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Abstract. Tectonics and erosion/sedimentation are the main processes responsible for shaping the earth surface. The link 

between these processes has strong influence on the evolution of landscapes. One of the tools we have for investigating coupled 

process models is analogue modeling. Here we contribute to the utility of this tool by presenting laboratory-scaled analogue 10 

models of erosion. We explore the erosional response of different materials to imposed boundary conditions, trying to find the 

composite material that best mimics the behaviour of the natural prototype. The models recreate conditions in which tectonic 

uplift is no longer active, but there is an imposed fixed slope. On this slope the erosion is triggered by precipitation and gravity, 

with the formation of channels in valleys and diffusion on hillslope that are function of the analogue material. Using Digital 

Elevation Models (DEMs) and laser-scan correlation technique, we show model evolution and measure sediment discharge 15 

rates. We propose three main components of our analogue material (silica powder, glass microbeads and PVC powder) and 

we investigate how different proportions of these components affect the model evolution and the development of landscapes. 

We find that silica powder is the main responsible for creating a realistic landscape in laboratory. Furthermore, we find that 

varying the concentration of silica powder between 40 wt.% and 50 wt.% (with glass microbeads and PVC powder in the range 

35-40 wt.% and 15-20 wt.%, respectively) results in metrics and morphologies that are comparable with those from natural 20 

prototypes.  

1 Introduction 

Whenever tectonics creates topography, erosion and surface processes act in response to the imposed gradient, tending to 

reduce topography, and with time, remove all relief. During the last decades a strong theoretical background has been built 

based on field- and analytical observations (e.g. Howard, 1994; Kirby and Whipple, 2001, 2012; Tucker and Whipple, 2002; 25 

Whipple et al., 1999; Whipple and Tucker, 1999, 2002) but since natural observations provide only a snapshot of processes 

acting at different timescales (e.g. Castillo et al., 2014; Cyr et al., 2014; Pederson and Tressler, 2012; Sembroni et al., 2016; 

Vanacker et al., 2015) a quantitative framing of the existing feedbacks between surface processes and tectonics in modifying 

the topography remain a difficult task. Analytical, numerical and analogue models are often used by tectonic geomorphologists 

to improve the understanding of the feedbacks between tectonics and surface processes. Numerical models have the advantage 30 
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of a straightforward quantitative and parametric approach and the possibility to be conducted with precise boundary conditions. 

Previous numerical and analytical focused on: the mathematical implementation in solving the stream power law (Braun and 

Willett, 2013); the interaction between surface processes and the velocity discontinuities bounding a double-verging orogenic 

wedge (Braun and Yamato, 2010); the coupling between climate, erosion and tectonics (e.g. Batt and Braun, 1999; Beaumont 

et al., 1992, 2001, 2004; Jamieson et al., 2004; Ueda et al., 2015; Whipple and Meade, 2004); the interaction between surface 35 

processes and multilayer folding systems (Collignon et al., 2014);the role of orographically enhanced precipitation in a double-

verging 2D model (Willett, 1999; Willett et al., 1993); the control exerted by tectonic strain (Castelltort et al., 2012; Duvall 

and Tucker, 2015; Goren et al., 2015) or interaction with tectonics in three dimensions (Ueda et al., 2015). Nevertheless, the 

computational capacities necessary to realistically simulate geologic features coupled with erosion using complex rheologies 

and/or three-dimensional settings still place strong limitations on numerical runs. Furthermore, spatial features such as spacing 40 

of rivers are often mesh-dependent, making them a function of the modeler input of the mesh resolution.  

Analog models can in principle overcome these limitations, allowing a useful direct control on the evolution of the studied 

physical process (e.g. Reber et al., 2020). These are free to evolve following the physics acting on them, without needing for 

external control, apart from boundary conditions. The coupling between tectonics and surface processes has been investigated 

using sand-box like analogue apparati including removal of material by hand or with a vacuum cleaner (e.g. Hoth et al., 2006; 45 

Konstantinovskaya and Malavieille, 2011; Malavieille et al., 1993; Mulugeta and Koyi, 1987) or the application of a defined 

precipitation rate for a spontaneously-developing landscape (e.g. Bonnet, 2009; Lague et al., 2003; Schumm and Parker, 1973; 

Tejedor et al., 2017). The former models can be considered as “dry” models, where no water is added to the system. In this 

case, brittle wedges are typically built, and after a certain amount of shortening the material is removed from the wedge and 

sifted in the lower basins. The latter models can be considered as “wet” because water is added to the system and is responsible 50 

for erosion, transport and sedimentation. Wet models mainly focus on surface uplifting/lowering (e.g. Bonnet and Crave, 2003; 

Hasbargen and Paola, 2000; Ouchi, 2011; Schumm and Rea, 1995; Singh et al., 2015) or in creating topography by horizontal 

advection (e.g. Graveleau et al., 2015; Graveleau and Dominguez, 2008a; Guerit et al., 2016; Viaplana-Muzas et al., 2019). 

Different granular materials have been used, like dry quartz sand (e.g. Persson et al., 2004), silica powder (e.g. Bonnet, 2009), 

mica flakes (e.g. Storti et al., 2000), glass microbeads (e.g. Konstantinovskaya and Malavieille, 2011), natural loess (e.g. Lague 55 

et al., 2003), walnut shells (e.g. Cruz et al., 2008) or ad-hoc composite materials (e.g. Graveleau et al., 2011, 2015). These 

materials show different behavior in response to the external forcing, and their characterization is a key ingredient for scaling 

analogue models. The link between the properties of the materials and their tuning on the morphological response is not well 

defined yet. Even if some recent efforts have been done on pure materials and mixes (e.g. Bonnet and Crave, 2006; Graveleau 

et al., 2011), an excursus on the role played by the concentration of every component in a composite material is still lacking. 60 

Here we focus on analogue materials exploring how different concentrations of granular materials influence the erosional, 

physical and mechanical response of several composite materials with the overarching goal of finding a material that best 

mimics the erosional behavior of the natural prototype. We also focus on mechanical properties of the same materials, which 

will be involved in future projects. 
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2 Experimental Approach 65 

In this study we analyzed four different brittle granular materials to be used as rock analogues for the upper crust: Silica Powder 

(SP), Glass Microbeads (GM), Crushed Quartz (CQ), PolyVinyl Chloride powder (PVC). These pure materials are suited in 

five different mixes, in different proportions, while one single material (SP) is tested on its own (Tab. 1). The selection has 

fallen on granular materials because: 

a) They have the proper physical properties to simulate downscaled crustal rock behavior under laboratory conditions 70 

in a natural gravity field (e.g. Davis et al., 1983; Lallemand et al., 1994; Mulugeta and Koyi, 1987; Schreurs et al., 

2001, 2006, 2016; Storti et al., 2000; Storti and McClay, 1995). As a matter of fact, they obey to Mohr-Coulomb 

failure criterion, showing strain-hardening prior to failure at peak strength and strain-softening until a stable value is 

reached (stable friction) (Lohrmann et al., 2003; Schreurs et al., 2006); 

b) they reproduce reasonable geomorphic features due to developing of erosion/sedimentation processes like incision, 75 

mass wasting and diffusive erosion, transport and sedimentation, although important differences in behavior and 

characteristics have emerged (Graveleau et al., 2011, 2015; Graveleau and Dominguez, 2008b; Viaplana-Muzas et 

al., 2019).  

In the following, we describe a) scaling to the natural prototype; b) geotechnical characterization of the materials (including 

geometrical and physical/chemical properties, frictional properties and permeability); c) erosional characterization. We also 80 

define which conditions a proper analogue material should satisfy to be used in landscape evolution models. 

2.1 Mechanical properties 

Here we describe the mechanical properties of four granular materials mixed in different proportions. The aims of this analysis 

are to study how mechanical properties affect erosion style and to define properties that will be used in future works, where 

the materials will be involved in experiments where active tectonics and erosion act simultaneously. In five experiments the 85 

analogue material are mixtures of the previous materials at various percentage (CM1-5, Tab. 1). In Graveleau et al. (2011), the 

authors display how these different pure materials (excepting CQ, which was not considered in their work) show advantages 

and disadvantages in responding to erosion and sedimentation, in terms of morphological features developed, and brittle 

behavior. For example, GM and PVC produce high scarps with almost no channelization when erosion is applied, but 

realistically reproduce the brittle rheology of the upper crust (Graveleau et al., 2011). SP morphologies scale well with natural 90 

landscapes, but the higher strength of the powder induces unreliable structures under deformation. To overcome the above 

limitations of materials used as single “ingredient”, the authors suggested that a mixture of these three granular materials can 

be the most appropriate choice. Following Graveleau et al. (2011), here we focus on these mixes rather than pure materials. 

The latter are still analyzed, highlighting their role in the mix. 

We measured geometrical, physical and frictional properties such as grain size and shape, density, porosity and permeability, 95 

internal friction angle and cohesion. We measured frictional properties of experimental granular material (internal friction 
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coefficient μ and cohesion C) with a Casagrande shear box. We performed tests for peak and stable friction at variable normal 

stresses. Density has been measured with a helium pycnometer. The grain size has been estimated via a series of sieves of 

decreasing openings dimension (from 250 µm to 45 µm). The material passing the 45 µm sieve has been analyzed using 

sedimentation in a distilled-water tank, with a hydraulic pump for recirculation of water and a thermal control for estimation 100 

of water density. We also used a laser diffractometer for checking the reliability of the previous measurements. A qualitative 

analysis has been carried out using a Scanning Electron Micrograph (SEM) for the shape of grains and composition. 

2.1.1 Geometrical and physical/chemical properties 

The materials physical properties like grain size, density, porosity and permeability are listed in Table 2. The SP is a very fine 

powder (D50 = 20 µm), with clasts of different shape and size (Fig. 1): the smallest ones, are elongated and may lay on bigger 105 

clast, with a very high roughness. These characteristics require a careful use of this powder, due to the danger for the respiratory 

system. The density is the highest among the studied components (2661 ± 1 kg m-3). We obtain composition of ~95% SiO2, 

~3% Al2O3, ~1% K2O and < 1% of Na2O, MgO and CaO (Fig. 2). The CQ has bigger dimensions with respect to SP (D50 = 87 

µm), with medium sphericity of the clasts and high roughness. The composition is very similar to silica powder (with ~0.5% 

of FeO) and so is the density, slightly lower (2588 ± 1 kg m-3). GM (D50 = 98 µm) have a very high sphericity and a very low 110 

roughness, where density (2452 ± 1 kg m-3) is lower than the CQ. The GM qualitative composition is made of ~69% of SiO2, 

~15% of Na2O, ~10% of CaO, ~4% of MgO, ~1% of Al2O3 and < 1% of K2O and fluorine. Finally, the PVC (D50 = 181 µm) 

has a similar shape respect to glass microbeads but less uniform. The density is the lowest among the components (1402 ± 1 

kg m-3), and this has a strong effect on the erosive properties of the material, as we will show afterwards. We did not perform 

SEM measurements of the PVC, due to the complexity of its chemical composition ((C2H3Cl)n). The grain size, density and 115 

shape of grains in the mixes are function of the percentage of every single material that form it (Tab. 2). 

2.1.2 Frictional properties 

A good crustal analog material must fail following the Mohr-Coulomb failure criterion (e.g. Davis et al., 1983; Davy and 

Cobbold, 1991; Krantz, 1991):   

𝜏 = 𝜇𝜎 + 𝐶            (1) 120 

where τ is the shear stress corresponding to the normal stress σ on the failure plane, and μ is coefficient of internal friction 

defined as 𝜇 = tan(𝜑), with φ angle of internal friction. For geomorphic experiments, where water is added to the system, 

parameters like μ and C strongly control the evolution of the experiment, because they change with the amount of water. The 

brittle granular materials typically used in laboratory models have low elasticity and undergo plastic deformation when their 

yield strength is reached, sliding along discrete fault-analog planes (e.g. Panien et al., 2006; Ritter et al., 2018; Rossi and Storti, 125 

2003; Schreurs et al., 2016). Deforming granular materials satisfy Mohr-Coulomb criterion (Eq. 1), that highlights the 

relationship between shear stress τ and normal stress σ on the failure plane. The criterion typically shows a linear trend for σ 

in the order of kPa and MPa, but a convex-outward envelope for normal stresses in the order of hundreds of Pa or lower 
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(Schellart, 2000). In this work the normal stress applied are in the 25-200 kPa range. Estimation of normal stress at the base 

of our models is about 1 kPa. The experimental tests are then only an underestimate of the real mechanical behavior within the 130 

models. Nevertheless, the tests provide useful insight into the frictional properties of the analogue materials. For every test 

(four tests per material) we defined peak friction (the first peak in the shear curve (Fig. 3) reflecting hardening-weakening 

during strain localization and then fault initiation) and stable friction (the plateau after peak friction representing friction during 

sliding (e.g. Montanari et al., 2017). A shear box has been used. It consists of a steel box (Rossi and Storti, 2003) split across 

its middle in two small blocks with an area of 6×6 cm2 each. The bottom block is fixed, while the top block moves at constant 135 

velocity of 0.165 mm min-1. Two dynamometers record horizontal and vertical displacement. The tests were made in water 

saturated condition. From every measurement we defined the material internal friction coefficient (μ, slope) and cohesion (C, 

intercept) for peak and stable friction. Results for every material and mix are listed in Table 2. Between pure materials SP 

shows the highest values for φ and C (33-40° and 0-8.5 kPa respectively). For GM internal friction angle is about 23-25° and 

the cohesion is close to 0 or negative, so is not considered in this analysis. PVC shows the same conditions for C, with an 140 

internal friction angle between 25° and 32°. The frictional properties for the CQ are similar to SP, with φ between 30-33° and 

C between 4.5-6.6 kPa. The mixes show a strong variability for φ and C, with average values about 31° and 6 kPa, respectively. 

The values of φ and C do not highlight the increasing of SP concentration from CM2 to CM5. 

2.1.3 Porosity and permeability 

Porosity is defined as the ratio between the volume of voids or pore spaces (VV) and the total volume (VT): 145 

𝛾 =
𝑉𝑉

𝑉𝑇
             (2) 

The porosity has been computed measuring the volumetric change of a weighted amount of material respect to an ideal 

condition where no pores are in the samples. We used a vibrating plate looking for the best compaction of material and 

measured the variation in volume. We used this technique to draw close to the experimental conditions. This procedure has 

been repeated several times for each composite material. Unfortunately, porosity is dependent on the handling technique, it is 150 

thus impossible to precisely control the porosity of the materials during preparation. The values of porosity for single materials 

and mixes are shown in Table 2. We also measured porosity by weighing the same volume of material in water-saturated 

condition and after drying it in an air oven. The results are directly comparable between the two different techniques of 

measurement. GM shows the lowest porosity (0.26) between pure materials while SP and CQ the highest one (0.36-0.37, 

respectively). As far as the mixes is concerned, only CM1 shows values higher than 0.40, while porosity is around 0.30 from 155 

CM2 to CM5. 

Permeability represents the ability of a material to transmit fluids. This property has been tested using an oedometer and 

measuring the velocity of water flowing through the sample. This parameter is essential in controlling the evolution of our 

models, as it will be explained later in the text. SP has the lowest permeability (3.56·10-14 m2) while GM has the highest 

permeability (2.87·10-12 m2). CM1 shows the highest permeability between the various mixes (7.42·10-13 m2). From CM2 to 160 
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CM5 (from 40 and 70 wt.% of SP) the permeability slightly decreases. However, CM3 and CM5 do not strictly follow this 

trend: the former has the lowest permeability observed in mixes (9.25·10-14 m2), while the latter show a value comparable with 

CM2 and CM4 but slightly higher (4.06·10-13 m2). The permeability values for mixes are then in the order of 10-13 m2. 

2.2 Erosional characterization 

2.2.1 Erosion laws and erosive properties 165 

In a stream channel, the relationship between channel slope S and contributing area A is often expressed through Flint’s Law 

(Flint, 1974), and takes the form 

𝑆 = 𝑘𝑠𝐴
−𝜃            (3) 

where ks and θ are the steepness and concavity index respectively. The most common erosion law, consistent with slope-area 

scaling, for channelized processes is a power law function of the contributing area A and surface gradient S, defined as the 170 

“stream power” law (e.g. Howard, 1994; Tucker and Whipple, 2002; Whipple and Tucker, 1999) 

𝑑𝑧

𝑑𝑡
= 𝐾𝐴𝑚𝑆𝑛            (4) 

where z is the elevation of the stream channel (i.e. dz/dt elevation trough time), K is the erosional constant (bound up to the 

erosional efficiency) that contains information about lithology, climate and channel geometry (Howard et al., 1994; Whipple 

and Tucker, 1999), while m and n are two positive dimensionless exponents, with the ratio m/n (i.e. the concavity index θ) that 175 

typically falls between 0.4 and 0.7 (Tucker and Whipple, 2002). This model is better known as a “detachment-limited” stream 

power model, because in tectonically active regions or in condition of steep topography, the channel erosive power is high and 

limited by its capacity to detach particles from the bedrock (Tucker and Whipple, 2002; Whipple and Tucker, 2002). It is 

possible to rewrite Eq. (4) in terms of distance x along the stream using Hack’s Law (Hack, 1957) 

𝐴 = 𝑘𝑎𝑥
𝐻             (5) 180 

where ka is a scaling coefficient and H is the reciprocal of the Hack’s exponent. Combining Eq. (4) and Eq. (5) we obtain 

𝑑𝑧

𝑑𝑡
= 𝜅𝑥𝐻𝑚𝑆𝑛            (6) 

where κ = Kka
m. In our experiments, K, κ, m, n, H should be constant (for the same experiment), due to the homogeneous 

lithology and constant precipitation rate. 

A proper analogue material for landscape evolution models should erode via localized, area-dependent processes (i.e., 185 

advection in valleys), diffusion (i.e., on hillslopes) and mass wasting. Primarily, it must develop channelization in response to 

accumulated flow. This requires that precipitation collects in surface drainage networks, with branching channels in order to 

be consistent with Hack’s Law and slope-area scaling. For the erosional behavior of the composite material, the ratio between 

precipitation rate and infiltration capacity appears to be the main factor controlling the geomorphological response. If the 

precipitation rate is higher than the infiltration capacity, the model can develop surface runoff (Graveleau, 2008). Otherwise, 190 

the water flows through and inside the model, inducing fast erosion through discrete and rapid events. Fine sand or powders 

have been typically used for geomorphic experiments (e.g. Babault et al., 2005; Hasbargen and Paola, 2000), so that runoff 
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could develop (i.e., low infiltration capacity due to the grain size). Nevertheless, different materials exhibit different emergent 

morphological characteristics when precipitation is imposed. Among the pure materials presented above, only SP (or a mix 

with SP) successfully reproduces linear incision (e.g. Bonnet and Crave, 2006; Graveleau et al., 2011; Schumm and Parker, 195 

1973; Tejedor et al., 2017), while GM, PVC (Graveleau et al., 2011) and CQ erode mostly by diffusion or mass wasting. 

2.3 Experimental Setup for erosional characterization 

For studying the composite materials response to applied boundary conditions (precipitation rate and slope), we developed a 

new experimental setup depositing the material into a box on an inclined plane under rainfall (precipitation). Both the initial 

slope for the apparatus and the precipitation rate are kept constant. No kinematic conditions of sidewalls are applied: no active 200 

tectonic is thus reproduced in our model. 

The experimental setup is made of three different devices (Fig. 4): the box, the rainfall- and the monitoring systems. The 

material box controls the imposed initial slope, while the rainfall system triggers surface erosion. The evolution of the model 

is recorded with digital images and a laser scanner. The only forcing applied to the models is due to the gravity acceleration, 

that allows for the erosion triggered by slope and rainfall. 205 

2.3.1 Box 

The box is a plexiglass tank 0.35×0.3×0.05 m3, filled with the experimental material, water saturated (about 25 wt.%). After 

pouring the material into the box and leveling, it is left flat at least 12 hours, to avoid prior deformations. The slope of the box 

is then fixed at 15°, in analogy to what has been done in Graveleau et al. (2011). 

2.3.2 Rainfall system 210 

Three nozzles fixed to an aluminum frame produce a high-density fog in which the droplet size is small enough (≤ 100 µm) to 

avoid rainsplash erosion (e.g. Bonnet and Crave, 2006; Graveleau et al., 2012; Lague et al., 2003; Viaplana-Muzas et al., 

2015). The precipitation rate is controlled by both water pressure and the number of sprinklers. In our models the precipitation 

rate is fixed to 25-30 mm h-1. The configuration allows for a homogeneous droplets distribution with a spatial variation of 

about 20%. The precipitation rate induces surface runoff, channel incision and gravity-driven processes that are responsible 215 

for the erosion of the model. 

2.3.3 Monitoring system 

Each experiment is recorded using one camera and a laser scanner. The camera records the model evolution in oblique view. 

The laser horizontal and vertical resolution are 0.05 mm and 0.07 mm, respectively. The scans are converted in digital elevation 

models (DEMs) using MATLAB. DEMs are analyzed with TopoToolbox (Schwanghart and Scherler, 2014) for 220 

geomorphological quantifications. Erosion and sediment discharge are computed with ad-hoc MATLAB algorithms (see Data 

availability for accessing the codes). Stopping the rainfall and letting the surface dry is required to avoid distortions during the 
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laser scan. For the first hour pictures and scans are taken every 15 min, then every 30 min and 60 min, depending on model 

evolution rate. 

2.4 Scaling analysis 225 

An analogue model should be scaled by its geometry, kinematic, dynamic and rheological properties (e.g. Hubbert, 1937; 

Ramberg, 1981). The length scaling factor (h* = hmodel/hnature) commonly used in sandbox experiments for deformation in the 

upper crust with granular material ranges between 10-5 and 10-6 (e.g. Cruz et al., 2008; Davy and Cobbold, 1991; 

Konstantinovskaya and Malavieille, 2011; Persson et al., 2004; Storti et al., 2000). Hence, 1 cm in the model may be in the 

range of 1 – 10 km in nature. The gravitational acceleration model-to-nature ratio is set to 1 (g* = gmodel/gnature) working in the 230 

natural gravitational field. The density of the dry quartz sand or corundum sand employed in literature defines the model-to-

nature ratio for density (ρ* = ρmodel/ ρnature) to be around 0.5 – 0.6. Since the dimensionless coefficient of internal friction is 

very similar between the analogue material and the natural crustal rocks, the cohesion/body forces scaling factor can be 

expressed as 

𝜎∗ = 𝜌∗𝑔∗ℎ∗            (7) 235 

Typical values of this scaling factor are in the order of 10-6, so that 1 Pa in the model would correspond to about 1 MPa in 

nature (e.g. Buiter, 2012; Graveleau et al., 2012).  

The classical approach of analog modelling of convergent wedges is time independent (i.e., the evolution of the model is 

independent from convergence rate). Here, together with compressional tectonics we also model erosion with the perspective 

of implementing the tested materials in analog models where tectonics and erosion are coupled. Therefore, following Willett 240 

(1999), we introduce a time scaling factor 𝑡∗ which is the ratio between the mass flux added to the system Fin over the mass 

flux removed Fout. Fin is defined as follow: 

𝐹𝑖𝑛 = 𝑣𝑐ℎ            (8) 

where vc and h are the convergence velocity and initial thickness of the layers considered, respectively. Fout, is defined as: 

𝐹𝑜𝑢𝑡 = 4𝐾𝐿2            (9) 245 

where K is a constant proportional to bedrock incision efficiency and precipitation rate (Eq. 4 and 6) and L is the wedge width. 

Assuming m = 0.5 and n = 1 in Eq. (4) (e.g. Whipple and Tucker, 1999), the K parameter has the dimension of time-1. Therefore, 

the mass balance can be expressed as the ratio between these two fluxes: 

𝑀𝑏 =
4𝑘𝐿2

𝑣𝑐ℎ
            (10) 

Mb is a dimensionless number, so keeping it the same in the experiment as in nature (in the same gravity field) it is possible to 250 

derive the scaling factor for time rewriting Eq. (4) as 

4𝑘∗𝐿∗

𝑣𝑐
∗ = 1            (11) 

and considering that k* has the dimension t-1, so that 
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𝑡∗ =
4𝐿∗

𝑣𝑐
∗             (12) 

where * marks the model over nature dimensionless ratio for every quantity, as defined before. With this scaling factor, 255 

considering L* = 10-5 – 10-6 and vc* = 8 · 104, 1 min in the model corresponds to 3.8 – 38 kyr in nature.  

Experimentalists are always in search of a perfect dynamic scaling for their models. Scaling all the aspects of geological 

processes is very difficult to achieve, if not impossible (Reber et al., 2020). For example, using granular materials leads to a 

length scaling inherently not perfect: grains in the order of 0.1 – 1 mm in laboratory, assuming a length scaling factor of 10-5, 

would correspond to 10 to 100 m in nature, which is obviously overestimated. For landscape evolution models even more 260 

issues are linked to fluid flow or sediment transport (Paola et al., 2009). Nevertheless, these experiments provide an 

“unreasonable effectiveness” (Paola et al., 2009) that allows for their interpretation in terms of scaling by similarity (Reber et 

al., 2020). When the models and their natural prototype behave in a similar way, it is indeed possible to infer information about 

the prototype studying the processes acting on the model (Reber et al., 2020), because of the scale independency of the 

processes. 265 

3 Results 

We present six different models carried out with the same boundary conditions (i.e. imposed slope, precipitation rate and 

experimental time) and different mixed materials (Tab. 1). The same models have been conducted multiple times to ensure the 

reproducibility of the experimental results. The results presented in this paper are just a selection from amongst these 

repetitions. We tested mixes with different concentration of CQ, SP, GM and PVC, accounting for the differences in erosional 270 

responses, starting from what is already known in literature. These materials (except CQ) are also used in Graveleau et al. 

(2011) for the authors selected mix, named “MatIV”, composed of 40% SP, 40% GM, 18% PVC and 2% graphite powder. 

The same mix is here represented by CM2, where PVC is 20 wt.% due to the absence of graphite. Therefore, this mix has been 

set as our reference model for further analysis. From this starting point, we increased the SP concentration (from 40 to 70 

wt.%, from CM2 to CM5) lowering the GM and PVC concentration. Two experiments were carried out using only SP (SM1) 275 

and a mix with the same proportion of CM2 but with SP replaced by CQ (CM1).  

The analysis illustrates the erosional properties showing the influence of different composition on the morphology of the 

landscape, the river longitudinal profile, the sediment discharge and erosion. All eroded material leaves the system; therefore, 

sedimentation is not modelled. 

3.1 Morphology of erosion 280 

In the reference experiment CM2 the rainfall system induces channel incision and triggers mass wasting processes of portion 

of the analogue materials adjacent to stream channels. Both advection in channels and diffusion processes on hillslopes are 

present. A well-developed river network evolves 5 minutes after initiation. Single channels coalesce in basins with the increase 
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of erosion and they are separated by sharp ridges. Three main basins are located at the upper part of the model (Fig. 5). The 

planar surfaces developing close to the lowermost side of the experiment have a slope of about 9°, six degrees lower than the 285 

initial imposed slope. The bottom of the valleys and the peak are generally separated by 1-2 cm relief (Fig. 6). CM1 evolution 

differs substantially from the reference model CM2. No channel incision is observed (Fig. 5), while diffusion and mass wasting 

are the dominant processes. Two different planar surfaces are formed, separated by a vertical scarp convex upward. An 

elongated elevated body stands close to the left boundary, related to the boundary effect itself. The planar surfaces have a slope 

of 12° and 10° for the lower and upper surface, respectively. The 12° slope is reached after 5 min from the beginning of the 290 

experiment, where a proto scarp is already formed. Subsequently, the scarp moves backward for about 60 min at a rate > 0.4 

cm min-1, following which the scarp continues retreating but at a slower rate (< 0.1 cm min-1). The difference in elevation 

between the two planar surfaces is 2-3 cm. In the experiment SM1 channel incision is strong and affects all the model. Almost 

no mass wasting processes are observed. The landscape evolution for this model is similar to CM2. Four main basins are 

observed (Fig. 5), with a series of smaller basins linked to the major ones. Two of these basins stand on the leftmost part of 295 

the model and are separated by two main ridges (Fig. 6). The rightmost basins have a small ridge separating them. The ridges 

between different basins can attain a slope close or even higher than 90°. The planar surfaces that form at the end of the 

experiment have a slope between 9° and 10°, 6° or 5° lower than the imposed initial slope. On the slopes bordering the basins 

several small channels form. Further increasing the SP concentration changes the erosional response of the model (Fig. 5, 6). 

Channel incision becomes the main process acting on the model with the SP concentration from 40 wt.% to 50 wt.%. Further 300 

increase in the amount of SP produces more and narrower channels (Fig. 5). An anastomose system develops in CM5. In CM3, 

CM4 and CM5 the morphologies develop after around 10 minutes from the beginning of the experiment and are almost constant 

through the evolution of the models. No proper basin develops in these models and there is no evidence of diffusive processes 

on hillslopes. As a matter of fact, swath profiles transverse to the rivers show strong variation in elevation with a small 

wavelength (Fig. 6). The valleys are sharp and are very close each other and are not very incised. 305 

3.2 River longitudinal profiles 

The river longitudinal profile represents the variation of stream elevation relatively to the distance from the outlet. In Fig. 7 

we show a river profile for each experiment at four different timesteps. The river evolution in the reference model CM2 follows 

a well-known path, starting from the undisturbed initial slope and arriving at the final profile with a concave-upward shape. 

We can also observe how the propagation of the perturbation, from the initial condition, migrates from the outlet to the 310 

headwater as a knickpoint separating the transient from the equilibrium channel profile. In the upper parts of the model, the 

erosion removes up to 3-3.5 cm of material. In CM1 no proper river develops and the main knickpoint defines the entire 

topography, with two planar surfaces separated by a sharp scarp (Fig. 5). The experiments of CM3, CM4 and CM5 show a 

common behavior. Channels do not show a concave-upward shape, or maybe only in the uppermost part of the model, while 

generally straight rivers develop. Nevertheless, we can observe the propagation of the erosion wave from the bottom to the 315 

top. As in the other models, the incision is strong, but it does not produce very deep valleys (1.5-2 cm). Finally, in SM1 it is 
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difficult to observe a proper concave upward river profile. Some knickpoints in the earlier stage of river development are later 

obliterated (green profile in Fig. 7). The incision removes almost 3 cm in the northernmost portions of the model. 

3.3 Sediment discharge and erosion 

Sediment (mass) discharge can be characterized by the amount of material that leaves the model. Keeping the boundary 320 

conditions constant in all the experiments, its evolution is only function of the analogue material composition. Sediment 

discharge plotted over time shows always two main phases (Fig. 8): phase I, fast removal of material from the model; phase 

II, slower removal of material with a lower discharge rate that is kept constant until the end of the experiment. After an initial 

period in which the material quickly responds to the boundary condition with a high discharge rate that varies through time 

(the slope of the solid line in Fig. 8, phase I), the system reaches an equilibrium with an almost constant discharge rate (the 325 

slope of the dashed line in Fig. 8, phase II). In the reference model CM2 and in SM1 this occurs when basins reach the 

dimension of 40-80 cm2. Different behaviors are shown by CM3, CM4 and CM5, where the phase I is extremely short (Fig. 

8). In the reference model CM2, phase I last at least 80-90 min with a discharge rate around 15 g min-1, while for phase II is 6 

g min-1 (both values are comparable with SM1). In CM1 the discharge rate decreases from phase I to phase II, from ca. 31 g 

min-1 in the first 60 min to ca. 7 g min-1 respectively. The loss in discharge rate between phase I and phase II is around 76% 330 

and corresponds, in time, when the morphological evolution of the experiment significantly decreases, reaching an almost 

stationary condition. SM1 shows a similar trend, but a late and smoother transition from phase I to phase II happening after 

140 min from the beginning of the experiment. The discharge rate is around 17 g min-1 during the phase I, and 6 g min-1 during 

the phase II. A strong decrease in sediment discharge over time is observed between CM2 and CM3, while from CM3 to CM5 

the difference is smaller. In CM3, CM4 and CM5 phase I is very short in time (< 20 min) with a discharge rate that decreases 335 

with the increasing of SP concentration (from 19 g min-1 to 13 g min-1). Phase II then lasts for the rest of the experiments, with 

a discharge rate of about 3 g min-1.  

In Fig. 9 we show the evolution of the erosion for the selected mix. In CM2 and SM1 river channels and basins are observed. 

In CM2 they are initially wider than in SM1. CM2 develops less basins, and they are less elongated. In CM2 the erosion 

appears to be more efficient, with a removal of material up to 3 cm depth in the uppermost portion of the model, close to the 340 

middle part of it. The erosion in CM1 follows the retreat of the scarps and it is mainly focused from the scarp to 5-6 cm over 

the outlet (Fig. 9). It erodes at least 3 cm of the model, although no channels form. The erosion is likely homogeneous on the 

lower planar surface. The channel incision in CM3 is evident and it reaches 2 to 2.5 cm depth. Here the erosion is focused in 

the channels, and they do not coalesce into basins. In CM4 and CM5 this affects even more the models. The erosion is 

extremely low, carving the models with incision lower than 2/2.5 cm (even lower in CM5). 345 
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4 Discussion 

The experimental setting presented in this paper allows for the investigation of the materials and composite materials response 

to the applied boundary conditions (15° slope and precipitation rate of 25-30 mm h-1). Despite simplifications (i.e., lack of 

tectonics, vegetation, storms, chemical weathering, seasoning, presence of infrastructures), these models highlight how the 

composition of the experimental material controls its erosional response. Respect to other works on the same topic (e.g. Bonnet 350 

and Crave, 2006; Graveleau et al., 2008, 2011), we focus on how varying the concentration of materials in a mix affect the 

models. Increasing the concentration of SP respect to GM and PVC results in straighter channels and lower incision. Using 

CQ instead of SP results in an almost uniform morphology where no proper basins or channels form, and where the erosion is 

mainly due to fast discrete events. Three main aspects arise from our results: a) SP is a key ingredient to properly model 

erosion, b) the physical properties of the experimental mix influence the sediment discharge rate and c) the experimental results 355 

can be used to better understand how surface processes act in nature. These considerations lay the foundations for choosing 

the proper analogue material for landscape evolution models. This indeed must satisfy conditions like morphology of the river 

channels, geomorphic indexes and erosional behavior, that should fall in the range of natural observations. We find that the 

best analogue material for landscape models settled in this work is represented by the composite materials used in models CM2 

and CM3 (40 wt.% SP, 40 wt.% GM, 20 wt.% PVC and 50 wt.% SP, 35 wt.% GM, 15 wt.% PVC, respectively). Even if our 360 

compositions are comparable with the ones used in other laboratories (e.g. Graveleau et al., 2011), it is important to define 

how different combinations of the proposed materials may result in extremely different model evolution. 

4.1 Comparison with previous works 

The study by Graveleau et al. (2011) represents the recent foundation for modelling landscape evolution. Therefore, we start 

discussing differences and similarities of our results with respect to their study. In Graveleau et al. (2011) the authors tested 365 

four pure materials (silica powder, glass microbeads, PVC powder and graphite) and a single composite material (named 

“MatIV”). The composite material is composed by 40% silica powder, 40% glass microbeads, 18% PVC powder and 2% 

graphite. In our study we did not analyze graphite. We tested the effect of crushed quartz in composite materials, instead. 

Concerning pure materials (silica powder, glass microbeads and PVC powder), our estimations and measurements for 

sphericity, grain size, density and permeability match the ones made by Graveleau et al. (2011) with unavoidable minor 370 

differences. We measured higher values of porosity for PVC, while permeability is in the same order of magnitude. Internal 

friction angles at peak and stable friction here presented are consistently lower for all our materials in comparison with 

Graveleau et al. (2011). The authors settled the tests at lower normal stresses than our measurements (< 5 kPa and < 250 kPa, 

respectively). The Mohr-Coulomb failure criterion shows that when low normal stresses are applied to the sample, the failure 

envelope tends to steepen, inducing values of internal friction angle higher than if measured at higher normal stresses 375 

(Schellart, 2000). This could explain the differences in results. 
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The composite granular material presented by the author (“MatIV”) has been proposed in this work as analogue material used 

in CM2, except for graphite powder replaced by a slightly higher amount of PVC powder (see Results for more details). 

Density, porosity and permeability are comparable with what has been measured by Graveleau et al. (2011) for MatIV. The 

values for peak friction and stable friction measured in this work are comparable to what has been measured by Graveleau et 380 

al. (2011). 

Erosion of the models also show similar evolution. The same rate for precipitation has been adopted in both works. We can 

observe strong similarity in the landscape reorganization between “MatIV” and CM2, looking at the frames in the evolution 

of the models at 15° slope (Fig. 9a-e, 10c in Graveleau et al. (2011) and Fig. 5 of this manuscript). The mass discharges over 

time (Fig. 9f in Graveleau et al. (2011) and Fig. 8 of this manuscript) for SilPwd (SM1 in this work) and “MatIV” coincide 385 

with our curves for SM1 and CM2 (at least for the first 90 min). During our phase II, the mass discharge observed in CM2 

grows faster than “MatIV” (Fig. 9f in Graveleau et al. (2011)). The mass discharge rate during phase II in CM2 is 6 g min-1, 

while in Graveleau et al. (2011) the discharge rate for “MatIV” is 2.8 g min-1.   

The analytical approach regarding the temporal scaling here proposed (1 min = 3.8 – 38 kyr) can be compared with what has 

been proposed by Graveleau et al. (2011) and Strak et al. (2011). These authors proposed different approaches for time scaling 390 

with respect to this manuscript. However, they obtained the same order of magnitude of the model-to-nature scaling factors 

here proposed. In Graveleau et al. (2011), in a context tectonically quiescent, the authors compared erosion rate in models and 

in natural tectonically inactive areas, starting from the geometric scaling. They estimated that 1 min in the models corresponds 

to 4.1 – 16.8 kyr in nature. In Strak et al. (2011) the authors compared the models’ denudation rate with the one computed for 

the Weber and the Salt Lake City segments of the Wasatch fault, obtaining that 1 min = 3.9 – 22.5 kyr. Both estimates fall in 395 

the range for temporal scaling proposed in this manuscript. The convergence of results grants the reliability of the experimental 

method, carried out independently at two different laboratories and by different working groups. 

4.2 Silica powder for erosion models 

SP is widely used in geomorphic experiments showing a good qualitative response to erosion/sedimentation and developing 

geomorphic markers that morphologically approximate the natural prototype (e.g. Bonnet and Crave, 2006; Graveleau et al., 400 

2011; Schumm and Parker, 1973; Tejedor et al., 2017). As already stated by Graveleau et al. (2011), pure granular materials 

such as SP, GM or PVC are not able to fully satisfy the requirements for our analogue models. Pure GM and PVC show a 

deformational style characterized by a few localized thrusts and backthrusts, with a low surface slope around 10° coherently 

with the one of convergent margins (Graveleau et al., 2011). However, these materials fail to reproduce a realistic landscape 

morphology. SP shows the opposite behavior (Graveleau et al., 2011 and references therein). This material allows the models 405 

to develop streams, channels, basins and other geomorphic features, whereas deformation produces a high number of thrusts 

and backthrusts closely spaced, and a taper slope higher than 14°. A weighted mixture of these three components is then needed 

to fulfill the requirements for a scaled analogue model, in terms of deformation and erosional style. We managed to pin down 

silica as main component in our composite materials, and we tested two different siliceous materials: CQ and SP. They are 
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almost identical in their chemical composition (Fig. 2), but they strongly differ for grain size, sphericity and roughness (Fig. 410 

1, Tab. 2). CM1 and CM2 have the same percentage of materials, but SP and CQ are switched. CM1 does not show channel 

incision, while CM2 is characterized by channel incision and mass wasting processes (Fig. 5). The channel incision becomes 

the main process acting on the surface moving from CM2 to CM5 (from 40 to 70 wt.% of SP), but an increase in the number 

of channels (Fig. 5) produce less incised structures (Fig. 9). Despite 100 wt.% of SP, SM1 does not develop only straight 

channels, differing from CM3 and CM5. We can state that the morphological response to erosion depends on the geometrical 415 

and physical parameters rather than on the chemical ones (Fig. 5, 8, 9, 10). Indeed, all the materials do not chemically react 

with each other and with water. The ratio Sr = P/Ic, where P is the precipitation rate and Ic the infiltration capacity, strongly 

controls the evolution of the experiments (Graveleau et al., 2011). When Sr < 1, Ic is greater than P, and most of the water 

coming from the raining system is drained internally, inside the porous material. A flow at the interface between the model 

and the bottom of the box develops, triggering mass wasting processes. This configuration makes very hard to develop a well-420 

defined surface runoff, and we could expect the same results as in CM1. On the other hand, when Sr > 1, the precipitation rate 

allows for the development of a river network at the model surface (as in CM2). Of course, it is possible to slightly change the 

precipitation rate according to the purpose of the experiment, but the main control on Sr is exerted by Ic. This parameter is 

function of the permeability and, in turn, it is function of the grain-size, grain-size distribution and (effective) porosity (Carman, 

1938, 1956; Kozeny, 1927). These factors are responsible for the differences between CQ and SP and are then responsible for 425 

the results of CM1 and CM2 (same concentration of materials but with CQ and SP, respectively). In fact, the grain size of CQ 

is one order of magnitude higher than SP, and the latter has a higher grain size distribution (Fig. 1). Permeability spans over 

two order of magnitude, from 2.34·10-12 m2 to 3.56·10-14 m2 for CQ and SP, respectively. The mix CM1 show higher 

permeability than CM2. These consideration lead to assess SP as best siliceous material for landscape evolution models rather 

than CQ. But due to the very small grain size of SP, suction and capillary forces are very strong when water is involved. 430 

Consequently, other components become necessary to promote mass wasting processes and for smoothing the mechanical 

behavior of SP to avoid unrealistic brittle structures (see Graveleau et al., 2011 and the beginning of this section). But going 

beyond what has already been done, we focused on testing how different combinations of SP, GM and PVC change the model 

results. Increasing the SP concentration should bring to configurations similar to SM1, but our results show that this is not the 

case. When SP is  50 wt.% of the composite material, only straight channels form, and they are not so incised if compared 435 

with the ones from SM1 or CM2 (Fig. 5, 9). CM3, CM4 and CM5 do not develop basins, and the erosion in the channels is 

limited (Fig. 9). Mass wasting processes and gravitational processes are absent, and the rivers flow in narrow canyons. In CM5 

the behavior is even more peculiar and anastomose channels form with a very low incision (Fig. 5, 9). Thus, a mixture of SP, 

GM and PVC, where the former one has the highest concentration, develops forms that are very different from SM1, even if 

SP is 70 wt.%. We propose here that this is mainly due to the grain size distribution. The voids between the grains of GM and 440 

PVC are most likely filled with the material with the lowest grain size, SP. If the concentration of SP is high enough ( 50 

wt.%) and water is added to the system, the strength of the material increases, and the erosional and mechanical response of 

the mix strongly change. This is in agreement with measurement of frictional properties (Tab. 2). 
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4.3 Sediment discharge rate as function of physical properties of analogue materials 

Phase I and phase II differ in terms of sediment discharge rate (sdr). Independently from the material, phase I displays higher 445 

sdr than phase II. In phase I the models equilibrate with the boundary conditions imposed. The amount of potential energy 

triggers a fast reorganization of the system. In the first time steps the materials quickly leave the models, until the energy 

decreases and a new equilibrium is reached. Lowering the model slope toward an equilibrium shape slows down the erosional 

response of the model, entering in phase II (Fig. 8). In this latter phase the system has reached a balance with the boundary 

condition, and sdr shows a lower variability for a given model (Fig. 10). Despite these common points, features like the onset 450 

of the phases, their duration or the amount of discharged material differ among the models. During phase I all the models show 

a high variability in sdr (Fig. 10). Nevertheless, CM1 still has the highest mean sdr (red line in Fig. 10), that later decreases 

from CM2 to CM5. CM1 erodes through fast and discrete processes (e.g. mass wasting), while all the other models show also 

(or only) channel incision (Fig. 5). From CM2 to CM5 the sdr decreases. Due to the absence of chemical reaction between 

components and water, the differences in sdr are linked to the physical properties of the materials. In CM1 the subsurface 455 

water flow induces collapse of material in catastrophic events. In SM1 this does not happen. The very low permeability of the 

material inhibits significant subsurface flows. Here the erosion of the material is mainly linked to the ability of water to detach 

particles from the riverbed and carrying them outside the model. Initially, particles are detached when shear stresses exerted 

by water overcome the threshold for detachment of the grains in the analogue materials (Howard, 1994). The strength of SP 

thus controls the rate of incision. Similar considerations for CM2, but here the higher permeability can trigger both channel 460 

incision and gravitational processes. Surprisingly, CM3, CM4 and CM5 response to precipitation rate is very different from 

SM1 or CM2. From CM3 to CM5 the sdr strongly decreases in both phases (Fig. 10), even if components like GM and PVC 

are added to the composite materials. The properties of these two pure materials would produce an erosional response similar 

to CM1 (Graveleau et al., 2011). However, when SP is in a proportion higher than 50 wt.% the water capacity of detaching 

particles strongly decrease, so that even the incision is very shallow (Fig. 9) and so the sdr. No mass wasting processes act on 465 

these models, as suggested by the low permeability. We propose that the higher grain size distribution allows SP to fill the 

voids between the GM and PVC particles, lowering the permeability (Tab. 2) and increasing the material resistance with 

capillarity and electrostatic forces. In phase II the sdr variability is smaller, and the mean values are more representative of the 

whole sdr. The previous consideration on the role of grain size applies also in this phase, even if sdr is significantly lower. Up 

to now, we have talked about the balance between shear stress exerted by water and strength of the riverbed, as responsible 470 

for incision in the models. In the works from Lague et al. (2003) and Graveleau et al. (2011), the authors acknowledge the 

presence of an erosion threshold that must be overcome before significant erosion and transport occurs. Graveleau et al. (2011) 

proposed that the tilted downstream zone observed in the models may be related to the presence of this erosion threshold. We 

also observe this tilted downstream zone, accounting likely for the same erosional threshold. In the experiments performed by 

Lague et al. (2003), all the experiments reach a final height about 1 cm. This was independent of the initial condition. They 475 

related this limit elevation to an intrinsic threshold to erosion. They also approach the problem analytically, defining erosion 
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laws in which a threshold term is present. Here, we recognized that the erosion threshold is mainly controlled by the mechanical 

strength of the materials used in the models, together with topographical parameters (e.g. gradient, rivers organization). From 

CM2 to CM5, the mechanical strength of the material appears to increase with the increasing of the concentration of SP in the 

mix, producing less incised landscapes, as highlighted by the morphologies (Fig. 5), the swath profiles (Fig. 6), the incision 480 

maps (Fig. 9) and the sediment discharge charts (Fig. 8 and 10).  

4.4 Drainage network morphology 

Our models are not meant to simulate any specific landscape, but to explore how material properties influence landscape 

development. However, despite the unavoidable limitations and simplifications of the model, it is tempting to compare the 

experimental and natural data. To do so, one can make a comparison to Hack’s Law. Hack’s Law (Eq. 5) can be also written 485 

as 

𝐿 = 𝑐𝐴ℎ             (13) 

where L is the length of the channel in a basin and A its drainage area, c is a scaling coefficient and h is the scaling exponent 

referred to as Hack’s exponent. The scaling coefficient c and the scaling exponent h in Eq. 13 are related to ka and H in Eq. 5 

by c = ka
-1/H and h = 1/H, respectively. Hack’s Law represents the relationship between channel length and drainage area, and 490 

allows to analyze the geometry of the drainage network. Dodds and Rothman (2000) show that in nature h is in the range 0.44-

0.56, while c is between 1.3 and 6.6 (for individual basins compared at their outlets). In our models, SM1 and CM2 show the 

lowest values of h (< 0.8). The scaling coefficient c for SM1 and CM2 is in the range 1-4 and 0-4, respectively (between the 

25th and 75th percentile) (Fig. 11). CM4 shows values for c and h close to 1 and in the range 0.8-1, respectively, while CM5 

has a slightly larger distribution. CM1 and CM3 show the lowest values for the scaling coefficient c. Comparing the length-495 

area scaling of our analog models with observations (Fig. 5) we notice that the models are characterized by a very low degree 

of branching of the drainage network. Moreover, our calculations of h are systematically higher than 0.5 (Fig. 11). Values of 

h greater than 0.5 are typically interpreted as indicating basin elongation with increasing size (Rigon et al., 1996). In fact, the 

drainage basins in our models are typically elongated, especially for CM3, CM4 and CM5. SM1 and CM2 still have high 

values for h, but lower with respect to the other models. For SM1 and CM2 the basins are morphologically better defined (Fig. 500 

5). 

4.5 Steepness and concavity index 

We use the following metrics for quantifying erosion in both the laboratory and nature: ksn and θ. Both ksn and θ represent a 

1:1 metric for lab- to nature comparison. θ is dimensionless while ksn, whose dimensions are a function of a reference concavity 

θref) has been computed considering the length scaling factor h* = 10-5 (related to the strength of the granular materials), so 505 

that the values for A in analog models in Eq. (9) are in m2. For calculating ksn in analog models (ksn_MOD) we assumed θref = 

0.45, similar to studies on natural landscapes. We analyzed river profiles of phase II of the experiments because this phase is 

linked to equilibrium of the system. In general, θ_MOD tends to be lower than 0.5 with the exception of CM2 and CM3, due to 
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the straightening of river longitudinal profiles during the model run (Duvall, 2004; Whipple and Tucker, 1999). Despite the 

scattering of values for θ_MOD, SM1, CM2 and CM3 show average values higher than the other models, from 0.2 to 0.5 (for 510 

data between 25th and 75th percentile). For ksn_MOD we found that values computed during phase II range generally between 10 

and 140 m0.9 (Fig. 12). The values for ksn_MOD and θ_MOD do not allow for a unique discrimination between the types of erosion 

affecting the models, in terms of detachment-limited erosion and transport-limited erosion (Tucker and Slingerland, 1997; 

Tucker and Whipple, 2002; Whipple and Tucker, 2002), but we consider it likely that experiments are often transport-limited 

rather than detachment limited. The concavity index for detachment-limited streams are typically higher than for transport-515 

limited streams (Brocard and Van der Beek, 2006; Whipple and Tucker, 2002), even if there is some evidence which suggest 

that this might not always be true (Gasparini, 1998; Massong and Montgomery, 2000; Tarboton et al., 1991). Of our models, 

CM2 and CM3 show the highest values for θ_MOD, while CM2 and SM1 show the highest values for ksn_MOD. Both ksn_MOD and 

θ_MOD (Fig. 12) are generally comparable with data coming from natural compilations (e.g. Kirby and Whipple, 2012) or studies 

on natural rivers in specific mountainous areas (e.g. . The matching of ksn and θ between models and nature supports future 520 

development and application of the analog materials tested in this study for modeling landscape evolution. 

5 Conclusions 

We used mixes of water-saturated granular materials as analogs for the upper brittle crust analyzing the role played by 

geometrical and physical properties in landscape evolution models. Our experimental results illustrate how small variations in 

the composition of an analogue material can strongly affect the evolution of the geomorphological features and the mechanical 525 

response of the materials. According with previous works, we find in SP the main component of analogue materials for 

landscape evolution models, better if mixed with GM and PVC. We can now conclude that: 

a) granular materials and mixes of them deform following Mohr-Coulomb criterion; 

b) composite materials with smaller grain size distribution and higher grain size (order of 100-200 μm) do not allow for 

advection in valleys, due to higher permeability. The sediment (mass) discharge rate is high, and the erosion happens 530 

quickly in time; 

c) composite materials with higher grain size distribution with particles in the order of 10s of μm allow for both channel 

incision in valleys and diffusion on hillslopes; 

d) composite materials where the percentage of SP higher or equal to 50 wt.% show high number of channels but with 

a very low incision. The discharge rate is extremely low, and erosion and incision affect less the model. 535 

e) respect to the other models, SM1 and CM2 show more branching and well-defined basins, while CM2 and CM3 show 

higher values for concavity index. 

The geomorphological observations carried out on the models here presented highlights how SM1, CM2, CM3, show features 

most similar to natural prototypes. Increasing the SP concentration from 40 to 50 wt.% (CM2 and CM3, respectively) leads to 

straighter channel better defined. For models coupling tectonics and surface processes, the material used in SM1 is not likely 540 
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to be adequate, due to its deformational behavior (section 4.2). The Hack’s exponent in all models was higher than observed 

in nature, but SM1 and CM2 exhibited the lowest values. Concavity index for all models tended towards values lower than in 

nature, except for CM2 and CM3, which showed good agreement with nature. All these considerations suggest that the 

materials used in models CM2 and CM3 should be implemented for reproducing analogue landscapes. Our findings are in 

agreement with previous works, and here we also quantified the differences between geomorphological indexes as function of 545 

composition of analogue materials, giving a further constrain on the choice of the materials. These mixes will be adopted in 

contexts of active tectonics in future works. 
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Experiment Analogue material/mix 
Applicability for landscape 

evolution analogue models 

SM1 100 wt.% SP Yes, without deformation 

applied 

CM1 40 wt.% CQ 

40 wt.% GM 

20 wt.% PVC 

No 

CM2 40 wt.% SP 

40 wt.% GM 

20 wt.% PVC 

Yes 

CM3 50 wt.% SP 

35 wt.% GM 

15 wt.% PVC 

Yes 

CM4 60 wt.% SP 

30 wt.% GM 

10 wt.% PVC 

No 

CM5 70 wt.% SP 

25 wt.% GM 

5 wt.% PVC 

No 

 

Table 1: Material used in experiments. The label CM indicates a composite material, while the label SM indicates a pure single 775 
material. 

Material 
D50, 

µm 

ρpart ± 

1 kg m-

3 

γ ± 

0.01 

k ± 0.1·10-n 

m s-1 

k 

m2 

φp
wet 

(degrees) 

Cwet 

(kPa) 

φs
wet 

(degrees) 
Sphericity Roundness 

Silica 

powder (SP) 
20 2660 0.36 3.5·10-7 3.6·10-14 34-40 0-8.5 33-39 Low 

Very 

angular 

Crushed 

quartz (CQ) 
87 2590 0.37 2.3·10-5 2.3·10-12 30-33 4.5-6.6 31-32 Medium Angular 

Glass 

microbeads 

(GM) 

98 2450 0.26 2.8·10-5 2.9·10-12 23-25 / 14-22 Very high 
Well 

rounded 

PVC powder 

(PVC) 
181 1400 0.30 1.0·10-5 1.1·10-12 25-32 / 18-21 High Rounded 

CM1 / 2170 0.42 7.2·10-6 7.4·10-13 25-40 0-8.9 23-35 / / 

CM2 / 2190 0.32 2.8·10-6 2.9·10-13 25-36 1-9.8 23-34 / / 

CM3 / 2290 0.29 9.0·10-7 9.3·10-14 27-40 0-6.5 26-36 / / 

CM4 / 2390 0.30 2.6·10-6 2.6·10-13 22-37 0-11.9 22-36 / / 
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CM5 / 2500 0.31 4.0·10-6 4.1·10-13 22-36 2.9-14 21-35 / / 

 

Table 2: Geometrical and physical properties of pure granular materials and mixes. Here we show values for grain size (D50), particle 

density (ρpart), porosity (γ), permeability (k), cohesion (C) and internal friction angle for peak (ϕp
wet) and stable (ϕs

wet) friction. 

Sphericity and roughness have been estimated after the acquisition of SEM imaging. The subscripts dry and wet indicate whatever 780 

the tests were made with dry materials or water-saturated materials. 

 

 

Figure 1: SEM (Scanning Electron Micrograph) pictures of the materials tested in this work. (a) crushed quartz, (b) silica powder, 

(c) glass microbeads, (d) PVC powder. 785 
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Figure 2: SEM qualitative analysis of the material composition. On the left is the BackScattered-Electron (BSE) imaging, while on 

the right the Energy-Dispersive Detector (EDS) spectrum. A qualitative composition is presented for a) silica powder, b) crushed 

quartz and c) glass microbeads. PVC powder has not been analyzed, due to its complex composition. 
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 790 

Figure 3: Ideal output from a shear test. The peak friction corresponds to the high point of the curve, while stable friction is defined 

by the subsequent plateau. 
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Figure 4: Schematic representation of the experimental setup used for models with only erosion: block of experimental material 

(35×30×5 cm3), rainfall system (commercial sprinklers) and reclining table. A single camera and a high-definition laser scan provide 795 
records for the experiments. 
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Figure 5: Pictures of the models at 200 min from the beginning of the experiment. The red box is the trace of the swath profiles 

shown in Fig. 6. The blue line indicates the stream, for every experiment, analyzed in Fig. 7. 

 800 

Figure 6: Swath profiles, transverse to the experiment slope. Profiles are plotted at the same experimental time, at which the system 

keeps its morphologies almost constant through time (ca. 200 min). Location as shown in Fig. 5. 
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Figure 7: Longitudinal profiles of the streams highlighted in Fig. 5. This analysis is performed converting the laser scan into DEM 

and applying the TopoToolbox tool for MATLAB (Schwanghart and Scherler, 2014). The laser horizontal and vertical resolution 805 
are 0.05 and 0.07 mm respectively. We show four profiles corresponding to four consecutive time steps (T1 = 20 min, T2 = 60 min, 

T3 = 150 min, T4 = 350 min). The vertical arrows point to the main knickpoints for the relative time step (color coding). In the figure 

are also plotter the theoretical river profiles for concavity index of 0, 0.5 and 1. We did not plot the theoretical profile for CM1 

because no proper channel develops (see text for details). 
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Figure 8: Cumulative mass (sediment) discharge over time for the six experiments. The solid lines correspond to phase I, while 

dashed lines to phase II. The black dot highlights the transition from phase I to phase II. 
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Figure 9: Erosion evolution for the experiments, here represented by the cumulative difference in elevation (Δz) of the same point at 

consecutive times. Time is indicated in columns. Each row corresponds to a model, where the mix adopted is  indicated in the first 815 
panel of each row. The color coding is shown by the color bar on the right. Negative values correspond to erosion, positive ones to 

sedimentation (almost no sedimentation for these models). 
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Figure 10: Box plot of sediment discharge rate for phase I and phase II. The red lines indicate the median, and the bottom and top 

edges of the blue box indicate the 25th and 75th percentiles, respectively. The black markers outside the box cover the data point at 820 
< 25th and > 75th percentile that are not considered outliers. 
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Figure 11: Values distribution for h and c for Hack’s Law, as given in Eq. (13), in the models. The black lines indicate the median, 

while the bottom and top edges of the green box indicate the 25th and 75th percentiles, respectively. The green whiskers outside the 

box cover the data point at < 25th and > 75th percentile that are not considered outliers, here indicated by green crosses. 825 
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Figure 12: Steepness (ksn) and concavity index (θ) in the experiments and in nature (field data). We use θref = 0.45 for computing ksn. 

The black dots indicate the median, while the bottom and top edges of the blue box indicate the 25th and 75th percentiles, respectively. 

The thin blue lines cover data <25th and >75th percentiles that are not considered outliers, and the outliers are indicated by the blue 

empty dots. Cyr10 = Cyr et al., 2010; DiB10 = DiBiase et al., 2010; TaW02 = Tucker and Whipple, 2002; Dik15 = Dikshit, 2015; 830 
GaJ20 = Guha and Jain, 2020; Man17 = Mandal et al., 2017; Van15 = Vanacker et al., 2015. 

 


