makes it very fast. Third and finally (Section 3.3), the water within the depression hierarchy is translated into136

an extent and depth of flooding across the topographic surface (DEM).137

Computing a depression hierarchy (Barnes et al., 2020) is a necessary precursor to running Fill-Spill-Merge. The specific140

outputs from the depression hierarchy that are used in the Fill-Spill-Merge algorithm are:141

– DH: the depression hierarchy itself.142

– Flowdirs: a matrix of flow directions, indicating which of a cell’s neighbors receives its flow. Because Priority-Flood143

(Barnes et al., 2014) is used to generate the depression hierarchy, flat areas are automatically resolved.144

5

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

1 2

310

12

1 2

10 3

12

(a)

(b)

11

4 5

11

4 5

0

0

3

(c)

3

(d)

Fill

Fill Spill

(e)

Fill Merge Spill

(f)

Fill Merge
Merge

Spill
Spill
to ocean

112

Figure 3. Fill-Spill-Merge process. Water moves through topographic depressions by filling them, spilling over sills, and merging to form

meta-depressions. (a) Topographic cross section with labeled leaf depressions and their parents, following the left-hand side of the de-

pression hierarchy in Figure 2. “0” represents the ocean; other numbers represent leaves and parents that together form depressions and

meta-depressions. (b) Map showing this depression structure; the cross-section in (a) follows the dotted gray line. (c) A water source to the

left begins to fill Depression 1. (d) Continued water input causes Depression 1 to overflow and spill into Depression 2. (e) Depression 2 fills,

causing Depressions 1 and 2 to fill their parent (10) and merge to form a metadepression. This metadepression overflows into Depression 3.

(f) Depression 3 fills and merges with Meta-Depression 10 (1 and 2 being implied members based on their position in the hierarchy) to flood

their parent, 12. After Meta-Depression 12 overspills, it enters Depression 4, which then fills and spills into Depression 5. After Depression

5 floods, its waters join with those from Depression 4 to fill Meta-Depression 11, which then spills to the ocean. Figures 4 and 5 describe the

algorithm in more specific detail.

113

114

115

116

117

118

119

120

121

122

6

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

123

Figure 4. Visual Overview of the Algorithm. In this figure the heights of the water bars are non-additive: only the changes between panels

are important. The algorithm consists of three major stages (Figure 5). From its initial distribution (A), water is moved downhill into pit cells

(B, §3.1). Water is then moved within the depression hierarchy (C–F, §3.2): water in depressions with insufficient volume overflows first into

their sibling depressions (D) and then – if the sibling depression becomes filled – passes to their parents (E, F). Any leftover water overflows

into the ocean (F) and is forgotten. Depressions to be flooded are then identified and flooded (§3.3) starting from an arbitrarily-chosen pit

cell (G–J).

124

125

126

127

128

129

7

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Start
Fill-Spill-Merge

End
Fill-Spill-Merge

3.1. Move water
downhill to pits

3.2. Overflow and
merge depressions

3.3 Flood the
landscape

Use flow directions
and a priority queue

to move water
downslope into pits.

Assign this water
to the associated

leaves in the
depression hierarchy.

Recurse through
depressions and find

those with more water
than they can

accommodate. Then
redistribute this water to

siblings and parents
in the depression

hierarchy.

Recurse through
depressions to find
those where we can
update water depth.

Depression
hierarchy Flow directions Labels

138

Figure 5. Flowchart showing the main steps taken by the algorithm. These steps are described in more detail in §3.1 to §3.3.139

– Labels: a matrix indicating the leaf depression to which each cell belongs.145

By routing water according to the DH, we significantly accelerate the compute speed and ensure that the full network of146

depressions is a topologically correct directed tree. Each of the following subsections details one of the numbered steps along147

the central path of the flowchart shown in Figure 5.148

3.1 Move Water Downhill to Pits149

We route water in a similar way to standard flow-accumulation algorithms (Mark, 1988; Wallis et al., 2009; Barnes, 2017), but150

for completeness summarize our approach here. Flow directions for each cell have already been identified by the DH. Each151

cell calculates how many of its neighbors flow into it. We call this value the cell’s dependency count, as it describes the number152

8

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

of immediate upstream cells whose flow accumulation must be resolved before flow accumulation at the given cell can be153

computed. Local maxima in the DEM are identified as those cells that receive no flow from any neighbor. These local maxima154

are placed in a queue. Cells are then popped (i.e., noted while being removed) from this queue. The cells determine how155

much flow they generate locally (perhaps referring to matrix of rainfall values) and add this to their flow accumulation value.156

They then add their flow accumulation to their downstream neighbor’s and set their own flow accumulation value to zero. The157

neighbor’s dependency count is then decremented. If the neighbor’s dependency count has reached zero during this step, it is158

added to the end of the queue. This process of accumulating flow, passing it downstream, decrementing the dependency count,159

and adding cells to the queue continues until the queue is empty, at which point every cell on the map has been visited and any160

water has been moved downslope. Braun and Willett (2013) present an alternative formulation based on a depth-first traversal,161

but Barnes (2019) demonstrates that a breadth-first ordering, such as that presented here, is better suited to parallelism.162

When the accumulated flow reaches the pit cell of a depression, the downhill-directed flow routing stops because there is no163

downhill neighbor to receive the flow. At this point, all of the flow-accumulated water in the pit cell is moved into the pit cell’s164

associated leaf depression in the DH. That is, the water is moved out of the geographic space and into the topologic space. This165

then enables mass-conserving depression flooding via rapid Fill-Spill-Merge calculations, as detailed below.166

3.2 Overflow and Merge Depressions167

At this point, the Fill-Spill-Merge algorithm has routed all of the surface water into either the ocean or into the leaf nodes of the168

DH. The next step is to redistribute this water through the DH to nodes with enough volume to contain the water, and to send169

any excess water to the ocean. This set of operations can be performed entirely in the depression hierarchy without reference170

to the digital elevation model.171

Intuitively, the process of filling, spilling, and merging can be visualized as occurring from leaf nodes to their parents172

(Figure 3). Water must be redistributed such that leaf depressions containing more water than they can hold spill over into their173

neighboring depression. If this neighboring depression is already full, then the excess water must pass to the parent of both the174

depression and its neighbor. This process continues recursively until either the supplied water is exhausted or this water reaches175

the ultimate parent, the ocean. In this latter case, all excess water is dropped from the model and the ocean is unaffected.176

To efficiently redistribute water, the Fill-Spill-Merge algorithm performs nested depth-first traversals of the DH. The outer177

traversal is post-order and considers each meta-depression in turn, from the most deeply nested to the least. For each meta-178

depression, an inner traversal handles its overflows by moving water to its sibling (starting by filling the sibling’s descendants)179

and, if there’s any left, passing it to the depression’s parent. In this way, the outer traversal maintains an invariant: any meta-180

depression it has processed does not contain an overflow.181

The outer traversal of the DH (which is, after all, a forest of binary trees) begins with the ocean. For each depression, the182

algorithm first recurses into the depression’s left child and then into its right child. If any oceanlinks are found, the algorithm183

also recurses into them. In the post-order portion of the traversal (which starts from the leaves and moves back up through184

the depression hierarchy), the algorithm identifies any depressions containing more water than they can accommodate. This185

9

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

process continues until the recursion returns to the ocean, at which point any additional water is assumed to be added to the186

ocean without impacting sea level.187

When an overfilled depression is located, the inner traversal redistributes this water. Let us call this overfilled depression A188

and note that it contains some amount of excess water — that is, water beyond its depression capacity. Our goal is to distribute189

this fixed amount of excess into neighbouring depressions. At each step below, the amount of this excess water remaining to be190

distributed will either remain the same or decrease. When we pass water into a depression, it can go to one of three places: the191

depression itself, its sibling, or its parent. Distributing the water to any of these places may itself cause an overflow. Therefore,192

the inner (pre-order) traversal comprises the following steps:193

1. Call the depression that we are currently considering B. This may be the depression we originally considered, depression194

A, or it may be some other depression reached during the steps detailed below. We add water to B until either it fills or195

all of the water is used. At this point, this part of the algorithm can terminate if: (i) there is no water left, (ii) B is the196

parent of A, (iii) B acts as a parent of A by receiving its overflow via an oceanlink–geolink pair while not being a sibling197

or descendant, or (iv) B is the ocean.198

2. Otherwise, if B has a sibling and the sibling’s water volume is less than its depression volume, then start from Step 1199

with the new B set as the depression pointed to by the current B’s geolink.200

3. Otherwise, if B has no sibling or the sibling’s water volume is equal to its depression volume, then start from Step 1 with201

the new B set as the parent of the current B. (Note that the parent may be the ocean or a node reached via an oceanlink).202

During each such pass through the inner traversal, water moves at most one step in the DH towards the ocean.203

The next step of the outer traversal, which begins one level in the DH closer to the ocean, identifies a less nested metade-204

pression for which the inner traversal might need to be run. If this step were not supplied with information about prior water205

redistribution, it could cause multiple traversals of a subtree of the DH, which would be computationally wasteful. To prevent206

this, the inner traversal returns the ID of the final node in which it placed water: this node is the only node in the traversal with207

spare capacity so future traversals can begin there. Therefore, on subsequent overflows, if such a cached value is available, then208

the recursion skips directly to that node. This ensures that all the calls to this part of the algorithm take no more than O(N)209

time collectively.210

The following examples uses the geometry from Figure 2 to describe a set of inner traversals, starting with an overflowing211

Depression #12. Step numbers mirror those above; numbers in parentheses indicate the number of recursions – that is, the212

number of times that the inner-traversal algorithm has returned to Step 1:213

1 Depression #12 fills and overflows.214

2 Depression #12’s water overflows into Depression #4, which is not full, following its geolink.215

1(r1) Depression #4 acts as Depression #12’s parent via a geolink–oceanlink pair. The inner traversal terminates.216

10

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

At this point, the outer traversal moves one level closer to the ocean, and the inner traversal repeats, this time starting at217

Depression #4.218

1 Depression #4 fills and overflows.219

2 Depression #4’s water overflows into its sibling, Depression #5, which is not full and is a leaf depression. If Depression220

#5 had descendants, water overflowing from Depression #4 would have followed a geolink to one of these.221

1(r1) Depression #5s fills and overflows.222

2(r1) Depression #4 is full.223

3(r1) Depression #5 overflows into its parent, Depression #11.224

1(r2) Depression #11 overflows into the ocean; the inner traversal terminates.225

Now the outer traversal moves yet another level closer to the ocean, and the new inner traversal starts at Depression #11.226

1 Depression #11 fills and overflows.227

2 Depression #11 has no sibling.228

3 Depression #11 overflows into its parent, the ocean; all remaining excess water is absorbed into an infinite sink.229

1(r1) The now-selected node is the ocean; the inner traversal terminates.230

At this point, the outer traversal moves one level closer to the ocean, and arrives at the ocean. The outer traversal also terminates.231

3.3 Flood the landscape232

After water moves through the DH (Section 3.2, above), each node in the DH exists in one of the three following states:233

1. Empty: The depression’s water volume is equal to zero. In this case, nothing needs to be done. The depression’s descen-234

dants might contain water, but the water never propagates to this level of the DH.235

2. Full: The depression’s water volume is equal to the volume of the depression itself. In this case, the depression is entirely236

full. If the depression’s parent contains water, then the calculation of water depth is dealt with at a higher stage in the237

DH. If the depression’s parent is empty, or if the depression’s parent is the ocean, then the calculation is performed at238

this level as described below.239

3. Partially filled: The depression’s water volume is less than its depression volume. In this case, the depth of water across240

the depression and all its descendants’ cells must be calculated at this level so that the depression fills to an appropriate241

level. This is described below and indicated as the marginal volume on Figure 2e.242

11

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

The next step is to distribute this water across the DEM, appropriately flooding geographic depressions.243

Given the three states described above, the algorithm locates the highest-level node within each binary tree that contains244

water. It does so by first traversing from the ocean to each leaf depression by recursively traveling to each node’s children in245

turn. Each time it reaches a leaf, the algorithm notes its label and pit cell. After identifying each of these, the algorithm reverses246

direction, moving from child to parent so long as the parent node contains water. Therefore, this traversal towards the ocean247

ends at the highest-level node whose parent does not contain water. Call this node L. The water volume contained within the248

depression will only very rarely be exactly enough to perfectly flood it; therefore, we must spread water across the depression249

to create a flat water surface.250

To calculate water level within a depression, the algorithm begins by picking an arbitrary pit cell within it, and then uses251

this as a seed from which to start building a priority queue through the depression. The priority queue returns cells ordered252

from lowest to highest elevation. At each step through the priority queue, the algorithm checks whether a depression whose253

outlet is at this elevation would have enough volume to hold the water. If so, the algorithm exits, having successfully defined254

the flooded area. If not, it continues to build the priority queue.255

To expand this brief conceptual discussion into a more formal set of steps, let us begin by calling the active cell – that is,256

the one that is currently being considered by the algorithm – cp. This cell is initially the arbitrary pit mentioned above, and is257

added to the priority queue. The algorithm marks cp, which stands for “cell of current highest priority”, as visited; all other258

cells remain unvisited. The algorithm then follows these steps:259

1. Pop cp from the priority queue and use its elevation to calculate the volume of water that can be accommodated in the set260

of cells processed so far (Equation 3, below). If this volume is enough to accommodate the volume of water available,261

exit the loop and compute the final water level (Equation 4, below). Otherwise, proceed to Step 2.262

2. Add the former cp (which was popped in Step 1) to a plain queue, which records all of the cells scanned so far; these263

cells will later be inundated.264

3. Add the cells neighboring the former cp that are not marked as visited to one of two lists. If an unvisited neighboring cell265

shares a label with L or any of its descendants, then this neighboring cell is added to the priority queue. Each of these266

neighboring cells is then marked as visited.267

4. Choose the lowest-elevation cell in the priority queue and label it as the new cp and return to Step 1. If the priority queue268

is empty, then all cells in the same meta-depression as cp or its descendants have been visited and we are now guaranteed269

to have sufficient depression volume to hold all of the water.270

Step 1 in this approach requires an efficient way to determine the volume of a depression below any given elevation. To do271

so, we imagine a hypothetical outlet that drains the depression. If the depression is full enough that of its all cells receive water,272

then the elevation of this hypothetical outlet is simply that of the topographic outlet from the depression. If the depression is not273

yet completely filled, it can be visualized as a pipe in the side of the depression that is an infinite sink for any water entering it,274

thereby acting analogously to an overflow drain below the edge of a sink or bathtub. If we call the elevation of this hypothetical275

12

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

outlet is o and a depression contains cells of elevations {a,b,c,d, . . .}, then the capacity of the depression is276

(o− a) + (o− b) + (o− c) + (o− d) + . . . = No− a− b− c− d− . . . (1)277

= No−
N∑

(elevations) (2)278

Now, consider cells ci = c1, . . . , cN in the plain queue (i.e., those that have been visited and popped from the priority queue),279

we can calculate the volume of the depression below that of the last cell popped from the priority queue, the sill zs, as:280

–Vdep,zs
= zsN −

N∑

i=1

zi (3)281

Here, –Vdep,zs is the volume of the depression below zs, and zi is the elevation of cell ci. Thus, if we keep track of the number282

of cells in a depression and their total elevation, it is possible to calculate the volume of a depression at any hypothetical outlet283

level.284

Once –Vdep,zs is greater than or equal to the volume of water in the depression, –Vw, the plain queue contains all cells to be285

flooded. At this point, the algorithm updates zw, which is the water level within this depression. If –Vw = –Vdep,zs , the algorithm286

sets zw = zN . If instead –Vw < –Vdep,zs , the available volume is greater than the water volume, and the algorithm calculates zw287

in the depression as follows:288

zw =
1
N

(
–Vw +

N∑

i=1

zi

)
. (4)289

We call this the Lake-Level Equation (LLE). The conditional usage of the LLE described above is purely for computational290

efficiency: if –Vw = –Vdep,zs , its solution is that zw = zN .291

After solving for the water-surface elevation, the algorithm pops each cell in the plain queue (ci = c1, . . . , cN), corresponding292

to the flooded region, and sets its water elevation to the computed zw. This is the final step of the Fill-Spill-Merge algorithm. At293

this point, it outputs a file representing the topography plus water thickness across the domain (i.e., topography with depressions294

filled or partially filled with water).295

4 Theoretical Analysis296

Here we use computational complexity as a means of contrasting the expected run-time of our algorithm against previous297

algorithms such as FlowFill. To do so, we describe a simple iterative solver similar to FlowFill whose goal is to determine298

an appropriate water level for a depression. The solver operates on a one-dimensional domain of cells bounded by high cliffs299

on either side in which each cell may have a column of water. At each step, if the solver finds a discontinuity in water levels300

between two cells, it responds by averaging the heights of the cells’ water columns. (The solver we describe is known as301

Jacobi’s method.) The challenge we present to this solver is a direct analogue of routing flow along a stretch of river with302

negligible gradient and is very similar to routing flow across the surface of a lake or ocean.303

13

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

For our analysis, we imagine that the system is initialized with a high column of water on the left and no water anywhere304

else. We call the cell with the water Cell 1. We call the cells to its right 2, 3, 4, and so on. During the solver’s first step, Cell 1305

is initialized. On its second step, Cell 1 averages its height with Cell 2. On the third step, Cell 2 averages with Cell 3 and Cell306

1 then averages with Cell 2. On the fourth step, Cell 3 averages to 4, 2 averages to 3, and 1 averages with 2. Thus, the number307

of cells affected at each step are: 1, 2, 3, 4, and so on. Since there must be at least as many steps as there are cells, we can say308

that there are N steps. The total time, tcompute, is then309

tcompute =
N∑

i=1

i =
N(N + 1)

2
(5)310

Thus, for any model (Callaghan and Wickert, 2019; Fan et al., 2013) that uses a scheme similar to our simple solver, the time311

required to solve the model is in O(N2).312

In contrast, the new algorithm runs in O(N logN) time in the worst case. Moving water downhill (Section 3.1) is a flow-313

accumulation algorithm. This is known to take O(N) time (Mark, 1988) and efficient variants exist for performing flow314

accumulation in parallel on large datasets (Barnes, 2017) and on GPUs (Barnes, 2019), though for simplicity we do not use315

these techniques here. Moving water within the depression hierarchy (Section 3.2) requires a depth-first post-order traversal of316

the entire hierarchy. This type of traversal is a foundational algorithm in computer science and takes O(N) time. Each node317

in this traversal has the potential to overflow, which also results in a depth-first traversal, thereby requiring up to O(N) time.318

However, by using a jump table that persists between calls to the overflow function, we ensure that it is able to identify the319

target of the overflow in amortized constant time; that is, the function is able to skip over fully-filled depressions. Finally, the320

algorithm floods the digital elevation model from the pit cells up. This requires a depth-first post-order traversal, which calls321

a flooding function (Section 3.3) on select subtrees of the DH. The depth-first traversal takes O(N) time, as described above.322

The priority queue used for flooding nominally takes O(N logN) time in the worst case for floating-point data and O(N)323

time in the worst case for integer data (Barnes et al., 2014). However, with specialized data structures the time can be reduced324

to O(N) for both floating-point and integer data (Barnes et al., 2014). Most real datasets consist of many small depressions325

whose cell counts Ncells−in−dep are much smaller than the total number of cells in the digital elevation model. Therefore, the326

actual time is for this step is O(NdepNcells−in−dep), where Ndep is the total number of depressions and NdepNcells−in−dep can327

be much less than N . Because the worst-case time complexity of any operation is O(N), this bounds the time of the algorithm328

as a whole. However, to reduce the potential for bugs, we use the C++ standard library’s O(N logN) priority queue in our329

implementation, at the cost of reduced performance.330

To put this in more concrete terms, consider a long stretch of low-gradient river. Such a feature poses a lower bound on the331

time of our simple solver. North America’s Red River of the North runs for 885 km with a gradient that is often on the order of332

0.03 m km−1. On a 90 m grid of floating-point data, the river would be 9,833 cells long. Our simple (Jacobi) solver would then333

take an estimated 97 million time units to reach a solution, whereas the new solver that we describe in this paper would take334

9,833 time units, a 10,000× speed-up. Our empirical results, below, support both the theory and this expected value.335

14

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Dataset Dimensions Cells FSM Time (s) Total Time (s)

Madagascar 2000×1000 2.0 · 106 0.1 0.4

U.S. Great Basin 1920×2400 4.6 · 106 0.2 8.7

Australia 5640×4200 2.3 · 107 9.1 15.6

Africa 9480×9000 8.5 · 107 65.3 118.0

N&S America 18720×17400 3.2 · 108 53.2 231.6

Minnesota 30m topobathy 34742×23831 8.2 · 108 307.8 792.6

337

Table 1. Datasets used, their dimensions, and algorithm wall-times. Tests were performed on the Comet cluster run by XSEDE (see

main text for full specifications). Times for Fill-Spill-Merge (“FSM Time") alone and this time plus the depression hierarchy construction

time (“Total Time") are shown. Topographic data for Madagascar, the U.S. Great Basin, Australia, Africa, and North & South America,

were clipped from the global GEBCO_08 30-arcsecond global combined topographic and bathymetric elevation data set (GEBCO, 2010).

The Minnesota 30m topobathy data is the merged result of two data sources. The topography is resampled from the Minnesota Geospatial

Information Office’s 1m LiDAR Elevation Dataset (MNGEO - Minnesota Geospatial Information Office, 2019). Bathymetric data were

provided by the Minnesota Department of Natural Resources (MNDNR - Minnesota Department of Natural Resources, 2014). Richard

Lively of the Minnesota Geological Survey merged and combined these data sets.

338

339

340

341

342

343

344

345

5 Empirical Tests336

We have implemented the algorithm described above in C++11 using the Geospatial Data Abstraction Library (GDAL) (GDAL346

Development Team, 2016) to read and write data. There are 981 lines of code of which 50% are or contain comments. The347

code can be acquired from https://github.com/r-barnes/Barnes2020-FillSpillMerge and Zenodo (Barnes and Callaghan, 2020).348

Tests were run on the Comet machine of the Extreme Science and Engineering Discovery Environment (XSEDE) (Towns349

et al., 2014). Each node of the machine has 2.5 GHz Intel Xeon E5-2680v3 processors with 24 cores per node and 128 GB of350

DDR4 DRAM. Code was compiled using GNU g++ 7.2.0 with full optimizations enabled. Scaling tests on datasets spanning351

three orders of magnitude in terms of their number of cells are shown in Table 1. The GuessCompx package written in the R352

programming language by Agenis-Nevers et al. (2019) shows that an O(N logN) scaling relationship gives the best fit to the353

data, which agrees with the theory. Further tests are described in our Applications section (§6), below.354

6 Applications355

Given a depression hierarchy, Fill-Spill-Merge provides an efficient method to route water across any surface while taking356

depressions into account. Furthermore, Fill-Spill-Merge can be used to assess which depressions are most important in day-357

to-day or seasonal changes to the hydrologic system. For example, small depressions will become flooded and spill over even358

with relatively small amounts of water reaching them, while larger depressions may not be completely filled. These depressions359

impact the hydrologic connectivity of the landscape (Callaghan and Wickert, 2019).360

15

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

6.1 Field applications361

We have compared Fill-Spill-Merge with a prior algorithm, FlowFill, at the same two sites used by Callaghan and Wickert373

(2019): a reach of the Sangamon River in Illinois (Figure 6) and the Río Toro basin in Argentina (Figure 7). Like Fill-Spill-374

Merge, FlowFill can be used to route water across a landscape while preserving real depressions, but the algorithm is sig-375

nificantly slower (Table 2). The two selected study sites provide very different landscapes for testing the performance of the376

algorithm. The Sangamon River site is located at 39.97◦N, 88.72◦W, in Illinois, USA. It is a low-relief, post-glacial land-377

scape containing many closed depressions, which may impact hydrologic connectivity as a function of runoff (Lai and Anders,378

2018). It furthermore contains a grid of roads and associated embankments whose elevations are significant when compared to379

regional relief and impact water flow paths and storage. Callaghan and Wickert (2019) resampled the 2.5 ft (0.76 m) resolution380

LiDAR DEM Illinois Geospatial Data Clearinghouse (2020) to 15 m resolution for analysis and manually removed several road381

bridges using GRASS GIS to prevent artificial pooling behind these; here we use the same modified DEM to enable a direct382

comparison between the algorithms. The Río Toro site is located mainly in Salta Province, Argentina, around 24.5◦S, 65.8◦W.383

This site exhibits more rugged fluvially sculpted topography (Hilley and Strecker, 2005). Callaghan and Wickert (2019) re-384

sampled the 12-m TanDEM-X DEM of this region (Krieger et al., 2013; Rizzoli et al., 2017) to 120 m resolution. Here we use385

this same resampled DEM for comparison.386

As shown in Table 2, wall-times using Fill-Spill-Merge ranged from 0.227–0.243 s for the Sangamon River site and 0.300–387

0.319 s for the Río Toro site. This compares with times ranging from 20–643 s and 31-155 s, respectively, for FlowFill. These388

times for both sites correspond to a 86–2,645× reduction in wall-time. Since FlowFill was run with 24 processors, this translates389

to a 2,064–63,480× reduction in compute time. Considering that each of these example DEMs is quite small relative to390

modern full-resolution LiDAR-derived elevation data sets or continental-scale 30-meter DEMs (Table 1), this speed-up and its391

associated O(N logN) scaling provides a significant advantage for topographic analysis and solving associated problems in392

hydrology and geomorphology.393

Although both FlowFill and Fill-Spill-Merge route water downslope, flooding depressions based on the quantity of available403

water, our results differ in some ways from those from those of FlowFill (Callaghan and Wickert, 2019). In both Figures 6 and404

7, Fill-Spill-Merge flooded some depressions more deeply than FlowFill did, and, to a lesser extent, flooded a few depressions405

with less water. One possible cause for this discrepancy is FlowFill’s asymptotic approach to an equilibrium water level, which406

may prevent small volumes of water from reaching the depression to which they belong. On the other hand, depressions with407

a narrow outlet could be especially prone to being overfilled by FlowFill because its cell-by-cell algorithm could dynamically408

dam this outlet, routing additional water into the depression. Both of these possibilities are further linked to the fact that409

FlowFill dynamically evolves a land-plus-water flow-routing surface, whereas Fill-Spill-Merge routes flow just over the land410

surface. These differences make FlowFill more useful for understanding temporal changes in surface water distribution, while411

Fill-Spill-Merge provides a more accurate snapshot of surface hydrology under equilibrium conditions.412

16

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

(a) 0.2 m (b) 0.1 m (c) 0.05 m

(d) 0.01 m (e) 0.001 m

Fi
ll-

S
p
ill

-M
e
rg

e
 m

in
u
s

Fl
o
w

Fi
ll

[m
]

2 km

362

Figure 6. The difference between results of Fill-Spill-Merge and FlowFill at the Sangamon River site. The values for panels (a) to (e)

indicate the depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts

with 0.2 m of surface water. Green to yellow colors indicate locations where Fill-Spill-Merge had more water, and blue to purple colors

indicate locations where FlowFill had more water. Differences of less than 3 mm have been masked out. Commonly, Fill-Spill-Merge retains

slightly more water in depressions than FlowFill does. This could be due to the iterative nature of the FlowFill algorithm, which causes it to

asymptotically approach the correct values. In some locations, FlowFill has retained more water. One possible reason for this is that some

depressions have a narrow outlet, through which Fill-Spill-Merge is able to move all water as appropriate but the cell-by-cell movement

of water with FlowFill can produce transient dams that reroute additional water towards these subcatchments. This DEM was prepared by

Lai and Anders (2018) and Callaghan and Wickert (2019) from LiDAR topographic data provided by the Illinois State Geological Survey

(Illinois Geospatial Data Clearinghouse, 2020).

363

364

365

366

367

368

369

370

371

372

17

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

394

Figure 7. The difference between results of Fill-Spill-Merge and FlowFill at the Río Toro site. The values for panels (a) to (d) indicate the

depth of uniform runoff applied across the landscape for both algorithms. For example, in (a), each cell across the domain starts with 15 m of

surface water. Green to yellow colors indicate locations where Fill-Spill-Merge had more water, and blue to purple colors indicate locations

where FlowFill had more water. Differences of less than 3 mm have been masked out. In panel (a), 15 m of water was enough to fill all

depressions with both algorithms, so there are no differences between the two. The most significant difference is seen in panel (c), where

Fill-Spill-Merge retained additional water in a large depression. This is likely due to transient damming of its narrow inlet in FlowFill’s

cell-by-cell method of moving water, which may have prevented the full volume of water from flowing into the depression. This DEM was

generated with data acquired from the TanDEM-X mission (Krieger et al., 2013; Rizzoli et al., 2017).

395

396

397

398

399

400

401

402

Sangamon Río Toro

Runoff depth [m] FlowFill FSM Speed-up FlowFill FSM Speed-Up

15 642.65 0.243 2645 154.70 0.317 488

10 626.59 0.241 2600 124.37 0.309 402

5 570.02 0.241 2365 93.56 0.300 312

1 472.33 0.241 1960 53.09 0.316 168

0.2 508.87 0.235 2165 38.30 0.316 121

0.1 464.15 0.230 2018 35.75 0.301 119

0.05 418.71 0.243 1723 33.62 0.316 106

0.01 200.81 0.227 885 32.06 0.315 102

0.001 20.12 0.235 86 30.99 0.319 97

413

Table 2. Time comparison of Fill-Spill-Merge vs FlowFill. Wall-times are in seconds comparing FlowFill (Callaghan and Wickert, 2019)

parallelized across 24 cores versus Fill-Spill-Merge on a single core. Using FlowFill, wall-times increased with the depth of applied runoff

and on flatter landscapes. Using FSM, wall-time is independent of depth of applied runoff and ruggedness of landscape, but increases for

larger domains. FSM’s wall-times were 86–2,645 times faster than FlowFill for these examples; compute times were 2,064–63,480 times

faster.

414

415

416

417

418

18

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

7 Conclusions419

Here we leverage the depression hierarchy data structure (Barnes et al., 2020) to route flow through surface depressions in420

a realistic, yet efficient, manner. In comparison to previous approaches, such as Jacobi iteration, the new algorithm runs in421

log-linear time in the input size and is accompanied by extensively-commented source code. This computationally efficient422

algorithm may help us to better understand hydrologic connectivity and water storage across hummocky land surfaces, and is423

an important step forwards in recognising the importance of depressions as real-world features in digital elevation models.424

Code availability. Complete, well-commented source code, an associated makefile, and correctness tests are available from https://github.425

com/r-barnes/Barnes2020-FillSpillMerge and Zenodo (Barnes and Callaghan, 2020).426

Author contributions. KC and AW conceived the problem. RB conceived the algorithm and developed initial implementations. KC and RB427

completed, debugged and tested the algorithm. All authors contributed to the preparation of the manuscript.428

Competing interests. The authors declare that they have no conflict of interest.429

Acknowledgements. RB was supported by the Department of Energy’s Computational Science Graduate Fellowship (Grant No. DE-FG02-430

97ER25308) and, through the Berkeley Institute for Data Science’s PhD Fellowship, by the Gordon and Betty Moore Foundation (Grant431

GBMF3834) and by the Alfred P. Sloan Foundation (Grant 2013-10-27).432

KLC was supported by the National Science Foundation under grant no. EAR-1903606, the University of Minnesota Department of Earth433

Sciences Junior F Hayden Fellowship, the University of Minnesota Department of Earth Sciences H.E. Wright Footsteps Award, and start-up434

funds awarded to AW by the University of Minnesota.435

Empirical tests and results were performed on XSEDE’s Comet supercomputer (Towns et al., 2014), which is supported by the National436

Science Foundation (Grant No. ACI-1053575). Portability and debugging tests were performed on the Mesabi machine at the Minnesota437

Supercomputing Institute (MSI) at the University of Minnesota (http://www.msi.umn.edu).438

The Deutsches Zentrum für Luft- und Raumfahrt (DLR) provided 12 m TanDEM-X DEM coverage of the Río Toro catchment via proposal439

DEM_GEOL1915 awarded to Taylor Schildgen, Andrew Wickert, Stefanie Tofelde, and Mitch D’Arcy. Jingtao Lai and Alison Anders440

provided a copy of their Sangamon River DEM.441

This collaboration resulted from a serendipitous meeting at the Community Surface Dynamics Modeling System (CSDMS) annual meet-442

ing, which RB had attended on a CSDMS travel grant.443

19

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

References444

Agenis-Nevers, M., Bokde, N. D., Yaseen, Z. M., and Shende, M.: GuessCompx: An empirical complexity estimation in R,445

arXiv:1911.01420v1, 2019.446

Barnes, R.: Parallel non-divergent flow accumulation for trillion cell digital elevation models on desktops or clusters, Environmental Mod-447

elling & Software, 92, 202–212, https://doi.org/10.1016/j.envsoft.2017.02.022, 2017.448

Barnes, R.: Accelerating a fluvial incision and landscape evolution model with parallelism, Geomorphology, 330, 28–39,449

https://doi.org/10.1016/j.geomorph.2019.01.002, 2019.450

Barnes, R. and Callaghan, K.: Fill-Spill-Merge Source Code, https://doi.org/10.5281/zenodo.3755142, 2020.451

Barnes, R., Lehman, C., and Mulla, D.: Priority-flood: An optimal depression-filling and watershed-labeling algorithm for digital elevation452

models, Computers & Geosciences, 62, 117 – 127, https://doi.org/10.1016/j.cageo.2013.04.024, 2014.453

Barnes, R., Callaghan, K., and Wickert, A.: Computing water flow through complex landscapes, Part 2: Finding hierarchies in depressions454

and morphological segmentations, Earth Surface Dynamics, https://doi.org/10.5194/esurf-2019-34, 2020.455

Braun, J. and Willett, S. D.: A very efficient O(n), implicit and parallel method to solve the stream power equation governing fluvial incision456

and landscape evolution, Geomorphology, 180-181, 170–179, https://doi.org/10.1016/j.geomorph.2012.10.008, 2013.457

Breckenridge, A. and Johnson, T. C.: Paleohydrology of the upper Laurentian Great Lakes from the late glacial to early Holocene, Quaternary458

Research, 71, 397–408, https://doi.org/10.1016/j.yqres.2009.01.003, 2009.459

Cabrol, N. A. and Grin, E. A.: Distribution, classification, and ages of Martian impact crater lakes, Icarus, 142, 160–172, 1999.460

Callaghan, K. L. and Wickert, A. D.: Computing water flow through complex landscapes – Part 1: Incorporating depressions in flow routing461

using FlowFill, Earth Surface Dynamics, 7, 737–753, https://doi.org/10.5194/esurf-7-737-2019, 2019.462

Fan, Y., Li, H., and Miguez-Macho, G.: Global Patterns of Groundwater Table Depth, Science, 339, 940–943,463

https://doi.org/10.1126/science.1229881, 2013.464

Fenner, T. I. and Loizou, G.: Loop-free Algorithms for Traversing Binary Trees, BIT, 24, 33–44, https://doi.org/10.1007/BF01934513, 1984.465

GDAL Development Team: GDAL - Geospatial Data Abstraction Library, Open Source Geospatial Foundation, available at http://www.gdal.466

org., 2016.467

GEBCO: General Bathymetric Chart of the Oceans (GEBCO), GEBCO_08 grid, version 20100927, http://www.gebco.net, 2010.468

Hilley, G. E. and Strecker, M. R.: Processes of oscillatory basin filling and excavation in a tectonically active orogen: Quebrada del Toro469

Basin, NW Argentina, GSA Bulletin, 117, 887–901, https://doi.org/10.1130/B25602.1, 2005.470

Illinois Geospatial Data Clearinghouse: Illinois Height Modernization (ILHMP), https://clearinghouse.isgs.illinois.edu/data/elevation/471

illinois-height-modernization-ilhmp-lidar-data, 2020.472

Jenson, S. and Domingue, J.: Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis,473

Photogrammetric Engineering and Remote Sensing, 54, 1–5, https://doi.org/0099-1112/88/5411-1593$02.25/0, 1988.474

Krieger, G., Zink, M., Bachmann, M., Bräutigam, B., Schulze, D., Martone, M., Rizzoli, P., Steinbrecher, U., Antony, J. W., De Zan, F., et al.:475

TanDEM-X: A radar interferometer with two formation-flying satellites, Acta Astronautica, 89, 83–98, 2013.476

Lai, J. and Anders, A. M.: Modeled Postglacial Landscape Evolution at the Southern Margin of the Laurentide Ice Sheet: Hydrological477

Connection of Uplands Controls the Pace and Style of Fluvial Network Expansion, Journal of Geophysical Research: Earth Surface, 123,478

967–984, https://doi.org/10.1029/2017JF004509, 2018.479

20

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Li, S., MacMillan, R., Lobb, D. A., McConkey, B. G., Moulin, A., and Fraser, W. R.: Lidar DEM error analyses and topo-480

graphic depression identification in a hummocky landscape in the prairie region of Canada, Geomorphology, 129, 263–275,481

https://doi.org/10.1016/j.geomorph.2011.02.020, 2011.482

Lindsay, J. and Creed, I.: Removal of artifact depressions from digital elevation models: towards a minimum impact approach, Hydrological483

processes, 19, 3113–3126, https://doi.org/10.1002/hyp.5835, 2005a.484

Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models: Efficient Hybrid485

Sink Removal Methods for Flow Path Enforcement, Hydrological Processes, https://doi.org/10.1002/hyp.10648, 2015.486

Lindsay, J. B.: Efficient hybrid breaching-filling sink removal methods for flow path enforcement in digital elevation models: Efficient487

Hybrid Sink Removal Methods for Flow Path Enforcement, Hydrological Processes, 30, 846–857, https://doi.org/10.1002/hyp.10648,488

http://doi.wiley.com/10.1002/hyp.10648, 2016.489

Lindsay, J. B. and Creed, I. F.: Removal of artifact depressions from digital elevation models: Towards a minimum impact approach, Hydro-490

logical Processes, 19, 3113–3126, https://doi.org/10.1002/hyp.5835, 2005b.491

Mark, D.: Modelling in Geomorphological Systems, chap. Network models in geomorphology, pp. 73–97, John Wiley & Sons, 1988.492

Martz, L. W. and Garbrecht, J.: The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models,493

Hydrological Processes, 12, 843–855, https://doi.org/10.1002/(SICI)1099-1085(199805)12:6<843::AID-HYP658>3.0.CO;2-R, 1998.494

Martz, L. W. and Jong, E. d.: CATCH: A FORTRAN program for measuring catchment area from digital elevation models, Computers and495

Geosciences, 14, 627–640, https://doi.org/10.1016/0098-3004(88)90018-0, 1988.496

MNDNR - Minnesota Department of Natural Resources: Lake Bathymetric Outlines, Contours, Vegetation, and DEM, https://gisdata.mn.497

gov/dataset/water-lake-bathymetry, 2014.498

MNGEO - Minnesota Geospatial Information Office: LiDAR Elevation Data for Minnesota, http://www.mngeo.state.mn.us/chouse/elevation/499

lidar.html, 2019.500

O’Callaghan, J. and Mark, D.: The extraction of drainage networks from digital elevation data, Computer Vision, Graphics, and Image501

Processing, 28, 323–344, https://doi.org/10.1016/S0734-189X(84)80011-0, 1984.502

Reheis, M.: Highest Pluvial-Lake Shorelines and Pleistocene Climate of the Western Great Basin, Quaternary Research, 52, 196–205,503

https://doi.org/10.1006/qres.1999.2064, 1999.504

Riddick, T., Brovkin, V., Hagemann, S., and Mikolajewicz, U.: Dynamic hydrological discharge modelling for coupled climate model505

simulations of the last glacial cycle: the MPI-DynamicHD model version 3.0, Geoscientific Model Development, 11, 4291–4316,506

https://doi.org/10.5194/gmd-11-4291-2018, 2018.507

Rizzoli, P., Martone, M., Gonzalez, C., Wecklich, C., Tridon, D. B., Bräutigam, B., Bachmann, M., Schulze, D., Fritz, T., Huber, M., et al.:508

Generation and performance assessment of the global TanDEM-X digital elevation model, ISPRS Journal of Photogrammetry and Remote509

Sensing, 132, 119–139, 2017.510

Schwanghart, W. and Scherler, D.: Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques, Earth511

Surface Dynamics, 5, 821–839, https://doi.org/10.5194/esurf-5-821-2017, 2017.512

Soille, P.: Optimal removal of spurious pits in grid digital elevation models, Water Resources Research, 40, 1–9,513

https://doi.org/10.1029/2004WR003060, 2004.514

Soille, P., Vogt, J., and Colombo, R.: Carving and adaptive drainage enforcement of grid digital elevation models, Water Resources Research,515

39, 1366, https://doi.org/10.1029/2002WR001879, 2003.516

21

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazlewood, V., Lathrop, S., Lifka, D., Peterson, G. D., et al.:517

XSEDE: accelerating scientific discovery, Computing in Science & Engineering, 16, 62–74, 2014.518

Wallis, C., Watson, D., Tarboton, D., and Wallace, R.: Parallel flow-direction and contributing area calculation for hydrology analysis in519

digital elevation models, in: Preceedings of the 2009 International Conference on Parallel and Distributed Processing Techniques and520

Applications, Las Vegas, Nevada, http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.158.2864, 2009.521

Wickert, A. D.: Reconstruction of North American drainage basins and river discharge since the Last Glacial Maximum, Earth Surface522

Dynamics, 4, 831–869, https://doi.org/10.5194/esurf-4-831-2016, 2016.523

22

https://doi.org/10.5194/esurf-2020-31
Preprint. Discussion started: 5 May 2020
c© Author(s) 2020. CC BY 4.0 License.

