
Dear Reviewers, dear Editor,

thanks for your constructive and encouraging comments! In the following, the points addressed
in your reports are discussed, and changes to the manuscript are described. Line numbers refer
to the version with highlighted changes at the end of this document.

Reviewer 1 (Xiaoping Yuan)

“Assumption in the transport-limit erosion:
The author has an assumption to obtain the
sediment flux in equations (10) and (11),
which are important for the later derivation
of implicit and O(n) scheme of the transport-
limit erosion model. Erosion rate KAmSn

in equation (6) is the rate at the outlet of
drainage area A. The equation (11) assumes
that the sediment flux of the drainage area
equals to KAmSn × A = KAm+1Sn, which
implies that the erosion rate is same every-
where in the drainage area A, which is true at
the steady state subjected to a uniform uplift
rate. Because at steady state, erosion every-
where balances rock uplift rate such that un-
der conditions of spatially uniform uplift the
total sediment flux at a given point along a
river equals the product of upstream drainage
area (A) and the rock uplift rate or the uni-
form erosion rate. This has been proved
by the author using the uniform uplift rate
(Figure 1, left panel) that transport-limited
model produces the same, final steady-state
landscape as the detachment-limited model.
However, the author needs to show several
transient-state comparisons between these
two models before reaching steady state, and
may test the sediment flux out of the domain
to explore the differences between these two
models (e.g., Armitage et al., 2018, ESurf). I
have the feeling that they are different even
they have the same final landscape.”

Yes, of course! Both end members have not
much in common concerning their transient
behavior. It is a second-order diffusion equa-
tion vs. a first-order advection equation.
Transport-limited erosion in principle even
supports no distinct transient knickpoints. I
thought the difference in transient behavior
was clear, and I just wanted to point out with
the numerical example that they also differ
under non-uniform steady-state conditions.
The key point of Sect. 2 is just that the old
findings of Hack (1957) could be alternatively
be interpreted as transport-limited erosion in
a uniform steady state. I pointed out this
more clearly at the end of Sect. 2 (lines
178–186).

“Because of the above assumption (uniform
erosion rate), in the case of non-uniform up-
lift rate (and thus non-uniform erosion rate at
steady state), the transported-limited model
produces different final landscape compared
to the detachment-limited model (Figure 1,
middle and right panels). The proposed
transport-limit model, assumed a uniform
erosion, is unlikely suitable to study a non-
steady-state (transient) landscape evolution
or a non-uniform uplift scenario. Please ar-
gue against me if I am wrong.

Of course, the transport-limited end member
is not suitable in bedrock mountain streams,
and the detachment-limited end member not
suitable for large parts of Earth’s surface out-
side the mountain belts. We can conclude
that we need combined models such as the
one proposed by Davy & Lague (2009) in or-
der to capture the majority of the rivers in
the real world, but nothing more.
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“The author mentioned that Yuan et
al. (2019, JGR)s erosion-deposition
model/method breaks down if the model ap-
proaches the transport-limited regime, which
is not true. Yuan et al. (2019) mentioned in
their article that ‘. . . , the iterative method is
proven to converge unconditionally at least
when G ≤ 1, but we show experimentally
that this method can also converge even if
this condition is not satisfied’, e.g., at G = 10
(their Figure 3a), which is in transport-
limited regime for G > 1, a criteria estimated
from various experimental and natural land-
scapes (Guerit et al., 2019, Geology).”

This is just due to slightly different termi-
nologies. In my manuscript, I refer to the
classical concept with detachment-limited
and transport-limited erosion as end mem-
bers that do, however, not occur in nature in
this strict form. Anything in between would
be called mixed channels then. In turn, you
subdivide the entire range into a detachment-
limited and a transport-limited range. I
clarified this by declaring detachment-
limited erosion and transport-limited
erosion as end members (lines 9, 17,
132, 134, 271, 272, 346, 364, 365, 387,
397, 399, 405, and 559).

“L5: ‘as the stream-power law is’ change to
‘of the stream-power law’.”

I changed the wording of this sentence either
(lines 5–6).

“L7: ‘as the established implicit solver
for transport-limited erosion’, should be
detachment-limited erosion?”

Thanks! I could have read this 100 times
without finding this mistake. Fixed (line
8).

“L23 and L25: ‘sediment flux density’ change
to ‘sediment flux per unit width’.”

Good idea as flux density could be misin-
terpreted as flux per area. I changed it
throughout the paper (lines 26, 32, 115,
143, 151, 162, 359).

“L67: A reference is needed for the upstream
propagating velocity of erosion.”

I would say it is too simple for a reference
as it is just the velocity of advection in the
advection equation. I added a short ex-
planation (line 84).

“L72: ‘but despite increasing computing ca-
pacities still important point’ change to ‘be-
cause increasing computing capacities is an
important aspect in the landscape evolution
modelling’.”

I removed this phrase because every-
body knows that computing capacities
have increased (line 94).

“L78: Two ‘n in O(n) and Sn are confusing.
Suggest to use ‘O(N) and N is the number
of nodes discretizing the landscape. Suggest
to change throughout the manuscript.”

Good point; I changed it throughout
the paper (lines 96, 97, 254, 557).

“L134: Not easy to understand how to de-
rive this equation (12) based on the above
equations. Before the sentence, please write
‘Combine equations (1) and (12)’, ...”

Ok, although this is not the most difficult
part of the paper. I added the explana-
tion (line 164).

“L288-L291: It is better to list this compu-
tational time in Table 1.”

Table 1 occurs much earlier in the paper. So
I think that it would not be helpful to men-
tion these values already there. Beyond this,
it would make Table 1 more complicated as
it refers to a single step so far.
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Reviewer 2 (Wolfgang Schwanghart)

“164: Si(t) is actually not used later, at least
in the immediate context (Eqs. 20-25). You
may, however, replace the second term in the
right-hand side of Eq. 20 with Si(t).”

It is in fact used exactly the way you suggest
since the direct form of Eq. (20) is Qi(t) =
KAm+1

i Si. But this is just the intermediate
step from Eq. (11) to Eq. (20). In order to
proceed to Eq. (21), however, I need the form
of Eq. (20) used here. So the form of Eq. (20)
with Si would be an intermediate step that
might help the readers, but it cannot be used
as a simplification.

“What about upstream boundary condi-
tions? I wrote the model in MATLAB as 1-D
model and the uppermost node remains fixed
(if no uplift is applied). I may have wrongly
written the code, though.”

The “natural” upstream boundary condition
is no influx of sediment (homogeneous von-
Neumann), which is implicitly defined by the
condition that the direction of the sediment
flux follows the flow direction of water. So
grid cells that are not supplied with water
from other cells also do not receive sediments.
In the equations, this means that all sums
over the donors (all

∑
j terms) are empty.

Then αi = si = Ai and βi = siUi = AiUi

(Eq. 18),

Qi(t) =
Ai (Hi(t0)−Hb(t)) +AiUiδt

Ai
di

KAm+1
i

+ δt

(Eq. 23), and then into Eq. (21):

Hi(t) = Hb(t) +
Hi(t0)−Hb(t) + Uiδt

1 + δt
KAm

i
di

.

This expression is even the same as the
fully implicit step for the detachment-
limited model, and according the formula-
tion in Sect. 2 detachment-limited erosion
and transport-limited erosion must indeed be
the same at those sites without donors. So I
guess that it might be just a problem in your
1D implementation. I added a short node
on the boundary conditions (lines 217–
219).

“In the end, the model is not fully 2D, as the
scheme is solved in 1D on a network. This
may lead to weird aggradational forms (lin-
ear ridges on flat topography) if too long time
steps are applied. Can you comment on this?
What is an appropriate time step length?”

Yes, this problem affects all models where the
computation of the flow pattern is separated
from the change in topography, so also the
detachment-limited model. How severe it is
and how much it limits the maximum δt, de-
pends strongly on the considered situation.
So it is even difficult to provide a rule of
thumb for the maximum δt. I added some
remarks in the section about the limi-
tations (lines 535–543).
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Reviewer 3

“One aspect of the method that I find inter-
esting is that the implicit algorithm should
apply equally well for one-dimensional diffu-
sion problems, provided that the flow in ques-
tion is always oriented in one direction. That
might not be tremendously helpful for peo-
ple who want to model diffusion, since we
already have numerous well-known solution
methods in 1D and 2D for that particular
problem, but it does suggest a way to test
the proposed scheme under transient condi-
tions. The manuscript notes that investigat-
ing the temporal behavior turned out to be
quite complex. Yet understanding temporal
behavior is one of the reasons to use land-
scape evolution models in the first place. It
is important to know something about the
limits to accuracy and stability of a numeri-
cal scheme under transient conditions. I sug-
gest therefore that the author try formulating
a 1D, uni-directional diffusion problem and
solving it with this implicit method for the
transient case of a step change at one end
of the domain. The analytical solution for
that case is well known, so it seems like a
good opportunity to test the properties of the
proposed scheme under transient conditions.
Basically, it would be a matter of having a
1D domain and a constant value of A.”

Transient behavior is, of course, the heart
of landform evolution modeling. However,
catching up with what has already been done
for the detachment-limited case just in one
section of this paper is impossible. We know
what solutions of the 1D diffusion equation
look like, but the interesting aspect how dis-
turbances propagate into tributaries where
the diffusivity is lower than in the trunk
stream. My recent Postdoc researcher has
already started a study on the characteris-
tic response time of catchments to changes in
uplift or base level and which part the hill-
slopes play here. But this will be an own
paper where I will not be first author.

“Such a test might also make it possible to
identify constraints on time-step size. The
manuscript notes that implicit methods allow
arbitrarily large time steps. Yes thats true
in principle, but arbitrarily large really just
refers to stability. Two other considerations
are: how does step size influence solution ac-
curacy, and in particular for landscape mod-
els, to what extent does drainage network re-
organization limit step size? These questions
are undoubtedly hard or maybe impossible to
answer in general, but some practical rules of
thumb would be useful for those who wish to
apply the algorithm in practice. So again I
encourage the exploration of a transient case
of simple 1D diffusion.”

Formally, the error of the scheme is linear
in δt, but this does not help much practi-
cally. The reorganization of the drainage
network is indeed the limiting factor here.
This problem affects all models where the
computation of the flow pattern is separated
from the change in topography, so also the
detachment-limited model. How severe it is
and how much it limits the maximum δt, de-
pends strongly on the considered situation.
So it is even difficult to provide a rule of
thumb for the maximum δt. I added some
remarks in the section about the limi-
tations (lines 535–543).
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“14 the word uplift has a long history of am-
biguous usage among geoscientists. I rec-
ommend specifying uplift of crustal material
relative to a given datum or something like
that.”

I think that it would not be a big problem for
the readers in combination with the equation.
Nevertheless, the is no argument against clar-
ifying it, so I added the suggested phrase
(line 15).

“16 I suggest adding some references here for
the benefit of readers who are just getting
into the topic. I am not sure of the prove-
nance of the term transport limited, but I
think it appears in Carson and Kirkby (1972)
in the context of hillslopes. For the landscape
evolution context, Willgoose et al. (1990,
Water Resources Research) might be a rea-
sonable reference, though I do not remem-
ber whether they actually used this phrase.
As far as I know, the term detachment lim-
ited was coined by Howard (1994, Water Re-
sources Research).”

Admittedly, I am completely uncertain about
the provenance of the two terms. I agree that
it makes sense to mention the two papers
from the early 1990s where the two concepts
presumably occurred for the first term in the
context of these types of models, so I added
the references (lines 19 and 30–31).

“26 Up to this point, you have not actually
defined transport limited. This would be a
good place to do so. I think of a transport-
limited river reach as one in which the rate
of bed erosion is limited by the ability of the
flow to transport the eroded material down-
stream, rather than by the availability of po-
tentially mobile sediment (feel free to use this
wording if you like it).”

It did even not think that the term ‘transport
limited’ requires a definition, but it makes
sense and I like your suggested wording, so I
added it (lines 29–30).

“For what it is worth, in my view, the defi-
nition is actually fuzzier than we sometimes
pretend: the ability of moving fluid to trans-
port sediment depends very strongly on the
size and density of sediment on the bed.
There is no such thing as a transport capacity
independent of bed sediment characteristics.
Bed-load theory tells us that transport ca-
pacity depends on critical shear stress, which
in turn depends on sediment size and density;
suspended-load theory tells us that sediment
concentration depends on near-bed sediment
concentration and on settling velocity, both
of which also depend on size and density. But
for purposes of this paper, the only real prac-
tical implication of this observation is that
one should be cautious in using the phrase
transport capacity. ”

I fully agree. The consequence is that the
parameter K in my formulation is a lumped
parameter that also depends on the charac-
teristics of the material coming from the up-
stream area. A little remark in this di-
rection now occurs in line 417–419.
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“31-33 Second-order derivatives only appear
if q is a function of topographic gradient.
Suggest adding wording to clarify this, e.g.,
Because q is a function of topographic gradi-
ent, eq (1) contains... ”

I took it out of the parentheses and ex-
plained it a bit more clearly now (lines
39–40).

“35 Change In the last years to In recent
years ”

Corrected (line 43).

“36 there seems to be a trend to – I also share
the impression that use of a detachment-
limited stream erosion model in landscape
evolution studies is common, but whether
there has been a trend in that direction is
harder to say. There are situations in which
a transport-limited model is suitable, and
plenty of literature on such models (e.g.,
Wickert and Schildgen, 2019; and a great
deal of the work by Greg Hancock, Tom
Coulthard, and colleagues). Suggest simply
asserting that detachment limited is a com-
mon or popular choice.”

This indeed sounds better, so I changed the
wording (line 44).

“40 Of the three suggested reasons for
the widespread use of detachment-limited
discharge-slope models, I think the second
two are really the important ones. The first
might be a bit misleading to readers, be-
cause any of the three flavors of model dis-
cussed in this paper can be related to a
power-law slope-area relationship. As far as
I know, the link between erosion/transport
and slope-area was actually first identified in
a transport-limited context. If I recall right,
Howard (1980 in Thresholds in Geomorphol-
ogy) articulated a slope-area relation based
on a variety of different transport formulas,
and Howard and Kerby (1983) followed up
with a field-based study. Then Willgoose et
al. (1991) and Willgoose (1994) really hit
home the slope-area relation in a transport-
limited context. So having a link with Flints
law is not unique to the detachment-limited
formulation. The solution I suggest is just
to add a sentence, maybe after the sentence
following eq (6), to the effect that transport-
limited and other types of erosion law can
also be linked to Flints law (references), but
the relationship is especially simple for the
area-slope erosion law in eq (6).”

This is basically true, but nevertheless the
transport-limited approach seems not be
used in such a simple form as the detachment-
limited approach nowadays. I adjusted the
wording so that it no longer implies
that the relationship to Hack’s find-
ings is clearer, but only simpler for the
transport-limited model (lines 49–50)
and changed in the abstract accord-
ingly (lines 5–6). In addition, I men-
tioned that Willgoose (1991) already
brought the transport-limited model
into the context of Hack’s findings
(lines 76–81).
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“49 has become some kind of paradigm – I
think I understand what you mean here, but
as written it is a vague statement (what ex-
actly constitutes a paradigm? what kind of
paradigm?). Better I think to leave this com-
ment out.”

I replaced it by “a common choice”
(line 59).

“56 little is known – this statement is a
bit unfair to researchers who have tried to
pin it down. Suggest softening to some-
thing like the effective value of n is less well
known. You could also add something like:
some studies suggest a linear scaling (REFS),
some sub-linear (REFS), and some super-
linear (REFS).”

I know about some fields where several highly
reputed scientists spent much work, and
there is still very limited knowledge. Esti-
mating the value of n is just extremely dif-
ficult and susceptible to systematic errors.
Personally, I do not trust in any of the esti-
mates of n from the literature very much, but
discussing this would be a different paper. I
used a softer wording now (lines 66–
67) and referred to Lague (2014) for an
overview (lines 70–71). In addition, I
discussed one of the potential sources of
systematic errors at the end of Sect. 4
now (lines 318–344).

“62 There are quite a few other papers that
report estimates of K values, which could be
cited here. I guess the e.g. is meant to say
there are more papers than I feel like both-
ering to list here, but if you want a starting
point, try these two. I guess thats ok, but
you are likely to annoy the authors of the
ones you left out. An alternative would be
to find a recent paper or two that reports K
values and is reasonably comprehensive in its
referencing, and cite as So-and-so, 20xx, and
references therein.”

The list was even not thought to be a start-
ing point for studies about K in general. The
point is that the term “erodibility” could
be misinterpreted as a property of the rock
alone, while it is a lumped parameter. These
two references particularly refer to the de-
pendence on climate, and the “e.g.” is due
to that fact that I am not sure whether there
are also older references addressing the de-
pendence on climate.

“76 The wording is a bit awkward here; sug-
gest leaving out despite increasing comput-
ing... (we all know computers have gotten
faster).”

True, I removed this phrase (line 94).

“87 models treat ” Thanks! Fixed (line 105).

“100 confusing because you would choose ei-
ther (2) or (8); how about (1) and either (2)
or (8) ”

No, we would indeed need the 3 equations in
order to obtain a system of 2 partial differ-
ential equations for the variables H and q in
this case. However, as this part is indeed a
bit complicated, I moved it to the new
Sect. 5 and explained it in more detail
there (lines 357–359).
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“109 the upstream” Fixed (line 128).

“eq (11) and preceding text: the way this
is written seems to suggest that approaching
the problem from the question of how much
sediment would you get from eq (6) is a req-
uisite for deriving the method that follows.
Actually, there are at least two other path-
ways that I can think of. I think you are
more likely to sell the approach more effec-
tively if you point out that there are several
lines of evidence to support the hypothesis
that the long-term sediment flux should de-
pend on slope and drainage area. You have
ar- ticulated one of them, but it seems to me
it is subject to the criticism that you are us-
ing a detachment-limited concept (eq 6) to
derive a transport-limited model. An alter-
native would be to state that previous studies
have shown that sediment-transport formulas
can be cast in the form of an area-slope power
expression, and cite some references. You
could also lean on Davy and Lague (2009)
here, because when you combine their expres-
sion with a unit-stream-power detachment
rate andQw ∝ A (Qw being water discharge),
you end up with a transport capacity (if I re-

call right) that looks like A
3
2S (more gener-

ally, Am+1Sn). I think it is fair to say that
there is uncertainty in the literature over how
best to express transport capacity in models
of stream profile evolution or landscape evo-
lution. Some have Q ∝ QwS, some (e.g.,
Willgoose, Howard, based on the empirical
Einstein-Brown expression) have Q ∝ q2wS

2,
and some include a transport threshold. Key
point for your purposes is that Q = KAm+1S
falls within the span of proposed laws.”

It indeed reads a bit as if this section started
from the detachment-limited model and mea-
sured the resulting sediment yield. However,
I rather thought of the generic model based
on Hack’s findings, i.e., on a uniform effec-
tive erosion rate that yields river profiles with
constant concavity and steepness indices. At
this level, it just describes an erosion rate
without regard to any mechanism. I tried
to point this out more clearly in lines
141–149, mentioned the alternative ap-
proach using more physical principles
in the introduction (lines 76–81), and
return to this point in lines 168–171.
However, I still prefer the empirical starting
point here in order to point out that both in-
terpretations of Hack’s findings are somehow
straightforward.

“130 change which to that (introduces a re-
strictive clause)”

Thanks! Fixed (line 158).
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“132-3 I do not understand this comment
about Voronoi polygons. Normally in a
finite-volume solution, you would integrate
flux density over the width of a cell face,
whether it is a square or a Voronoi polygon
or some other shape. Using Q instead of q,
with an implied sub-grid-scale channel width
(I suppose), you do not need to do this in-
tegration; but that is true regardless of the
shape of your cells. Is your point that the
discrete representation in eq 12 works in prin-
ciple for any grid mesh, regular or irregular?
Consider removing this statement, as it seems
like a bit of a distraction.”

You are right, the Voronoi condition is not
essential here, although of advantage for the
accuracy. I formulated it for a general
finite-volume discretization now (lines
160–163).

“137-8 See comment above about transport
laws. Equations like (11) have been fre-
quently used in the literature. In particular,
in the work of Willgoose et al. (1991a,b,c)
and subsequently, the slope-area relationship
is used to estimate parameters for a transport
law. If there is something very specific about
eq (11) that you think is unique, then that
should be pointed out. Otherwise, the state-
ment carries the implication that transport
laws have never before been derived from
slope-area analysis, which is not correct.”

I clarified this point (lines 141–149 and
168–172, see also the above comment).
But beyond this, I think the simple formu-
lation given in Eq. (11) is new, and this its
advantage is explained in lines 173–180.

“144-5 I believe it is more than a matter
of terminology. It is rather a matter of di-
mensionality. If you suppose m = 1/2, then
the erodibility has dimensions of inverse time,
whereas the transport coefficient has dimen-
sions of length2/time.”

No, both have the dimension of inverse time
and even the same value under identical con-
ditions (same river profile at the same erosion
rate).

“153-157 Consider adding some more ex-
planatory text here. At first glance, eq (15)
looks like a Taylor expansion to first order.
But if I am following this correctly, actually
Q0i includes the value ofQi at t0 plus the par-
tial derivative of Qi with respect to Hi times
the change inHi during one time step. That’s
a clever idea, and is consistent with the expla-
nation on line 156, but it took me some time
to work it out. Other readers might similarly
misinterpret Q0i on a first look, and yet its
definition is really key to whole scheme. Sug-
gest devoting a full sentence or so to pointing
out the definition and importance of it.

The linear dependence of all properties
(height, flux) on the base level, i.e., that
Eq. (15) is exact, is indeed the key to under-
standing the numerical scheme. I added a
detailed explanation including the new
Fig. 1 where it can be recognized that it
is not just a first-order Taylor approx-
imation, but an exact relation (lines
201–207).
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“177 The challenge for readers is that the
donor information is buried in the definitions
of alpha and beta. Suggest adding, after the
word donors, (because α and β depend on
donors Q and Q′, respectively).”

Ok, seems to be helpful, so I added some-
thing like this (lines 234–235).

“187, 189 - reference to a recursive imple-
mentation is vague. Suggest referring to a
published algorithm(s) for sorting by down-
stream order.”

To my knowledge there is no sorting al-
gorithm that achieves linear complexity
(O(N)) on average, so sorting the nodes
would formally destroy the linear complexity
for both transport-limited and detachment-
limited erosion. Provided that a program-
ming language that supports recursion is
used, a recursive scheme is more efficient than
sorting. I briefly explained how the re-
cursive schemes have to be designed
here (lines 245–249 and 250–251).

“198-200 Please document somehow the spec-
ifications for the performance tests: for ex-
ample, the number of iterations were run for
each case.

Seriously? The values are, of course, ob-
tained from several runs (here with 100 and
1000 time steps) and checked for consistency.
However, we know that the uncertainty is pri-
marily not due to the process of measuring,
but to the details of the implementation of
the individual functions. So I added one
short remark (lines 259–260).

“207-8 With all due respect, I think this is a
missed opportunity. As noted above, I sug-
gest trying a solution with one row of grid
nodes (so, strictly one dimensional) and a
uniform drainage area. Then it reduces to
a linear diffusion equation, which you could
compare with the transient analytical solu-
tion for diffusion given a step change at one
boundary.”

I am quite sure that this opportunity does not
run away so soon, and there is already some
ongoing work in this direction. However, the
1-D version is not interesting enough and
thus not really an option.

“213 Please explain the rationale for increas-
ing δt over time.”

Ok, I explained the scheme a bit more
in detail, although this required some
reordering (lines 279–292).

“217-8 To avoid potential confusion, it would
be useful to clarify that the two models are
NOT equivalent, but rather their steady state
solutions have the same slope-area relation-
ship. Either give the predicted slope-area
equivalence, or quote a reference that does
(or both).”

Good point! I discussed the condition
under which the models are equivalent
and how they differ at the end of Sect. 2
now (lines 178–186).
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“223 and following: The tent-shaped uplift
pattern is a clever test. I think the exam-
ple would be easier to follow if you did two
things. First, before referring to the results
(figure 2), explain why you are using this
tent-shaped uplift and what differences you
expect to see between the two models. That
way, the reader knows what to look for in Fig-
ures 2 and 3. Second, it would be very helpful
to provide an analytical solution for the two
models. You could simply use Hacks law to
relate drainage area to distance (I would just
make the exponent 2 for simplicity). Plot the
predicted longitudinal stream profiles with a
tent-shaped uplift pattern for each model, in
chi space (you could do linear space too).
That way there is a clear expectation for Fig-
ure 3 (actually, you could simply add the an-
alytical profiles to Figure 3). If I have done
the math right, the two profiles should be de-
fined by

dH/dx = (u0(Lx)/K)x−hm

dH/dx = (u0/K)x−h(m+1)
∫ x

0
(L− x)dx

where u0 is the uplift rate at the ridgeline, h is
the Hack exponent, and L is the domain half-
width. So, should be possible to plot these as
analytical expectations.”

A good idea in principle, but it runs into
problems with the contribution of tributaries
for the transport-limited model. In con-
trast to the catchment sizes, the sediment
fluxes do not obey Hack’s law. As an ex-
ample, all single-pixel catchments are lo-
cated at the ridge and thus exposed to the
maximum uplift in the 1D formulation us-
ing Hack’s law. In the network, however,
they are distributed over the entire catch-
ment. So they are exposed to lower uplift
on average and thus provide less sediment.
I recently worked on a similar problem in
the context of glacial erosion (Prasicek et al.,
EPSL, 2020, 0.1016/j.epsl.2020.116350), and
it is more complicated that it seems first.

“251 φ and ψ seem to be parameters rather
than functions.”

This depends on the point of view. If we
consider the catchment size A as a variable,
φ and ψ are functions. I clarified this by
writing φ(A) and ψ(A) at several loca-
tions where it makes the terms not too
cumbersome.

“254 Davy and Lague deserve much credit for
introducing this formulation in the landscape
evolution context, and showing that it relates
to the earlier Beaumont model except that
the length scale varies with unit discharge.
For the record, similar formulations with ero-
sion/entrainment and deposition terms seem
to be widely used in the sedimentation engi-
neering and soil erosion communities.”

Good point, but I must admit that I did
not work on these fields since the end of the
1990s, and I am not familiar with the recent
literature.
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“eq (34) I like this alternative expression of
phi. Presumably it would simplify calibra-
tion by removing a built-in correlation be-
tween the two parameters.”

I even used the model like this for several
years in such way that K defines the steep-
ness of equilibrium profiles and G let us more
between detachment-limited and transport-
limited. The Associate Editor also suggested
to discuss this class of models in more de-
tail, and new part additionally contains
one more alternative formulation with
a different set of parameters (lines 396–
419).

“284-5 Would not G→∞ lead to Qi → 0 by
eq (31)?

Indeed! This is another argument why the
Davy-Lague model must be rescaled in or-
der to have a well-defined transition to the
transport-limited end member. This is dis-
cussed more thoroughly now in Sect. 5
(lines 365–368).

“286 missing to ” Fixed (line 458).

“287 extra of ” Fixed (line 459).

“294 some kind of is a bit vague. Suggest
re-wording to be more precise.”

This sentence has vanished by some re-
structuring the sections anyway (line
475).

“295-6 Can you articulate what process(es)
this kind of formulation is meant to repre-
sent? Is the idea that some of the material
is so fine-grained that it will not end up be-
ing deposited until it reaches the ocean or
some kind of closed basin? I wonder whether
an alternative would be to build this into
dQ/dH.”

This was exactly the idea behind it. I added
a note on the idea (lines 478–479).

“303-4 This statement is not clear to me.
From the references cited, I guess that by
scaling problem you mean the classic prob-
lem of grid-size scaling. Yet that wasn’t
mentioned as an issue with the prior mod-
els (transport limited and linear decline), so
why is it more of an issue with equation 35
than with, say, equation 26?”

Admittedly, the explanation is very short.
The reason why it may occur here, but not
in the previous consideration is breaking the
sediment balance (direct excavation) along
linear river segments (line 487). It may be-
come clear to the readers if they proceed to
the reference Hergarten (2020a). However, it
is just thought as a warning for those who
ever get to the point where they want to im-
plement such a model.
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“317-325 Are you suggesting to solve for dif-
fusive flux in the flow directions using the
implicit scheme, and the other directions us-
ing some other scheme? How would you
avoid double-counting the fluxes in the car-
dinal flow directions? Overall, I think the
sketch presented here for handling diffusion
is not really convincing. I would recommend
either deleting it, or expanding it to really
demonstrate how it would work.”

Exactly! I thought it would be not a big chal-
lenge to follow the idea, but I explained it
in more detail now (lines 504–519).

Associate Editor (Jean Braun)

“I think the author could provide a more
quantitative comparison between the results
obtained with this new method and those ob-
tained by solving the Davy and Lague (2009)
approach directly (i.e. without using the flux
divergence formulation) as done by Yuan et
al (2019). I have rapidly coded the two ap-
proaches in 1D and easily showed that the
improvement in speed is a strong function of
G (for G ≥ 1).

You are right that the improvement in perfor-
mance compared to the iterative implemen-
tation of Yuan et al. (2019) rapidly increases
with increasing G for G > 1 as the con-
vergence of the iterative scheme slows down.
The reason why I did not consider this in
such detail is that the estimates of Yuan et al.
(2019) might even be too pessimistic. I used
basically the same approach for some years,
but with a fixed number of 2 iterations (the
minimum number of flow directions change),
and did not care for convergence. I also work
reasonably well, in particular if we take into
account that changes in flow directions re-
quire a limitation of δt anyway. That was
the reason why I stayed on a rather quali-
tative level. i.e., focusing on the advantage
that we do not have to take care of anything
when using the direct scheme. Nevertheless,
I introduced some numbers on the gain
obtained from comparing the results of
Yuan et al. (2019) and Guerit et al.
(2019).
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“Additionally to the suggestions made by the
reviewers, I would like the author to provide a
more structured explanation of the procedure
used in the solution of what the author calls
the ‘linear decline model’. I note that the
author’s implementation is based on equa-
tions [1]+[26] (I use square brackets to indi-
cate equation numbers from the manuscript
and parentheses to indicate equation num-
bers from this comment):

∂H

∂t
= U − φS + ψQ (1)

and its discretised form [28]; but, of course,
it also uses equation [17], which is equivalent
to [16], itself a discretised form of equation:

∂H

∂t
= Udivq (2)

This leads me to conclude that the author
uses two evolution equations simultaneously
at every point of the landscape. Combining
them also suggests that:

divq = φS − ψQ (3)

This may explain why the method is hybrid,
depending on the value of the ψ parameter
(purely advective if ψ = 0 and divergence
based (or diffusive) for large values of ψ),
as pointed out by the author. However, it
is not clear to me how to connect all these
points together. I would appreciate if the au-
thors could help me (and other readers) clar-
ify this point with a more structured presen-
tation of the basic partial differential equa-
tion(s?) that are solved in the linear decline
model algorithm.

Exactly! As the main change to the
manuscript, I devoted an own section
to the linear decline model now (new
Sect. 5). This section starts from the
theoretical point of view – two cou-
pled partial differential equations and
their “usual” formulation as a single
integro-differential equation. Then it
addresses the limiting cases where it
turns into a single differential equa-
tion, however, of different types for
the detachment-limited and transport-
limited end members. As a little ex-
tension, I introduced a formulation in
terms of two different parameters Kd

and Kt, which can be interpreted as
shared stream power. I hope you find this
section useful.

In addition, I extended the results section by Fig. 5 (lines 318–344) and some text. I did this
mainly because Reviewer 3 brought the exponent n into play. In the recent literature, there
seems to be some trend towards rather high values of n. Taking into account the results from
the simple tent-shaped uplift pattern for transport-limited erosion, I am wary about these large
values of n, so I discussed the results of this example in this context as some kind of warning.
Maybe you could take a look at the reasoning and let me know whether you find it useful. It is
not an essential part and could easily be skipped.

Best regards,

Stefan Hergarten
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Abstract. Most of the recent studies modeling fluvial erosion in the context of tectonic geomorphology focus on the detachment-

limited regime. One reason for this simplification is the direct
:::::
simple relationship of the constitutive law used here – often called

stream-power law – to empirical results on longitudinal river profiles. Another, not less important reason lies in the numerical

effort that is much higher for transport-limited models than for detachment-limited models. This study proposes a simple for-

mulation of transport-limited erosion that is as close
:::::
where

:::
the

::::::::::
relationship

:
to empirical results on river profiles as

::
is

::::::
almost5

::
as

::::::
simple

::
as

:
it
::
is
:::
for

:
the stream-power lawis. As a central point, a direct solver for the fully implicit scheme is presented. This

solver requires no iteration for the linear version of the model, allows for arbitrarily large time increments, and is almost as

efficient as the established implicit solver for transport-limited
:::::::::::::::
detachment-limited

:
erosion. The numerical scheme can also

be applied to linear models between the two extremes
:::::
hybrid

::::::
models

::::
that

:::::
cover

:::
the

:::::
range

:::::::
between

:::
the

::::
two

:::
end

::::::::
members

:
of

detachment-limited and transport-limited erosion.10

1 Introduction

Rivers play a major if not dominant part in large-scale landform evolution. If horizontal displacement of the crust is not taken

into account, models describing the evolution of a topography H(x1,x2, t) are typically written in the form

∂H

∂t
= U −E, (1)

where U and E are uplift rate and erosion rate
::
the

:::::
rates

::
of

:::::
uplift

::
of

::::::
crustal

:::::::
material

:::::::
relative

::
to

:
a
:::::

given
::::::
datum

:::
and

:::
of

::::::
erosion,15

respectively.

Two limiting cases
:::
end

::::::::
members

:
– detachment-limited and transport-limited erosion – are widely considered in the con-

text of fluvial landform evolution. For
:::
The

::::
term

::
“detachment-limited erosion, it is assumed

:
”
::::
was

::::::::::
presumably

::::::
coined

:::
by

:::::::::::::
Howard (1994).

::::
The

::::
idea

::::::
behind

:::
this

:::::::
concept

::
is
:
that all particles entrained by the river are immediately removed from the

system. The erosion rate E can be considered as a function of local properties at each point. In the simplest approach, these are20

catchment size and channel slope (slope in direction of steepest descent), while all other influences are subsumed in a lumped

parameter often called erodibility.
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In all scenarios other than the detachment-limited case, a sediment balance must be considered. If no material is directly

removed, the erosion rate is

E = divq, (2)25

where q is the sediment flux density
::
per

::::
unit

:::::
width

:
(volume per time and cross section length) and div the 2-D divergence

operator. It is usually assumed that q follows the direction of the channel slope, so only its absolute value q varies between

different models.

:::
The

:::::::
concept

::
of

::::::::::::::
transport-limited

::::::
erosion

:::::::
assumes

::::
that

:::
the

:::
rate

::
of

::::
bed

::::::
erosion

::
is

::::::
limited

:::
by

::
the

::::::
ability

::
of

:::
the

::::
flow

::
to

::::::::
transport

::
the

:::::::
eroded

:::::::
material,

::::::
rather

::::
than

:::
by

:::
the

::::::::::
availability

::
of

:::::::::
potentially

:::::::
mobile

::::::::
sediment.

::::
The

:::::::::::::
implementation

:::
of

:::
this

:::::::
concept

:::
in30

:::::
fluvial

::::::::
landform

::::::::
evolution

::::::
models

::::::::::
presumably

::::
dates

:::::
back

::
to

::::::::::::::::::::
Willgoose et al. (1991b).

:
Transport-limited models directly define

the sediment flux density
::
per

::::
unit

:::::
width

:
q instead of the erosion rate E at each point as a function of local properties such as

catchment size and channel slope.

Mathematically, both concepts differ fundamentally. Equation (1) only involves derivatives of first order with regard to

time and with regard to the spatial coordinates (arising from the channel slope) in the detachment-limited scenario. So it is a35

hyperbolic differential equation of the advection type. Propagation of information in one direction only – upstream here – is a

characteristic property of this type. Anything that happens at a given point and a given time only affects the region upstream

of this point in
:::
the future. In contrast, Eq. (1) contains spatial derivatives of second-order in the transport-limited regime

(from the channel slope and from the divergence operator )
::::
since

::
q
::::::
inside

:::
the

:::::::::
divergence

::::::::
operator

:::::::
depends

:::
on

:::
the

:::::::
channel

::::
slope. Equation (1) combined with Eq. (2) is a parabolic differential equation of the diffusion type then, where information40

propagates in both upstream and downstream direction.

Several comprehensive numerical models of fluvial landform evolution have been developed since the 1990s. All models

reviewed by Coulthard (2001), Willgoose (2005), and van der Beek (2013) involve a sediment balance. In the last
:::::
recent years,

however, there seems to be a trend to
::::
using

:
the detachment-limited model

:::
has

:::::::
become

:
a
:::::::
popular

:::::
choice, although the idea that

all particles are immediately excavated is limited has been questioned (e.g., Turowski, 2012). All types of bedload transport are45

obviously not captured by this concept. Nevertheless, even some recent studies using models that are able to simulate sediment

transport focus on the detachment-limited case (e.g., Duvall and Tucker, 2015; Theodoratos et al., 2018; Eizenhöfer et al.,

2019).

At least three aspects make the detachment-limited approach appealing. First, there is a close relationship to old
:::
the

:::::::::
relationship

::
to
:
empirical studies of longitudinal channel profiles

::
is

:::::::::
particularly

::::::
simple

::::
here. Hack (1957) observed a power-law50

relationship between channel slope S and upstream catchment size A in several rivers. This relationship is nowaday often

called Flint’s law (Flint, 1974) and written in the form

S = ksA
−θ, (3)
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where θ is the concavity index and ks the steepness index. Assuming that Eq. (3) is the fingerprint of a spatially constant

erosion rate under uniform conditions, it can be assumed that55

E = f(ks) = f(AθS), (4)

where f is an arbitrary function. Assuming a
::
A power-law function ,

f(ks) =Kkns =K(AθS)n, (5)

where the parameter K is denoted erodibility, has become some kind of paradigm
:
is
::
a
:::::::
common

::::::
choice

:
in this context. The

fluvial erosion rate is often written in the form60

E =KAmSn (6)

with m= θn. Equation (6) is often called stream-power law
:::
and

::
its

:::::::::::
combination

::::
with

:::
Eq.

::
1

:::::::::::
stream-power

:::::::
incision

:::::
model

:
since

it can be interpreted in terms of energy dissipation of the water per channel bed area if an empirical relationship between

channel width and catchment size is used (e.g., Whipple and Tucker, 1999).

The concavity index θ = m
n appears to be well constrained, so most modeling studies either use the value θ = 0.5 originally65

found by Hack (1957) or a
::::::
slightly

:::::
lower

:
reference value θ = 0.45 (e.g., Whipple et al., 2013; Lague, 2014). In turn, little

is known about the
:::
the

:::::
value

::
of

:::
the

:
exponent n

:
is

::::
less

::::
well

:::::::::
constrained

:
since it cannot be constrained

:::::::::
determined

:
from the

shape of equilibrium profiles under uniform conditions. The model is linear with regard to H (if the flow pattern is given) for

n= 1, which simplifies both theoretical considerations and the numerical implementation. Thus, the lack of clear knowledge

about
::::::::
remaining

::::::::::
uncertainty

::
in

:::
the

:::::::
effective

:::::
value

::
of

:
n often serves as a reason for choosing n= 1

:
,
::::::::
although,

::::
e.g.,

:::
the

::::::
results70

:::::::
compiled

:::
by

:::::::::::::::::
Lague (2014) rather

:::::::
suggest

:::::
n > 1. If θ is well constrained and n= 1 is accepted as a convenient choice, the

erodibility K remains as the only parameter. It is a lumped parameter subsuming all influences on erosion other than channel

slope and catchment size, so .
:::
So

:
it is not only a property of the rock, but also depends on climate in a nontrivial way (e.g.,

Ferrier et al., 2013; Harel et al., 2016). However, it just defines how steep rivers will become at a given uplift rate, so reasonable

values can be found, e.g., by analyzing river profiles at situations where estimates of the uplift rate are available.75

The
:::::::::
Constitutive

::::
laws

::::::
based

::
on

:::::::::
power-law

::::::::
relations,

::::::::
however,

::::
have

:::
not

::::
been

:::::::::
employed

::::
only

::
in

::::::::::::::::
detachment-limited

:::::::
models.

::::
Even

:::
the

::::::
earliest

:::::::::
numerical

:::::
model

::
of

::::::::::::::
transport-limited

::::::
erosion

:::::::::::::::::::::::::
(Willgoose et al., 1991b) used

:
a
::::::
power

:::
law

:::
for

:::
the

:::::::
sediment

::::
flux

::::::
density

:::::
based

::
on

:::::::
physical

:::::::
relations

:::
for

:::
the

:::::
shear

::::
stress

::
at
:::
the

::::
bed.

:::
The

::::::::
empirical

::::::
results

::
on

::::
real

:::::
rivers

:::::::::
represented

:::
by

:::
Eq.

::
(3)

:::::
were

:::
also

::::
used

:::
to

::::::::
constrain

:::
the

::::::::
parameter

::::::
values

::::::
before

:::
the

::::::::::::::::
detachment-limited

::::::
concept

:::::::
became

:::::::
popular

:::::::::::::::::::::
(Willgoose et al., 1991a).

::::::::
However,

:::
the

::::::::::::::
transport-limited

::::::::
approach

:::::
never

::::::
reached

::::
the simplicity of the

::::::::::::::::
detachment-limited

::::::::
approach

::::
with

:::::
regard

:::
to

:::
the80

::::
small

:::::::
number

::
of

:::::::::
parameters

::::
and

::::
their

::::
quite

:::::
direct

:::::::
relation

::
to

:::
the

:::::::::
properties

::
of

:::
real

::::
river

:::::::
profiles.

:

:::
The

:::::::::
simplicity

::
of

:::
the

:
differential equation itself serves as a second argument in favor of the detachment-limited approach.

In the linear case (n= 1), Eq. (1) combined with Eq. (6) can be solved analytically for any given uplift pattern and history.

Disturbances
:::
The

::::
term

:::::
KAθ

::::::
defines

:::
the

::::::
velocity

::
of

:::::::::
advection

::::
then,

::
so

::::::::::
disturbances

:
propagate in upstream direction at a velocity

KAθ
:::
this

:::::::
velocity. The treatment can be simplified by the χ transform introduced by Perron and Royden (2013). It transforms85
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the upstream coordinate x to a new coordinate

χ=

∫ (
A(x)

A0

)−θ
dx, (7)

where A0 is an arbitrary reference catchment size and the integration starts from an arbitrary reference point. This transfor-

mation eliminates the inherent curvature of river profiles arising from the decrease of catchment size in upstream direction, so

equilibrium profiles under spatially uniform conditions turn into straight lines. The solutions of this equation and their potential90

for unraveling the uplift and erosion history were investigated by Royden and Perron (2013), and a formal inversion procedure

for the linear case (n= 1) was presented by Goren et al. (2014). So the detachment-limited model can be reconciled with real

river profiles not only under steady-state conditions, but also in the context of temporal changes.

As a third , but despite increasing computing capacities still important point, detachment-limited erosion can be implemented

in numerical models more efficiently than transport-limited erosion. Here, even a fully implicit scheme that allows for arbitrary95

time increments with linear time complexity, also known as O(n)
:::::
O(N), is available. This means that the computing effort

increases only linearly with the total number of nodes
::
N . The scheme was introduced in the context of fluvial erosion by

Hergarten and Neugebauer (2001), described in detail for n= 1 and n= 2 by Hergarten (2002), and made popular by Braun

and Willett (2013).

So far there is no comparable implementation for transport-limited erosion. As mentioned above, transport-limited erosion100

corresponds to a diffusion-type equation. The challenge is that the diffusivity depends on the catchment size and thus varies over

several orders of magnitude. Multigrid methods (e.g., Hackbusch, 1985) are still the only schemes for the diffusion equation

in more than one dimension with linear time complexity. However, convergence breaks down if the diffusivity varies by some

orders of magnitude, so multigrid methods have not been applied in the context of fluvial erosion. So far none of the existing

landform evolution model treats
:::
treat

:
the transport-limited case with a fully implicit scheme that allows for arbitrarily large105

time increments.

The advantage of the detachment-limited model concerning the numerical complexity persists if explicit schemes are used

here, too. The main reason for using explicit schemes for detachment-limited erosion is the artificial smoothing of knickpoints

by the implicit discretization, while explicit schemes that preserve the shape of knickpoints better are available. A comparison

was given by Campforts et al. (2017). As already pointed out by Howard (1994), explicit schemes for the transport-limited case110

typically require 3 to 4 orders of magnitude shorter time steps than for the detachment-limited case.

Howard (1994) already developed an approximation that makes the explicit scheme for the transport term numerically more

stable. Kooi and Beaumont (1994) proposed an approach that increases stability and also allows for a physical interpretation,

often called undercapacity model or – in a more general context – linear decline model (Whipple and Tucker, 2002). It defines

an equilibrium flux density
::
per

::::
unit

:::::
width

:
qe from local properties (channel slope, catchment size, . . . ) and assumes that the115

erosion rate is

E =
qe− q
l

. (8)
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The parameter l defines a length scale and can be seen as inertia of sediment detachment and deposition against changes in

fluvial conditions. The model consisting of Eqs. (1), (2), and (8) can be treated numerically by converting Eq. (2) to an integral

equation based on the relation120

Q=

∫
EdA,

where Q is the sediment flux (not flux density) and the integral extends over the upstream catchment of the considered point.

Converting Q to a flux density and inserting it into Eq. (8) yields an integro-differential equation for the surface height H .

An alternative physical interpretation of the linear decline model was developed by Davy and Lague (2009). The detachment-

limited model (Eq. 6) was extended by a sediment deposition term proportional to the actual sediment flux. As a main point,125

Davy and Lague (2009) found an expression for the rate of deposition that keeps equilibrium river profiles consistent with

Eq. (3), which is not the case for the original undercapacity model (Whipple and Tucker, 2002).

Yuan et al. (2019) implemented an implicit numerical scheme for this model based on a Gauss-Seidel iteration in
::
the

:
up-

stream direction. The convergence rate of the iteration
:::
rate

::
of

::::::::::
convergence

:
was found to be independent of the size of the grid,

so the scheme is indeed of linear time complexity. The rate of convergence, however, decreases
::::::::
However,

:::
the

:::::::::::
convergence130

:::::
slows

::::
down

::::::::
strongly for faster depositionand breaks down if the model approaches the

:
,
:::
i.e.,

:::::
when

::::::::::
approaching

:::
the

:
transport-

limited regime
:::
end

:::::::
member. It

:::
The

::::::
scheme

::
of
::::::::::::::::

Yuan et al. (2019) is therefore presumably the most efficient implementation of

sediment transport in large-scale fluvial erosion models, but it still cannot come close to
:::::::
achieves

:::
its

:::
full

:::::
power

:::::
only

:
if
:::
we

:::
do

:::
not

::::
come

:::
too

:::::
close

::
to

:::
the

:
transport-limited regime

:::
end

:::::::
member.

In the following section, a formulation of transport-limited erosion is proposed that can be directly reconciled with the135

concept of the erodibility. Then, Sect. 3 presents a fully implicit, direct scheme for solving the equation numerically.
::::
After

::::::::
presenting

::
a
::::::::
numerical

::::::::
example

::
in

:::::
Sect.

::
4,

::::
Sect.

::
5
:::::::
provides

::
a
:::::::::
discussion

::::::
several

:::::::
versions

::
of
::::

the
:::::
linear

::::::
decline

::::::
model

:::
and

:::
an

::::::::
extension

::
of

:::
the

::::::::
numerical

:::::::
scheme

:::
for

:::
this

::::
class

:::
of

::::::
models.

:

2 Simple formulation of transport-limited erosion

Let us start from the interpretation of Hack’s empirical relation (Eq. 3) as the fingerprint of uniform erosion under spatially140

constant conditions. Then the the sediment flux at each point of a river
:
,
::::::::
regardless

::
of
:::

the
::::::::::
mechanism

::
of

:::::::
erosion.

::::
This

:::::::
implies

:::
that

:::
the

::::::
erosion

::::
rate

::
is

:
a
::::::::
function

::
of

:::
the

::::::::
steepness

:::::
index

:
(Eq. 9)is the

::
4).

:::::
Then

:::
the

::::::::
sediment

:::
flux

:::
Q

:::::::
(volume

:::
per

::::
time,

::::
not

:::
per

:::
unit

::::::
width)

:::::::
through

:::
any

:::::
cross

::::::
section

::
of

:
a
::::
river

::
is
:

Q=

∫
EdA,

:::::::::::

(9)

:::::
where

:::
the

::::::
integral

:::::::
extends

::::
over

:::
the

::::::::
upstream

:::::::::
catchment.

:::
For

:::::::
uniform

:::::::
erosion,

:::
the

::::::
integral

:::::::
reduces

::
to

:::
the product of the erosion145

rate and the catchment size,

Q=AE =Af(AθS),. (10)
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where f is the same function used for the detachment-limited model
::
If

:
a
::::::::::

power-law
:::::::
function

:
(Eq. 4). If the stream-power

approach (Eq. 6) is used
:
in
:::::::
analogy

::
to

:::
the

::::::::::::::::
detachment-limited

::::::
model, the sediment flux is

:::::::
becomes

Q=KAm+1Sn. (11)150

In contrast to the more common formalism based on the flux density
:::
per

::::
unit

:::::
width

:
q (Eq. 2), these relations use the total

sediment flux Q (volume per time) passing the entire cross section of a channel segment. This total flux cannot be inserted

formally into the divergence operator in Eq. (2) to form a continuous differential equation. Practically, however, this is not a

problem for a discrete channel network. If any pixel of the considered topography has a unique drainage direction towards a

single neighbor and sediment transport follows flow direction, the respective discrete version of the divergence operator at the155

node i is

divqi =
Qi−

∑
jQj

si
, (12)

where Qi is the flux from the node i to its flow target. The sum extends over all neighbors which deliver their sediment
:::
that

:::::
deliver

:::::
their

::::::::
discharge

:::
und

::::
thus

:::::
their

:::::::
sediment

::::
flux

:
to the node i, called donors in the following. Finally, si is the area of the

considered node, i.e., the pixel size for a regular mesh or the area of the respective Voronoi polygon for a triangulated irregular160

network (TIN). On a TIN, this formulation is practically even simpler than the version based on the flux density because the

lengths of the
:::
cell

::
in

::
a

::::::
general

:::::::::::
finite-volume

::::::::::::
discretization.

:::
As

:::
the

:::::
model

::::::::
describes

:::
the

::::
total

::::::::
sediment

:::
flux

:::
and

::::
not

:::
flux

:::
per

::::
unit

:::::
width,

::
an

::::::::::
integration

::::
over

:::
the edges of the Voronoi polygons are not needed.

::
cell

::
is
:::
not

:::::::::
necessary.

:

The
:::::::
Inserting

::::
Eqs.

:::
(2)

:::
and

::::
(12)

::::
into

:::
Eq.

:::
(1)

::::
then

::::::
yields

:::
the simplest form of a transport-limited fluvial erosion modelthen

reads ,
:

165

si
∂Hi

∂t
= siUi−Qi +

∑

j

Qj , (13)

where Qi is defined by Eq. (10) or Eq. (11).

::
As

:::::::::
mentioned

::::::
above,

:::::
using

:::::::::
power-law

::::::::
functions

:::
for

:::::::
sediment

::::::::
transport

::
is

:::
not

::::
new.

:::
In

::::::::::
combination

::::
with

::::::::
empirical

::::::::
relations

::
for

:::
the

:::::::
channel

:::::
width,

::::::::::::::
physically-based

:::::::
relations

:::
for

:::
the

:::::::
sediment

::::
flux

::::::
density

:::::::::::::::::::::::::::::::
(e.g., Willgoose et al., 1991b) support

:::
the

::::::::
hypothesis

::
of

:
a
:::::::::
power-law

::::::::::
dependence

:::
of

::
Q

::
on

::
A
::::

and
::
S

::::
(Eq.

::::
11).

::::::::
However,

:::
the

:::::::
relations

::::::
where

:::::
never

::::::
written

::
in

:::::
such

:
a
::::::
simple

::::
form

:::
as170

::
in

:::
Eq.

::::
(11)

::::
with

:::::::::
parameters

::::
that

:::
are

::::::
related

::
so

:::::::
closely

::
to

:::
the

:::::::
concepts

:::
of

::::::::
concavity

:::::
index

:::
and

:::::::::
steepness

:::::
index

::::
(Eq.

::
3).

:
Equa-

tion (11) was already discussed in the literature (e.g., Whipple and Tucker, 2002) in the context of equilibrium river profiles,

but apparently never used directly for defining a transport-limited erosion model. In view of Hack’s findings this is, however,

as straightforward as describing detachment-limited erosion by Eq. (4) or Eq. (6). Even the meaning
:::::::
physical

:::
unit

:
of the erodi-

bility K is the same in both models, so that estimates
:::
and

:::
the

::::
same

::::::
values of K inferred from measurements can be used the175

same way in both models. The only difference is that K is a catchment-wide erodibility (obtained by averaging the erosion

rates over
::::
yield

:::
the

:::::
same

::::::
erosion

::::
rate

::
at

:::
the

::::
same

::::::::::
topography

:::
for

:::::::
spatially

:::::::
uniform

:::::::
erosion.
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:::
The

::::
two

::::::
models

:::
are,

::::::::
however,

:::
not

:::::::::
equivalent

:::
for

::::::::::
non-uniform

:::::::
erosion.

:::::::::
According

::
to

::::
Eqs.

:::
(4)

:::
and

:::
(5),

:::
the

::::::::
steepness

:::::
index

:::
ks

::::::
directly

::::::
reflects

:::
the

:::::::
erosion

:::
rate

::
at

:::
the

:::::::::
considered

:::::
point

::
in

:::
the

::::
form

:

Kkns = E
::::::::

(14)180

::
for

:::
the

::::::::::::::::
detachment-limited

::::::
model.

::
In
:::::
turn,

:::
Eq.

::::
(11)

::
of

:::
the

::::::::::::::
transport-limited

:::::
model

::::
can

::
be

::::::::
combined

::::
with

::::
Eq.

::
(9)

:::
to

Kkns =
Q

A
=

1

A

∫
EdA.

::::::::::::::::::::

(15)

::::
This

::::::
relation

::
is

:::::::
basically

:::
the

:::::
same

::
as

:::
Eq.

::::
(14)

:::::
except

::::
that the

:::::::::
right-hand

:::
side

::
is

:::
the

:::::
mean

::::::
erosion

:::
rate

::
of

:::
the

:
upstream catchment

), while it is a local property
::::::
instead

::
of

:::
the

::::
local

:::::::
erosion

:::
rate

::
at

:::
the

:::::::::
considered

:::::
point.

:::
So

:::::::
channel

::::::::
steepness

::::::
directly

:::::::
reflects

:::
the

::::
local

::::::
erosion

::::
rate in the detachment-limited model. However, it should be kept in mind that

:
,
:::
but

:::
the

:::::
mean

::::::
erosion

::::
rate

::
of

:::
the185

::::::::
catchment

:::
for

:::
the

::::::::::::::
transport-limited

::::::
model.

:::
The

:::::
same

::::
holds

:::
for

:::
the

:::::::::::
interpretation

::
of

:::
the

:::::::::
erodibilityKalso carries information about the entire

:
.
::
In

:::
the

::::::::::::::::
detachment-limited

::::::
model,

::
it
::::::::
describes

::::
how

:::::
much

::::::::
material

::
is

::::::
eroded

::
at

:::
the

:::::::::
considered

:::::::
location

:::
for

::
a

:::::
given

::::::::
steepness

:::::
index.

:::
In

::::
turn,

::
it

::::::::
describes

:::
how

::::::
much

:::::::
material

::
is

::::::
eroded

:::
on

:::::::
average

::
in

:::
the

:
upstream catchment in the detachment-limited modelif precipitation varies

within the catchment
:::::::::::::
transport-limited

::::::
model. From a process-oriented point of view, K would rather be considered a transport190

coefficient than an erodibility
::::
here. However, this is just a matter of terminologywhere the term erodibility has already been

used.

3 A fully implicit numerical algorithm for transport-limited erosion

The model proposed in the previous section can be treated with an efficient, fully implicit numerical scheme in the linear case

(n= 1). The reason why this is possible in contrast to the 2-D diffusion equation lies in the tree structure of the flow and195

sediment transport pattern.

The fully implicit discretization of Eq. (13) reads

si
Hi(t)−Hi(t0)

δt
= siUi−Qi(t) +

∑

j

Qj(t), (16)

where the time step extends from t0 to t and δt= t− t0. The solution at t0 is known, and the solution at t is computed.

Let the node b be the flow target of the node i, so Hb serves as a base level for the node i. As the entire problem is linear, the200

:::::
height

:::
Hi::::::::

responds
::::::
linearly

::
to
:::::

base
::::
level

::::::::
changes.

:::::
Figure

::
1
::::::::
illustrates

::::
this

:::::::
behavior

::
in
::
a
::::::
simple

::::::::
numerical

::::::::
example

::
of

:
a
:::::

river

:::::
(solid

:::::
lines)

::::
with

:::
one

::::::::
tributary

::::::
(dashed

::::::
lines).

::::
The

:::::
initial

::::
state

::::::
(t= 0,

:::::
blue)

::::
was

:
a
::::::
steady

::::
state

:::::
under

:::::::
constant

::::::
uplift.

::::
The

:::
red

:::::
curves

::::::
(t= 1)

:::::
show

:::
the

:::::
result

::
of

::
an

:::::::
implicit

::::
time

::::
step

:::::::
without

::::
uplift

::::
and

::::
with

:::
the

::::
same

::::
base

:::::
level

::::::::
(Hb = 0)

::
as

:::
for

:::::
t= 0,

:::::
while

::
the

::::::
orange

::::::
curves

::::::::::
correspond

::
to

:::::::
different

::::
base

:::::
levels

::::
Hb.:::

The
::::
four

:::
red

::::
and

::::::
orange

::::::
curves

::
of

::::
each

::::
river

:::
are

::::::::::
equidistant

::
at

::::
each

::::
point

::
x

:::
for

::::
equal

::::::::::
increments

::
in

:::
Hb,:::

so
:::
the

::::::
change

::
in

:::::
height

:::::
Hi(t)::::

due
::
to

:::::::
changes

::
in

::::
base

::::
level

::
is

::::::::::
proportional

:::
to

::
the

:::::::
change

::
in205

::::
base

::::
level

::::::
Hb(t).
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Figure 1.
::::
River

::::::
profiles

::::::
obtained

:::::
from

:::
one

::::::
implicit

::::
time

::::
step,

:::::
where

::
all

:::::::::
parameters

:::
(K,

:::
δt,

:::
grid

:::::::
spacing)

:::
are

:::
set

::
to

::::
unity.

::::
The

:::
blue

::::
line

:::::::
describes

:
a
:::::
steady

::::
state

:::
with

::::::
U = 1,

:::
and

:
it
::
is
:::::::
assumed

:::
that

:::::
U = 0

:::
for

::::
t > 0.

:::
Due

:::
to

:::
the

:::::::
linearity,

:::
the

:
sediment flux Qi to the node b

:::
also

:
responds linearly to base level changes and can therefore be

written in the form

Qi(t) =Q0
i +Q′i (Hb(t)−Hb(t0)) . (17)

Here, Q0
i is the flux that occurs if the base level Hb remains constant (Hb(t) =Hb(t0)), and Q′i is the derivative of Qi(t) with210

regard to base level changes. Inserting Eq. (17) for the donors into Eq. (16) yields

si
Hi(t)−Hi(t0)

δt
= siUi−Qi(t) +

∑

j

Q0
j +
∑

j

Q′j (Hi(t)−Hi(t0)) (18)

and thus

Qi(t) +
αi
δt

(Hi(t)−Hi(t0)) = βi (19)

with the terms215

αi = si− δt
∑

j

Q′j and βi = siUi +
∑

j

Q0
j (20)

introduced in order to keep the equations short.
::::::::
Similarly

::
to

:::
the

::::::::::::::::
detachment-limited

::::::
model,

:::::
nodes

:::::::
without

:::
any

:::::::
donors

::
act

:::
as

:::::::::
boundaries

:::::
within

:::
the

:::::::
domain.

::::::
These

:::::
nodes

:::
do

:::
not

::::::
require

:::
any

:::::::
specific

::::::::
treatment

::::::
except

:::
that

:::
the

:::::::::
respective

:::::
sums

::
in

::::
Eqs.

::::
(18)

:::
and

::::
(20)

:::
are

::::::
empty.

The channel slope at the node i is220

Si(t) =
Hi(t)−Hb(t)

di
, (21)
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where di is the distance between the nodes i and b. So the sediment flux is

Qi(t) = KAm+1
i

Hi(t)−Hb(t)

di
(22)

according to Eq. (11) for n= 1. This leads to

Hi(t) =Hb(t) +
di

KAm+1
i

Qi(t). (23)225

Inserting this relation into Eq. (19) yields

Qi(t) +
αi
δt

(
di

KAm+1
i

Qi(t) +Hb(t)−Hi(t0)

)
= βi, (24)

which can be rearranged in the form

Qi(t) =
αi (Hi(t0)−Hb(t)) +βiδt

αi
di

KAm+1
i

+ δt
. (25)

Comparing this expression with Eq. (17) yields230

Q0
i =

αi (Hi(t0)−Hb(t0)) +βiδt

αi
di

KAm+1
i

+ δt
(26)

and

Q′i =− αi

αi
di

KAm+1
i

+ δt
. (27)

Equations (26) and (27) allow for the computation of Q0
i and Q′i from the respective values of the donors and

:::::::
(because

::
αi::::

and

::
βi ::::::

depend
:::
on

:::::
these)

:::
and

:
from known elevation values at

:::
the time t0. All values Q0

i and Q′i can thus be computed successively235

in downstream direction. As the required order of the nodes is the same as for computing the catchment sizes Ai, it is most

efficient to calculate Q0
i and Q′i in the same sweep over the nodes where the catchment sizes are computed.

Once the values Q0
i and Q′i have been computed for all nodes, the sediment flux Qi(t) can be computed using Eq. (17). This

sediment flux is then used for computing the elevation Hi(t) from Eq. (23). As these steps require the elevation of the flow

target Hb(t), they have to be performed successively in upstream order. This order is the same as used in the implicit scheme240

for detachment-limited erosion.

So the numerical scheme consists of three sweeps over the grid:

Sweep 1: Compute the flow directions b of all nodes. The nodes can be processed in any order.

Sweep 2: Compute the catchment size A and the properties Q0 (Eq. 26) and Q′ (Eq. 27) of all nodes. The nodes have to

be processed in downstream order, e. g., by a recursive implementation.
:
.
::::
This

::
is

:::::::::::
implemented

::::
most

:::::::::::
conveniently

::
in

::
a245

:::::::
recursive

:::::::
scheme

::::
with

:
a
:::::::
function

::::
that

::::::::
computes

:::
the

::::
three

:::::
above

:::::::::
properties

::
for

::::
each

:::::
node.

::::::
Before

:::::::::
computing

:::::
these

::::::
values,

::
the

::::::::
function

::::::
checks

:::::
which

::
of

:::
the

::::::
donors

::::
have

:::::::
already

::::
been

::::::
treated

:::
and

:::::::
invokes

::::
itself

:::
for

:::::
those

::::::
donors

:::
that

::::
have

:::
not

:::::
been

:::::::::
considered

::::::
before.
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Table 1. Time complexity of the scheme for transport-limited erosion compared to the implicit scheme for detachment-limited erosion. CPU

time was normalized to the total effort of one time step for detachment-limited erosion.

Detachment limited Transport limited

properties CPU time (%) properties CPU time (%)

sweep 1 b 38 b 38

sweep 2 A 49 A, Q0, Q′ 54

sweep 3 H 13 Q, H 20

total 100 112

Sweep 3: ComputeQ(t) according to Eq. (17) andH(t) from Eq. (23) for all nodes. The nodes must be processed in upstream

order, e.g.,
:::::
which

::
is

:::
also

:::::::::
performed

:::::::::::
conveniently by a recursive implementation.

:::
The

:::::::
principle

::
is

:::
the

:::::
same

::
as

::
in

:::::
sweep

::
2250

:::::
except

::::
that

:::
the

::::
flow

:::::
target

:::
has

::
to

::
be

:::::::::
considered

:::::::
instead

::
of

:::
the

::::::
donors.

:

The scheme is a direct scheme without any iterative component. The derivatives Q′ are always negative (lower base level leads

to a higher sediment flux), so that the properties α and thus the denominator in Eqs. (26) and (27) are always positive. So the

scheme is unconditionally stable, and its time complexity is linear (O(n)
:::::
O(N)) under all conditions.

The workflow with the three sweeps is basically the same as in the implicit scheme for detachment-limited erosion. The255

structure is the same without any extra loops, conditions or functions to be invoked. Additional effort only arises from floating-

point operations. Table 1 provides an estimate of the time complexity compared to detachment-limited erosion. All results were

obtained using the landform evolution model OpenLEM that was used in some previous studies (e.g., Robl et al., 2017; Wulf

et al., 2019; Hergarten, 2020a), but has not been published explicitly. A regular 5000× 5000 grid was used, and
:::
the

::::::
results

::
of

::::::
several

::::
runs

::::::::
involving

:::
100

::
to

:::::
1000

::::
time

:::::
steps

::::
were

:::::::
checked

:::
for

::::::::::
consistency.

::::
The CPU time was normalized to the total effort260

of one time step for detachment-limited erosion. The difference in time complexity between both models is marginal.

With regard to memory complexity, the scheme presented here requires two additional variables per node, Q0 and Q′. When

performing the third sweep, one of them can be recycled for storing the original surface height H(t0) that is needed later when

Eq. (17) is applied to the donors. The remaining variable can be used for storing the actual sediment flux Q(t) in case it is

needed later.265

4 A numerical example

As comparing detachment-limited and
:::
The

:
transport-limited erosion in detail would go beyond the scope of this study, only a

simple example of steady-state topographies is given here. Investigating the temporal behaviorturned out to be quite complex in

preliminary experiments and will be subject of further studies.
:::::
model

::::::::
proposed

::
in

::::
Sect.

::
2

:
is
:::::::::
equivalent

::
to

:::
the

::::::::::::::::
detachment-limited

:::::
model

::::
only

:::
for

::::::::
uniform

:::::::
erosion.

::::::::
Transient

:::::
states

::::
are

:::::::
typically

::::::::::::
characterized

:::
by

:::::::
spatially

:::::::
variable

:::::::
erosion,

:::
so

:::
the

::::
two

::::
end270

:::::::
members

::::::
cannot

::::::
cannot

:::::
yield

:::
the

::::
same

::::::::
transient

:::::::
behavior.

:::::
This

:::::
result

::
is,

::::::::
however,

::::::
already

::::
clear

:::::
from

::::
more

:::::::
general

:::::::::
arguments

10
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Figure 2. Equilibrium topographies for uniform uplift (left) and for a tent-shaped uplift pattern (middle and right). The color-coded rivers

are the largest stream and its 5 largest tributaries in the topography for uniform uplift. They are referred to in Fig. 4.

::::
since

::::
both

::::
end

::::::::
members

:::
are

::::::::
described

:::
by

:::::::::
differential

:::::::::
equations

::
of

:::::::
different

:::::
types

:::::::::
(parabolic

:::
vs.

::::::::::
hyperbolic)

::
as

:::::::::
discussed

::
in

::::
Sect.

::
1.

The example presented here
::::
This

::::::
section

:::::::
presents

:::::::::
numerical

:::::::
example

:::::::
showing

::::
that

::::::::::
non-uniform

:::::::::
conditions

:::::
result

::
in

::::::
strong

:::::::::
differences

:::::::
between

:::
the

::::
two

::::::
models

:::::
even

::
in

::
a

:::::
steady

:::::
state.

::::
The

::::::::
example uses a square domain of 5000× 5000 nodes. The275

northern and southern boundaries are kept at H = 0, while the two other boundaries are periodic. All horizontal lengths and

areas are measured in terms of pixels. An exponent m= 0.5 was assumed, so that equilibrium rivers have a concavity index of

θ = 0.5 for the linear model (n= 1). The erodibility was set to K = 1.

Equilibrium topographies were computed by starting with small increments δt that are increased through time. At large δt,

smaller random values of δt are used in each second step in order to avoid periodic oscillations between topographies with280

different flow patterns that prevent the topography from reaching a steady state.

An equilibrium topography obtained for uniform upliftU = 1 was used as a reference. This topography (Fig. 2, left) was gen-

erated by starting from a flat initial topography with a small random disturbance. As the transport-limited and the detachment-

limited models are equivalent for uniform erosion, this topography is an equilibrium topography for both models.

As a simple non-uniform uplift pattern, tent-shaped uplift is considered. The maximum uplift rate U = 1 is achieved here in285

the middle between the northern and southern boundary (x2 = 2500) and decreases linearly to zero towards the boundaries. In

order to get similar flow patterns (Fig. 2), the equilibrium topography corresponding to constant uplift was used as an initial

condition.

:::
All

:::::::::
equilibrium

:::::::::::
topographies

:::::
were

::::::::
computed

:::
by

::::::
starting

::::
with

:::::
small

:::::::::
increments

:::
δt

:::
that

:::
are

::::::::
increased

:::::::
through

::::
time

:::::
when

:::
the

::::::
number

::
of

::::::::
changes

::
in

::::
flow

::::::::
direction

:::
per

::::
time

::::
step

::
is

::::::::::
sufficiently

:::::
small.

::::
This

:::::::::
procedure

::
is

::::::
useful

:::
for

:::::::::
generating

::::::::::
steady-state290

::::::::::
topographies

::::
with

::::::
similar

::::::::::
large-scale

::::
flow

::::::
patterns

::
at
::
a

:::::::::
reasonable

::::::
number

::
of

::::
time

:::::
steps.

:::
At

::::
large

:::
δt,

::::::
smaller

:::::::
random

::::::
values

::
of

11
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Figure 3. Swath profiles through the topographies shown in Fig. 2. The three lines of each color describe maximum, mean, and minimum

elevation in east-west direction, i.e., over all values of x1.

::
δt

::::
were

::::
used

::
in
:::::
each

::::::
second

:::
step

::
in
:::::
order

::
to

:::::
avoid

:::::::
periodic

::::::::::
oscillations

:::::::
between

:::::::::::
topographies

::::
with

:::::::
different

::::
flow

:::::::
patterns

::::
that

::::::
prevent

:::
the

:::::::::
topography

:::::
from

:::::::
reaching

::
a

:::::
steady

:::::
state.

:::
The

::::::::::
tent-shaped

:::::
uplift

::::::
pattern

:::::
causes

:::
an

::::::
overall

:::::::
increase

::
in

:::::
uplift

::
in

:::::::
upstream

::::::::
direction

::
at

::::
least

:::
for

::::
large

::::::
rivers.

::::
This

:::::::
increase

:::::
results

:::
in

::
an

:::::::::
upstream

:::::::
increase

::
of

:::::::::
steepness.

:::
As

::::
the

::::::::
steepness

:::::::
reflects

:::
the

:::::
mean

:::::::
erosion

::::
rate

::
of

:::
the

:::::::::
upstream

:::::::::
catchment295

:::
(Eq.

::::
15)

::::::
instead

:::
of

:::
the

::::
local

:::::::
erosion

::::
rate

:::
for

::::::::::::::
transport-limited

:::::::
erosion,

::
it
:::::
varies

:::::
more

::::::
gently

::::
with

::::
the

:::::
uplift

:::
rate

:::::
here

::::
than

::
for

::::::::::::::::
detachment-limited

:::::::
erosion.

:

Figure 3 shows swath profiles through the three topographies. The maximum surface height (uppermost curve of the respec-

tive color) is dominated by the steep slopes at small catchment sizes. Since these depend on the local uplift rate in equilibrium,

the maximum elevation roughly follows the tent-shaped uplift pattern with minor differences between transport-limited and300

detachment-limited erosion. The absolute difference between the two models is similar for maximum, mean, and minimum

elevation, so it can be attributed to the different heights of large valleys, while local relief is similar.

The profiles of the large rivers marked in Fig. 2 are shown in Fig. 4. For a clearer representation, the longitudinal coordinate

was χ transformed according to Eq. (7) with A0 = 1. With the value K = 1 used here, equilibrium profiles follow a straight

line H = χ at a uniform uplift rate U = 1. In turn, χ-transformed equilibrium profiles are concave if the uplift rate increases in305

upstream direction. This concavity is weaker for the transport-limited model than for the detachment-limited model as the local

slope reflects the mean erosion rate of the upstream catchment, while it reflects the local erosion rate for detachment-limited

erosion. In the upper part of the catchment, however, both turn into parallel straight lines. In the lower part of the catchment,

the river profiles of the transport-limited model are steeper than those of the detachment-limited model because the river also

has to carry away the material from the upper part with high erosion rates.310

While the χ-transformed river profiles of the transport-limited model are more straight than for detachment-limited erosion,

local collinearity of tributaries is lost. For detachment-limited erosion, profiles of tributaries start with the same slope as the
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Figure 4. Longitudinal profiles of the rivers marked in Fig. 2 plotted in χ representation.

trunk stream and deviate more and more with increasing distance. In contrast, tributaries and the trunk stream may contribute

different amounts of sediment per catchment size due to different mean erosion rates in their upstream catchments, which leads

to different slopes immediately above the point of confluence in the transport-limited model. As a consequence, the capture of315

tributaries leads to stable knickpoints in the trunk stream for transport-limited erosion.

5 Combination with detachment-limited erosion

The numerical scheme described in Sect. 3 can be extended towards
:::
The

:::::
most

::::::::
important

:::::
lesson

::
to
:::
be

::::::
learned

:::::
from

:::
this

::::::
simple

:::::::
example

:::::::
concerns

:::
the

:::::::::
estimation

::
of

:::
the

::::::::
exponent

::
n.

::::::
Figure

:
5
:::::
shows

:::
the

:::::::
relation

:::::::
between

:::
the

::::::::
steepness

:::::
index

::
ks:::

and
:::
the

:::::::
erosion

:::
rate

:::
E,

:::::
which

::
is
::::

the
:::::
same

::
as

:::
the

:::::
uplift

::::
rate

::
U

::
in
::

a
::::::
steady

:::::
state.

:::::::::
According

::
to

::::
Eq.

::::
(14),

:::
the

:::::::
erosion

::::
rate

::
is

::::::::::
proportional

:::
to320

::
kns::

in
::::

the detachment-limited erosion at least in two ways. First, it can be transferred to linear decline models. Second, the

sum of two erosion processes can be considered where a sediment balance is taken into account only for a part of the eroded

material, while the rest is immediately excavated. In both cases, however, only the linear version with regard to H (n= 1)can

be implemented as a direct solver, while nonlinearity requires either a mixed scheme (some dependencies considered at t0

instead of t)or an iterative treatment.
::::::
regime.

:::
So

:::::::::
comparing

::
ks::

at
:::::::
different

::::::::
locations

:::::::
exposed

::
to

::::::::
different

::::::
erosion

::
is

:
a
::::::::
common325

:::::::
approach

::
to
::::::::
estimate

:
n
::::::::::::::::
(e.g., Lague, 2014).

:

4.1 Application to linear decline models

The general form of a linear decline model where the fluvial incision term is also linear reads E = φS−ψQ, where S is

channel slope and

:::
The

::::::::::::::::
detachment-limited

::::::
model

::::
with

:::::
K = 1

::::
and

:::::
n= 1

:::::::::
reproduces

:::
the

::::::::
expected

::::::
relation

:::::::
E = ks,:::::

while
:::
this

::
is

:::
not

:::
the

::::
case

:::
for330

::
the

::::::::::::::
transport-limited

::::::
model.

:::::
Here

:::
the

:::::
curve

::
for

:::
the

:::::
trunk

::::::
stream

::::
(blue

::::
line)

::::::
rather

::::
looks

::::
like

:
a
:::::::
straight

:::
line

::::
with

:::
an

:::::
offset.

::
If

:::
we

13
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Figure 5.
::::::
Erosion

:::
rate

::
E

:::::
(= U )

::
vs.

::::::::
steepness

::::
index

::
ks:::

for
:::
the

::::
rivers

::::::
marked

::
in

:::
Fig.

::
2.

:::::::
analyzed

::::
this

::::
curve

:::::::
without

::::::::
knowing

:::
that

::
it

::::::::
originated

:::::
from

:::
the

::::::::::::::
transport-limited

::::::
model,

:::
we

:::::
would

::::
find

:::
that

:::::::
erosion

::::
starts

::
at
::
a

:::::::
threshold

:::::::::
steepness

:::::
index

:::::::
ks ≈ 0.7.

::
If
::::
only

::
a
:::
few

::::::
points

::::
from

::::
this

:::
line

:::::
were

::::::::
available,

:::
we

:::::
would

::::::
arrive

::
at

:
a
::::::::
nonlinear

:::::::
relation

::::
with

:::::
n > 1.

:::::
This

::
is,

::::::::
however,

::
an

:::::::
extreme

::::::::
example

::
as

::::::::::
E = U = 0

::
at

:::
the

:::::::::
boundary,

:::::
while

:::
the

::::::::
sediment

:::
flux

:::::
from

:::
the

:::::::
domain

::::::
requires

::
a
:::::::
nonzero

:::::::
channel

::::::::
steepness.

:::::::::::
Qualitatively,

:::
the

:::::
result

::::::
would

::
be

::::::
similar

::
in

::::
any

:::::::
situation

::::::
where

:::
the

::::
uplift

::::
rate

::::::::
increases335

::
in

:::::::
upstream

::::::::
direction.

::
If
:::
we

:::::::
interpret

::
a

::::
long

:::::::::::::
transport-limited

:::::
river

:::::
profile

::
in

:::::
terms

::
of

::::::::::::::::
detachment-limited

:::::::
erosion,

:::
the

::::::::
exponent

:
n
::::::
would

::
be

::::::::::::
systematically

::::::::::::
overestimated.

:

::
In

::::
turn,

:::::::::
comparing

:::
the

::::
three

:::::::::
tributaries

:::
that

:::
are

::::::::::::
predominantly

:::::::
oriented

:::
in

:::::::
east-west

::::::::
direction

:::::
would

:::::
yield

::
an

::::::::
exponent

:::::
close

::
to

:::
the

::::::
correct

::::::::
exponent

:::::
n= 1

::::
used

:::::
here.

:::
The

::::::
reason

::
is

::::
that

::::
these

:::::::::
tributaries

:::
are

:::
not

::::::
subject

:::
to

:::::
strong

:::::::::
variations

::
in

:::::
uplift

::::
rate.

:::
All

:::::::
estimates

::::::::
reviewed

:::
by

:::::::::::::::::
Lague (2014) suggest

::::::
n > 1

:::::
except

:::
for

:::
one

::::
data

:::
set.

::::
This

::::
data

:::
set

::::::::
describes

:::::::::::
strike-parallel

:::::::::
tributaries340

::::::::
originally

::::::::::
investigated

::
by

:::::::::::::::::::::::::::
Kirby and Whipple (2001) where

::
a

:::::::::
re-analysis

::
by

:::::::::::::::::::::::
Wobus et al. (2006) resulted

::
in

::::::
n≈ 1.

::::
This

::::::
finding

::::
sheds

:::::
new

::::
light

:::
on

:::
the

::::::::
apparent

::::::::
evidence

:::
for

:::::::::
exponents

:::::
n > 1

::::::::
obtained

:::::
from

::::::::
analyzing

:::::
river

::::::
profiles

::::::
under

:::::::::::
non-uniform

:::::::::
conditions.

:::
An

:::::::::::
unrecognized

::::::::::
contribution

::
of

::::::::
sediment

:::::::
transport

::::
may

:::::
result

::
in

:::
an

::::::::::::
overestimation

::
of

::
n

::::
here.

::::
This

:::::::
problem

::::::
makes

::::::::
estimating

:::
the

::::::::
effective

:::::
values

::
of

::
n
::::
even

:::::
more

:::::::
difficult

:::
and

:::::::
deserves

::::::
further

::::::::::::
consideration

::
in

:::
the

:::::
future.

:

5
::::::::
Extension

::::::::
towards

:::
the

:::::
linear

:::::::
decline

::::::
model345

::::::::::::::::
Detachment-limited

:::::::
erosion

:::
and

:::::::::::::::
transport-limited

::::::
erosion

::::
can

:::
be

::::
seen

:::
as

:::
end

::::::::
members

:::
of

::
a

:::::
more

::::::
general

::::::::::
framework.

:::
In

::::::::
particular,

:::
the

::::::::
extension

::
of

:::
the

::::::::::::::::
detachment-limited

:::::
model

::
by

::::::::
sediment

::::::::
transport

:::::::
proposed

:::
by

:::::::::::::::::::::
Davy and Lague (2009) is

::::::::
receiving

:::::::
growing

::::::
interest

::
in

:::
this

:::::::
context.

::::::::
Recently,

::::::::::::::::::::::
Guerit et al. (2019) derived

::::::::
estimates

::
of

:::
the

:::::::
sediment

:::::::::
deposition

:::::::::
parameter

::::::::
occurring

::
in

:::
this

::::::
model

::::
from

::::::::
analyzing

::::::
natural

::::
and

:::::::::::
experimental

:::::::::::
topographies.

::::
The

::::::
authors

:::::::::
concluded

::::
that

:::::::
“natural

:::::::::
landscapes

:::::
seem

::
to

:::::::
describe

:
a
:::::::::
continuum

:::::::
between

:::
the

::::
two

::::::
modes

::::
with

:
a
:::::::::
preference

:::
for

:::
TL

::::::
mode”

:::::::::::::::
(transport-limited

::::::
mode)

::
as

::::::
already

:::::::::
suggested350

::
by

::::::::::::::::::::
Davy and Lague (2009).

:
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:::::::::::::::::::::::::::::
Whipple and Tucker (2002) already

:::::::
proposed

:::
the

:::::::
generic

::::
form

::
of

:::
the

::::::
model

::
of

:::::::::::::::::::::::
Davy and Lague (2009) and

::::::
coined

:::
the

::::
term

:::::
“linear

:::::::
decline

:::::::
model”.

::::
This

::::::
concept

:::::
starts

::::
from

:::
the

::::::::::::::::
detachment-limited

::::::
model

:::
and

:::::::
assumes

::::
that

:::
the

::::::::
sediment

:::
flux

:::::::
reduces

:::
the

:::::
ability

::
of

:::
the

::::
river

::
to
::::::
erode.

:::::::::
Assuming

:::
that

:::
the

:::::::
decrease

::
in
:::::::
erosion

:::
rate

::
is

::::::
linear,

:::
this

:::::
leads

::
to

:::
the

:::::::::
expression

E = f(AθS)−ψ(A)Q
::::::::::::::::::

(28)355

:::::
(from

:::
Eq.

::
4),

::::::
where

::
ψ

::
is

::
an

:::::::
arbitrary

::::::::
function.

::
In

:::::::
addition

::
to

::::
Eq.

::::
(28),

:::
the

::::::::
sediment

:::::::
balance

::::
(Eq.

::
2
::
or

:::
the

:::::::::
respective

:::::::
discrete

:::::
form,

::::
Eq.

:::
12)

:::::
must

::
be

::::::::
satisfied.

::::::::
Inserting

:::
Eq.

::::
(28)

:::
and

:::
the

::::::::
sediment

:::::::
balance

::::
into

:::
Eq.

:::
(1)

::::::
yields

:
a
:::::::
system

::
of

::::
two

:::::::
coupled

:::::
partial

::::::::::
differential

::::::::
equations

:::
for

:::
the

:::::::
surface

:::::
height

:::
H

::::
and

:::
the

:::::::
sediment

::::
flux Qis sediment flux .

:::
The

::::::::
sediment

::::::
balance

::::
can

::
be

::::::
written

:::::::::::
conveniently

::
in

::::::
integral

:::::
form

:::
(Eq.

:::
9).

::::::::::
Combining

:::
this

:::::::::
expression

::::
with

::::
Eqs.

:::
(1)

:::
and

::::
(28)360

:::::
yields

:
a
:::::
single

::::::::::::::::
integro-differential

:::::::
equation

:::
for

:::
the

::::::
surface

::::::
height,

:

∂H

∂t
= U − f(AθS) +ψ(A)

∫ (
U − ∂H

∂t

)
dA

::::::::::::::::::::::::::::::::::::::

(29)

::::::
instead

::
of

:
a
::::::
system

::
of

::::
two

:::::::::
differential

:::::::::
equations.

The functions φ
:::::::::::::::
detachment-limited

::::
end

:::::::
member

::::::::::
corresponds

::
to

:::::::::
ψ(A) = 0.

::
In

::::
this

::::
case,

:::
the

::::
two

:::::::::
differential

:::::::::
equations

:::
are

:::::::::
decoupled,

::
so

::::
the

:::::::
equation

:::
for

:::
H

::::
can

::
be

::::::
solved

:::::
with

:::::::::
computing

:::
Q.

:::::::::::
Approaching

:::
the

:::::::::::::::::
detachment-limited

:::
end

::::::::
member

::
is365

::::::::::::
mathematically

:::::
more

:::::::::::
complicated.

::::
This

:::
can

::
be

::::::::
achieved

::
by

:::::::::
increasing

:
f
:
and ψ may depend on all properties except for surface

heights (
:
in
:::::
such

:
a
::::
way

:::
that

:::::::
f →∞ and consequently also channel slopes) in order to maintain the linearity.

:::::::
ψ→∞,

:::::
while

:::
the

::::
ratio

::

f
ψ ::::::::

converges
::
to

::
a

:::::
finite,

:::::::
nonzero

:::::
value.

:::::
Then,

:::
Eq.

::::
(28)

:::::
turns

:::
into

:

Q=
f(AθS)

ψ(A)
.

:::::::::::

(30)

:::
The

::::::::
resulting

:::::::
sediment

::::
flux

::
Q

::::::
defines

:::
the

::::::::
transport

:::::::
capacity.

:
370

:
If
:::
we

:::::::
request

:::
that

::::::::::
equilibrium

:::::
river

::::::
profiles

:::::
under

:::::::
uniform

:::::::::
conditions

:::
are

::::
still

:::::::::
consistent

::::
with

::::::
Hack’s

:::::::
findings

::::
(Eq.

:::
3),

:::
the

:::::
entire

::::::
erosion

:::
rate

:::::::
defined

::
by

::::
Eq.

:::
(28)

:::::
must

::
be

::
a

:::::::
function

::
of

:::
the

::::::
product

:::::
AθS.

::::::::
Inserting

:::
Eq.

::::
(10)

:::
into

::::
Eq.

::::
(28)

:::::
yields

E =
f(AθS)

1 +Aψ(A)
.

::::::::::::::

(31)

::
So

:::::
ψ(A)

::::
must

:::
be

::::::::
inversely

::::::::::
proportional

::
to

::
A,

:

ψ(A) =
G

A
,

:::::::::

(32)375

::::
with

:
a
:::::::::::::
nondimensional

:::::::
constant

:::
G.

::::
This

:
is
::::::
exactly

:::
the

:::::::
relation

::::::::
proposed

::
by

::::::::::::::::::::::::
Davy and Lague (2009) (with

::
Θ

::::::
instead

::
of

::
G

::::::
there).

:::
The

::::::
second

::::
term

::
in
::::
Eq.

:::
(28)

:::::
turns

::::
into

::::

GQ
A ,

:::::
which

::::
was

:::::::::
interpreted

::
as

:::::::::
deposition

::
of

::::::::
sediments

:::
by

::::::::::::::::::::
Davy and Lague (2009).

The first term is either related to the equilibrium sediment flux
::::::::::
equilibrium

::::::
erosion

::::
rate

:::::
under

:::::::
uniform

::::::::
conditions

::
is
:

E =
f(AθS)

1 +G
=
KAmSn

1 +G
:::::::::::::::::::::

(33)
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::
in

:::
this

::::::
model.

:::
So

::::::::
sediment

:::::::::
deposition

:::::::::
effectively

:::::::
reduces

:::
the

:::::::
erosion

::::
rate

::
by

::
a
:::::
factor

:::
of

:::::
1 +G

::::::
under

:::::::
uniform

::::::::::
equilibrium380

:::::::::
conditions,

:::::
which

::::::
makes

::::::::::
equilibrium

::::::
profiles

:::
by

:
a
:::::
factor

::
of

::::::
1 +G

::::::
steeper

::
in

:::
the

:::::
linear

::::::
model (transport capacity) in

::::::
n= 1)

::
as

::::::
already

:::::
stated

::
by

::::::::::::::::
Yuan et al. (2019).

::::
This

:::::
effect

:::
can

::
be

:::::::::::
compensated

:::
by

:::::::
rescaling

:::
the

:::::::::
erodibility

:::
K

::
by

:
a
:::::
factor

:::
of

:::::
1 +G,

::::::
which

:::::::
modifies

:::
the

:::::
model

::
of
::::::::::::::::::::::
Davy and Lague (2009) to

:

E = (1 +G)KAmSn−GQ
A
.

::::::::::::::::::::::::

(34)

::::
Both

:::::::
versions

:::::
differ

::::::::::
concerning

:::
the

:::::::::::
interpretation

:::
of

:::
the

:::::::::
erodibility

:::
K.

::::::
While

:
it
:::::::::::
characterizes

::::
the

::::::
process

:::
of

:::::::::
detachment

:::
in385

::
the

:::::::
original

::::::
model,

::
it

::
is

:::::::::
interpreted

::
as

:::
the

:::::::::
fingerprint

::
of

::::::::
spatially

:::::::
uniform

::::::
erosion

::::::::
including

::::::::
sediment

::::::::
transport

::
in

:::
the

:::::::
rescaled

::::::
version.

:::
In

:::::::
contrast

::
to

:::
the

:::::::
original

:::::::
version,

:::
the

:::::::
rescaled

:::::::
version

:::
also

::::::::
captures

:::
the

::::::::::::::
transport-limited

:::
end

::::::::
member

:::
for

:::::::
G→∞

::::
since

:

Q=
(1 +G)KAmSn−E

G
A

→KAm+1Sn.

::::::::::::::::::::::::::::::::::

(35)

:::
The

:::::
linear

::::::
decline

::::::
model

:::
can

:::
be

:::::::::
interpreted

::
in

::::::
several

:::::
ways.

::
If

:::
we

:::::
define

::
an

::::::::::
equilibrium

::::::::
sediment

::::
flux

::
by

:
390

Qe =
f(AθS)

ψ(A)
,

::::::::::::

(36)

:::
Eq.

::::
(28)

::::
turns

::::
into

E = ψ(A)(Qe−Q) .
:::::::::::::::::

(37)

::::
This

::
is

:::
the

:::::::::::
undercapacity

::::::
model

:::::::::::::::::::::::::::::
(Kooi and Beaumont, 1994) written

::
in
:::::

terms
:::

of
::::::::
sediment

:::
flux

:::::::
instead

::
of

::::
flux

:::
per

::::
unit

:::::
width

:::
(Eq.

:::
8).

:
395

:::
The

::::::::::
formulation

::
of

::::::::::::::
transport-limited

:::::::
erosion

::::::::
proposed

::
in

::::
Sect.

::
2
::::::
allows

:::
for

::
an

:::::::::
alternative

::::::::
definition

::
of

::
a
::::::
hybrid

:::::
model

::::
that

:::
can

:::
also

:::
be

:::::::::
interpreted

::
as

::
a

:::::
linear

::::::
decline

::::::
model.

:::
Let

::
us

:::::
write

:::
the

::::::::::::::::
detachment-limited

:::
end

:::::::
member

::::
(Eq.

::
6)
:::
in

::
the

:::::
form

E

Kd
=AmSn,

:::::::::::

(38)

:::
and the formulation of Kooi and Beaumont (1994) or to

:::::::::::::
transport-limited

::::
end

:::::::
member

::::
(Eq.

:::
11)

::
in

:::
the

::::
form

:

Q

KtA
=AmSn.

::::::::::::

(39)400

::
In

::::::
contrast

:::
to the incision term in the concept proposed by Davy and Lague (2009).Accordingly, the second term is interpreted

as deposition of particles by Davy and Lague (2009)
:::::::
previous

::::::::::::
considerations,

::::::::
different

:::::::
symbols

:::
Kd:::

and
:::
Kt:::

are
::::
used

:::::
here.

:::
As

::::::::
discussed

::::::
above,

::::
their

:::::::
meaning

::
is
::
in
::::::::

principle
:::
the

::::::
same,

:::
but

::::
there

::
is
:::
no

::::::
reason

::::
why

:::
the

::::::
values

::::::
should

::
be

:::
the

:::::
same

:::::
under

:::
all

:::::::::
conditions.
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:::
The

:::::::
simplest

:::::::::::
combination

::
of

::::
both

:::
end

::::::::
members

::
is

::::::::
assuming

:::
that

:::
the

:::::::
property

::::::
AmSn

::::
that

::
is

:::::::::
responsible

:::
for

::::
both

::::::::::
detachment405

:::
and

:::::::
transport

::
is
::::::
shared

::::::
among

:::
the

:::
two

:::::::::
processes,

::::
i.e.,

E

Kd
+

Q

KtA
=AmSn.

:::::::::::::::::

(40)

::::
This

:::::
model

:::::::::
approaches

:::
the

::::::::::::::::
detachment-limited

::::::
regime

:::
for

::::
zero

:::::::
sediment

::::
flux

:::
and

:::
the

::::::::::::::
transport-limited

:::::
regime

:::
for

::::
high

::::::::
sediment

::::
flux.

:::::::
Equation

::::
(40)

:::
can

::::
also

::
be

:::::::
written

::
in

:::
the

::::
form410

E =KdA
mSn− Kd

Kt

Q

A
,

:::::::::::::::::::

(41)

::
so

ψ(A) =
Kd

KtA
:::::::::::

(42)

:::
and

G=
Kd

Kt
.

:::::::

(43)415

:::
The

::::::::::
formulation

:::::::
defined

::
by

:::
Eq.

::::
(40)

:::::
could

:::
be

:::::
called

:::::::
“shared

::::::
stream

:::::
power

:::::::
model”.

:::::::::
Compared

::
to

:::
the

::::::::
concepts

::
of

::::::::::
detachment

:::
and

:::::::::
deposition

::::
and

:::
the

::::::::::::
undercapacity

::::::
model,

::
is

::
is

:::::
rather

::
a
:::::::
generic

::::::
model.

::
In

:::::
turn,

:::
the

::::::::::
formulation

::
in
::::::

terms
::
of

:::
Kd::::

and
:::
Kt

:::
may

::::
help

:::
to

:::::::::
understand

:::::
rivers

::::::
passing

::::::::
different

:::::::::
lithologies.

:::::
Here

:::
we

:::::
could

:::::
expect

::::
that

:::
Kd:::::

shows
::
a
:::::::
stronger

::::::::
variation

:::
than

::::
Kt,

:::::::
although

::::
the

::::::
ability

::
to

:::::::
transport

:::::::
material

::::
also

:::::::
depends

:::
on

::
the

::::::::::::
characteristics

:::
of

:::
the

::::::::
sediments

::
at

:::
the

::::
river

::::
bed.

:

:::
The

:::::::::
numerical

::::::
scheme

::::::::
described

::
in

:::::
Sect.

:
3
:::
can

:::
be

:::::::
extended

:::::::
towards

:::
the

:::::
linear

::::::
version

:::
of

::
the

:::::
linear

:::::::
decline

::::::
model,

:::
i.e.,

::
if

:::
the420

:::
first

::::
term

::
in

::::
Eq.

:::
(28)

::
is
::::
also

:::::
linear

::
in

:::::::
channel

::::
slope

::
S
::::::
(n= 1

::
in

:::
Eq.

:::
6).

::::
The

::::::
general

::::
form

:::
of

:::
this

::::::
model

::::
reads

:

E = φ(A)S−ψ(A)Q
:::::::::::::::::

(44)

::::
with

:::
any

::::::::
functions

::
φ

:::
and

::
ψ.

::::
For

:::
the

:::::::
rescaled

::::::
version

::
of

:::
the

::::::
model

::::::::
proposed

::
by

:::::::::::::::::::::::
Davy and Lague (2009) and

:::
the

::::::
shared

::::::
stream

:::::
power

:::::::
version,

:::
the

:::
two

::::::::
functions

:::
are

:

φ(A) =
::::::

(1 +G)KAm
:::::::::::

=KdA
m

:::::::
(45)425

ψ(A) =
::::::

G
A
:

=
Kd

KtA
,

::::::

(46)

::::
while

:::
the

:::::
term

:::::
1 +G

:::::
would

:::
not

:::::
occur

::
in
:::
the

::::::
orginal

:::::::
version.

Inserting Eq. (44) into the general landform evolution model (Eq. 1) yields

∂Hi

∂t
+φiSi−ψiQi−Ui = 0, (47)
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and after inserting difference quotients for time derivative and channel slope430

Hi(t)−Hi(t0)

δt
+φi

Hi(t)−Hb(t)

di
−ψiQi(t)−Ui = 0. (48)

This equation can be rearranged in the form

Hi(t) =
Hi(t0) + δt

(
φi
di
Hb(t) +ψiQi +Ui

)

1 + δtφi
di

. (49)

Plugging this result into Eq. (19), rearranging the resulting equation to yield Qi(t), and comparing the obtained expression to

Eq. (17) finally yields435

Q0
i =

αi

(
φi
di

(Hi(t0)−Hb(t0))−Ui
)

+βi

(
1 + δtφi

di

)

αiψi + 1 + δtφi
di

(50)

and

Q′i =−
αi

φi
di

αiψi + 1 + δtφi
di

. (51)

The scheme is very similar to that presented in Sect. 3 for transport-limited erosion. Equations (50) and (51) have to be used in

sweep 2. Sweep 3 is now based on Eq. (49), while Eq. (17) is still used in its original form.440

For the linear version of the formulation by Davy and Lague (2009), the expressions in Eq. (44) are

φ=KAm and ψ =
G

A

where G is the coefficient of deposition as used by Yuan et al. (2019) for constant precipitation, equivalent to Θ used by

Davy and Lague (2009). However, it was already stated by Yuan et al. (2019) that sediment deposition makes equilibrium river

profiles by a factor of 1 +G steeper. Assuming a uniform erosion rate and inserting Q= EA into Eq. (44), it is immediately445

recognized that

(1 +G)E = φS.

So the erosion rate is indeed by a factor of 1 +G lower than without sediment deposition. Thus, Eq. (??) is appropriate if K

is seen as a parameter of detachment-limited erosion. In turn, if K is interpreted as the fingerprint of spatially uniform erosion

including sediment transport, the definition450

φ= (1 +G)KAm and ψ =
G

A

would be more useful.

This version provides a model where the parameter G controls the transition from the detachment-limited model for G= 0

to the transport-limited model forG→∞without changing the relation betweenK and river steepness. The numerical scheme

18



turns into the implicit scheme for detachment-limited erosion for G= 0, where the flux-related variables Q0, Q′, and Q(t) are455

computed in each time step, but are not needed for computing H(t). In the opposite limit (G→∞) the scheme approaches the

scheme for the transport-limited case developed in Sect. 3.

Preliminary numerical tests revealed that the time complexity of this version is very close
::
to the transport-limited case, while

that of the iterative scheme proposed by Yuan et al. (2019) is close to of the detachment-limited case in each iteration step. In

the first iteration, sweep 2 computes the catchment sizes here, while it integrates the upstream erosion rate to yield the sediment460

flux (Eq. 9) in subsequent iterations. Taking the values from Table 1, this yields 112
::::
there

::::::
would

::
be

::
a
:::::
slight

::::::::
advantage

:::
of

:::
the

::::::
iterative

:::::::
scheme

::::
(100 % vs. 162 %effort

:::
112

:::
%)

:
if the iterative scheme requires only two iterations (less isimpossible

:::::
could

::
be

::::::
applied

:::::
with

:
a
::::::
single

:::::::
iteration

::::
step.

::::
This

:::
is,

::::::::
however,

:::
not

:::::::
possible

:
if the flow directions change). So the

:::::::
direction

::
of

::::
any

::::
node

:::
has

:::::::
changed

:::::::
because

:::
the

::::::::
sediment

::::
flux

::
Q

::
is

:::
not

::::::::
available

:::
for

:::
the

:::::
actual

::::
flow

::::::
pattern

:::::
then.

::
In

:::
the

::::
best

:::::
case,

:::
the

:::::::
iterative

::::::
scheme

:::::::
requires

::::
two

:::::
steps.

:::::::::
According

::
to

:::
the

:::::::::
numerical

::::
tests

:::
of

:::::::::::::::
Yuan et al. (2019),

::::
this

::
is

:::::::
achieved

:::
for

:::::
small

::::::
values

::
of

:::
G

::
in465

::
the

:::::
order

::
of

:::::::::
magnitude

:::
of

::::
0.01

::
at

:::::
n= 1.

:::::
This

:::::
yields

:::
112

:::
%

:::
vs.

:::
162

::
%

::::::
effort,

::
so

:::
the

:
direct scheme is at least 30 % faster than

the iterative procedure. If the
:::
The

:::::::::
advantage

::
of

:::
the

:::::
direct

:::::::
scheme

::::::
rapidly

:::::
grows

::::
with

:::::::::
increasing

::::::::
sediment

::::::::
transport.

::::
The

::::
data

::::::::
repository

::
of

:::
the

::::::
recent

:::::
study

::
of

:::::::::::::::::::::
Guerit et al. (2019) found

::
a

::::::
median

:::::
value

::
of

:::::::
G= 1.6

:::
for

:::::
n= 1

:::
by

::::::::
analyzing

:::::::
several

::::::
natural

::::
river

:::::::
profiles.

:::
The

:
iterative scheme requires 10 iterations ,

::::
about

::
8

::::::::
iterations

::
at

:::
this

::::::
value,

:::::::
resulting

::
in

:::
an

:::::
effort

::
of

::::
112

::
%

:::
vs.

:::
534

:::
%.

:::
So the direct scheme is already 6 times faster and has the additional

:::::
almost

::
5
:::::
times

:::::
faster

:::::
under

:::::
these

::::::::::
conditions.470

:::::::::::::::::::
Guerit et al. (2019) also

:::::::
reported

:::
on

::::::
higher

::::::
values

::
of

:::
G,

:::::
where

:::
the

:::::::::::
convergence

::
of

:::
the

:::::::
iterative

:::::::
scheme

::::::
would

:::::::
become

::::
very

::::
slow.

::
In

::::::::
addition,

:::
the

:::::
direct

::::::
scheme

:::
has

:::
the

:
advantage of an exact solution without the need for checking convergence.

6
:::::::
Further

:::::::::
extensions

6.1 Adding transport-limited and detachment-limited erosion

While linear decline models can bee seen as some kind of finite transport distance for all particles, another option is to
:::
The475

::::::
models

::
of

:::
the

:::::
linear

:::::::
decline

::::
type

::::::::
discussed

::
in

:::::
Sect.

:
5
:::::::
enforce

:
a
:::::
strict

:::::::
balance

::
for

::::
the

:::::::
sediment

::::
flux

:::
for

:::
any

:::::::
nonzero

::::::::
function

:::::
ψ(A).

::::::::
However,

:::
we

:::::
could

::::
also assume that a part of the eroded material is immediately excavated, while the rest is described

by
:::::::::
transported.

::::
This

:::::
could

:::
be

::::
seen

::
as

:
a
::::
first

::::
step

:::::::
towards

:::::::::
considering

::::::::
different

::::::
particle

:::::
sizes

:::::
where

::::
one

::::
class

::
of

::::::::
particles

:
it
:::
so

::::
small

::::
that

:::::
these

:::
will

::::
not

::
be

:::::::::
deposited.

:::
For

:::::::::
simplicity,

::::
this

::::::
version

::
is
:::::::::
elaborated

::::
only

:::
as

::
an

::::::::
extension

:::
of the transport-limited

model
::::
here,

::::::::
although

:
a
:::::::::::
combination

::::
with

:::
the

:::::
linear

::::::
decline

::::::
model

:
is
::::
also

:::::::
possible. The linear version of this model reads480

E = divq + ΓS, (52)

or inserted into Eq. (1) and discretized in fully implicit form

si
Hi(t)−Hi(t0)

δt
= siUi−Qi(t) +

∑

j

Qj(t)− siΓiSi. (53)

Here, Γ is any function that describes the excavation of material. Similarly to the functions φ and ψ used in the previous section,

Γ may
:
in

::::::::
principle depend on all properties except for surface heights in order to maintain the linearity. It may be tempting to485
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use Γ = K̃Am in analogy to the detachment-limited model, where K̃ has the same meaning and physical unit as K. However,

Eq. (52) combines a sediment balance with immediate excavation, which causes a scaling problem if rivers are considered as

linear objects (Howard, 1994; Perron et al., 2008; Pelletier, 2010; Hergarten, 2020a). As a consequence, an additional rescaling

factor depending on the pixel size must be introduced in the definition of Γ in order to avoid an artificial dependence of the

results on the spatial resolution. Different approaches for this scaling factor are discussed in the above references.490

Apart from this scaling problem, the numerical implementation is straightforward. Using Eq. (11), the last term in Eq. (53)

can be expressed as

siΓiSi =
siΓ

KAm+1
i

Qi(t). (54)

This results in a factor 1 + siΓ

KAm+1
i

in front of Qi(r) in Eq. (19). This factor propagates to the denominator of Eqs. (26) and

(27), so that we finally arrive at495

Q0
i =

αi (Hi(t0)−Hb(t0)) +βiδt

αi
di

KAm+1
i

+
(

1 + siΓ

KAm+1
i

)
δt

(55)

and

Q′i =− αi

αi
di

KAθ+1
i

+
(

1 + siΓ

KAm+1
i

)
δt

αi

αi
di

KAm+1
i

+
(

1 + siΓ

KAm+1
i

)
δt

::::::::::::::::::::::::

. (56)

The further steps (Eqs. 17 and 23) remain the same.

7 Further extensions and limitations500

6.1
:::::::

Hillslope
::::::::
diffusion

Linear diffusion (e.g., Culling, 1960) as the simplest model of hillslope erosion can be implemented more efficiently than in the

detachment-limited model because the flux components in direction of the channel network can be integrated into the implicit

scheme. If D is the diffusivity and li ::
dij::

is
:::
the

:::::::
distance

::::::::
between

:::
the

::::
node

::
i
:::
and

::
a
:::::::
neighbor

::
j
::::
and

::
lij:the length of the edge

between the
::::::::
respective

::::
edge

::
in
::
a
:::::::::::
finite-volume

::::::::::::
representation,

:::
the

::::::::
diffusive

:::
flux

:::
in

:::
this

::::::::
direction

:
is
:

505

Qdiff
ij = Dlij

Hi−Hj

dij
,

::::::::::::::::::

(57)

:::::
where

::
D

::
is
::::

the
:::::::::
diffusivity.

::
In

:::::::
contrast

:::
to

:::
the

:::::::
discrete

:::::::::
divergence

:::
of

:::
the

::::::
fluvial

::::::::
sediment

:::
flux

:::::::
density

::::
(Eq.

::::
12),

::::
this

::::::
simple

:::::::::
expression

:
is
::::
only

:::::
valid

::
if

:::
the

::::
edge

::
is

::::::
normal

::
to

:::
the

:::::::::
connecting

::::
line

::
as

:
it
::
is
:::
the

:::::
case,

:::
e.g.,

:::
in

:
a
:::::::
Voronoi

::::::::::::
discretization.

::
An

:::::::
implicit

:::::::
scheme

:::
for

:::
the

:::
flux

:::::::::::
components

::
in

:::::::
direction

:::
of

:::
the

:::::::
channel

:::::::
network

::::::::
combined

::::
with

:::
an

::::::
explicit

:::::::
scheme

:::
for

:::
the

::::
other

::::::::::
components

:::::::
requires

:::
an

::::::::
additional

:::::::
variable

:::
Bi::::::

(where
:::::::::
practically

:::::
either

:::
Q0
i:::

or
::
Q′i::::::

might
::
be

:::::
used)

:::
for

:::
the

::::::
balance

:::
of

:::
the510
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:::::::
diffusive

::::::
fluxes.

:::
For

::::
each

:
node iand its

:
,
:
a
::::
loop

::::
over

:::
all

::::::::
neighbors

::
j
::::
with

::::::::
Hj <Hi ::::::

except
::
for

:::
the

:
flow target b , the diffusive

flux in this direction is

Qdiff
i = Dli

Hi−Hb

di
.

Comparing this expression
:
is
:::::::::
employed.

::::
The

::::::::
respective

::::::
values

:::
Qij:::

are
::::::
added

::
to

::
Bj::::

and
:::::::::
subtracted

::::
from

:::
Bi.:::::

After
::::::::::
considering

::
all

:::::
nodes

::
i,
:::
the

::::::
values

:::

Bi
si :::

are
::::::

added
::
to

:::
the

:::::
uplift

:::::
rates

:::
Ui.::::

This
::::
part

::
of

:::
the

:::::::
scheme

::::::::
captures

:::
the

:::::::
diffusive

::::::
fluxes

::::::
except

:::
for515

::::
those

::
in
::::::::
direction

::
of

:::
the

:::::::
channel

::::::::
network.

:::::::::
Comparing

::::
Eq.

::::
(57) to Eq. (22), it is easily recognized that the term

:::::::
diffusive

::::
flux

::::
from

::::
each

::::
node

::
i
::
to

::
its

::::
flow

:::::
target

:
b
::::
can

::
be

:::::::
included

:::
by

::::::::
replacing

:::
the

::::
term KAθ+1

i just has to be replaced by KAθ+1
i +Dli ::

by

::::::::::::
KAθ+1

i +Dlib:throughout the calculations of Sect. 3. The other flux components still have to be handled by an explicit scheme

, but

::
As

::::
this

::::::
scheme

::
is
:::
not

:::::
fully

:::::::
implicit,

:::
the

:::::::::
maximum

::::
time

:::::::::
increment

:
is
::::

still
:::::::
limited.

::::::::
However,

:
as the flux component in flow520

direction is the largest among all, its
:::::
partly

:
implicit treatment improves the stability of the diffusion term and thus increases

the maximum possible time increment.

However

7
::::::::::
Limitations

:::::
While

:::
the

::::::::
approach

::::::::
presented

::::
here

:
is
:::::::
efficient

::::
and

:::
can

::
be

:::::::
applied

::
to

:
a
::::
large

:::::
class

::
of

::::::::
problems, some limitations of the approach525

should also be mentioned.

First, any kind of sediment transport that transfers material from one site to more than one target site destroys the tree-like

topology of sediment fluxes. Such processes are thus not compatible with the implicit scheme presented here. This applies , e.g.,

to hillslope processes as well as to fluvial processes with multiple flow directions as implemented, e.g., in the model TTLEM

(Campforts et al., 2017). However, the implicit scheme for detachment-limited erosion is subject to the same limitation.530

Concerning numerics, nonlinearity is the only point where the approach suggested here falls behind the implicit scheme for

detachment-limited erosion. The latter can be solved directly for n= 1 and for n= 2 (Hergarten, 2002), but can be treated by

finding the roots of a scalar nonlinear equation at each point for any value of n. In contrast, nonlinearity can only be included

in the approach proposed here either by treating the nonlinear terms in an explicit manner or to use
:::::
employ

:
an iteration.

:::::
When

:::::
using

:::
the

:::::
model

::::
with

:::::
large

::::
time

::::::::::
increments,

::
it

::::
must

:::
be

::::
taken

::::
into

:::::::
account

::::
that

::
all

::::::
models

:::
in

:::
this

::::
field

::::::::
compute

::::
flow535

::::::::
directions

:::
and

:::::::
changes

::
in
::::::::::
topography

::
in

:::::::
separate

:::::
steps.

::::::
While

:::
the

::::::
scheme

:::::
itself

::
is

:::::
stable

:::
for

::::::::
arbitrarily

:::::
large

::::
time

::::::::::
increments,

::
the

:::::::::::
applicability

:::
of

::::
large

::::
time

::::::::::
increments

::
is

:::::::::
practically

:::::::
limited

::
by

:::::::
changes

:::
in

:::
the

::::
flow

:::::::::
directions.

:::
In

::::::::
particular,

::::::
almost

::::
flat

::::::
regions

:::
are

:::::::::
susceptible

::
to

:::::::
artifacts.

::::::
Under

:::::::
erosion,

:::::::::::
unreasonable

::::
river

::::::::
networks

:::
may

::::::
deeply

:::::
incise

::
at
:::::
large

::::
time

:::::::::
increments,

::::
and

::::::::::::
reorganization

:::
may

::::
take

::
a
::::
long

::::
time

:::::::::
afterwards.

::::
This

::::::::
problem

:::
also

::::::
affects

:::
the

::::::::::::::::
detachment-limited

::::::
model.

::
In

:::
the

::::::::::::
aggradational

::::::
regime,

::::
large

:::::
rivers

::::
may

::::
even

::::
turn

::::
into

:::::
weird

:::::
ridges

:::::
within

::
a
:::::
single,

:::::
large

::::
time

::::
step.

:::
As

::
the

::::::::::
occurrence

::
of

::::
such

:::::::
artifacts

:::::::
depends540

::
on

:::
the

::::::::::
topography,

:
it
::
is
::::
even

:::::::
difficult

::
to

:::::::
provide

:
a
::::
rule

::
of

:::::
thumb

:::
for

::
a

:::::::::
reasonable

::::::::
maximum

:::
δt.

:::::::::
Practically,

:::::::
tracking

:::
the

:::::::
number
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::
of

:::::::
changes

::
in

::::
flow

::::::::
direction

:::
and

::::::::
adjusting

::
δt

:::
so

:::
that

:::
the

:::::::
number

::
of

::::::::
changes

:::
per

::::
time

::::
step

::::
does

:::
not

::::::
exceed

::
a
:::::
given

::::::::
threshold

:::::::
provides

:
a
:::::::
feasible

::::::::
criterion.

Finally, the treatment of lakes, i.e., local depressions in the topography, is a problem. In the detachment-limited model, local

depressions result in negative channel slopes and thus in negative erosion rates without any specific treatment. However, these545

negative erosion rates can be cut off easily in the implicit scheme. In the transport-limited model, local depressions result in

a sediment flux opposite to the flow direction. Erosion of dams may be too fast then, so that the lifetime of lakes may be too

short. This effect cannot be fixed easily in the fully implicit scheme.

8 Conclusions

This study proposes a simple formulation of transport-limited fluvial erosion. This formulation can be immediately reconciled550

with the empirical results of Hack (1957) on longitudinal river profiles. The interpretation of Hack’s findings as the fingerprint

of spatially uniform erosion is equivalent for transport-limited erosion and for detachment-limited erosion where it has been

widely used. In particular, the main properties – concavity index and erodibility – are fully equivalent in both concepts.
::::
turn,

::
the

::::::::
behavior

::
of

::::
both

::::::
models

::::::
differs

::
if

::::::
erosion

::
is

:::::::::::
non-uniform.

:

As a main point, a new numerical scheme for treating transport-limited erosion with a fully implicit discretization in time was555

presented. It is a direct solver without any iteration and is unconditionally stable for arbitrarily large time increments. It is of

linear time complexity (O(n)
:::::
O(N)) where the computing effort is marginally higher than for detachment-limited erosion. The

scheme can also be applied to combined linear models of detachment-limited erosion and sediment transport such as the linear

decline model. Here it also allows for approaching the transport-limited case
:::
end

:::::::
member

:
without any loss of performance and

provides a numerical efficiency that is better than the iterative scheme suggested by Yuan et al. (2019).560

Code and data availability. All codes and computed data can be downloaded from the FreiDok data repository (Hergarten, 2020b). The

author is happy to assist interested readers in reproducing the results and performing subsequent research.
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