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Abstract. Sandy coasts are constantly changing environments governed by complex,
:
interacting processes. Permanent laser

scanning is a promising technique to monitor such coastal areas and
::
to support analysis of geomorphological deformation

processes. This novel technique delivers 3D representations of a part of the coast at hourly temporal and centimetre spatial

resolution and allows to observe small scale changes in elevation over extended periods of time. These observations have

the potential to improve understanding and modelling of coastal deformation processes. However, to be of use to coastal5

researchers and coastal management, an efficient way to find and extract deformation processes from the large spatio-temporal

data set is needed. In order to allow data miningin an automated way
:::
To

:::::
enable

:::::::::
automated

::::
data

::::::
mining, we extract time series

in elevation or range
:
of

:::::::
surface

::::::::
elevation and use unsupervised learning algorithms to derive a partitioning of the observed

area according to change patterns. We compare three well known clustering algorithms, k-means, agglomerative clustering and

DBSCAN,
:::::
apply

::::
them

:::
on

:::
the

::
set

:::
of

::::
time

:::::
series and identify areas that undergo similar evolution during one month. We test if10

they
::::
these

:::::::::
algorithms

:
fulfil our criteria for a suitable clustering algorithm

::::::
suitable

:::::::::
clustering on our exemplary data set. The

three clustering methods are applied to time series of
::::
over 30 epochs (during one month)

:::
days

:
extracted from a data set of

daily scans covering a part of the
:::::
about

:::
two

:
km

::
of

:
coast at Kijkduin, the Netherlands. A small section of the beach, where a

pile of sand was accumulated by a bulldozer is used to evaluate the performance of the algorithms against a ground truth. The

k-means algorithm and agglomerative clustering deliver similar clusters, and both allow to identify a fixed number of dominant15

deformation processes in sandy coastal areas, such as sand accumulation by a bulldozer or erosion in the intertidal area. The

DBSCAN algorithm finds clusters for only about 44% of the area and turns out to be more suitable for the detection of outliers,

caused for example by temporary objects on the beach. Our study provides a methodology to efficiently mine a spatio-temporal

data set for predominant deformation patterns with the associated regions, where they occur.
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1 Introduction

Coasts are constantly changing environments that are essential to the protection of the hinterland from the effects of climate

change and, at the same time, belong to the areas that are most affected by it. Especially long-term and small scale processes

prove difficult to monitor but can have large impacts
:::::::::::::::::::
Aarninkhof et al. (2019). To improve coastal monitoring and knowledge of

coastal deformation processes, a new technique called Permanent Laser Scanning (PLS) (also called continuous laser scanning)25

based on Light detection and ranging (LiDAR) measurements is available. For this purpose, a laser scanner is mounted on a

high building close to the coast in a fixed location acquiring a 3D scan every hour during several months up to years.

The resulting spatio-temporal data set consists of a series of point cloud representations of a section of the coast. The

high temporal resolution and long duration of data acquisition in combination with high spatial resolution (in the order of

centimetres) provides a unique opportunity to capture a near continuous representation of ongoing deformation processes, like30

for example storm and subsequent recovery, on a section of the coast. As analysed
::::::
reported

:
by Lazarus and Goldstein (2019),

the natural effects of a storm on a typical urban beach can rarely be analysed separately from anthropogenic activities, since in

most cases work with bulldozers starts immediately after or even during severe storms. There is a need for the detection and

quantification of change processes that influence the geomorphology of the coast, to allow understanding and modelling them,

as the reaction of the coast to extreme weather events gains importance, Masselink and Lazarus (2019). More examples for35

potential use of such a data set are presented by O’Dea et al. (2019), who use data from a similar set-up in Duck, USA.

The PLS data set is large (in the order of hundreds of gigabytes), and to be relevant, the information on deformation pro-

cesses has to be extracted concisely and efficiently. Currently there are no automated methods for this purpose and studies

focus on one or a few two dimensional cross-sections through the data (for example O’Dea et al. (2019)). The high tempo-

ral resolution and long observation period lead to a
:::
high

:::::::::::
dimensional data set of high dimensional

::::
long

:
time series (i.e. 3040

epochs
:::
data

::::::
points

:
up to several thousands). Data mining on high dimensional data sets can be challenging as concluded by

Verleysen and François (2005)
::::::::
discussed

:::
for

::::::::
example

::
by

::::::::::::::::
Zimek et al. (2012). In a first step towards extraction of interesting

events and change patterns we build on the method introduced by Lindenbergh et al. (2019). We use clustering algorithms on

time series representing the evolution of the data set
:::::::::
topography, to group them

::::
these

::::
time

:::::
series

:
according to their

::::::::
similarity

::
in

change pattern and then identify underlying processes. We use clustering (or unsupervised learning) to avoid having to specify45

the patterns and processes that we are looking for in advance.

One example of spatio-temporal segmentation on our data set from permanent laser scanning was recently developed by

Anders et al. (2020). They detected seed points for deformation in time series from permanent laser scanning, to then grow

a region affected by the detected change around the seed points with the use of dynamic time warping distance to spatial

neighbours. Dynamic time warping is a distance measure between time series, that accounts for similarity in patterns even50

though they might be shifted in time (see for example Keogh and Ratanamahatana (2005)). One drawback of this approach

is that temporal patterns of interest have to be defined before hand, and therefore only deformation patterns that are expected

can be found. Another approach to model spatio-temporal deformations in point clouds from laser scanning, is presented by

Harmening and Neuner (2020). Their model assumes that the deformation can be represented by a continuous B-spline surface.
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This approach could potentially be used to further analyse some of the deformation patterns found in our study but does not55

allow the exploratory data mining, that we are aiming to accomplish. A more general overview of methods to find spatio-

temporal patterns in earth science data was published by Tan et al. (2001) and a continuation of this study was presented by

Steinbach et al. (2001). The study of Tan et al. deals with pre-processing of time series of different variables from satellite

data including issues with auto-correlation and seasonality. Steinbach et al. successfully apply a novel clustering technique

introduced by Ertöz et al. (2003) to explore spatio-temporal climate data. However, this technique only focuses on contiguous60

clusters, where all time series are in a close neighbourhood to each other, and does not allow to find general patterns independent

of location.

Time series data sets are also used to asses patterns of agricultural land use by Recuero et al. (2019). For this study time series

of Normalized Difference Vegetation Index (NDVI) data have been analysed using auto-correlation values and random forest

classification. Benchmark data from an alternative source was needed to train the classifier. Such benchmark data is currently65

not available in our case. A study by Belgiu and Csillik (2018) used time series from Sentinel-2 satellite data for cropland

mapping. They made use of dynamic time warping classification and showed that in areas with little available reference data

for training a classifier, their approach delivers good results in segmentation based on time series’ evolution. Also in this

case pre-labelled training data is required. Another approach using expectation-based scan statistics was presented by Neill

(2009): To detect spatial patterns in time series from public health data, a statistical method based on expectation values is70

used. Clusters are formed where the observed values significantly exceed the expectation. The results are promising but depend

on the choice of time series analysis method, statistics used and the shape of the search region, which all have to be defined

in advance specific to each data set and application. Generally there is a lack of studies on mining spatio-temporal data for

deformation patterns, without using training data or predefined change patterns.

The goal of the present study is to evaluate the application of clustering algorithms on a high dimensional spatio-temporal75

data set without specifying deformation patterns in advance. Our objectives in particular are:

1. To analyse and compare the limits and advantages of three clustering algorithms for separating and identifying change

patterns in high dimensional spatio-temporal data.

2. To detect specific deformation on sandy beaches by clustering time series from permanent laser scanning.

We compare the k-means algorithm, agglomerative clustering and the DBSCAN algorithm on a PLS data set of
:::
over

:
3080

epochs
:::
days, to investigate the effectiveness of the identification of coastal change patterns. All three algorithms are well

established and represent three common but different approaches to data clustering. To determine if an algorithm is suitable,

we expect that it fulfils the following criteria:

– A majority of the observation area is separated into distinct regions,

– each cluster shows a change pattern that can be associated with a geomorphic deformation process, and85

– time series contained in each cluster roughly follow the mean change pattern.
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Additionally, we compare two representations of time series: First we use time series extracted from a grid in Cartesian

coordinates as elevation per grid cell and second time series from a grid in spherical coordinates represented by range per grid

cell which is a more native way of representing laser scanner data. We use the different clustering approaches on a small area

of the beach at the bottom of a footpath, where sand accumulated after a storm, and a bulldozer subsequently cleared the path90

and formed a pile of sand. We determine the quality of the detection of this process for both algorithms and compare them

in terms of standard deviation within the clusters and area of the beach covered by the clustering. We compare and evaluate

the resulting clusters using these criteria as a first step towards the development of a method to mine the entire data set from

permanent laser scanning for deformation processes.

2 The permanent laser scan data set95
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Figure 1. Top view of
:
a
:
point cloud representing the observation area at low tide on 1st January 2019. Colours represent elevation from low

(yellow, about sea level) to high
::::
2017.

::::
The

::::
laser

::::::
scanner

:
is
::::::
located

::
at

::
the

:::::
origin

::
of

:::
the

::::::::
coordinate

:::::
system

:
(grey, about 14 above sea level and

higher
::
not

:::::::
displayed). The point (x0,y0) :::::

(xt,yt):indicates the location of the time series shown as an example in Figure
:

3. The test area,

which is discussed in Section 3.4, is indicated in red
:::
with

:
a
:::
box

:
at the end of the northern path leading to the beach.

:::
The

:::::
paved

::::
paths

::::::
leading

:
to
:::
the

:::::
beach

::
are

::::
used

::
as

::::
stable

::::::::
reference

:::::
surface

:::
for

::
the

:::::
errors

::::::
reported

::
in

::::
Table

::
2.
::::
Parts

:::
that

:::
are

::::
white

:::::::
between

::
the

:::::
dunes

:::
and

:::
the

::::
sandy

:::::
beach

::
are

::::
gaps

::
in

::
the

::::
data

:::
due

::
to

::::::::
occlusions

:::::
caused

::
by

:::
the

:::::
dunes.
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The data set from permanent laser scanning is acquired within the CoastScan project at a typical urban beach in Kijkduin,

the Netherlands, Vos et al. (2017). For the acquisition a Riegl VZ-2000 laser scanner was used to scan over a period of six

months from December 2016 to May 2017. The full data set consists of hourly scans of a section of sandy beach and dunes.

Figure 2. Riegl VZ2000 laser scanner mounted on the roof of a hotel facing the coast of Kijkduin, the Netherlands. The scanner is covered

with a protective case to shield it from wind and rain.

For the present study, a subset of the available data is used to develop the methodology. This subset consists of 30 daily

scans taken at low tide over a period of one month, January 2017. It covers a section of the beach and dunes in Kijkduin and is100

displayed in top view in Figure 1. The area contains a path and stairs leading down to the beach, a paved area in front of the

dunes, a fenced in dune area and the sandy beach. It is about 950 m long, 250 m wide and the distance from the scanner to the

farthest points on the beach is just below 500 m. For the duration of the experiment the scanner was mounted on the roof of a

hotel just behind the dunes at a height of about 37 m above sea level (as shown in Figure 2).

The data is extracted from the laser scanner output format and converted into a file that contains xyz-coordinates and spheri-105

cal coordinates for each point. The data is mapped into a local coordinate system, where the origin in x- and y-direction is at the

location of the scanner and the height (z-coordinate) corresponds to height above sea level. Since we are interested in relative

changes between consecutive scans, we do not transform the data into a geo-referenced coordinate system for this analysis.

Each point cloud is chosen to be at the time of lowest tide between 18:00 and 06:00, in order to avoid people and dogs on

the beach, with the exception of two days where only very few scans were available due to maintenance activities. The data110

from 9th of January 2017 is entirely removed from the data set, because of poor visibility due to fog.
::::
This

:::::
leads

::
to

:::
the

::
30

::::
day
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:::
data

::::
set,

::::::::
numbered

:::::
from

:
0
::
to
:::
29.

:
Additionally all points above 14.5 m elevation are removed to filter out points representing

the balcony of the hotel and flag posts along the pathsthat are interfering with the spherical coordinate grid extraction. In this

way also a majority of reflections from particles in the air, birds or raindrops are removed. However, some of these particles

might still be present at lower heights close to the beach.115
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Figure 3. Time series in
:
of

:
elevation at location (x0,y0) :::::

(xt,yt):(marked in Figure 1) on the path that is assumed to be stable throughout the

entire month. Elevation is varying within less than 2cm cm.

Since the data is acquired from a fixed and stable position we assume that consecutive scans are aligned. Nevertheless, the

orientation of the scanner may change slightly due to strong wind, sudden changes in temperature, or maintenance activities.

The internal inclination sensor of the scanner measures these shifts while it is scanning and we apply a correction for large

deviations (more than 0.01 degrees) from the median orientation.

The remaining error in elevation and range is estimated as the average standard deviation of time series in locations that are120

assumed to be stable during the entire month
::::::
standard

:::::
error

:::
and

:::
the

:::::::::::
95-percentile

::
of

:::::::::
deviations

::::
from

:::
the

:::::
mean

:::::::
elevation

::::
over

:::
all

:::
grid

::::
cells

::::::::
included

::
in

:::
the

:::::
stable

:::::
paved

::::
area. We chose stable surfaces that are

:::
the

:::::
stable

::::::
surface

::::
that

::
is part of the paved paths

on top of the dunes and leading to the beach in northern and southern direction and derived the mean remaining errors shown

in Table
:
as

::::::::
indicated

::
in
::::::

Figure
:::

1.
::::
This

::::
area

:::::::
includes

:::::
1653

::::
grid

::::
cells

::::
with

::::::::
complete

::::
time

::::::
series.

::::
The

::::::
derived

:::::
mean

:::::::::
elevation,

:::::::
standard

::::
error

::::
and

::::::
overall

:::::::::::
95-percentile

::
of

:::::::::
deviations

::::
from

:::
the

:::::
mean

:::
per

::::
time

:::::
series

::::::::
averaged

::::
over

:::
the

:::::
stable

::::
area

:::
are

:::::::
reported125

::
in

::::
Table

:
2. The elevation does on average not deviate more then 2

:::
1.4 cm from the mean elevationof the respective area and the

standard deviation of the range is within 5 on the northern path and on top of the dunes, but around 11
:
,
:::
and

:::
95

::
%

::
of

:::::::::
deviations

::::
from

:::
the

:::::
mean

:::::::
elevation

:::
are

:::
on

:::::::
average

:::::
below

:::
3.5 cmon the southern path. An example time series from the stable paved area

on top of the dunes (at location (x0,y0)
::::::
(xt,yt):marked in Figure 1) is shown in Figure 3.

3 Methods130

To derive coastal deformation processes from clusters based on change patterns we follow three steps: Extraction of time

seriesin two different coordinate systems, clustering of time series with three different algorithms, and derivation of geomor-

phological deformation processes. To cluster time series the definition of a distance between two time series (or the similarity)

is not immediately obvious. We discuss two different options (Euclidean distance and correlation) to define distances between

time series with different effects on the clustering results. The rest of this section is organized as follows: We focus on time135
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series extraction in subsection 3.1, discuss distance metrics for time series (3.2), introduce three clustering algorithms (3.3) and

our evaluation criteria (3.4). The derivation of deformation processes will be discusses with the results (section 4).

3.1 Time Series Extraction

Time series
::
of

::::::
surface

::::::::
elevation are extracted from the PLS data set in two different ways: First by using a grid in Cartesian

xy-coordinatesand extracting time series in elevation and second by using a grid in spherical coordinates and extracting time140

series in range. For both methods, we
:
.
:::
We

:
only use grid cells that contain at least one point for each of the scans.

Regular grid in Cartesian coordinates (A) and in spherical coordinates (B). In spherical coordinates (B) the size of the grid

cells is larger, the further away they are from the scanner because of the large incidence angle between the line of sight of the

scanner and the normal of the sloping surface of the beach.

3.1.1 Cartesian Coordinates145

Before defining a grid in Cartesian coordinates
::
on

:::
our

::::::::
observed

::::
area, we rotate the observation area to make sure that the

coastline is parallel to the y-axis,
:::
as

:::::
shown

::
in

::::::
Figure

::
1. This ensures that the grid covers the entire observation area efficiently

and leaves as few empty cells as possible. Then we generate a regular grid (as illustrated in Figure ??) with grid cells of 1 m ×
1m m. Time series are generated for each grid cell by taking the median elevation zi for each grid cell and for each time stamp

tk. That means, per grid cell with center (xi,yi) we have a time series150

Z̃i = (zi(t1), . . .zi(tT )), (1)

Table 1. Average standard deviation of the gridded elevation and range in listed areas, which are each assumed to be stable throughout the

observation period of one month.

mean error elevation range

paved area on top of dunes 1.47 cm 4.89 cm

path leading to the beach (north) 1.12 cm 4.03 cm

path leading to the beach (south) 1.65 cm 10.9 cm
Table 2.

:::
Test

:::::::
statistics

::
of

:::
the

::::::
gridded

:::::::
elevation

:::::
values

::
on

:::
the

::::
paved

::::
area,

:::::
which

::
is

::::::
assumed

::
to

::
be

:::::
stable

::::::::
throughout

:::
the

:::::::::
observation

:::::
period

::
of

:::
one

:::::
month.

:::::
Values

:::
are

::::::::
calculated

::
per

::::
time

:::::
series

:::
and

::::::
averaged

::::
over

:::
the

::::
entire

:::::
stable

::::
area,

:::::
which

:::::
results

::
in

::::
mean

:::::::
elevation,

:::::::
standard

::::
error

:::
and

::
an

::::::
average

::::::::::
95-percentile

::
of

:::::::
deviations

::::
from

:::
the

:::::
mean.

::::
mean

:::::::
elevation

::::
12.43

::
m

:

::::::
standard

::::
error

::
1.4

:::
cm

::::::::::
95-percentile

::
of

:::::::
deviation

::::
from

::::
mean

::
3.5

:::
cm

:::::::
(averaged

::::
over

::
all

::::
grid

::::
cells)
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with the number of time stamps T = 30. To make the time series dependent on change patterns, rather than the absolute

elevation values, we remove the mean elevation z̄i of each time series Z̃i. This leads to time series

Zi = (∆zi
′(t1), . . . ,∆zi

′(tT ), (2)

with ∆zi(tk) := zi(tk)− z̄i:::::::::::::::::
z′i(tk) := zi(tk)− z̄i.155

This approach results in a collection of time series that represent equally sized grid cells . However, the
::
In

::::
this

::::
way

:::
we

:::::
extract

::::::
around

:::
40

:::
000

::::
grid

::::
cells

::::
that

::::::
contain

::::::::
complete

:::::::
elevation

::::
time

:::::
series

:::
for

:::
the

:::::
entire

::::::
month.

::::
The point density per grid cell

varies depending on distance to the laser scanner. For example, a grid cell on the paved path (at about 80
:
m range) contains

about 40 points (i.e. time series at (x0,y0)
::::::
(xt,yt):in Figure 1), whereas a grid cell located close to the water line, at about

300 m distance from the scanner, may contain around three values. This implies that the median per grid cell is based on more160

points the closer a grid cell is to the scanner.

3.1.1 Spherical Coordinates

Using spherical coordinates allows to generate a grid with constant angle increment in horizontal and vertical direction with

roughly constant point density per grid cell. For each grid cell j, we derive a time series Rj consisting of the median range

rj(tk) per grid cell per time stamp tk:165

Rj = (rj(t1), . . . , rj(tT )),

where T = 30, as above. The range rj is defined as the line of sight distance from the laser scanner to the respective point. We

choose grid cells of 0.1◦× 0.375◦ to ensure that grid cells on the beach (close to the dune foot) cover roughly 1 m2, the same

as in Cartesian coordinates, in order to make both methods comparable. However, transformed back into Cartesian coordinates,

the size of the grid cells (in square-meters) varies with distance from the scanner (see Figure ??).170

The point density in a point cloud is generally lower, the farther away a point is from the scanner. This property of our data

set is preserved using spherical coordinates and represented in the size of the grid cell, or distance between grid cell centres.

3.2 Distance Metrics

We consider two different distance metrics for our analysis
:
:
:::
the

::::::::
Euclidean

:::::::
distance

:::
as

:::
the

::::::
default

:::
for

:::
the

:::::::
k-means

:::::::::
algorithm

:::
and

::::::::::::
agglomerative

:::::::::
clustering,

:::
and

:::::::::
correlation

:::::::
distance

:::
for

:::
the

:::::::::
DBSCAN

::::::::
algorithm.175

3.2.1 Euclidean Distance

The most common and obvious choice is the Euclidean distance metric defined as:

dE(Z0,Z1) = ||Z0−Z1||=

√√√√ n∑
i=1

|Z0i−Z1i|2, (3)

for two time series Z0 and Z1 of length n.

9



3.2.2 Correlation Distance180

Another well known distance measure is correlation distance, defined as one minus the Pearson correlation coefficient (see for

example Deza and Deza (2009)). It is a suitable measure of similarity between two time series, when correlation in the data is

expected (see Iglesias and Kastner (2013)). Correlation between two time series Z0 and Z1 is defined as:

Cor(Z0,Z1) = 1− (Z0− Z̄0) · (Z1− Z̄1)

||Z0− Z̄0|| · ||Z1− Z̄1||
, (4)

with Z̄ being the mean value of time series Z and || · || the Euclidean 2-norm as in Equation (3). We have to note here, that185

correlation cannot compare simple constant time series (leads to division by zeros) and is therefore not a distance metric in the

sense of the definition Deza and Deza (2009).

3.2.3 Comparison

For a comparison of the two distances for some example time seriessee Figure
:
,
:::
see

::::::
Figure

:
4. The example shows that the

distance between two time series is not intuitively clear. The use of different distance metrics results in different sorting of190

distances between the shown pairs of time series. However, when
:::::
When normalizing all time series (subtracting the mean and

scaling by the standard deviation) correlation distance and Euclidean distance are equivalent (as shown for example by Deza

and Deza (2009)).
::::::::
However,

:::
this

:::::
leads

::
to

:::::
issues,

:::::
when

:::::::::
comparing

::
to
::
a
:::::::
constant

::::
time

:::::
series

:::::
(with

::::
zero

:::::::
standard

:::::::::
deviation).

:

Both Euclidean distance and correlation are not taking into account the order of the values within each time series. For

example, two identical time series that are shifted in time are seen as ’similar’ with the correlation distance, but not as similar195

with the Euclidean distance and would not be considered as identical by either of them (see Figure
:
4). Additionally neither of

the two distance metrics can deal with time series of different lengths or containing gaps.

3.3 Clustering Methods

Clustering methods for Time Series
::::
time

:::::
series

:
can be divided into two categories: feature based and raw data based (see

for example Liao (2005)). Feature based methods first extract relevant features to reduce dimensionality (for example using200

Fourier- or wavelet-transforms) and then form clusters based on these features. They could also be used to deal with gaps in

time series. We focus on the raw data based approach to not define features in advance and to make sure that no information

within the data set is lost. We use three different methods: k-means clustering, agglomerative clustering and Density-Based

Spatial Clustering of Applications with Noise (DBSCAN). In Figure
:
5 an illustration of a partitioning of a simple 2D data set

is shown for each of the three algorithms. The two clusters that can be distinguished in this example have different variances205

and are grouped differently by each of the algorithms.

For the implementation of all three algorithms, we make use of the Scikit-learn package in Python (see Pedregosa et al.

(2011)).
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Figure 4. Example of three pairs of time series that are ’similar’ to each other in different ways. The Euclidean distance would sort

the differences as follows dE(Z2,Z3)< dE(Z4,Z5)< dE(Z0,Z1), whereas according to the correlation distance the order would be

Cor(Z0,Z1)< Cor(Z2,Z3)< Cor(Z4,Z5).

Figure 5. Example of clustering of data with two clusters with different variance: The k-means algorithm separates them, but adds a few

points in the middle to the purple cluster instead of the yellow one (A). Agglomerative clustering separates both clusters according to their

variances (B) and DBSCAN detects the cluster with low variance and high point density (yellow) and discards all other points as outliers

(turquoise) (C).

3.3.1 k-means Clustering

The k-means algorithm was first introduced in 1955 and is still one of the most widely used clustering methods (Jain (2010)).210

The algorithm is based on minimizing the sum of all distances between points and centroids over all possible choices of k

11



cluster centroids V = {v1, . . . ,vk}:

MinV J(V ) =

k∑
j=1

∑
xi∈vj

||xi− vj ||2, (5)

with Euclidean distance metric || · ||. After the initial choice of k centroids among all points the following steps are repeated

iteratively, until the above sum does not change significantly:215

1. Assign each point to the cluster with closest centroid

2. Move centroid to mean of each cluster

3. Calculate sum of distances over all clusters (Equation (5))

Note that minimizing the squared sum of distances over all clusters, coincides with minimizing the squared sum of all within

cluster variances. The convergence to a local minimum can be shown for the use of Euclidean distance (see for example Jain220

(2010)). The convergence is sped up using so-called k-means++ initialization: After the random selection of the first centroid,

all following centroids are chosen based on a probability distribution proportional to their squared distance to the already

defined centroids. In this way the initial centroids are spread out throughout the data set and the dependence on the random

initialization of the cluster centroids is reduced.

There are variations of k-means using alternative distance metrics such as the L1-norm (k-medoids, Park and Jun (2009)),225

however the convergence is not always ensured in these cases. Another issue to take into account when considering alternative

distance metrics, is the definition of the cluster centroids as mean of time series, which is not automatically defined for any

distance metric. For more information on k-means see Jain (2010), Liao (2005) and the documentation of the Scikit-learn

package (Pedregosa et al. (2011)).

3.3.2 Agglomerative Clustering230

Agglomerative clustering is one form of hierarchical clustering: It starts with each point in a separate cluster and iteratively

merges clusters together until a certain stopping criterion is met. There are different variations of agglomerative clustering

using different input parameter and stopping criteria (see for example Liao (2005) or the documentation of the scikit-learn

package (Pedregosa et al. (2011))). We choose the minimization of the sum of the within cluster variances using the Euclidean

distance metric (Equation (5), where the centroids vj are the mean values of the clusters) for a pre-defined number of clusters k.235

The algorithm starts with each point in a separate cluster and iteratively repeats the following steps until k clusters are found:

1. Loop through all combinations of clusters:

– Form new clusters by merging two neighbouring clusters into one

– Calculate squared sum of distances (Equation (5)) for each combination

2. Keep clusters with minimal squared sum of distances240
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In this way we use agglomerative clustering with a similar approach to the k-means algorithm, the same optimization

criterion with the same input parameter and Euclidean distance measure. We therefore expect similar results. However, this

agglomerative clustering can easily be adapted to alternative distance measures and could therefore potentially deal with time

series of different lengths or containing gaps.

3.3.3 DBSCAN Algorithm245

Density-Based Spatial Clustering of Applications with Noise, DBSCAN, is a classical example of clustering based on the

maximal allowed distance to neighbouring points that automatically derives the numbers of clusters from the data. It was

introduced in 1996 by Ester et al. (1996) and recently revisited by Schubert et al. (2017). The algorithm is based on dividing

all points into core points or non-core points that are close to core points but not themselves surrounded by enough points to

be counted as core points. The algorithm needs the maximum allowed distance between points within a cluster (ε) and the250

minimum number of points per cluster (Nmin) as input parameters. These two parameters define a core point: If a point has

a neighbourhood of Nmin points at ε distance, it is considered a core point. The algorithm consists of the following steps

(Schubert et al. (2017)):

1. Determine neighbourhood of each point and identify core points

2. Form clusters out of all neighbouring core points255

3. Loop through all non-core points and add to cluster of neighbouring core point if within maximal distance, otherwise

classify as noise

In this way clusters are formed that truly represent a dense collection of ’similar’ points. Since we choose to use correlation

as distance metric, each cluster will contain correlated time series in our case. All points that can not be assigned to a close

surrounding of a core point, are classified as noise or outliers.260

3.4 Evaluation Criteria

To determine if an algorithm is suitable, we expect that it fulfils the previously defined criteria:

– A majority of the observation area is separated into distinct regions,

– each cluster shows a change pattern that can be associated with a geomorphic deformation process, and

– time series contained in each cluster roughly follow the mean change pattern.265

In order to establish these criteria, we compare the three clustering algorithms, as well as the two different ways to derive

time series
:::
two

::::::
choices

:::
for

:::
the

::::::
number

:::
of

::::::
clusters

::
k, using the following evaluation methods.
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3.4.1 Visual Evaluation

The clustered data in Cartesian coordinates are visualized in a top view of the observation area, where each point represents the

location of a grid celland its colour the corresponding cluster, which contains the time series in that location. The centre of each270

grid cell in spherical coordinates is mapped back to the mean Cartesian xy-coordinates, to visualize the clusters of the range

time series in a comparable way. Each cluster is associated with its cluster centroid, the mean time series in elevation
::::::::
elevation

::::
time

:::::
series

:
of all time series in the respective cluster. In this way, cluster centroids are visualized as elevation time series

independent of the coordinate system that was used to generate them. This allows for a direct comparison of
:::
For

:::::::::::
visualization

:::::::
purposes

:::
we

::::
have

::::::
added

:::
the

::::::
median

::::::::
elevation

::::
back

::
to

:
the cluster centroidsbetween both time series extraction methods,

:::::
even275

::::::
though

:
it
::
is
::::
not

:::::
taken

:::
into

:::::::
account

::::::
during

:::
the

:::::::::
clustering. We subsequently derive change processes visually from the entire

clustered area. We establish which kind of deformation patterns can be distinguished and if they match, with what we expect

in the respective areas (for example gradual erosion in the intertidal area)
:::::::
estimate

::::
rates

::
of

::::::
change

:::
in

:::::::
elevation

::::
and

:::
link

:::::
them

::
to

::
the

::::::::::
underlying

::::::
process.

3.4.2 Quantitative Evaluation280

We use the following criteria to compare the respective clustering and grid generation methods quantitatively:

– percentage of entire area clustered

– minimum and maximum within cluster variation

– percentage of correctly identified change in test area with bulldozer work

The percentage of the area that is clustered differs depending on the algorithm. Especially DBSCAN sorts out points that285

are too far away (i.e. too dissimilar) from others as noise. This will be measured over the entire observation area. The number

of all complete time series counts as 100%.

Each cluster has a mean centroid time series and all other time series deviate from that to a certain degree. We calculate the

average standard deviation over the entire month per cluster and report on the minimum and maximum value out of all realized

clusters.290

3.4.3 Test Area

To allow for a comparison of the clusters with a sort of ground truth, we selected a test area at the bottom of the footpath. In

this area a pile of sand was accumulated by a bulldozer, after the entrance to the path was covered with lots of sand during

the storm, as found
:
a
:::::
period

:::
of

:::::
rough

:::::::
weather

:::::::::
conditions

::
(8

::
to

::
16

:::::::
January,

::::::::::::
corresponding

::
to
::::
day

:
7
::
to
:::
14

::
in

:::
our

::::
time

:::::::
series),

::
as

:::::::
reported by Anders et al. (2019). We chose two time stamps for illustration

:
, and show the elevation before the bulldozer activity295

on 12
::
at

:::
the

:::
end

::
of

:::
the

::::::
stormy

::::::
period

:::
on

::
16

:
January, after the bulldozer activity on 16

::
18 January and the difference between

the elevations on these two days in Figure6
::
6
::::
(first

::::
row,

::::::
A,B,C). The area does not change significantly after this event. Within
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this test area we classify (manually) each point as ’stable’ or ’with significant change’ depending on a change in elevation of

more than 5 cm (positive or negative). Then we evaluate for each clustering method if the points that are classified as ’with

significant change’ are in a separate cluster from
::::
than the ’stable’ points.300

:::
The

:::::
stable

::::::
cluster

:::::::
consists

::
of

::::::
cluster

::
0,
:::
the

::::::
largest

::::::
cluster

:::::
when

:::::
using

:::::
k = 6

:::
for

:::::::
k-means

::::
and

::::::::::::
agglomerative

::::::::
clustering

::::
and

:::::
cluster

::
0
:::
and

::
1
::::::::
combined

::
in
:::
the

::::
case

:::
of

::::::
k = 10

:::::::
clusters.

:::
For

:::::::::
evaluating

:::
the

::::::
results

::
of

:::
the

:::::::::
DBSCAN

::::::::
algorithm

:::
we

:::::::
consider

:::
all

:::::::
locations

::::
that

:::
are

:::
not

::::::::
clustered

::::::
(noise)

:::
and

::::::
points

::
in

::::::
cluster

:
1
:::
as

:::
the

::::::
’stable’

:::::
areas,

:::::::
because

:::
the

:::::::
average

::::::
erosion

::
in
::::::
cluster

::
1
::
is

:::
less

::::
than

::::
0.15 cm

:::
per

::::
day. We do not distinguish if there are different clusters within the category of ’with significant change’.

However, in Figure 6, the different clusters can be distinguished by their colours, corresponding to the colours of the clusters305

shown in subsequent figures (Figures7, 8 and
::
7,

::
8

:::
and

:
9). We then compare the percentage of correctly classified grid points

for the test area, for each of the grid generation and clustering methods.
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A B C

D E F

J H I

Figure 6. Test area for the comparison of clusters generated with
:::
three

:
different algorithms.

:::
The

:::
test

::::
area

:
is
::::::
located where the northern access

path meets the beach (as shown in
::
see

:
Figure

:
1). 1st row: The elevation in the test area is shown on the day before the bulldozer accumulated

a sand pile, when the entrance of the path was covered in sand (A) and after the bulldozer did its job (B).
:::::
Behind

:::
the

:::
sand

:::
pile

::::::
appears

::
a
:::
gap

:
in
:::
the

::::
data

::
(in

::::::
white),

:
as
:::

the
::::
sand

:::
pile

::
is

::::::::
obstructing

:::
the

::::
view

:::
for

::
the

::::
laser

::::::
scanner.

:
To the right we show the difference in elevation between

the two days
::::::
January

::
16

:::
and

::
18

:
from a significant level upwards (red) and downwards (blue) (C). 2nd row: Test area with significant changes

in elevation
::::::
(contour

::::
lines)

:
and clustered points

::::::
clustered

:
using the k-means algorithm (D), agglomerative clustering (E) and the DBSCAN

algorithm (F). The colours of the clustered dots represent the clusters as shown in Figures 7, 8 and
:
9, respectively. Points in

:::
3rd

:::
row:

::::
The

::::::::::
corresponding

:::::
mean

:::
time

:::::
series

::
for

::::
each

::
of

:
the ’stable’ cluster

::::::
relevant

::::::
clusters

:::
are

:::::::
displayed

:::::
below

::::
each

::
of

::
the

::::
plots

:
(cluster 0 for k-means

and agglomerative clustering
::::
G,H,I).

:::
The

:::::
dotted

::::
lines

::::
mark

:::
the

:::::::
beginning

:
and outliers (DBSCAN) are not shown

::
end

::
of
::
a

:::::
stormy

:::::
period.
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4 Results

The results are presented in two parts. First, we compare the different time series extraction methods
:::
two

:::::::
different

:::::::
choices

::
of

:::
the

::::::::
parameter

::
k

::
for

:::
the

::::::::
k-means

::::::::
algorithm

:::
and

:::
for

::::::::::::
agglomerative

::::::::
clustering. Then, we further analyse the clustering algorithms on310

the time series in elevation. We compare the
:::::::
compare

:::
all

::::
three

::::::::
clustering

::::::::
methods

:::
and

:::::::
evaluate

:
results on the test area, where

a bulldozer created a pile of sand (as indicated in Figure 1) and in terms of percentage of data clustered, average standard

deviation
:::::::
standard

::::
error

:
within each cluster and physical interpretation of clusters.

Clustered observation area using the k-means algorithm for time series in elevation (A) and time series in range (B). Different

areas are covered and the resulting clusters of range time series appear less suited for identification of change patterns, because315

the size of the grid cells is changing depending on the distance to the laser scanner, and deformations in elevation appear less

pronounced.

4.1 Elevation vs. Range Time Series
:::::::::
Clustering

With the method to extract time series based on Cartesian coordinates we extract around 40000 grid cells that contain complete

time series in elevation for the entire month. Using the method to extract time series based on spherical coordinates we obtain320

around 47000 complete time series in range. In Figure ?? it can clearly be seen that the area covered by both time series

extraction methods is different . The data in spherical coordinates covers a slightly longer part of the beach and more points

at larger distance to the scanner. However, the clusters do not yield a clear partitioning of the beach according to change

patterns. Since the spherical coordinate representation is more native to the scanner and the grid cells generally grow in size

with increasing distance, changes per grid cell over time are less pronounced. Most deformations on the beach are dominated325

by variations in elevation, which is not captured well in spherical coordinates
:::
For

:::
the

::::::::
k-means

::::::::
algorithm

::::
and

::::::::::::
agglomerative

::::::::
clustering,

:::
we

:::::::
consider

::::
two

:::::::
different

::::::
values

:::::
k = 6

:::
and

::::::
k = 10,

:::::::::
exemplary

:::
for

:
a
:::::::
smaller

::::::
number

::
of

:::::::
clusters

:::
and

::
a

:::::
higher

:::::::
number

::
of

::::::
clusters.

4.2 Clustering methods on Elevation Time Series

4.1.1 K-means330

For
::::
With

:
the k-means algorithm, we choose to use k = 6 clusters . From our visual inspection this leads

:::
the

:::::
entire

::::::::::
observation

:::
area

::
is
::::::::::

partitioned.
::::

The
::::::::

resulting
::::::::
partition

:::::::
depends

:::
on

:::
the

:::::::
random

:::::::::::
initialization.

::::
The

::::::::
standard

::::
error

::::::
within

:::::
each

::::::
cluster

::
is

:::::::
relatively

:::::
high,

:::::::::
compared

::
to

:::
the

:::::
stable

::::
area

:::
(see

:::::
Table

:::
2)

:::
and

::::::::
generally

::::::::
increases

::::
with

:::
the

::::
size

::
of

:::
the

::::::
cluster.

:::::
Even

:::
the

::::::
cluster

::::
with

:::
the

:::::::
smallest

:::::::
standard

:::::
error

::::::::
(averaged

::::::::
standard

::::::::
deviation

:::
per

::::
time

:::::
series

::::
over

::::
the

:::::::
clustered

::::::
area),

:::
still

::::::
shows

:
a
::::::::
standard

::::
error

::
of

::::
0.77

:::
m

::::::
(cluster

::
5
:::
for

::::::
k = 6).

::::
We

::::
show

:::
the

::::::::
resulting

:::::::
clusters

:::::::
obtained

:::::
using

::::
the

:::::::
k-means

::::::::
algorithm

:::::
with

::::::
number

:::
of335

::::::
clusters

:::::
k = 6

::::
and

:::::::
k = 10.

::::::
Visual

:::::::::
inspection

:::::
shows

::::
that

::::
both

::::::
values

::::
lead

:
to good, usable results by partitioning

::
the

:::
set

:::
of

::::
time

:::::
series

:
into clusters that are small enough to capture geomorphic changes but not too large, which would make them

less informative. With the k-means algorithm,
::
As

:::::::::
displayed

::
in

::::::
Figure

::
7,

::
a

::::
large

::::
part

::
of

::::
the

:::::
beach

::
is

::::::::
contained

:::
in

:
a
:::::::
’stable’
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Table 3. Summary of comparison of k-means algorithm, agglomerative clustering (AGG) and DBSCAN algorithm.

k-means AGG DBSCAN

entire observation area

number of clusters 6
::
10

:
6

::
10 6

min no. points/cluster 108
:
34 108

::
39 45

area clustered 100% 100%
::::
100%

::::
100% 44%

max std within
::::
error/cluster 3.23 m

:::
3.22

:
m 3.19

:::
3.1 m

:::
3.18 m

:::
2.86m 4.0 m

min std within
::::
error/cluster 0.7 m

:::
0.77 m 0.72

:::
0.68 m 0.3

:::
0.79

:
m

::::
0.71 m

:::
0.33

:
m

test area: correctly identified

stable points 81%
:::
82% 86% 41

::::
86%

::
99%

positive changes 97%
:::
97% 86 % 1.5

::::
86%

:
0%

negative changes 93%
:::
93% 98 % 87

::::
98%

::
54%

total 85%
:::
86% 88 % 45

::::
88%

::
79%

:::::
cluster

:::::
when

:::::
using

:::::
k = 6

:::::::
(cluster

::
0,

:::::
blue).

::::
This

::::::
cluster,

::
as

::::
well

:::
as

::::
some

:::
of

:::
the

:::::
others,

:::
are

::::
split

:::
up

::::
into

::::::
several

::::::
smaller

:::::::
clusters

::::
when

:::::
using

:::::::
k = 10.

:::
For

::::::::
example, the entire observation area is divided into partitions, which change slightly depending on the340

random initialization.The standard deviation within each cluster is relatively high , and generally increases with the size of the

cluster. Even the cluster with the smallest standard deviation
::::::::
intertidal

::::
zone

::::
(i.e.

:::
the

::::
area

:::
that

::
is

:::::
under

:::::
water

::::::
during

::::
high

::::
tide

:::
and

:::::::
exposed

::::::
during

:::
low

::::
tide)

::
is

::::::
eroding

::::::
mostly

::::::
during

::::::
stormy

::::
days

::
in

:::
the

:::
first

::::
half

::
of

:::
the

::::::
month.

::::
This

::::
zone

::
is

::::::::
contained

:::::::
entirely

::
in

:::::
cluster

::
1
::::::
(green)

:::::
when

:::::
using

::::::
k = 6.

::
In

:::
the

::::
case

:::
of

::::::
k = 10,

::::
this

:::
part

::
is
::::
split

:::
up

::::
into

::::
three

::::::::
clusters,

:::
one

::::
with

::
a

::::::
similar

:::::
mean

::::
time

:::::
series

::::::
(cluster

:::
2,

::::::
green),

:::
one

:::::::
eroding

::::
with

::
a
::::::
pattern

::::::
similar

::
to
::::::

cluster
:::

2,
:::
but

::::::
mostly

::::::::::
representing

:::::
sand

:::::
banks

:::::::
(cluster

::
3,345

::::::
brown)

:::
and

:::
one

::::::::
gradually

:::::::
eroding

::
at

:
a
::::
low

:::
rate

:
over the entire month , shows a standard deviation of 0.7 m (

::::::
(cluster

::
1,

:::::::
orange).

:
It
::::
also

:::::::
becomes

:::::
clear,

::::
that

:::
the

::::
sand

::::
piles

::::
that

::::
were

::::::::
generated

:::
by

::::::::
bulldozer

:::::
works

::
at

::::::::
different

:::::::
locations

::::::
(k = 6

:
cluster 5).

:
,
::::
light

::::
blue)

:::::
were

::::::
created

:::
on

:::::::
different

::::
days

::::::::
(k = 10,

::::::
clusters

::
8

:::
and

::
9,
::::::
yellow

::::
and

::::
light

:::::
blue).

:::::
Some

::::::::
features,

:::
like

:::
the

:::::::
cleared

:::
part

:::
of

::
the

::::::
paths,

:::
the

::::
sand

::::
piles

:::
and

:::
the

::::::::
intertidal

::::
zone

::::
can

::
be

:::::::::::
distinguished

::
in

::::
both

::::::
cases.

On the test area the k-means algorithm correctly classifies about 85% of points into ’stable’, ’significant negative change’, or350

’significant positive change’
:
in
:::
the

::::
case

::
of

:::::
k = 6. However, as can be seen in Figure

:
6, a part of the points with negative change

are not identified.
::::
These

:::::::
clusters

:::
are

::::
split

:::
up

:::::
further

:::
in

:::
the

:::
case

:::
of

::::::
k = 10,

::::::
which

::::
does

:::
not

::::::::
influence

:::
the

::::::
results

::
in

:::
the

:::
test

::::
area

:
a
:::
lot.

:
A summary of these results is provided in Table 3.
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B D

Figure 7. A
:
/C: Overview of the entire observation area divided into six clusters using k-means depending on elevation changes

:::
with

:::::
k = 6

::
(A)

::::
and

:::::
k = 10

:::
(C). B

:
/D: Corresponding cluster centroids for each of the clusters shown in A

::
and

::
C,
::::::::::

respectively. The bulldozer activity

can be seen between 12
::

By
::::
using

:
a
:::::
larger

::::::
number

::
of

::::::
clusters

::
k,

::::
more

:::::::
processes

::::::
become

::::::
visible,

:::
for

::::::
example

:::
two

::::
sand

::::
piles

::::
(A/B:

::::::
cluster

::
5)

:::::
created

::
on

::::
two

::::::
different

::::
days

:::::
(C/D:

:::::
cluster

:
8
:
and 16 January in

::
9).

::::
Also

:::
the

::::
large

::::
stable

::::
areas

:::::
(A/B:

:
cluster 5.

:
0)

:::
and

:::::
slowly

::::::::
accreting

::::
areas

::::
(A/B:

:::::
cluster

::
3)
:::

are
::::
split

::
up

::::
into

:::::
several

:::::::
clusters:

::
A

:::::
slightly

:::::::
eroding

:::
area

:::::
(C/D:

:::::
cluster

::
3)

::
is

:::
split

:::
up

::::
from

:::
the

::::
stable

::::
part

:::
and

:::
the

:::::::
accreting

:::
area

::
is

:::
split

:::
into

::::
two

::::
(C/D:

:::::
cluster

::
4
:::
and

:::::
cluster

::
6).
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4.1.2 Agglomerative Clustering

The agglomerative clustering algorithm is set up, as the k-means algorithm, to find six
:::
and

:::
ten clusters. It produces results very355

similar to the clusters found with the k-means algorithm, as can be seen comparing Figures 7 and 8 and Figures 6 D and E.

Clusters 2 and 3 from agglomerative clustering correspond roughly to the clusters 3 and 2 from k-means clustering. The order-

ing of clusters is according to size, so more time series are considered ’noisy’ according to k-means, whereas agglomerative

clustering assigns more of these time series to the gradually accreting cluster. All other clusters appear to be nearly identical

and show similar spatial distributions as well as centroid shapes.
:::
The

::::::::::
differences

:::::::
between

:::
the

::::
two

::::::
choices

:::
of

:::
the

::::::
number

:::
of360

::::::
clusters

::
k

:::
are

:::
also

::::
very

:::::::
similar.

On the test area, the detection of negative and positive changes is more balanced and leads to an overall score of 88 %

correctly identified points. Agglomerative clustering clearly separates the path that was cleared by the bulldozer and identifies

it as eroding.

 A B C D

Figure 8. A
:
/C: Overview of the entire observation area divided into six clusters depending on elevation changes using agglomerative clus-

tering
:::
with

:::::
k = 6

:::
(A)

:::
and

::::::
k = 10

:::
(B). B

:
/D: Corresponding

::::::::::
corresponding

:
cluster centroids for each of the clusters shown in A

:::
and

::
C

:::::::::
respectively. The clusters are very similar to the ones found with k-means.

4.1.3 DBSCAN365

When we use the DBSCAN algorithm on the same data set, with minimum number of points Nmin = 30 and maximum distance

ε = 0.05, a large part of the time series (55 %) is classified as noise, meaning that they are not very similar (i.e. not correlated,

since we use correlation as distance measure) to any of the other time series. However they roughly match the combined areas

that are identified as stable and noisy by k-means (clusters 0 and 2
:::
for

:::::
k = 6). The remaining time series are clustered into

six clusters. The standard deviation
::::
error

:
within each cluster is generally lower than in the clusters generated with k-means370

(minimum standard deviations is 0.4 m
::::
error

::
is

::::
0.33

:
m) without considering the time series that are classified as noise.
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The intertidal zone cannot be separated clearly from the ’noise’ part of the observation area, nor can we distinguish the

stable path area or the upper part of the beach.
::
In

:::
the

:::
test

::::
area,

:::
the

::::
sand

::::
pile

:
is
:::
not

::::::::::
represented

:::
by

:
a
:::::::
separate

::::::
cluster

:::
and

:::::::
positive

::::::
changes

::
in
::::::::
elevation

:::
are

:::
not

::::::
found,

:::::
which

::::::
results

::
in

::
an

::::::
overall

:::::
worse

:::::::::
percentage

::
of

::::::::
correctly

::::::::
identified

::::::
points. But, two clusters

represent areas, which are relatively stable throughout the month, except for a sudden peak in elevation on one day. These375

peaks are dominated by a van parking on the path on top of the dunes and people passing byand
:
,
:::
and

:::
are not caused by actual

deformationin the observed area, as shown in ,
::::::::
compare Figure 9.

Figure 9. Mean time series per cluster found with the DBSCAN algorithm. Outliers or not clustered points are represented by the blue mean

time series. The two most prominent time series (cluster 5 and 6
:
,
:::
light

:::::
green

:::
and

::::
light

:::
blue) are located on the path on top of the dunes. The

peaks are caused by a group of people passing by and a van
:
, on the 5th and 6th of January respectively, as shown in

::::::::
illustrated

::
by the point

clouds in the middle of the plot.

On the test area the DBSCAN algorithm performs worse than both other algorithms. In total only 45
::
79% of points are

correctly classified into ’stable’ , ’significant negative change’, or ’significant positive
:::::::
negative change’. As stable points we

count in this case all points that are classified as noise, because only
::::
either

::
as
:::::
noise

::
or

::::::
belong

::
to

::::::
cluster

::
1

:::::::
(orange).

::::
The

::::::
reason380

::
for

::::
this

::
is

:::
that

:::
the

:::::
mean

::
of

:::
all time series that show coherent change patterns are clustered by the DBSCAN algorithm

:::
are

:::
not

:::::::
clustered

:::::::
appears

::::::::
relatively

:::::
stable,

:::::
while

::::::
cluster

::
1

::::::::
describes

::::
very

::::
slow

::::::
erosion

::
of

::::
less

::::
than

::::
0.15 cm

:::
per

:::
day. This matches with

about 41
::
99% of points classified as stable in the ground truth data. However only 1.5% of the points with positive significant

changes are correctly identified, they
::::
But,

::
no

::::::
single

:::::
cluster

::
is
:::::::
formed

:::::::::
containing

::::
only

:::
the

:::::
points

::::::
where

::::
sand

::
is

::::::::::::
accumulating,

::::
even

::::::
though

::::
these

:::::::
clusters

:::
are

:::::::::::
distinguished

:::
by

:::
the

::::
other

::::
two

:::::::::
algorithms.

::::::
These

:::::
points

:
are mixed up with a large class of only385
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slightly varying points .
:::
the

::::
large

::::::
cluster

::
of

:::::::
slightly

::::::
eroding

::::::
points

::
in

:::::
cluster

::
1.
:
We can see in Figure

:
6, that a significant part of

the stable area is also included in the same cluster
:::
the

::::
only

::::::::
significant

:::::::
process

:::::
found

::
in

:::
the

:::
test

::::
area

:
is
:::
the

:::::::
cleared

:::
path

:::::::
(cluster

::
2,

:::
red).

4.2 Identification of Change Processes

From the clustering using range time series, no clear change processes can be distinguished and the beach cannot be partitioned390

according to deformation patterns.

Figure 10. Observation area partitioned into clusters with
::
by the k-means algorithm used on elevation time series

::::
with

:::::
k = 10. The blue area

represents the part where time series are mostly stable and show very few change. For the remaining clusters the main cause of the change

process is indicated in the figure. Areas with erosion or accretion
::::::::
associated

:::::::
processes are marked

:::::::
annotated with a ’-’ or ’+’ symbol. The ’++’

symbol indicates a steep accretion, and ’+/-’ indicates an area where the accretion was followed by erosion (or removal) of sand
:::::::::::
corresponding

:::::
colours.
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Considering the clusters found by the k-means algorithm and agglomerative clusteringon elevation time series, we can clearly

distinguish between time series that represent erosion and gradual accretion
:::::::
accretion

::::
with

::::::::
different

:::::::::
magnitudes

::::
and

:
at
::::::::
different

::::
times

:::
of

:::
the

:::::
month, as well as a sudden jump in elevation, caused by bulldozer work. In Figure

:
10 we show the clusters and

associated main cause for deformations. The cluster
:::::::
process.

:::
To

:::
give

:::
an

::::
idea

::
of

:::
the

:::::::::
magnitude

::
of

:::
the

:::::
most

::::::::
prominent

:::::::
change395

:::::::
patterns,

:::
we

::
fit

::::::
straight

:::::
lines

::::::
through

:::
the

:::::
mean

::::
time

:::::
series

:::
or

::::
parts

::
of

::
it

::::::
(where

:::
the

:::::
slope

:
is
::::::::
steepest)

:::
and

:::::::
derived

::::::
average

:::::
rates

::
of

::::::
change

::
in

::::::::
elevation

:::::
from

:::
the

::::::::
estimated

::::::
slopes.

::::
The

:::::::
clusters dominated by erosionis

:
, close to the water line and roughly

:::::::
(clusters

:
2
::::

and
::
5)

:
represent the inter-tidal zone of the beachand is .

::::
The

::::::::
elevation

:::::::
changes

::
in

::::
this

::::
area

:::
are likely caused by

the effects of tides and waves. The slowly accreting area is
::::::
change

::::
rates

:::::
were

:::::
partly

::::::::::
accelerated

::::::
during

:::
the

::::::
stormy

::::::
period

::
in

::
the

::::
first

::::
half

::
of

:::
the

::::::
month.

::::::::
Accreting

:::::
areas

:::
are

:
mostly at the upper beach, close to the dune foot and

::
on

:::
the

::::
paths

:::
in

:::
the

:::::
dunes400

:::::::
(clusters

::
4,

:
6
::::
and

::
7).

:::::
These

:::::
areas

::
as

::::
well

::
as

::
a

::::
large

::::::
cluster

::
on

:::
the

:::::
upper

:::::
beach

:::::::
(cluster

::
1,

:::::::
orange),

:::::
which

:::::::::
undergoes

:
a
:::::
slight

::::
and

::::::
gradual

::::::
erosion

::::
over

:::
the

:::::
entire

::::::
month,

:::
are

:
likely dominated by aeolian sand transport. The most obvious change process, is the

sand removed from the entrances of the paths leading to the beach by bulldozer works (cluster4
::
7) and accumulated in a pile

of sand (cluster 5). The noisy cluster is
::::
piles

::
of

::::
sand

::
at
::::
four

:::::::
different

::::::::
locations

:::
on

:::
two

::::
days

::::::::
(clusters

:
8
:::
and

:::
9).

:::::
Points

:::::::::
contained

::
in

:::
the

:::::
noisy

::::::
cluster

:::::::
(cluster

::
3)

:::
are spread out through the dune area and

:::::
noise

:
is
:
probably caused by moving vegetation.405

5 Discussion

We successfully applied the presented methods on a data set from permanent laser scanning and demonstrated the identification

of deformation processes from the resulting clusters. Here we discuss our results on time series extraction, distance measures,

clustering methods and the choice of their respective input parameters and derivation of change processes.

5.1 Time Series Extraction410

We compared two different methods to extract time series from the PLS data set either in elevation or in range. The time series

extraction in range, which is a more native way of using the data, is very sensitive to vertical structures in the data set, or points

in the air in-between the observed surface and the scanner. After removing those points and using the median range per grid

cell in spherical coordinates, the time series appear to be dominated by noisy fluctuations, which do not vary a lot depending

on location. Clear change patterns can therefore not be distinguished with any of our algorithms and the distinction of areas415

that follow a certain change pattern is not possible. A likely cause of this issue, is that most changes are observed in elevation

(z-direction) and not in the direction of the range, which makes them less pronounced in spherical coordinates. An alternative

approach could be the use of spherical coordinates for the generation of the grid cell, but extraction of time series in elevation

instead of range.

In contrast, the time series extraction in Cartesian coordinates provides promising results. Some data is lost, due to low420

point density in grid cells that are at large distances of the laser scanner. Besides that, the resulting clusters clearly follow

recognizable deformation patterns and the clustering allows to separate regions according to these patterns.
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5.1 Distance Measures

Possible distance measures for the use in time series clustering are analysed among others by Iglesias and Kastner (2013)

and Liao (2005). We use Euclidean distance in combination with the k-means algorithm and agglomerative clustering for our425

analysis. It has been shown by Keogh and Kasetty (2003) that especially for time series with high dimensions, alternative

distance measures rarely outperform Euclidean distance. However, we have to note here, that Euclidean distance is affected

by the so called ’curse of dimensionality’, which causes a space of time series with many epochs (
:::
long

::::
time

::::::
series

:::::
(with

::::
many

:
dimensions) to be difficult to cluster. For more details on this issue see Assent (2012) and Verleysen and François (2005)

:::
The

:::::::
problem

:::::
with

::::::::
clustering

::::
time

:::::
series

::
in
:::::

high
::::::::::
dimensional

::::::
spaces

::::
with

::::::::
k-means,

::
is

:::
that

:::::::::
Euclidean

:::::::
distance

::
is

:::::
based

:::
on

:::
the430

:::
sum

:::
of

::
all

:::::::::
pointwise

::::::::::
differences.

::::
This

:::::
leads

::
to

::
a
:::::
space,

::::::
where

:::
the

:::::::
variance

:::
of

:::
the

::::::::
distances

::::::::
decreases

:::::
with

::::::::
increasing

:::::
time

:::::
series

::::::
length.

::::::::
Therefore

::
it
::::

will
:::

be
::::::
harder

::
to

:::::::::
categorize

::::
time

::::::
series

::
as

:::::::
similar,

::::
and

:::::
fewer

::::::::::
meaningful

:::::::
clusters

::::
will

:::::::
emerge,

::
the

:::::
more

:::::::::::
observations

:::
we

:::
use. This could possibly lead to difficulties, when extending these methods to the use of longer

time series, but does not appear to degrade results on our current data set.
:::
For

::::
more

::::::
details

:::
on

:::
this

:::::
issue

:::
see

::::::::::::
Assent (2012)

:
,

:::::::::::::::::::::::::
Verleysen and François (2005)

:::
and

::::::::::::::::
Zimek et al. (2012).

:
435

We chose for the use of correlation distance with the DBSCAN algorithm, because correlation in principle represents a more

intuitive way of comparing time series (see Figure 4). DBSCAN is based on identifying the
::::::::::
identification

:::
of clusters of high

density, which in our case works better using correlation distance instead of Euclidean distance.
::::
Using

:::::::::
Euclidean

:::::::
distance,

:::::
there

::
are

::::
very

::::
few

::::::
clusters

::
of

:::::
’very

:::::::
similar’

::::
time

:::::
series

:::
and

::
an

::::
even

:::::
larger

::::
part

::
of

:::
the

:::::
beach

::
is

::::::::
classified

::
as

:::::
noise.

::::
Only

::
in

:::::::::::
combination

::::
with

:::::::::
correlation

:::::::
distance,

:::
we

:::::
could

:::::
derive

::
a
:::
set

::
of

::::
input

::::::::::
parameters

::
for

:::
the

:::::::::
DBSCAN

::::::::
algorithm

::
to

:::::::
produce

:::::::
relevant

::::::
results.

:
440

::::::
Scaling

:::
the

::::
time

::::::
series

::::
with

::::
their

:::::::::
respective

:::::::
standard

:::::::::
deviations

:::
for

:::
the

:::
use

:::
of

::::::::
Euclidean

::::::::
distance

:::::
would

:::::
make

:::::
these

::::
two

:::::::
distance

::::::::
measures

:::::::::
equivalent.

::::::::
However,

::::
this

:::
did

:::
not

::::::::
improve

:::
our

::::::
results

:::::
using

:::::::
k-means

:::
or

::::::::::::
agglomerative

:::::::::
clustering.

::::::
Subtle

:::::::::
differences

::::::
within

:::
the

:::::
stable

::::::
cluster

:::::
would

:::::::
become

:::::::::
prominent

::
in

::::
that

:::::
case,

:::
but

:::
the

:::::
larger

:::::::::
differences

::::::::
between

::::::
clusters

:::
as

:::
we

:::
find

:::::
them

::::::
without

:::
the

:::::::
scaling,

:::::
would

:::
be

:::::::
reduced.

:

Neither of the the two distance measures analysed here can deal with gaps in the time series. They also ,
::::::
which

:::::
would

:::
be445

::
of

::::
great

:::::::
interest

::
to

::::::
further

:::::::
analyse

::::::::
especially

:::
the

::::::::
intertidal

::::
area

:::
and

:::::
sand

::::::
banks.

:::::::::::
Additionally,

::::
both

:::::::
distance

::::::::
measures

:
do not

allow to identify identical elevation patterns that are shifted in time as similar. An alternative distance measure suitable to deal

with these issues would be Dynamic Time Warping (DTW), which accounts for similarity in patterns even though they might

be shifted in time (Keogh and Ratanamahatana (2005)). An interpolation method to fill gaps in elevation over short time spans

based on surrounding data or a feature based clustering method could be other alternatives.450

5.2 Clustering Methods

The use of k-means clustering on elevation time series from the same data set was demonstrated by Lindenbergh et al. (2019)

and has shown promising first result. We follow the same approach and, as a comparison, use agglomerative clustering, with the

same optimization criterion, distance metric and input parameter. As expected the results are similar, although agglomerative
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clustering does not depend on random initialization. It therefore delivers the same result for every run, which is an advantage.455

Considering our previously defined criteria:

– a majority of the observation area is separated into distinct regions,

– each cluster shows a change pattern that can be associated with a geomorphic deformation process, and

– time series contained in each cluster roughly follow the mean change pattern,

both algorithms are suitable and the differences in the resulting clusters are negligible for our specific data set.460

However, the computational effort needed to loop through all possible combinations of merging clusters for agglomerative

clustering is considerably higher. Of the three algorithms that were used in this study, agglomerative clustering is the only one

that regularly ran into memory errors. This is a disadvantage considering the possible extension of our method to a data set

with longer time series.

One of the disadvantages of the k-means algorithm and our configuration of agglomerative clustering, is that the number465

of clusters has to be defined in advance. Our choice
::::::
choices

:
of k = 6 clusters yields

:::
and

::::::
k = 10

::::::
clusters

:::::
both

::::
yield

:
promising

results, but remains
::::::
remain somewhat arbitrary, especially without prior knowledge of the data set.

:
A
:::::
lower

:::::::
number

::
of

:::::::
clusters

:
k
::::
(for

:::::::
example

::::::
k = 6)

:::::
yields

::
a
:::::::
division

::
of

:::
the

:::::
beach

::::
into

:::::::
sections

:::::::::
(inter-tidal

:::::
zone,

::::
dry

:::
part

:::
of

:::
the

::::::
beach)

:::
and

:::::::::
highlights

:::
the

::::
most

::::::::::
prominently

:::::::::
occurring

:::::::
changes

::::::::
(bulldozer

:::::::
works).

:::::
When

:::::
using

::
a
:::::
larger

:::::::
number

::
of

:::::::
clusters

::
k,

::::::
several

:::
of

:::
the

:::::::::
previously

::::::::
mentioned

:::::::
clusters

:::
are

::::
split

:::
up

:::::
again

:::
and

:::::
more

:::::::
detailed

::::::::
processes

:::::::
become

::::::
visible.

::::
The

:::::::
erosion

:::
and

::::::::
accretion

:::::::
patterns

:::
on

:::
the470

:::::
beach

:::::
appear

::
at
::::::::
different

::::::
degrees

::
in

:::::::
distinct

::::::
regions,

::::::
which

::
is

:::::::
valuable

::::::::::
information.

::::
Also

:::
the

:::::
sand

::::
piles,

::::::
which

:::::::
appeared

::
in
::::
one

:::::
cluster

:::
for

:::::
k = 6

:::
are

::::
now

::::
split

:::
up

::::::::
according

::
to
:::

the
::::::::

different
:::::
days,

::
on

::::::
which

::::
they

::::
were

:::::::::
generated.

:::
We

:::::::
consider

::::
this

:::::::::
possibility

::
to

::::::
identify

::::
and

::::::
specify

::::::::::::
anthropogenic

:::::::
induced

::::::
change

:::
an

:::::::::
illustrative

:::::::
example

::
of
::::

the
:::::::
influence

:::
of

:::
the

::::::
choice

::
of

:::
the

::::::
number

:::
of

::::::
clusters

::
k.

:
We have considered two different

::::
data

::::::::::
independent

:
methods to determine a suitable value for k: analysis of the

overall sum of variances for different values of k and so-called cluster balance following the approach of Jung et al. (2003).475

Neither of them resolved the problem satisfactorily and we cannot make a generalized recommendation
:
,
::::::::::
independent

:::
of

:::
the

:::::::::
application,

:
for the choice of k at this point.

To avoid this issue we also compare both approaches with the use of the DBSCAN algorithm. It is especially suitable to

distinguish anomalies and unexpected patterns in data as demonstrated by Çelik et al. (2011) using temperature time series.

To decide, which values are most suitable for the two input parameters of the DBSCAN algorithms we plot the percentage480

of clustered points and the number of clusters depending on both parameters (see Figure 11). However, this did not lead to a

clear indication of an ’optimal’ set of parameters. After the trade-off analysis between the number of points in clusters and

the number of clusters (not too high, so that the clusters become very small and not too low so that we generate only one big

cluster) we chose ε = 0.05 and Nmin = 30 by visually inspecting the resulting clusters.

An alternative clustering approach for time series based on fuzzy C-means is proposed by Coppi et al. (2010). They develop485

a method to balance the clustering based on the pattern of time series while keeping an approximate spatial homogeneity of

the clusters. This approach was successfully applied to time series from socio-economic indicators and could be adapted for
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Figure 11. DBSCAN selection of input parameters: Number of clusters versus input parameter maximum distance within clusters and

minimum number of points and percentage of total points in clusters (not classified as noise/outliers). The choice of an ’optimal’ set of

parameters is not obvious. We indicate our selection with a red circle in both plots.

our purpose. It could potentially improve detection of features like sand bars, or bulldozer work, but not distinguish moving

vegetation in the dunes as our current approach does.

A similar approach would be to use our clustering results and identified change patterns as input to the region-growing490

approach of Anders et al. (2020). In this way we could combine advantages of both approaches
:::::::
methods

:
by making the

identification of the corresponding regions for each distinct deformation pattern more exact, without having to define possible

deformation patterns in advance.

5.3 Derivation of Change Processes

As shown in Figure 10, we identified change processes from the clusters generated by k-meansand agglomerative clustering
:
.495

::::::::::::
Agglomerative

::::::::
clustering

::::::
shows

::::::
similar

::::::
clusters

::::
and

:::::::
therefore

::::::
yields

::::::
similar

::::::
results. Each centroid representing the mean time

series of its cluster
:::
the

:::::::
k-means

:::::::
clusters shows a distinct change pattern (see Figures7 and

::
7
:::
and

:
8), which allows to conclude

on a predominant deformation . By associating
::::::
process.

:::
By

:::::
fitting

::
a
::::::
straight

::::
line

:::::::
through

::
the

:::::
mean

::::
time

::::::
series,

::
or

::::
part

::
of

::
it,

:::
we

::::::::
estimated

:::
the

:::::
slope

::::::::::::
corresponding

::
to

:::
the

::::::
average

::::
rate

::
of

:::::::
change

::
in

::::::::
elevation.

::::::::::
Associating

:
the centroids with the location and

spatial spread of the clusters, we can
:::::
allows

::
to

:
derive the main cause for this deformation

:::
the

::::::::
respective

:::::::::::
deformations. In some500

cases extra information, or an external source of validation data would be useful to verify the origin of the process. This will
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be taken into account for future studies. However,
:::
The

:::::::
location

:::
of

:::
the

::::::
clusters

::::
and

:::
for

:::::::
example

:
the steep rise of the centroid

from cluster 5 allows to conclude
:::::
mean

::::
time

:::::
series

::::::::::
representing

:::
the

:::::
sand

::::
piles

::::::
allows

::
for

:::
the

::::::::::
conclusion that the cause of this

sudden accretion is not natural
:::::::::::
anthropogenic. The information found by Anders et al. (2019) for the research on their study,

confirms the coinciding bulldozer works.
:::
The

::::::
derived

:::::::
average

:::::
rates

::
of

::::::
change

::
in

::::::::
elevation

:::::
allow

:::
for

:::
the

:::::::::
possibility

::
to

::::::
derive505

::::
mass

:::::::
budgets

::
to

:::::::
quantify

:::::::
volume

:::::::
changes

::::
over

::::::
specific

::::::::
amounts

::
of

::::
time

::::
from

::::
our

::::
data,

:::::::
showing

::
a
:::::::
possible

:::::::::
application

:::
of

:::
our

:::::::
method,

::::
that

::
is

::
of

::::
large

::::::::
scientific

:::::::
interest

:::
(see

:::
for

:::::::
example

:::::::::::::::::::::
de Schipper et al. (2016)

:
).

The DBSCAN algorithm successfully identifies parts of the beach that are dominated by a prominent peak in the time series

(caused by a van and a small group of people). Out of the three algorithms that we compare, it is most sensitive to these outliers

in the form of people or temporary objects in the data. It was not our goal for this study, to detect people or objects on the510

beach, but this ability could be a useful application of the DBSCAN algorithm to filter the data for outliers in a pre-processing

step.
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6 Conclusions

We compared three different clustering algorithms (k-means, agglomerative clustering and DBSCAN) on a subset of a large

time series data set from permanent laser scanning on a sandy urban beach. We successfully separated the observed beach and515

dune area according to their deformation patterns. Each cluster, described by the mean time series, is associated with a specific

process (such as bulldozer work, tidal erosion) or surface property (for example moving vegetation cover).

The most promising results are found using k-means and agglomerative clustering, which both correctly classify between

85 and 88 % of time series in our test area. However, they both need the input of the number of clusters we are looking for

and agglomerative clustering is computationally expensive. DBSCAN turned out to be more suitable for the identification of520

outliers or unnatural occurring changes in elevation due to temporary objects or people in the observed area.

Our key findings are summarized as follows:

1. Both k-means and agglomerative clustering fulfil our criteria for a suitable method to cluster time series from permanent

laser scanning.

2. Predominant deformation patterns of sandy beaches are detected automatically and without prior knowledge using these525

methods.

3. Change processes on sandy beaches, which are associated with a specific region and time span, are detected in a spatio-

temporal data set from permanent laser scanning with the presented methods.

Our results demonstrate a successful method to mine a spatio-temporal data set from permanent laser scanning for pre-

dominant change patterns. The method is suitable for the application in an automated processing chain to derive deformation530

patterns and regions of interest from a large spatio-temporal data set. It allows such a data set to be partitioned in space and time

according to specific research questions into phenomena, such as for example the interaction of human activities and natural

sand transport during storms, recovery periods after a storm event or the formation of sand banks. The presented methods en-

able the use of an extensive time series data set from permanent laser scanning to support the research on long-term and small

scale processes on sandy beaches and improve analysis and modelling of these processes. In this way we expect to contribute535

to an improved understanding and managing of these vulnerable coastal areas.
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Answer to reviewer comments on Interactive comment on “Coastal Change Patterns from Time Series Clustering of

Permanent Laser Scan Data” by Mieke Kuschnerus et al.615

Anonymous Referee #1

Figure 1 could use a pair of axis to help the reader locate him/herself when referring to figures 8,9,10,12.

– Figure 1 will be updated to match the orientation and axis of the following figures for easier comparison. (Figure 1, page 5)620

Also, in the text you mention that the origin of the local coordinate system is at the laser scanner location, but in the figure

there is an (xo,yo) just next to the wooden stairs. Which is the correct origin.

– The location of the stable time series will be marked with (xt,yt) instead of (x0,y0). With the added axes it will be easy to

understand that the origin of the coordinate system is at the location of the laser scanner. (Figure 1, page 5)625

Also note that in the figure caption you mention 2019 as the scan date, but in the text (line 98) it is 2017.

– This is a typo in the caption and will be fixed. (Figure 1, page 5)

Figure 2 should be plotted with the same aspect as the test area shown in fig.1 (abaout 40x55m?)630

– Does this refer to Figure 7? Figure 2 is a photo of the laser scanner. I assume this is fixed with the update of Figure 1 and

Figure 7. (Figure 6, page 16)

Figures 8,9,10,12 - I found a bit hard at first to relate this with figure 1 (due the lack of axes), so in fig 8 maybe include also

the view of fig.1? Perhaps indicate the same fea- tures of fig.1 (stairs, road,etc)?635

– see above. (Figures 7, 8, 10)

Also, did you checked if the colors are safe for colorblind people? If not I suggest a small application called ColorOracle

(free, multiplatform) that allows you to simulate the three main colorblindness.

– Thank you for the suggestion. We will look into it.640

In fig.9, try to move the legend so it won’t cover any lines, and consider using no only colors, but also different line widths

and symbols (dash, dot-dash, etc) so it will be easier to differentiate the lines visually

– This will be fixed by annotating each curve individually instead of showing a legend, as suggested by Referee #2. (Figure

9, page 21)645
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Anonymous Referee #2

[. . . ] I would also urge the authors to better highlight (if possible) what exactly the advantages are of applying a clustering

technique. I actually found the results in the end rather underwhelming, because if you remove the two clusters associated with650

the bulldozer works the results really just yield four different trends of geomorphic change: stable surfaces, steadily eroding

and steadily accreting surfaces, and fluctuating surfaces (noise). These four trends are hardly surprising and can just as easily

be detected from simple erosion/deposition mapping.

– The advantages of our method have to be highlighted and explained in more detail. We will address this in the result

section ‘Identification of Change Processes’. Shortly summarized we would like to emphasize the following points:655

– Erosion/accretion is detected at different rates, without prior specification of any rate of change or threshold/ We will

highlight the specific average rates for different clusters.

– The intertidal area can clearly be distinguished, as well as the location of an ‘edge’ along the beach between the dry

part of the sand and the wet intertidal area.

– Identification of ‘noisy’ areas in the dunes, which are areas dominated by moving vegetation660

– Possibility to detect the time and location of anthropogenic changes like the sand pile in the test area (section 4.2, page

22/23)

The limitation of the application here may be related to the fact that the analysis was directed to 6 clusters. The manuscript

does not give objective or quantitative justification for this decision, other than that the results with 6 clusters seemed good

or reasonable to the authors (L304), but this then effectively preempts the possibility of finding something new or interesting.665

Maybe 10 clusters could have revealed some more interesting trends, for example.

– It is hard to give a general rule for the ‘best’ choice of the number of clusters k. We will address this in more detail and

present different options for the choice of k and their advantages and disadvantages. It comes down to a trade-off between

very detailed small clusters, which for example allow to derive the different days, on which the sand piles were erected, versus

splitting up a generally stable cluster into small clusters, which does not give new insight into any processes. (section 4.1, page670

17/18 and section 5.2, page 25)

L39: define what you mean with “epochs” L39: why “high-dimensional”? This is just a 4D dataset. At this point in the paper

it is not clear to the reader yet that you are going to define your data in a multi-dimensional space with the dimensions defined

by the snapshots (epochs?).675

– The number of dimensions and epochs both refer to the number of time steps in each time series of the data set. I will

reformulate to make this more clear. (page 2, line 40/41)

L40: citation here is 15 yrs old, can you refer to more recent literature on the challenges of data mining?

33



– yes (page 2, line 43)680

L85: why the second representation in terms of range data? The fact that it’s the native data format doesn’t really give us

an actual justification. Your second criterion is about geomorphic deformation, which presumably relates specifically to height

changes, hence the cartesian grid seems most suitable to that. Your results later on essentially show that the range format is

simply not useful, so you could achieve a great simplification and a more focused message here if you strip out all this stuff685

about the range format and just report the results related to the cartesian data.

– This is a valid point. We will remove the part on spherical representation and clustering of range time series in order to

give the paper more focus.

Fig.1 says data from 2019, but text says data was from Dec-2016 to May-2017?690

– This is a typo and will be adapted. (Figure 1, page 5)

L122 and earlier: not suitable to use x0 and y0 for identifying a test location as it has nothing to do with zero. Suggest

subscript ‘t’ or even ‘test’.

– We will adapt this according to your suggestion. (Figure 1, page 5 and Figure 3, page 7)695

Table 1 and associated text: we really need more info on these test areas: are they single points? areas? If latter, what size.

Then, the test statistics is not informative. Stdev is not sufficient, you should be able to calculate the standard error and the

associated 95% confidence intervals around the mean height. Also, why the difference in N vs S? This requires discussion. In

the manuscript you present these test results here, but in the results and discussion there should be further reflection on the700

potential impact of the error on the cluster classifications.

– This is a good point. The stable reference surface can be represented by all paved paths combined. We will provide more

information on the statistical properties to emphasize the stability and the order of magnitude of errors. The effect of errors in

the instrument on the clustering results is assumed to be negligible, but with a more detailed specification of the rate of change

in elevation in the eroding and accreting areas, this will be more straight forward to show. We will add this to the discussion705

section. (Table 1, page 8)

L145: you remove the mean in the cartesian format, but not in the range format, why do this in the cartesian grid? The same

logic you use there should somehow apply to the range time-series? More crucially however, in the later results it seems as if

the mean was in fact NOT removed, for example in figure 9b, the centroids all have distinct absolute elevations, surely this can710

only be possible if the mean was not removed? Otherwise the centroids should all be fluctuating around zero?

– The first point is obsolete, since we no longer report on the range time series. (Just for information, removing the mean did

not change the results significantly in this case.) We did remove the median elevation for all time series to perform the cluster-

ing. In the later figures the time series that represent the cluster centroids are shown with the median added for visualization
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purposes. This was not very clear and will be explained. (page 14, line 275)715

Eq 2 and L145: notation is not suitable; delta usually refers to a real discreet difference; suggest using prime ‘ as the

fluctuating component.

– Ok, will be adapted according to your suggestion. (page 9, equation 2)

720

Section 3.2: from later on in the results I get the impression that euclideanw as used for k-means and aggregation, while

correlation distance was only used for DBSCAN, si this correct? If so, this needs to be stated here.

– Yes, we will add some explanation. (page 9, line 174/175, see also Discussion, section 5.1, page 24)

L179-180: then why don’t you standardize your data?725

– Standardizing would make the two distances more comparable, but it does not improve our results. Running the k-means

algorithm on standardized time series leads to a separtion into very similar relatively stable clusters and does not detect any

of the processes (sand pile, ersoion, inter-tidal zone) that we find without standardization. (section 5.1, page 24, from line 441)

L245: but you also evaluate Euclidean distance in DBSCAN? (or not, see above?) so what are the clusters in that case?730

– A short explanation of this case (and why the results are not as good) will be added. (page 24, line 438)

Figure 7: something is seriously going wrong at the white polygons left of centre. The height changes don’t match at all. In

A the original elevation in this area is around 5.6 m, in B those two white polygons appear to be at 6.4, so this should yield

a height change of 0.9 (red) in C. Or are these polygons areas with No Data? If so the colour scales need to be completely735

different so as to avoid white being part of the scale (so that it can then indicate no-data). Fig7c: show contour lines of height

changes beyond significant (as basis for additional clusters?) Stable points not shown? But not clear then how much of area

has been allocated properly?

– Indead the choice of color scale was not very suitable here. White represents no data, as well as stable areas, as well as

the ‘stable cluster’. This will be fixed in the future version. The polygons appear as a shadow of the sand pile, where the laser740

scanner cannot record data. (now Figure 6, page 16)

L304: why six? Not enough justification. What is ‘good’? Why not 8 or 10? Isn’t there a statistic to tell you when to stop

clustering?

– See my second comment in the beginning. We will adress this in the new version. (k = 10 gives indeed some more details745

that are not detected with k = 6.) (section 4.1, page 17/18 and section 5.2, page 25)
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Figure 9b: needs horizontal gridlines; labels should be added to lines, rather than a legend (because the sequence in the

legend doesn’t match the sequence from top to bottom). Vertical axis labels don’t make sense: I don’t understand how you can

have real values asl here for the centroids when the original time-series was mean-subtracted?750

– Yes, labels will be added instead of the legend. See previous comments. (Figures 6,7,8,9)

L341: this is the only place where you really say that there are no results like 4.2 for the range data; this needs to be made

more explicit in Line 300

– obsolete with removal of processing of range time series.755

L372-374: please elaborate a bit on this here, please summarize or give us a taste of the cause for this ‘curse’.

– more explanation will be added. (page 24, line 430)

5.2: it only gets clear to me here that you use Euclidean for k-means and aggregation, and corr for dbscan! Conclusion: not760

really clear what all this work benefits; if you remove the clusters associated with the bulldozer work you basically end up with

4 obvious trends: stable, erosion, accretion, noise. This is a bit underwhelming. . .

– see previous comments. (section 4.2, page 22)
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