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Abstract. Sandy coasts are constantly changing environments governed by complex, interacting processes.
Permanent laser scanning is a promising technique to monitor such coastal areas and to support analysis of ge-
omorphological deformation processes. This novel technique delivers 3D representations of the coast at hourly
temporal and centimetre spatial resolution and allows to observe small scale changes in elevation over extended
periods of time. These observations have the potential to improve understanding and modelling of coastal defor-
mation processes. However, to be of use to coastal researchers and coastal management, an efficient way to find
and extract deformation processes from the large spatio-temporal data set is needed. To enable automated data
mining, we extract time series of surface elevation and use unsupervised learning algorithms to derive a parti-
tioning of the observed area according to change patterns. We compare three well known clustering algorithms,
k-means, agglomerative clustering and DBSCAN, apply them on the set of time series and identify areas that
undergo similar evolution during one month. We test if these algorithms fulfil our criteria for suitable clustering
on our exemplary data set. The three clustering methods are applied to time series over 30 days extracted from
a data set of daily scans covering about two

:::::::::
kilometres of coast at Kijkduin, the Netherlands. A small section

of the beach, where a pile of sand was accumulated by a bulldozer is used to evaluate the performance of the
algorithms against a ground truth. The k-means algorithm and agglomerative clustering deliver similar clusters,
and both allow to identify a fixed number of dominant deformation processes in sandy coastal areas, such as
sand accumulation by a bulldozer or erosion in the intertidal area. The

::::
level

::
of

:::::
detail

:::::
found

::::
with

::::
these

:::::::::
algorithms

:::::::
depends

::
on

:::
the

::::::
choice

::
of

:::
the

::::::
number

::
of

:::::::
clusters

::
k.

::::
The DBSCAN algorithm finds clusters for only about 44% of

the area and turns out to be more suitable for the detection of outliers, caused for example by temporary objects
on the beach. Our study provides a methodology to efficiently mine a spatio-temporal data set for predominant
deformation patterns with the associated regions, where they occur.
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1 Introduction

Coasts are constantly changing environments that are essen-
tial to the protection of the hinterland from the effects of
climate change and, at the same time, belong to the areas5

that are most affected by it. Especially long-term and small
scale processes prove difficult to monitor but can have large
impacts Aarninkhof et al. (2019). To improve coastal mon-
itoring and knowledge of coastal deformation processes, a
new technique called Permanent Laser Scanning (PLS) (also10

called continuous laser scanning) based on Light detection

and ranging (LiDAR) measurements is available. For this
purpose, a laser scanner is mounted on a high building close
to the coast in a fixed location acquiring a 3D scan every hour
during several months up to years. 15

The resulting spatio-temporal data set consists of a series
of point cloud representations of a section of the coast. The
high temporal resolution and long duration of data acquisi-
tion in combination with high spatial resolution (in the order
of centimetres) provides a unique opportunity to capture a 20

near continuous representation of ongoing deformation pro-
cesses, like for example storm and subsequent recovery, on
a section of the coast. As reported by Lazarus and Goldstein
(2019), the natural effects of a storm on a typical urban beach
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can rarely be analysed separately from anthropogenic activ-
ities, since in most cases work with bulldozers starts imme-
diately after or even during severe storms. There is a need
for the detection and quantification of change processes that
influence the geomorphology of the coast, to allow under-5

standing and modelling them, as the reaction of the coast
to extreme weather events gains importance, Masselink and
Lazarus (2019). More examples for potential use of such a
data set are presented by O’Dea et al. (2019), who use data
from a similar set-up in Duck, USA.10

The PLS data set is large (in the order of hundreds of gi-
gabytes), and to be relevant, the information on deformation
processes has to be extracted concisely and efficiently. Cur-
rently there are no automated methods for this purpose and
studies focus on one or a few two dimensional cross-sections15

through the data (for example O’Dea et al. (2019)). The high
temporal resolution and long observation period lead to a
high dimensional data set of long time series (i.e. 30 data
points up to several thousands). Data mining on high dimen-
sional data sets can be challenging as discussed for exam-20

ple by Zimek et al. (2012). In a first step towards extrac-
tion of interesting events and change patterns we build on
the method introduced by Lindenbergh et al. (2019). We use
clustering algorithms on time series representing the evolu-
tion of topography, to group these time series according to25

their similarity in change pattern and then identify underly-
ing processes. We use clustering (or unsupervised learning)
to avoid having to specify the patterns and processes that we
are looking for in advance.

One example of spatio-temporal segmentation on our data30

set from permanent laser scanning was recently developed
by Anders et al. (2020). They detected seed points for de-
formation in time series from permanent laser scanning, to
then grow a region affected by the detected change around
the seed points with the use of dynamic time warping dis-35

tance to spatial neighbours. Dynamic time warping is a dis-
tance measure between time series, that accounts for simi-
larity in patterns even though they might be shifted in time
(see for example Keogh and Ratanamahatana (2005)). One
drawback of this approach is that temporal patterns of in-40

terest have to be defined before hand, and therefore only
deformation patterns that are expected can be found. An-
other approach to model spatio-temporal deformations in
point clouds from laser scanning, is presented by Harmening
and Neuner (2020). Their model assumes that the deforma-45

tion can be represented by a continuous B-spline surface.
This approach could potentially be used to further analyse
some of the deformation patterns found in our study but does
not allow the exploratory data mining, that we are aiming
to accomplish. A more general overview of methods to find50

spatio-temporal patterns in earth science data was published
by Tan et al. (2001) and a continuation of this study was pre-
sented by Steinbach et al. (2001). The study of Tan et al.
deals with pre-processing of time series of different variables
from satellite data including issues with auto-correlation and55

seasonality. Steinbach et al. successfully apply a novel clus-
tering technique introduced by Ertöz et al. (2003) to explore
spatio-temporal climate data. However, this technique only
focuses on contiguous clusters, where all time series are in
a close neighbourhood to each other, and does not allow to 60

find general patterns independent of location.
Time series data sets are also used to asses patterns of agri-

cultural land use by Recuero et al. (2019). For this study time
series of Normalized Difference Vegetation Index (NDVI)
data have been analysed using auto-correlation values and 65

random forest classification. Benchmark data from an alter-
native source was needed to train the classifier. Such bench-
mark data is currently not available in our case. A study by
Belgiu and Csillik (2018) used time series from Sentinel-2
satellite data for cropland mapping. They made use of dy- 70

namic time warping classification and showed that in areas
with little available reference data for training a classifier,
their approach delivers good results in segmentation based on
time series’ evolution. Also in this case pre-labelled training
data is required. Another approach using expectation-based 75

scan statistics was presented by Neill (2009): To detect spa-
tial patterns in time series from public health data, a statis-
tical method based on expectation values is used. Clusters
are formed where the observed values significantly exceed
the expectation. The results are promising but depend on the 80

choice of time series analysis method, statistics used and the
shape of the search region, which all have to be defined in
advance specific to each data set and application. Generally
there is a lack of studies on mining spatio-temporal data for
deformation patterns, without using training data or prede- 85

fined change patterns.
The goal of the present study is to evaluate the applica-

tion of clustering algorithms on a high dimensional spatio-
temporal data set without specifying deformation patterns in
advance. Our objectives in particular are: 90

1. To analyse and compare the limits and advantages of
three clustering algorithms for separating and identify-
ing change patterns in high dimensional spatio-temporal
data.

2. To detect specific deformation on sandy beaches by 95

clustering time series from permanent laser scanning.

We compare the k-means algorithm, agglomerative clus-
tering and the DBSCAN algorithm on a PLS data set over 30
days, to investigate the effectiveness of the identification of
coastal change patterns. All three algorithms are well estab- 100

lished and represent three common but different approaches
to data clustering. To determine if an algorithm is suitable,
we expect that it fulfils the following criteria:

– A majority of the observation area is separated into dis-
tinct regions, 105

– each cluster shows a change pattern that can be associ-
ated with a geomorphic deformation process, and
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– time series contained in each cluster roughly follow the
mean change pattern.

We use the different clustering approaches on a small area
of the beach at the bottom of a footpath, where sand accu-
mulated after a storm, and a bulldozer subsequently cleared5

the path and formed a pile of sand. We determine the quality
of the detection of this process for both algorithms and com-
pare them in terms of standard deviation within the clusters
and area of the beach covered by the clustering. We compare
and evaluate the resulting clusters using these criteria as a10

first step towards the development of a method to mine the
entire data set from permanent laser scanning for deforma-
tion processes.

2 The permanent laser scan data set

Figure 1. Top view of a point cloud representing the observation
area at low tide on 1st January 2017. The laser scanner is located
at the origin of the coordinate system (not displayed). The point
(xt,yt) indicates the location of the time series shown as an exam-
ple in Figure 3. The test area, which is discussed in Section 3.4, is
indicated with a box at the end of the northern path leading to the
beach. The paved paths leading to the beach are used as stable ref-
erence surface for the errors reported in Table 1. Parts that are white
between the dunes and the sandy beach are gaps in the data due to
occlusions caused by the dunes.
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The data set from permanent laser scanning is acquired
within the CoastScan project at a typical urban beach in Ki-
jkduin, the Netherlands, Vos et al. (2017). For the acquisition
a Riegl VZ-2000 laser scanner was used to scan over a pe-
riod of six months from December 2016 to May 2017. The5

full data set consists of hourly scans of a section of sandy
beach and dunes.

Figure 2. Riegl VZ2000 laser scanner mounted on the roof of a
hotel facing the coast of Kijkduin, the Netherlands. The scanner is
covered with a protective case to shield it from wind and rain.

For the present study, a subset of the available data is used
to develop the methodology. This subset consists of 30 daily
scans taken at low tide over a period of one month, January10

2017. It covers a section of the beach and dunes in Kijkduin
and is displayed in top view in Figure 1. The area contains
a path and stairs leading down to the beach, a paved area
in front of the dunes, a fenced in dune area and the sandy
beach. It is about 950 m long, 250 m wide and the distance15

from the scanner to the farthest points on the beach is just
below 500 m. For the duration of the experiment the scanner
was mounted on the roof of a hotel just behind the dunes at a
height of about 37 m above sea level (as shown in Figure 2).

The data is extracted from the laser scanner output for-20

mat and converted into a file that contains xyz-coordinates
and spherical coordinates for each point. The data is mapped
into a local coordinate system, where the origin in x- and
y-direction is at the location of the scanner and the height (z-
coordinate) corresponds to height above sea level. Since we25

are interested in relative changes between consecutive scans,
we do not transform the data into a geo-referenced coordinate
system for this analysis.

Each point cloud is chosen to be at the time of lowest tide
between 18:00 and 06:00, in order to avoid people and dogs30

on the beach, with the exception of two days where only very

few scans were available due to maintenance activities. The
data from 9th of January 2017 is entirely removed from the
data set, because of poor visibility due to fog. This leads to
the 30 day data set, numbered from 0 to 29. Additionally all 35

points above 14.5 m elevation are removed to filter out points
representing the balcony of the hotel and flag posts along the
paths. In this way also a majority of reflections from particles
in the air, birds or raindrops are removed. However, some of
these particles might still be present at lower heights close to 40

the beach.
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Figure 3. Time series of elevation at location (xt,yt) (marked in
Figure 1) on the path that is assumed to be stable throughout the
entire month. Elevation is varying within less than 2 cm.

Since the data is acquired from a fixed and stable posi-
tion we assume that consecutive scans are aligned. Neverthe-
less, the orientation of the scanner may change slightly due
to strong wind, sudden changes in temperature, or mainte- 45

nance activities. The internal inclination sensor of the scan-
ner measures these shifts while it is scanning and we apply a
correction for large deviations (more than 0.01 degrees) from
the median orientation.

The remaining error in elevation is estimated as the stan- 50

dard error and the 95-percentile of deviations from the mean
elevation over all grid cells included in the stable paved area.
We chose the stable surface that is part of the paved paths
on top of the dunes and leading to the beach in northern and
southern direction as indicated in Figure 1. This area includes 55

1653 grid cells with complete time series. The derived mean
elevation, standard error and overall 95-percentile of devia-
tions from the mean per time series averaged over the stable
area are reported in Table 1. The elevation does on average
not deviate more then 1.4 cm from the mean elevation, and 60

95 % of deviations from the mean elevation are on average
below 3.5 cm. An example time series from the stable paved
area on top of the dunes (at location (xt,yt) marked in Fig-
ure 1) is shown in Figure 3.

3 Methods 65

To derive coastal deformation processes from clusters based
on change patterns we follow three steps: Extraction of time
series, clustering of time series with three different algo-
rithms, and derivation of geomorphological deformation pro-
cesses. To cluster time series the definition of a distance be- 70

tween two time series (or the similarity) is not immediately
obvious. We discuss two different options (Euclidean dis-
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tance and correlation) to define distances between time series
with different effects on the clustering results. The rest of this
section is organized as follows: We focus on time series ex-
traction in subsection 3.1, discuss distance metrics for time
series (3.2), introduce three clustering algorithms (3.3) and5

our evaluation criteria (3.4). The derivation of deformation
processes will be discusses with the results (section 4).

3.1 Time Series Extraction

Time series of surface elevation are extracted from the PLS
data set by using a grid in Cartesian xy-coordinates. We only10

use grid cells that contain at least one point for each of the
scans.

Before defining a grid on our observed area, we rotate the
observation area to make sure that the coastline is parallel to
the y-axis, as shown in Figure 1. This ensures that the grid15

covers the entire observation area efficiently and leaves as
few empty cells as possible. Then we generate a regular grid
with grid cells of 1 m × 1 m. Time series are generated for
each grid cell by taking the median elevation zi for each grid
cell and for each time stamp tk. That means, per grid cell20

with center (xi,yi) we have a time series

Z̃i = (zi(t1), . . .zi(tT )), (1)

with the number of time stamps T = 30. To make the time
series dependent on change patterns, rather than the absolute
elevation values, we remove the mean elevation z̄i of each25

time series Z̃i. This leads to time series

Zi = (z′i(t1), . . . ,z′i(tT ), (2)

with z′i(tk) := zi(tk)− z̄i.
In this way we extract around 40 000 grid cells that con-

tain complete elevation time series for the entire month. The30

point density per grid cell varies depending on distance to the
laser scanner. For example, a grid cell on the paved path (at
about 80 m range) contains about 40 points (i.e. time series
at (xt,yt) in Figure 1), whereas a grid cell located close to
the water line, at about 300 m distance from the scanner, may35

contain around three values. This implies that the median per
grid cell is based on more points the closer a grid cell is to
the scanner.

Table 1. Test statistics of the gridded elevation values on the paved
area, which is assumed to be stable throughout the observation pe-
riod of one month. Values are calculated per time series and aver-
aged over the entire stable area, which results in mean elevation,
standard error and an average 95-percentile of deviations from the
mean.

mean elevation 12.43 m

standard error 1.4 cm

95-percentile of deviation from mean 3.5 cm
(averaged over all grid cells)

3.2 Distance Metrics

We consider two different distance metrics for our analysis: 40

the Euclidean distance as the default for the k-means algo-
rithm and agglomerative clustering, and correlation distance
for the DBSCAN algorithm.

3.2.1 Euclidean Distance

The most common and obvious choice is the Euclidean dis- 45

tance metric defined as:

dE(Z0,Z1) = ||Z0−Z1||=

√√√√ n∑
i=1

|Z0i−Z1i|2, (3)

for two time series Z0 and Z1 of length n.

3.2.2 Correlation Distance

Another well known distance measure is correlation distance, 50

defined as one minus the Pearson correlation coefficient (see
for example Deza and Deza (2009)). It is a suitable measure
of similarity between two time series, when correlation in the
data is expected (see Iglesias and Kastner (2013)). Correla-
tion between two time series Z0 and Z1 is defined as: 55

Cor(Z0,Z1) = 1− (Z0− Z̄0) · (Z1− Z̄1)

||Z0− Z̄0|| · ||Z1− Z̄1||
, (4)

with Z̄ being the mean value of time series Z and || · || the
Euclidean 2-norm as in Equation (3). We have to note here,
that correlation cannot compare simple constant time series
(leads to division by zeros) and is therefore not a distance 60

metric in the sense of the definition Deza and Deza (2009).

3.2.3 Comparison

For a comparison of the two distances for some example
time series, see Figure 4. The example shows that the dis-
tance between two time series is not intuitively clear. The 65

use of different distance metrics results in different sorting
of distances between the shown pairs of time series. When
normalizing all time series (subtracting the mean and scaling
by the standard deviation) correlation distance and Euclidean
distance are equivalent (as shown for example by Deza and 70

Deza (2009)). However, this leads to issues, when comparing
to a constant time series (with zero standard deviation).

Both Euclidean distance and correlation are not taking into
account the order of the values within each time series. For
example, two identical time series that are shifted in time are 75

seen as ’similar’ with the correlation distance, but not as sim-
ilar with the Euclidean distance and would not be considered
as identical by either of them (see Figure 4). Additionally
neither of the two distance metrics can deal with time series
of different lengths or containing gaps. 80
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Figure 4. Example of three pairs of time series that are ’similar’ to
each other in different ways. The Euclidean distance would sort the
differences as follows dE(Z2,Z3)< dE(Z4,Z5)< dE(Z0,Z1),
whereas according to the correlation distance the order would be
Cor(Z0,Z1)< Cor(Z2,Z3)< Cor(Z4,Z5).

3.3 Clustering Methods

Clustering methods for time series can be divided into two
categories: feature based and raw data based (see for exam-
ple Liao (2005)). Feature based methods first extract rele-
vant features to reduce dimensionality (for example using5

Fourier- or wavelet-transforms) and then form clusters based
on these features. They could also be used to deal with gaps
in time series. We focus on the raw data based approach to
not define features in advance and to make sure that no in-
formation within the data set is lost. We use three different10

methods: k-means clustering, agglomerative clustering and
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN). In Figure 5 an illustration of a partitioning of a
simple 2D data set is shown for each of the three algorithms.
The two clusters that can be distinguished in this example15

have different variances and are grouped differently by each
of the algorithms.

For the implementation of all three algorithms, we make
use of the Scikit-learn package in Python (see Pedregosa
et al. (2011)).20

3.3.1 k-means Clustering

The k-means algorithm was first introduced in 1955 and is
still one of the most widely used clustering methods (Jain
(2010)). The algorithm is based on minimizing the sum of
all distances between points and centroids over all possible25

Figure 5. Example of clustering of data with two clusters with dif-
ferent variance: The k-means algorithm separates them, but adds a
few points in the middle to the purple cluster instead of the yellow
one (A). Agglomerative clustering separates both clusters accord-
ing to their variances (B) and DBSCAN detects the cluster with
low variance and high point density (yellow) and discards all other
points as outliers (turquoise) (C).

choices of k cluster centroids V = {v1, . . . ,vk}:

MinV J(V ) =

k∑
j=1

∑
xi∈vj

||xi− vj ||2, (5)

with Euclidean distance metric || · ||. After the initial choice
of k centroids among all points the following steps are re-
peated iteratively, until the above sum does not change sig- 30

nificantly:

1. Assign each point to the cluster with closest centroid

2. Move centroid to mean of each cluster

3. Calculate sum of distances over all clusters (Equation
(5)) 35

Note that minimizing the squared sum of distances over
all clusters, coincides with minimizing the squared sum of
all within cluster variances. The convergence to a local mini-
mum can be shown for the use of Euclidean distance (see for
example Jain (2010)). The convergence is sped up using so- 40

called k-means++ initialization: After the random selection
of the first centroid, all following centroids are chosen based
on a probability distribution proportional to their squared dis-
tance to the already defined centroids. In this way the initial
centroids are spread out throughout the data set and the de- 45

pendence on the random initialization of the cluster centroids
is reduced.

There are variations of k-means using alternative dis-
tance metrics such as the L1-norm (k-medoids, Park and Jun
(2009)), however the convergence is not always ensured in 50

these cases. Another issue to take into account when consid-
ering alternative distance metrics, is the definition of the clus-
ter centroids as mean of time series, which is not automati-
cally defined for any distance metric. For more information
on k-means see Jain (2010), Liao (2005) and the documenta- 55

tion of the Scikit-learn package (Pedregosa et al. (2011)).
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3.3.2 Agglomerative Clustering

Agglomerative clustering is one form of hierarchical cluster-
ing: It starts with each point in a separate cluster and itera-
tively merges clusters together until a certain stopping crite-
rion is met. There are different variations of agglomerative5

clustering using different input parameter and stopping crite-
ria (see for example Liao (2005) or the documentation of the
scikit-learn package (Pedregosa et al. (2011))). We choose
the minimization of the sum of the within cluster variances
using the Euclidean distance metric (Equation (5), where the10

centroids vj are the mean values of the clusters) for a pre-
defined number of clusters k. The algorithm starts with each
point in a separate cluster and iteratively repeats the follow-
ing steps until k clusters are found:

1. Loop through all combinations of clusters:15

– Form new clusters by merging two neighbouring
clusters into one

– Calculate squared sum of distances (Equation (5))
for each combination

2. Keep clusters with minimal squared sum of distances20

In this way we use agglomerative clustering with a sim-
ilar approach to the k-means algorithm, the same optimiza-
tion criterion with the same input parameter and Euclidean
distance measure. We therefore expect similar results. How-
ever, this agglomerative clustering can easily be adapted to25

alternative distance measures and could therefore potentially
deal with time series of different lengths or containing gaps.

3.3.3 DBSCAN Algorithm

Density-Based Spatial Clustering of Applications with
Noise, DBSCAN, is a classical example of clustering based30

on the maximal allowed distance to neighbouring points that
automatically derives the numbers of clusters from the data.
It was introduced in 1996 by Ester et al. (1996) and recently
revisited by Schubert et al. (2017). The algorithm is based on
dividing all points into core points or non-core points that are35

close to core points but not themselves surrounded by enough
points to be counted as core points. The algorithm needs the
maximum allowed distance between points within a cluster
(ε) and the minimum number of points per cluster (Nmin) as
input parameters. These two parameters define a core point:40

If a point has a neighbourhood of Nmin points at ε distance,
it is considered a core point. The algorithm consists of the
following steps (Schubert et al. (2017)):

1. Determine neighbourhood of each point and identify
core points45

2. Form clusters out of all neighbouring core points

3. Loop through all non-core points and add to cluster
of neighbouring core point if within maximal distance,
otherwise classify as noise

In this way clusters are formed that truly represent a dense 50

collection of ’similar’ points. Since we choose to use corre-
lation as distance metric, each cluster will contain correlated
time series in our case. All points that can not be assigned to
a close surrounding of a core point, are classified as noise or
outliers. 55

3.4 Evaluation Criteria

To determine if an algorithm is suitable, we expect that it
fulfils the previously defined criteria:

– A majority of the observation area is separated into dis-
tinct regions, 60

– each cluster shows a change pattern that can be associ-
ated with a geomorphic deformation process, and

– time series contained in each cluster roughly follow the
mean change pattern.

In order to establish these criteria, we compare the three 65

clustering algorithms, as well as two choices for the number
of clusters k, using the following evaluation methods.

3.4.1 Visual Evaluation

The clustered data are visualized in a top view of the obser-
vation area, where each point represents the location of a grid 70

cell. Each cluster is associated with its cluster centroid, the
mean elevation time series of all time series in the respective
cluster. For visualization purposes we have added the median
elevation back to the cluster centroids, even though it is not
taken into account during the clustering. We subsequently de- 75

rive change processes visually from the entire clustered area.
We establish which kind of deformation patterns can be dis-
tinguished and estimate rates of change in elevation and link
them to the underlying process.

3.4.2 Quantitative Evaluation 80

We use the following criteria to compare the respective clus-
tering and grid generation methods quantitatively:

– percentage of entire area clustered

– minimum and maximum within cluster variation

– percentage of correctly identified change in test area 85

with bulldozer work

The percentage of the area that is clustered differs depend-
ing on the algorithm. Especially DBSCAN sorts out points
that are too far away (i.e. too dissimilar) from others as noise.
This will be measured over the entire observation area. The 90

number of all complete time series counts as 100%.
Each cluster has a mean centroid time series and all other

time series deviate from that to a certain degree. We calcu-
late the average standard deviation over the entire month per
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cluster and report on the minimum and maximum value out
of all realized clusters.

3.4.3 Test Area

To allow for a comparison of the clusters with a sort of
ground truth, we selected a test area at the bottom of the foot-5

path. In this area a pile of sand was accumulated by a bull-
dozer, after the entrance to the path was covered with lots of
sand during a period of rough weather conditions (8 to 16
January, corresponding to day 7 to 14 in our time series), as
reported by Anders et al. (2019). We chose two time stamps10

for illustration, and show the elevation before the bulldozer
activity at the end of the stormy period on 16 January, af-
ter the bulldozer activity on 18 January and the difference
between the elevations on these two days in Figure 6 (first
row, A,B,C). The area does not change significantly after15

this event. Within this test area we classify (manually) each
point as ’stable’ or ’with significant change’ depending on a
change in elevation of more than 5 cm (positive or negative).
Then we evaluate for each clustering method if the points
that are classified as ’with significant change’ are in a sepa-20

rate cluster than the ’stable’ points.
The stable cluster consists of cluster 0, the largest cluster

when using k = 6 for k-means and agglomerative clustering
and cluster 0 and 1 combined in the case of k = 10 clusters.
For evaluating the results of the DBSCAN algorithm we con-25

sider all locations that are not clustered (noise) and points in
cluster 1 as the ’stable’ areas, because the average erosion
in cluster 1 is less than 0.15 cm per day. We do not distin-
guish if there are different clusters within the category of
’with significant change’. However, in Figure 6, the different30

clusters can be distinguished by their colours, correspond-
ing to the colours of the clusters shown in subsequent figures
(Figures 7, 8 and 9). We then compare the percentage of cor-
rectly classified grid points for the test area, for each of the
grid generation and clustering methods.35
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A B C

D E F

J H I

Figure 6. Test area for the comparison of clusters generated with three different algorithms. The test area is located where the northern access
path meets the beach (see Figure 1). 1st row: The elevation in the test area is shown on the day before the bulldozer accumulated a sand pile,
when the entrance of the path was covered in sand (A) and after the bulldozer did its job (B). Behind the sand pile appears a gap in the data
(in white), as the sand pile is obstructing the view for the laser scanner. To the right we show the difference in elevation between January 16
and 18 from a significant level upwards (red) and downwards (blue) (C). 2nd row: Test area with significant changes in elevation (contour
lines) and points clustered using the k-means algorithm (D), agglomerative clustering (E) and the DBSCAN algorithm (F). The colours of
the clustered dots represent the clusters as shown in Figures 7, 8 and 9, respectively. 3rd row: The corresponding mean time series for each
of the relevant clusters are displayed below each of the plots (G,H,I). The dotted lines mark the beginning and end of a stormy period.
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4 Results

The results are presented in two parts. First, we compare two
different choices of the parameter k for the k-means algo-
rithm and for agglomerative clustering. Then, we compare
all three clustering methods and evaluate results on the test5

area, where a bulldozer created a pile of sand (as indicated in
Figure 1) and in terms of percentage of data clustered, stan-
dard error within each cluster and physical interpretation of
clusters.

4.1 Clustering10

For the k-means algorithm and agglomerative clustering, we
consider two different values k = 6 and k = 10, exemplary
for a smaller number of clusters and a higher number of clus-
ters.

4.1.1 K-means15

With the k-means algorithm, the entire observation area is
partitioned. The resulting partition depends on the random
initialization. The standard error within each cluster is rela-
tively high, compared to the stable area (see Table 1) and gen-
erally increases with the size of the cluster. Even the cluster20

with the smallest standard error (averaged standard deviation
per time series over the clustered area), still shows a standard
error of 0.77 m (cluster 5 for k = 6). We show the result-
ing clusters obtained using the k-means algorithm with num-
ber of clusters k = 6 and k = 10. Visual inspection shows25

that both values lead to good, usable results by partitioning
the set of time series into clusters that are small enough to
capture geomorphic changes but not too large, which would
make them less informative. As displayed in Figure 7, a large
part of the beach is contained in a ’stable’ cluster when using30

k = 6 (cluster 0, blue). This cluster, as well as some of the
others, are split up into several smaller clusters when using
k = 10. For example, the intertidal zone (i.e. the area that is
under water during high tide and exposed during low tide)
is eroding mostly during stormy days in the first half of the35

month. This zone is contained entirely in cluster 1 (green)
when using k = 6. In the case of k = 10, this part is split
up into three clusters, one with a similar mean time series
(cluster 2, green), one eroding with a pattern similar to clus-
ter 2, but mostly representing sand banks (cluster 3, brown)40

and one gradually eroding at a low rate over the entire month
(cluster 1, orange). It also becomes clear, that the sand piles
that were generated by bulldozer works at different locations
(k = 6 cluster 5, light blue) were created on different days
(k = 10, clusters 8 and 9, yellow and light blue). Some fea-45

tures, like the cleared part of the paths, the sand piles and the
intertidal zone can be distinguished in both cases.

On the test area the k-means algorithm correctly classi-
fies about 85% of points into ’stable’, ’significant negative
change’, or ’significant positive change’ in the case of k = 6.50

However, as can be seen in Figure 6, a part of the points with
negative change are not identified. These clusters are split up
further in the case of k = 10, which does not influence the
results in the test area a lot. A summary of these results is
provided in Table 2. 55



M. Kuschnerus: Coastal Change Patterns from Clustering PLS Data 11

Table 2. Summary of comparison of k-means algorithm, agglomerative clustering (AGG) and DBSCAN algorithm.

k-means AGG DBSCAN
entire observation area

number of clusters 6 10 6 10 6
min no. points/cluster 108 34 108 39 45
area clustered 100% 100% 100% 100% 44%
max std error/cluster 3.22 m 3.1 m 3.18 m 2.86m 4.0 m
min std error/cluster 0.77 m 0.68 m 0.79 m 0.71 m 0.33 m

test area: correctly identified
stable points 81% 82% 86% 86% 99%
positive changes 97% 97% 86 % 86% 0%
negative changes 93% 93% 98 % 98% 54%
total 85% 86% 88 % 88% 79%

B D

Figure 7. A/C: Overview of the entire observation area divided into clusters using k-means with k = 6 (A) and k = 10 (C). B/D: Corre-
sponding cluster centroids for each of the clusters shown in A and C, respectively. By using a larger number of clusters k, more processes
become visible, for example two sand piles (A/B: cluster 5) created on two different days (C/D: cluster 8 and 9). Also the large stable areas
(A/B: cluster 0) and slowly accreting areas (A/B: cluster 3) are split up into several clusters: A slightly eroding area (C/D: cluster 3) is split
up from the stable part and the accreting area is split into two (C/D: cluster 4 and cluster 6).
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4.1.2 Agglomerative Clustering

The agglomerative clustering algorithm is set up, as the k-
means algorithm, to find six and ten clusters. It produces
results very similar to the clusters found with the k-means
algorithm, as can be seen comparing Figures 7 and 8 and5

Figures 6 D and E. Clusters 2 and 3 from agglomerative
clustering correspond roughly to the clusters 3 and 2 from
k-means clustering. The ordering of clusters is according to
size, so more time series are considered ’noisy’ according to
k-means, whereas agglomerative clustering assigns more of10

these time series to the gradually accreting cluster. All other
clusters appear to be nearly identical and show similar spa-
tial distributions as well as centroid shapes. The differences
between the two choices of the number of clusters k are also
very similar.15

On the test area, the detection of negative and positive
changes is more balanced and leads to an overall score of

88 % correctly identified points. Agglomerative clustering
clearly separates the path that was cleared by the bulldozer
and identifies it as eroding. 20

4.1.3 DBSCAN

When we use the DBSCAN algorithm on the same data set,
with minimum number of points Nmin = 30 and maximum
distance ε = 0.05, a large part of the time series (55 %) is
classified as noise, meaning that they are not very similar (i.e. 25

not correlated, since we use correlation as distance measure)
to any of the other time series. However they roughly match
the combined areas that are identified as stable and noisy by
k-means (clusters 0 and 2 for k = 6). The remaining time se-
ries are clustered into six clusters. The standard error within 30

each cluster is generally lower than in the clusters generated
with k-means (minimum standard error is 0.33 m) without
considering the time series that are classified as noise.

The intertidal zone cannot be separated clearly from the
’noise’ part of the observation area, nor can we distinguish 35

the stable path area or the upper part of the beach. In the test
area, the sand pile is not represented by a separate cluster
and positive changes in elevation are not found, which results
in an overall worse percentage of correctly identified points.
But, two clusters represent areas, which are relatively stable 40

throughout the month, except for a sudden peak in elevation
on one day. These peaks are dominated by a van parking on
the path on top of the dunes and people passing by, and are
not caused by actual deformation, compare Figure 9.

On the test area the DBSCAN algorithm performs worse 45

than both other algorithms. In total 79% of points are cor-
rectly classified into ’stable’ or ’significant negative change’.
As stable points we count in this case all points that are clas-
sified either as noise or belong to cluster 1 (orange). The rea-
son for this is that the mean of all time series that are not clus- 50

tered appears relatively stable, while cluster 1 describes very
slow erosion of less than 0.15 cm per day. This matches with
99% of points classified as stable in the ground truth data.
But, no single cluster is formed containing only the points
where sand is accumulating, even though these clusters are 55

distinguished by the other two algorithms. These points are
mixed up with the large cluster of slightly eroding points in
cluster 1. We can see in Figure 6, that the only significant
process found in the test area is the cleared path (cluster 2,
red). 60

4.2 Identification of Change Processes
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 A B C D

Figure 8. A/C: Overview of the entire observation area divided into clusters using agglomerative clustering with k = 6 (A) and k = 10 (B).
B/D: corresponding cluster centroids for each of the clusters shown in A and C respectively. The clusters are similar to the ones found with
k-means.

Figure 9. Mean time series per cluster found with the DBSCAN
algorithm. Outliers or not clustered points are represented by the
blue mean time series. The two most prominent time series (clus-
ter 5 and 6, light green and light blue) are located on the path on top
of the dunes. The peaks are caused by a group of people and a van,
on the 5th and 6th of January respectively, illustrated by the point
clouds in the middle of the plot.



14 M. Kuschnerus: Coastal Change Patterns from Clustering PLS Data

Figure 10. Observation area partitioned into clusters by the k-means algorithm with k = 10. The associated processes are annotated with
the corresponding colours.
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Considering the clusters found by the k-means algorithm
and agglomerative clustering, we can clearly distinguish be-
tween time series that represent erosion and accretion with
different magnitudes and at different times of the month,
as well as a sudden jump in elevation, caused by bulldozer5

work. In Figure 10 we show the clusters and associated main
process. To give an idea of the magnitude of the most promi-
nent change patterns, we fit straight lines through the mean
time series or parts of it (where the slope is steepest) and de-
rived average rates of change in elevation from the estimated10

slopes. The clusters dominated by erosion, close to the wa-
ter line (clusters 2 and 5) represent the inter-tidal zone of the
beach. The elevation changes in this area are likely caused by
the effects of tides and waves. The change rates were partly
accelerated during the stormy period in the first half of the15

month. Accreting areas are mostly at the upper beach, close
to the dune foot and on the paths in the dunes (clusters 4,
6 and 7). These areas as well as a large cluster on the up-
per beach (cluster 1, orange), which undergoes a slight and
gradual erosion over the entire month, are likely dominated20

by aeolian sand transport. The most obvious change process,
is the sand removed from the entrances of the paths leading
to the beach by bulldozer works (cluster 7) and accumulated
in piles of sand at four different locations on two days (clus-
ters 8 and 9). Points contained in the noisy cluster (cluster 3)25

are spread out through the dune area and noise is probably
caused by moving vegetation.

5 Discussion

We successfully applied the presented methods on a data set
from permanent laser scanning and demonstrated the identi-30

fication of deformation processes from the resulting clusters.
Here we discuss our results on distance measures, clustering
methods and the choice of their respective input parameters
and derivation of change processes.

5.1 Distance Measures35

Possible distance measures for the use in time series cluster-
ing are analysed among others by Iglesias and Kastner (2013)
and Liao (2005). We use Euclidean distance in combination
with the k-means algorithm and agglomerative clustering for
our analysis. It has been shown by Keogh and Kasetty (2003)40

that especially for time series with high dimensions, alterna-
tive distance measures rarely outperform Euclidean distance.
However, we have to note here, that Euclidean distance is
affected by the so called ’curse of dimensionality’, which
causes a space of long time series (with many dimensions)45

to be difficult to cluster. The problem with clustering time
series in high dimensional spaces with k-means, is that Eu-
clidean distance is based on the sum of all pointwise differ-
ences. This leads to a space, where the variance of the dis-
tances decreases with increasing time series length. There-50

fore it will be harder to categorize time series as similar, and

fewer meaningful clusters will emerge, the more observa-
tions we use. This could possibly lead to difficulties, when
extending these methods to the use of longer time series, but
does not appear to degrade results on our current data set. For 55

more details on this issue see Assent (2012), Verleysen and
François (2005) and Zimek et al. (2012).

We chose for the use of correlation distance with the DB-
SCAN algorithm, because correlation in principle represents
a more intuitive way of comparing time series (see Figure 4). 60

DBSCAN is based on identification of clusters of high den-
sity, which in our case works better using correlation dis-
tance instead of Euclidean distance. Using Euclidean dis-
tance, there are very few clusters of ’very similar’ time se-
ries and an even larger part of the beach is classified as noise. 65

Only in combination with correlation distance, we could de-
rive a set of input parameters for the DBSCAN algorithm to
produce relevant results.

Scaling the time series with their respective standard de-
viations for the use of Euclidean distance would make these 70

two distance measures equivalent. However, this did not im-
prove our results using k-means or agglomerative clustering.
Subtle differences within the stable cluster would become
prominent in that case, but the larger differences between
clusters as we find them without the scaling, would be re- 75

duced.
Neither of the the two distance measures analysed here can

deal with gaps in the time series, which would be of great
interest to further analyse especially the intertidal area and
sand banks. Additionally, both distance measures do not al- 80

low to identify identical elevation patterns that are shifted
in time as similar. An alternative distance measure suitable
to deal with these issues would be Dynamic Time Warp-
ing (DTW), which accounts for similarity in patterns even
though they might be shifted in time (Keogh and Ratanama- 85

hatana (2005)). An interpolation method to fill gaps in ele-
vation over short time spans based on surrounding data or a
feature based clustering method could be other alternatives.

5.2 Clustering Methods

The use of k-means clustering on elevation time series from 90

the same data set was demonstrated by Lindenbergh et al.
(2019) and has shown promising first result. We follow the
same approach and, as a comparison, use agglomerative clus-
tering, with the same optimization criterion, distance metric
and input parameter. As expected the results are similar, al- 95

though agglomerative clustering does not depend on random
initialization. It therefore delivers the same result for every
run, which is an advantage. Considering our previously de-
fined criteria:

– a majority of the observation area is separated into dis- 100

tinct regions,

– each cluster shows a change pattern that can be associ-
ated with a geomorphic deformation process, and
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– time series contained in each cluster roughly follow the
mean change pattern,

both algorithms are suitable and the differences in the result-
ing clusters are negligible for our specific data set.

However, the computational effort needed to loop through5

all possible combinations of merging clusters for agglomera-
tive clustering is considerably higher. Of the three algorithms
that were used in this study, agglomerative clustering is the
only one that regularly ran into memory errors. This is a dis-
advantage considering the possible extension of our method10

to a data set with longer time series.
One of the disadvantages of the k-means algorithm and our

configuration of agglomerative clustering, is that the num-
ber of clusters has to be defined in advance. Our choices of
k = 6 and k = 10 clusters both yield promising results, but15

remain somewhat arbitrary, especially without prior knowl-
edge of the data set. A lower number of clusters k (for exam-
ple k = 6) yields a division of the beach into sections (inter-
tidal zone, dry part of the beach) and highlights the most
prominently occurring changes (bulldozer works). When us-20

ing a larger number of clusters k, several of the previously
mentioned clusters are split up again and more detailed pro-
cesses become visible. The erosion and accretion patterns
on the beach appear at different degrees in distinct regions,
which is valuable information. Also the sand piles, which ap-25

peared in one cluster for k = 6 are now split up according to
the different days, on which they were generated. We con-
sider this possibility to identify and specify anthropogenic
induced change an illustrative example of the influence of
the choice of the number of clusters k. We have considered30

two data independent methods to determine a suitable value
for k: analysis of the overall sum of variances for different
values of k and so-called cluster balance following the ap-
proach of Jung et al. (2003). Neither of them resolved the
problem satisfactorily and we cannot make a generalized rec-35

ommendation, independent of the application, for the choice
of k at this point.

To avoid this issue we also compare both approaches with
the use of the DBSCAN algorithm. It is especially suitable
to distinguish anomalies and unexpected patterns in data as40

demonstrated by Çelik et al. (2011) using temperature time
series. To decide, which values are most suitable for the two
input parameters of the DBSCAN algorithms we plot the per-
centage of clustered points and the number of clusters de-
pending on both parameters (see Figure 11). However, this45

did not lead to a clear indication of an ’optimal’ set of pa-
rameters. After the trade-off analysis between the number of
points in clusters and the number of clusters (not too high,
so that the clusters become very small and not too low so
that we generate only one big cluster) we chose ε = 0.05 and50

Nmin = 30 by visually inspecting the resulting clusters.
An alternative clustering approach for time series based

on fuzzy C-means is proposed by Coppi et al. (2010). They
develop a method to balance the clustering based on the pat-

Figure 11. DBSCAN selection of input parameters: Number of
clusters versus input parameter maximum distance within clusters
and minimum number of points and percentage of total points in
clusters (not classified as noise/outliers). The choice of an ’optimal’
set of parameters is not obvious. We indicate our selection with a
red circle in both plots.

tern of time series while keeping an approximate spatial ho- 55

mogeneity of the clusters. This approach was successfully
applied to time series from socio-economic indicators and
could be adapted for our purpose. It could potentially im-
prove detection of features like sand bars, or bulldozer work,
but not distinguish moving vegetation in the dunes as our 60

current approach does.
A similar approach would be to use our clustering results

and identified change patterns as input to the region-growing
approach of Anders et al. (2020). In this way we could com-
bine advantages of both methods by making the identification 65

of the corresponding regions for each distinct deformation
pattern more exact, without having to define possible defor-
mation patterns in advance.

5.3 Derivation of Change Processes

As shown in Figure 10, we identified change processes from 70

the clusters generated by k-means. Agglomerative clustering
shows similar clusters and therefore yields similar results.
Each centroid representing the mean time series of the k-
means clusters shows a distinct change pattern (see Figures 7
and 8), which allows to conclude on a predominant defor- 75

mation process. By fitting a straight line through the mean
time series, or part of it, we estimated the slope correspond-
ing to the average rate of change in elevation. Associating the
centroids with the location and spatial spread of the clusters,
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allows to derive the main cause for the respective deforma-
tions. In some cases extra information, or an external source
of validation data would be useful to verify the origin of the
process. This will be taken into account for future studies.
The location of the clusters and for example the steep rise of5

the mean time series representing the sand piles allows for
the conclusion that the cause of this sudden accretion is an-
thropogenic. The information found by Anders et al. (2019)
for the research on their study, confirms the coinciding bull-
dozer works. The derived average rates of change in elevation10

allow for the possibility to derive mass budgets to quantify
volume changes over specific amounts of time from our data,
showing a possible application of our method, that is of large
scientific interest (see for example de Schipper et al. (2016)).

The DBSCAN algorithm successfully identifies parts of15

the beach that are dominated by a prominent peak in the time
series (caused by a van and a small group of people). Out of
the three algorithms that we compare, it is most sensitive to
these outliers in the form of people or temporary objects in
the data. It was not our goal for this study, to detect people20

or objects on the beach, but this ability could be a useful
application of the DBSCAN algorithm to filter the data for
outliers in a pre-processing step.
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6 Conclusions

We compared three different clustering algorithms (k-means,
agglomerative clustering and DBSCAN) on a subset of a
large time series data set from permanent laser scanning on a
sandy urban beach. We successfully separated the observed5

beach and dune area according to their deformation patterns.
Each cluster, described by the mean time series, is associated
with a specific process (such as bulldozer work, tidal erosion)
or surface property (for example moving vegetation cover).

The most promising results are found using k-means and10

agglomerative clustering, which both correctly classify be-
tween 85 and 88 % of time series in our test area. However,
they both need the input of the number of clusters we are
looking for and agglomerative clustering is computationally
expensive. DBSCAN turned out to be more suitable for the15

identification of outliers or unnatural occurring changes in
elevation due to temporary objects or people in the observed
area.

Our key findings are summarized as follows:

1. Both k-means and agglomerative clustering fulfil our20

criteria for a suitable method to cluster time series from
permanent laser scanning.

2. Predominant deformation patterns of sandy beaches are
detected automatically and without prior knowledge us-
ing these methods.

:::
The

:::::
level

::
of

:::::
detail

:::
of

:::
the

:::::::
detected25

::::::::::
deformation

:::::::::
processes

::
is
:::::::::

enhanced
:::::

with
:::::::::

increasing

::::::
number

::
of

:::::::
clusters

::
k.

3. Change processes on sandy beaches, which are associ-
ated with a specific region and time span, are detected
in a spatio-temporal data set from permanent laser scan-30

ning with the presented methods.

Our results demonstrate a successful method to mine a
spatio-temporal data set from permanent laser scanning for
predominant change patterns. The method is suitable for the
application in an automated processing chain to derive de-35

formation patterns and regions of interest from a large spatio-
temporal data set. It allows such a data set to be partitioned in
space and time according to specific research questions into
phenomena, such as for example the interaction of human
activities and natural sand transport during storms, recovery40

periods after a storm event or the formation of sand banks.
The presented methods enable the use of an extensive time
series data set from permanent laser scanning to support the
research on long-term and small scale processes on sandy
beaches and improve analysis and modelling of these pro-45

cesses. In this way we expect to contribute to an improved
understanding and managing of these vulnerable coastal ar-
eas.
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Editor’s comments

Thank you for responding to the review comments and
suggestions with this comprehensive revision of the paper.
I believe it has improved the relevance and impact of this5

study. In particular, your expansion of presenting results
also for k=10 and the additional insights this generates are
very useful. I notice, however, that the conclusion has not
been edited/revised from the previous version and that the
abstract too only contains a few minor text edits. Given that10

the revised version now presents additional findings and
discussion I believe it would be worth your while to edit
the abstract and conclusion perhaps a bit more so that they
also refer to these new additional findings; otherwise these
additional insights may not get picked up by readers as much15

as you’d like. I am happy to proceed with publication of the
current revision if you want, but I herewith want to give you
the opportunity to edit the abstract and conclusion if you so
wish.

20

In response to the editor’s comments one sentence has
been added each to the abstract and the conclusions. 1015


