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Abstract. Most of the recent studies modeling fluvial erosion in the context of tectonic geomorphology focus on the detachment-

limited regime. One reason for this simplification is the direct relationship of the constitutive law used here – often called

stream-power law – to empirical results on longitudinal river profiles. Another, not less important reason lies in the numeri-

cal effort that is much higher for transport-limited models than for detachment-limited models. This study proposes a simple

formulation of transport-limited erosion that is as close to empirical results on river profiles as the stream-power law is. As a5

central point, a direct solver for the fully implicit scheme is presented. This solver requires no iteration for the linear version of

the model, allows for arbitrarily large time increments, and is almost as efficient as the established implicit solver for transport-

limited erosion. The numerical scheme can also be applied to linear models between the two extremes of detachment-limited

and transport-limited erosion.

1 Introduction10

Rivers play a major if not dominant part in large-scale landform evolution. If horizontal displacement of the crust is not taken

into account, models describing the evolution of a topography H(x1,x2, t) are typically written in the form

∂H

∂t
= U −E, (1)

where U and E are uplift rate and erosion rate, respectively.

Two limiting cases – detachment-limited and transport-limited erosion – are widely considered in the context of fluvial15

landform evolution. For detachment-limited erosion, it is assumed that all particles entrained by the river are immediately

removed from the system. The erosion rate E can be considered as a function of local properties at each point. In the simplest

approach, these are catchment size and channel slope (slope in direction of steepest descent), while all other influences are

subsumed in a lumped parameter often called erodibility.

In all scenarios other than the detachment-limited case, a sediment balance must be considered. If no material is directly20

removed, the erosion rate is

E = divq, (2)
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where q is the sediment flux density (volume per time and cross section length) and div the 2-D divergence operator. It is

usually assumed that q follows the direction of the channel slope, so only its absolute value q varies between different models.

Transport-limited models directly define the sediment flux density q instead of the erosion rate E at each point as a function of25

local properties such as catchment size and channel slope.

Mathematically, both concepts differ fundamentally. Equation (1) only involves derivatives of first order with regard to

time and with regard to the spatial coordinates (arising from the channel slope) in the detachment-limited scenario. So it is a

hyperbolic differential equation of the advection type. Propagation of information in one direction only – upstream here – is a

characteristic property of this type. Anything that happens at a given point and a given time only affects the region upstream30

of this point in future. In contrast, Eq. (1) contains spatial derivatives of second-order in the transport-limited regime (from the

channel slope and from the divergence operator). Equation (1) combined with Eq. (2) is a parabolic differential equation of the

diffusion type then, where information propagates in both upstream and downstream direction.

Several comprehensive numerical models of fluvial landform evolution have been developed since the 1990s. All models

reviewed by Coulthard (2001), Willgoose (2005), and van der Beek (2013) involve a sediment balance. In the last years,35

however, there seems to be a trend to the detachment-limited model, although the idea that all particles are immediately

excavated is limited has been questioned (e.g., Turowski, 2012). All types of bedload transport are obviously not captured by

this concept. Nevertheless, even some recent studies using models that are able to simulate sediment transport focus on the

detachment-limited case (e.g., Duvall and Tucker, 2015; Theodoratos et al., 2018; Eizenhöfer et al., 2019).

At least three aspects make the detachment-limited approach appealing. First, there is a close relationship to old empirical40

studies of longitudinal channel profiles. Hack (1957) observed a power-law relationship between channel slope S and upstream

catchment size A in several rivers. This relationship is nowaday often called Flint’s law (Flint, 1974) and written in the form

S = ksA
−θ, (3)

where θ is the concavity index and ks the steepness index. Assuming that Eq. (3) is the fingerprint of a spatially constant

erosion rate under uniform conditions, it can be assumed that45

E = f(ks) = f(AθS), (4)

where f is an arbitrary function. Assuming a power-law function,

f(ks) =Kkns =K(AθS)n, (5)

where the parameter K is denoted erodibility, has become some kind of paradigm in this context. The fluvial erosion rate is

often written in the form50

E =KAmSn (6)

with m= θn. Equation (6) is often called stream-power law since it can be interpreted in terms of energy dissipation of the

water per channel bed area if an empirical relationship between channel width and catchment size is used (e.g., Whipple and

Tucker, 1999).
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The concavity index θ = m
n appears to be well constrained, so most modeling studies either use the value θ = 0.5 originally55

found by Hack (1957) or a reference value θ = 0.45 (e.g., Whipple et al., 2013; Lague, 2014). In turn, little is known about

the exponent n since it cannot be constrained from the shape of equilibrium profiles under uniform conditions. The model

is linear with regard to H (if the flow pattern is given) for n= 1, which simplifies both theoretical considerations and the

numerical implementation. Thus, the lack of clear knowledge about n often serves as a reason for choosing n= 1. If θ is

well constrained and n= 1 is accepted as a convenient choice, the erodibility K remains as the only parameter. It is a lumped60

parameter subsuming all influences on erosion other than channel slope and catchment size, so it is not only a property of the

rock, but also depends on climate in a nontrivial way (e.g., Ferrier et al., 2013; Harel et al., 2016). However, it just defines how

steep rivers will become at a given uplift rate, so reasonable values can be found, e.g., by analyzing river profiles at situations

where estimates of the uplift rate are available.

The simplicity of the differential equation itself serves as a second argument in favor of the detachment-limited approach.65

In the linear case (n= 1), Eq. (1) combined with Eq. (6) can be solved analytically for any given uplift pattern and history.

Disturbances propagate in upstream direction at a velocityKAθ. The treatment can be simplified by the χ transform introduced

by Perron and Royden (2013). It transforms the upstream coordinate x to a new coordinate

χ=
∫ (

A(x)
A0

)−θ
dx, (7)

where A0 is an arbitrary reference catchment size and the integration starts from an arbitrary reference point. This transfor-70

mation eliminates the inherent curvature of river profiles arising from the decrease of catchment size in upstream direction, so

equilibrium profiles under spatially uniform conditions turn into straight lines. The solutions of this equation and their potential

for unraveling the uplift and erosion history were investigated by Royden and Perron (2013), and a formal inversion procedure

for the linear case (n= 1) was presented by Goren et al. (2014). So the detachment-limited model can be reconciled with real

river profiles not only under steady-state conditions, but also in the context of temporal changes.75

As a third, but despite increasing computing capacities still important point, detachment-limited erosion can be implemented

in numerical models more efficiently than transport-limited erosion. Here, even a fully implicit scheme that allows for arbitrary

time increments with linear time complexity, also known as O(n), is available. This means that the computing effort increases

only linearly with the total number of nodes. The scheme was introduced in the context of fluvial erosion by Hergarten and

Neugebauer (2001), described in detail for n= 1 and n= 2 by Hergarten (2002), and made popular by Braun and Willett80

(2013).

So far there is no comparable implementation for transport-limited erosion. As mentioned above, transport-limited erosion

corresponds to a diffusion-type equation. The challenge is that the diffusivity depends on the catchment size and thus varies over

several orders of magnitude. Multigrid methods (e.g., Hackbusch, 1985) are still the only schemes for the diffusion equation

in more than one dimension with linear time complexity. However, convergence breaks down if the diffusivity varies by some85

orders of magnitude, so multigrid methods have not been applied in the context of fluvial erosion. So far none of the existing

landform evolution model treats the transport-limited case with a fully implicit scheme that allows for arbitrarily large time

increments.
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The advantage of the detachment-limited model concerning the numerical complexity persists if explicit schemes are used

here, too. The main reason for using explicit schemes for detachment-limited erosion is the artificial smoothing of knickpoints90

by the implicit discretization, while explicit schemes that preserve the shape of knickpoints better are available. A comparison

was given by Campforts et al. (2017). As already pointed out by Howard (1994), explicit schemes for the transport-limited case

typically require 3 to 4 orders of magnitude shorter time steps than for the detachment-limited case.

Howard (1994) already developed an approximation that makes the explicit scheme for the transport term numerically more

stable. Kooi and Beaumont (1994) proposed an approach that increases stability and also allows for a physical interpretation,95

often called undercapacity model or – in a more general context – linear decline model (Whipple and Tucker, 2002). It defines

an equilibrium flux density qe from local properties (channel slope, catchment size, . . . ) and assumes that the erosion rate is

E =
qe− q
l

. (8)

The parameter l defines a length scale and can be seen as inertia of sediment detachment and deposition against changes in

fluvial conditions. The model consisting of Eqs. (1), (2), and (8) can be treated numerically by converting Eq. (2) to an integral100

equation based on the relation

Q=
∫
EdA, (9)

where Q is the sediment flux (not flux density) and the integral extends over the upstream catchment of the considered point.

Converting Q to a flux density and inserting it into Eq. (8) yields an integro-differential equation for the surface height H .

An alternative physical interpretation of the linear decline model was developed by Davy and Lague (2009). The detachment-105

limited model (Eq. 6) was extended by a sediment deposition term proportional to the actual sediment flux. As a main point,

Davy and Lague (2009) found an expression for the rate of deposition that keeps equilibrium river profiles consistent with

Eq. (3), which is not the case for the original undercapacity model (Whipple and Tucker, 2002).

Yuan et al. (2019) implemented an implicit numerical scheme for this model based on a Gauss-Seidel iteration in upstream

direction. The convergence rate of the iteration was found to be independent of the size of the grid, so the scheme is indeed110

of linear time complexity. The rate of convergence, however, decreases for faster deposition and breaks down if the model

approaches the transport-limited regime. It is therefore presumably the most efficient implementation of sediment transport in

large-scale fluvial erosion models, but it still cannot come close to transport-limited regime.

In the following section, a formulation of transport-limited erosion is proposed that can be directly reconciled with the

concept of the erodibility. Then, Sect. 3 presents a fully implicit, direct scheme for solving the equation numerically.115

2 Simple formulation of transport-limited erosion

Let us start from the interpretation of Hack’s empirical relation (Eq. 3) as the fingerprint of uniform erosion under spatially

constant conditions. Then the the sediment flux at each point of a river (Eq. 9) is the product of the erosion rate and the

catchment size,

Q=AE =Af(AθS), (10)120
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where f is the same function used for the detachment-limited model (Eq. 4). If the stream-power approach (Eq. 6) is used, the

sediment flux is

Q=KAm+1Sn. (11)

In contrast to the more common formalism based on the flux density q (Eq. 2), these relations use the total sediment flux

Q (volume per time) passing the entire cross section of a channel segment. This total flux cannot be inserted formally into125

the divergence operator in Eq. (2) to form a continuous differential equation. Practically, however, this is not a problem for a

discrete channel network. If any pixel of the considered topography has a unique drainage direction towards a single neighbor

and sediment transport follows flow direction, the respective discrete version of the divergence operator at the node i is

divqi =
Qi−

∑
jQj

si
, (12)

where Qi is the flux from the node i to its flow target. The sum extends over all neighbors which deliver their sediment to the130

node i, called donors in the following. Finally, si is the area of the considered node, i.e., the pixel size for a regular mesh or the

area of the respective Voronoi polygon for a triangulated irregular network (TIN). On a TIN, this formulation is practically even

simpler than the version based on the flux density because the lengths of the edges of the Voronoi polygons are not needed.

The simplest form of a transport-limited fluvial erosion model then reads

si
∂Hi

∂t
= siUi−Qi +

∑

j

Qj , (13)135

where Qi is defined by Eq. (10) or Eq. (11).

Equation (11) was already discussed in the literature (e.g., Whipple and Tucker, 2002) in the context of equilibrium river

profiles, but apparently never used directly for defining a transport-limited erosion model. In view of Hack’s findings this is,

however, as straightforward as describing detachment-limited erosion by Eq. (4) or Eq. (6). Even the meaning of the erodibility

K is the same in both models, so that estimates of K inferred from measurements can be used the same way in both models.140

The only difference is that K is a catchment-wide erodibility (obtained by averaging the erosion rates over the upstream

catchment), while it is a local property in the detachment-limited model. However, it should be kept in mind thatK also carries

information about the entire upstream catchment in the detachment-limited model if precipitation varies within the catchment.

From a process-oriented point of view, K would rather be considered a transport coefficient than an erodibility. However, this

is just a matter of terminology where the term erodibility has already been used.145

3 A fully implicit numerical algorithm for transport-limited erosion

The model proposed in the previous section can be treated with an efficient, fully implicit numerical scheme in the linear case

(n= 1). The reason why this is possible in contrast to the 2-D diffusion equation lies in the tree structure of the flow and

sediment transport pattern.
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The fully implicit discretization of Eq. (13) reads150

si
Hi(t)−Hi(t0)

δt
= siUi−Qi(t) +

∑

j

Qj(t), (14)

where the time step extends from t0 to t and δt= t− t0. The solution at t0 is known, and the solution at t is computed. Let the

node b be the flow target of the node i, so Hb serves as a base level for the node i. As the entire problem is linear, the sediment

flux Qi to the node b responds linearly to base level changes and can therefore be written in the form

Qi(t) =Q0
i +Q′i (Hb(t)−Hb(t0)) . (15)155

Here, Q0
i is the flux that occurs if the base level Hb remains constant (Hb(t) =Hb(t0)), and Q′i is the derivative of Qi(t) with

regard to base level changes. Inserting Eq. (15) for the donors into Eq. (14) yields

si
Hi(t)−Hi(t0)

δt
= siUi−Qi(t) +

∑

j

Q0
j +
∑

j

Q′j (Hi(t)−Hi(t0)) (16)

and thus

Qi(t) +
αi
δt

(Hi(t)−Hi(t0)) = βi (17)160

with the terms

αi = si− δt
∑

j

Q′j and βi = siUi +
∑

j

Q0
j (18)

introduced in order to keep the equations short. The channel slope at the node i is

Si(t) =
Hi(t)−Hb(t)

di
, (19)

where di is the distance between the nodes i and b. So the sediment flux is165

Qi(t) = KAm+1
i

Hi(t)−Hb(t)
di

(20)

according to Eq. (11) for n= 1. This leads to

Hi(t) =Hb(t) +
di

KAm+1
i

Qi(t). (21)

Inserting this relation into Eq. (17) yields

Qi(t) +
αi
δt

(
di

KAm+1
i

Qi(t) +Hb(t)−Hi(t0)
)

= βi, (22)170

which can be rearranged in the form

Qi(t) =
αi (Hi(t0)−Hb(t)) +βiδt

αi
di

KAm+1
i

+ δt
. (23)
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Comparing this expression with Eq. (15) yields

Q0
i =

αi (Hi(t0)−Hb(t0)) +βiδt

αi
di

KAm+1
i

+ δt
(24)

and175

Q′i =− αi

αi
di

KAm+1
i

+ δt
. (25)

Equations (24) and (25) allow for the computation of Q0
i and Q′i from the respective values of the donors and from known

elevation values at time t0. All values Q0
i and Q′i can thus be computed successively in downstream direction. As the required

order of the nodes is the same as for computing the catchment sizes Ai, it is most efficient to calculate Q0
i and Q′i in the same

sweep over the nodes where the catchment sizes are computed.180

Once the values Q0
i and Q′i have been computed for all nodes, the sediment flux Qi(t) can be computed using Eq. (15). This

sediment flux is then used for computing the elevation Hi(t) from Eq. (21). As these steps require the elevation of the flow

target Hb(t), they have to be performed successively in upstream order. This order is the same as used in the implicit scheme

for detachment-limited erosion.

So the numerical scheme consists of three sweeps over the grid:185

Sweep 1: Compute the flow directions b of all nodes. The nodes can be processed in any order.

Sweep 2: Compute the catchment size A and the properties Q0 (Eq. 24) and Q′ (Eq. 25) of all nodes. The nodes have to be

processed in downstream order, e.g., by a recursive implementation.

Sweep 3: ComputeQ(t) according to Eq. (15) andH(t) from Eq. (21) for all nodes. The nodes must be processed in upstream

order, e.g., by a recursive implementation.190

The scheme is a direct scheme without any iterative component. The derivatives Q′ are always negative (lower base level leads

to a higher sediment flux), so that the properties α and thus the denominator in Eqs. (24) and (25) are always positive. So the

scheme is unconditionally stable, and its time complexity is linear (O(n)) under all conditions.

The workflow with the three sweeps is basically the same as in the implicit scheme for detachment-limited erosion. The

structure is the same without any extra loops, conditions or functions to be invoked. Additional effort only arises from floating-195

point operations. Table 1 provides an estimate of the time complexity compared to detachment-limited erosion. All results were

obtained using the landform evolution model OpenLEM that was used in some previous studies (e.g., Robl et al., 2017; Wulf

et al., 2019; Hergarten, 2020), but has not been published explicitly. A regular 5000× 5000 grid was used, and CPU time was

normalized to the total effort of one time step for detachment-limited erosion. The difference in time complexity between both

models is marginal.200

With regard to memory complexity, the scheme presented here requires two additional variables per node, Q0 and Q′. When

performing the third sweep, one of them can be recycled for storing the original surface height H(t0) that is needed later when

Eq. (15) is applied to the donors. The remaining variable can be used for storing the actual sediment flux Q(t) in case it is

needed later.
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Table 1. Time complexity of the scheme for transport-limited erosion compared to the implicit scheme for detachment-limited erosion. CPU

time was normalized to the total effort of one time step for detachment-limited erosion.

Detachment limited Transport limited

properties CPU time (%) properties CPU time (%)

sweep 1 b 38 b 38

sweep 2 A 49 A, Q0, Q′ 54

sweep 3 H 13 Q, H 20

total 100 112

4 A numerical example205

As comparing detachment-limited and transport-limited erosion in detail would go beyond the scope of this study, only a

simple example of steady-state topographies is given here. Investigating the temporal behavior turned out to be quite complex

in preliminary experiments and will be subject of further studies.

The example presented here uses a square domain of 5000× 5000 nodes. The northern and southern boundaries are kept

at H = 0, while the two other boundaries are periodic. All horizontal lengths and areas are measured in terms of pixels. An210

exponent m= 0.5 was assumed, so that equilibrium rivers have a concavity index of θ = 0.5 for the linear model (n= 1). The

erodibility was set to K = 1.

Equilibrium topographies were computed by starting with small increments δt that are increased through time. At large δt,

smaller random values of δt are used in each second step in order to avoid periodic oscillations between topographies with

different flow patterns that prevent the topography from reaching a steady state.215

An equilibrium topography obtained for uniform upliftU = 1 was used as a reference. This topography (Fig. 1, left) was gen-

erated by starting from a flat initial topography with a small random disturbance. As the transport-limited and the detachment-

limited models are equivalent for uniform erosion, this topography is an equilibrium topography for both models.

As a simple non-uniform uplift pattern, tent-shaped uplift is considered. The maximum uplift rate U = 1 is achieved here in

the middle between the northern and southern boundary (x2 = 2500) and decreases linearly to zero towards the boundaries. In220

order to get similar flow patterns (Fig. 1), the equilibrium topography corresponding to constant uplift was used as an initial

condition.

Figure 2 shows swath profiles through the three topographies. The maximum surface height (uppermost curve of the respec-

tive color) is dominated by the steep slopes at small catchment sizes. Since these depend on the local uplift rate in equilibrium,

the maximum elevation roughly follows the tent-shaped uplift pattern with minor differences between transport-limited and225

detachment-limited erosion. The absolute difference between the two models is similar for maximum, mean, and minimum

elevation, so it can be attributed to the different heights of large valleys, while local relief is similar.

The profiles of the large rivers marked in Fig. 1 are shown in Fig. 3. For a clearer representation, the longitudinal coordinate

was χ transformed according to Eq. (7) with A0 = 1. With the value K = 1 used here, equilibrium profiles follow a straight
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Figure 1. Equilibrium topographies for uniform uplift (left) and for a tent-shaped uplift pattern (middle and right). The color-coded rivers

are the largest stream and its 5 largest tributaries in the topography for uniform uplift. They are referred to in Fig. 3.
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Figure 2. Swath profiles through the topographies shown in Fig. 1. The three lines of each color describe maximum, mean, and minimum

elevation in east-west direction, i.e., over all values of x1.

line H = χ at a uniform uplift rate U = 1. In turn, χ-transformed equilibrium profiles are concave if the uplift rate increases in230

upstream direction. This concavity is weaker for the transport-limited model than for the detachment-limited model as the local

slope reflects the mean erosion rate of the upstream catchment, while it reflects the local erosion rate for detachment-limited

erosion. In the upper part of the catchment, however, both turn into parallel straight lines. In the lower part of the catchment,

the river profiles of the transport-limited model are steeper than those of the detachment-limited model because the river also

has to carry away the material from the upper part with high erosion rates.235

While the χ-transformed river profiles of the transport-limited model are more straight than for detachment-limited erosion,

local collinearity of tributaries is lost. For detachment-limited erosion, profiles of tributaries start with the same slope as the

9

https://doi.org/10.5194/esurf-2020-39
Preprint. Discussion started: 15 June 2020
c© Author(s) 2020. CC BY 4.0 License.



0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

H

uniform uplift

transport limited

detachment limited

Figure 3. Longitudinal profiles of the rivers marked in Fig. 1 plotted in χ representation.

trunk stream and deviate more and more with increasing distance. In contrast, tributaries and the trunk stream may contribute

different amounts of sediment per catchment size due to different mean erosion rates in their upstream catchments, which leads

to different slopes immediately above the point of confluence in the transport-limited model. As a consequence, the capture of240

tributaries leads to stable knickpoints in the trunk stream for transport-limited erosion.

5 Combination with detachment-limited erosion

The numerical scheme described in Sect. 3 can be extended towards detachment-limited erosion at least in two ways. First,

it can be transferred to linear decline models. Second, the sum of two erosion processes can be considered where a sediment

balance is taken into account only for a part of the eroded material, while the rest is immediately excavated. In both cases,245

however, only the linear version with regard to H (n= 1) can be implemented as a direct solver, while nonlinearity requires

either a mixed scheme (some dependencies considered at t0 instead of t) or an iterative treatment.

5.1 Application to linear decline models

The general form of a linear decline model where the fluvial incision term is also linear reads

E = φS−ψQ, (26)250

where S is channel slope andQ is sediment flux. The functions φ and ψ may depend on all properties except for surface heights

(and consequently also channel slopes) in order to maintain the linearity. The first term is either related to the equilibrium

sediment flux (transport capacity) in the formulation of Kooi and Beaumont (1994) or to the incision term in the concept

proposed by Davy and Lague (2009). Accordingly, the second term is interpreted as deposition of particles by Davy and Lague

(2009).255
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Inserting Eq. (26) into the general landform evolution model (Eq. 1) yields

∂Hi

∂t
+φiSi−ψiQi−Ui = 0, (27)

and after inserting difference quotients for time derivative and channel slope

Hi(t)−Hi(t0)
δt

+φi
Hi(t)−Hb(t)

di
−ψiQi(t)−Ui = 0. (28)

This equation can be rearranged in the form260

Hi(t) =
Hi(t0) + δt

(
φi
di
Hb(t) +ψiQi +Ui

)

1 + δtφi
di

. (29)

Plugging this result into Eq. (17), rearranging the resulting equation to yield Qi(t), and comparing the obtained expression to

Eq. (15) finally yields

Q0
i =

αi

(
φi
di

(Hi(t0)−Hb(t0))−Ui
)

+βi

(
1 + δtφi

di

)

αiψi + 1 + δtφi
di

(30)

and265

Q′i =−
αi

φi
di

αiψi + 1 + δtφi
di

. (31)

The scheme is very similar to that presented in Sect. 3 for transport-limited erosion. Equations (30) and (31) have to be used in

sweep 2. Sweep 3 is now based on Eq. (29), while Eq. (15) is still used in its original form.

For the linear version of the formulation by Davy and Lague (2009), the expressions in Eq. (26) are

φ=KAm and ψ =
G

A
(32)270

where G is the coefficient of deposition as used by Yuan et al. (2019) for constant precipitation, equivalent to Θ used by Davy

and Lague (2009). However, it was already stated by Yuan et al. (2019) that sediment deposition makes equilibrium river

profiles by a factor of 1 +G steeper. Assuming a uniform erosion rate and inserting Q= EA into Eq. (26), it is immediately

recognized that

(1 +G)E = φS. (33)275

So the erosion rate is indeed by a factor of 1 +G lower than without sediment deposition. Thus, Eq. (32) is appropriate if K

is seen as a parameter of detachment-limited erosion. In turn, if K is interpreted as the fingerprint of spatially uniform erosion

including sediment transport, the definition

φ= (1 +G)KAm and ψ =
G

A
(34)

would be more useful.280
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This version provides a model where the parameter G controls the transition from the detachment-limited model for G= 0

to the transport-limited model forG→∞without changing the relation betweenK and river steepness. The numerical scheme

turns into the implicit scheme for detachment-limited erosion for G= 0, where the flux-related variables Q0, Q′, and Q(t) are

computed in each time step, but are not needed for computing H(t). In the opposite limit (G→∞) the scheme approaches the

scheme for the transport-limited case developed in Sect. 3.285

Preliminary numerical tests revealed that the time complexity of this version is very close the transport-limited case, while

that of the iterative scheme proposed by Yuan et al. (2019) is close to of the detachment-limited case in each iteration step. In

the first iteration, sweep 2 computes the catchment sizes here, while it integrates the upstream erosion rate to yield the sediment

flux (Eq. 9) in subsequent iterations. Taking the values from Table 1, this yields 112 % vs. 162 % effort if the iterative scheme

requires only two iterations (less is impossible if the flow directions change). So the direct scheme is at least 30 % faster than290

the iterative procedure. If the iterative scheme requires 10 iterations, the direct scheme is already 6 times faster and has the

additional advantage of an exact solution without the need for checking convergence.

5.2 Adding transport-limited and detachment-limited erosion

While linear decline models can bee seen as some kind of finite transport distance for all particles, another option is to assume

that a part of the eroded material is immediately excavated, while the rest is described by the transport-limited model. The295

linear version of this model reads

E = divq + ΓS, (35)

or inserted into Eq. (1) and discretized in fully implicit form

si
Hi(t)−Hi(t0)

δt
= siUi−Qi(t) +

∑

j

Qj(t)− siΓiSi. (36)

Here, Γ is any function that describes the excavation of material. Similarly to the functions φ and ψ used in the previous300

section, Γ may depend on all properties except for surface heights in order to maintain the linearity. It may be tempting to

use Γ = K̃Am in analogy to the detachment-limited model, where K̃ has the same meaning and physical unit as K. However,

Eq. (35) combines a sediment balance with immediate excavation, which causes a scaling problem if rivers are considered as

linear objects (Howard, 1994; Perron et al., 2008; Pelletier, 2010; Hergarten, 2020). As a consequence, an additional rescaling

factor depending on the pixel size must be introduced in the definition of Γ in order to avoid an artificial dependence of the305

results on the spatial resolution. Different approaches for this scaling factor are discussed in the above references.

Apart from this scaling problem, the numerical implementation is straightforward. Using Eq. (11), the last term in Eq. (36)

can be expressed as

siΓiSi =
siΓ

KAm+1
i

Qi(t). (37)
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This results in a factor 1 + siΓ

KAm+1
i

in front of Qi(r) in Eq. (17). This factor propagates to the denominator of Eqs. (24) and310

(25), so that we finally arrive at

Q0
i =

αi (Hi(t0)−Hb(t0)) +βiδt

αi
di

KAm+1
i

+
(

1 + siΓ

KAm+1
i

)
δt

(38)

and

Q′i =− αi

αi
di

KAθ+1
i

+
(

1 + siΓ

KAm+1
i

)
δt
. (39)

The further steps (Eqs. 15 and 21) remain the same.315

6 Further extensions and limitations

Linear diffusion (e.g., Culling, 1960) as the simplest model of hillslope erosion can be implemented more efficiently than in the

detachment-limited model because the flux components in direction of the channel network can be integrated into the implicit

scheme. If D is the diffusivity and li the length of the edge between the node i and its flow target b, the diffusive flux in this

direction is320

Qdiff
i = Dli

Hi−Hb

di
. (40)

Comparing this expression to Eq. (20), it is easily recognized that the term KAθ+1
i just has to be replaced by KAθ+1

i +Dli

throughout the calculations of Sect. 3. The other flux components still have to be handled by an explicit scheme, but as the flux

component in flow direction is the largest among all, its implicit treatment improves the stability of the diffusion term and thus

increases the maximum possible time increment.325

However, some limitations of the approach should also be mentioned. First, any kind of sediment transport that transfers

material from one site to more than one target site destroys the tree-like topology of sediment fluxes. Such processes are thus

not compatible with the implicit scheme presented here. This applies, e.g., to hillslope processes as well as to fluvial processes

with multiple flow directions as implemented, e.g., in the model TTLEM (Campforts et al., 2017). However, the implicit

scheme for detachment-limited erosion is subject to the same limitation.330

Concerning numerics, nonlinearity is the only point where the approach suggested here falls behind the implicit scheme for

detachment-limited erosion. The latter can be solved directly for n= 1 and for n= 2 (Hergarten, 2002), but can be treated by

finding the roots of a scalar nonlinear equation at each point for any value of n. In contrast, nonlinearity can only be included

in the approach proposed here either by treating the nonlinear terms in an explicit manner or to use an iteration.

Finally, the treatment of lakes, i.e., local depressions in the topography, is a problem. In the detachment-limited model, local335

depressions result in negative channel slopes and thus in negative erosion rates without any specific treatment. However, these

negative erosion rates can be cut off easily in the implicit scheme. In the transport-limited model, local depressions result in

a sediment flux opposite to the flow direction. Erosion of dams may be too fast then, so that the lifetime of lakes may be too

short. This effect cannot be fixed easily in the fully implicit scheme.
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7 Conclusions340

This study proposes a simple formulation of transport-limited fluvial erosion. This formulation can be immediately reconciled

with the empirical results of Hack (1957) on longitudinal river profiles. The interpretation of Hack’s findings as the fingerprint

of spatially uniform erosion is equivalent for transport-limited erosion and for detachment-limited erosion where it has been

widely used. In particular, the main properties – concavity index and erodibility – are fully equivalent in both concepts.

As a main point, a new numerical scheme for treating transport-limited erosion with a fully implicit discretization in time345

was presented. It is a direct solver without any iteration and is unconditionally stable for arbitrarily large time increments. It

is of linear time complexity (O(n)) where the computing effort is marginally higher than for detachment-limited erosion. The

scheme can also be applied to combined linear models of detachment-limited erosion and sediment transport such as the linear

decline model. Here it also allows for approaching the transport-limited case without any loss of performance and provides a

numerical efficiency that is better than the iterative scheme suggested by Yuan et al. (2019).350
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the review phase). The author is happy to assist interested readers in reproducing the results and performing subsequent research.
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