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Abstract. Landslides in glacial environments are high-magnitude, long runout events, believed to be increasing in frequency 

as a paraglacial response to ice-retreat/thinning, and arguably, due to warming temperatures/degrading permafrost above 10 

current glaciers. However, our ability to test these assumptions by quantifying the temporal sequencing of debris inputs over 

large spatial and temporal extents is limited in areas with glacier ice. Discrete landslide debris inputs, particularly in 

accumulation areas are rapidly ‘lost’, being reworked by motion and icefalls, and/or covered by snowfall. Although large 

landslides can be detected and located using their seismic signature, smaller (M ≤ 5.0) landslides frequently go undetected 

because their seismic signature is less than the noise floor, particularly supraglacially deposited landslides which feature a 15 

“quiet” runout over snow. Here, we present GERALDINE (Google earth Engine supRaglAciaL Debris INput dEtector): a new 

free-to-use tool leveraging Landsat 4-8 satellite imagery and Google Earth Engine. GERALDINE outputs maps of new 

supraglacial debris additions within user-defined areas and time ranges, providing a user with a reference map, from which 

large debris inputs such as supraglacial landslides (> 0.05 km2) can be rapidly identified. We validate the effectiveness of 

GERALDINE outputs using published supraglacial rock avalanche inventories, then demonstrate its potential by identifying 20 

two previously unknown, large (>2 km2), landslide-derived supraglacial debris inputs onto glaciers in the Hayes Range, Alaska, 

one of which was not detected seismically. GERALDINE is a first step towards a complete global magnitude-frequency of 

landslide inputs onto glaciers over the 37 years of Landsat Thematic Mapper imagery. 

 

1.0 Introduction 25 

There are currently >200,000 glaciers worldwide covering >700,000 km2, of which 8.2% are less than 1 km2 (Herreid and 

Pellicciotti, 2020), excluding the Greenland and Antarctic ice sheets (RGI Consortium, 2017). Recent estimates suggest 

supraglacial debris only covers 7.3% of the area of this glacier (Herreid and Pellicciotti, 2020), up from 4.4% estimated by 

Scherler et al. (2018). However, for many glaciers it plays a critical role in controlling a glaciers response to climate change, 

due to its influence on surface ablation and mass loss (Benn et al., 2012; Mihalcea et al., 2008a, 2008b; Nicholson and Benn, 30 

2006; Østrem, 1959; Reznichenko et al., 2010). Extensive debris coverage can alter the hydrological regime of a glacier (Fyffe 

et al., 2019), with the potential to increase/decrease downstream freshwater availability (Akhtar et al., 2008), and can play a 

key role in controlling rates of glacier thinning and/or recession, subsequently contributing to sea level rise (Berthier et al., 

2010). This supraglacial debris control is thought to be increasingly important with more negative glacier mass balances, with 

retreating glaciers being increasingly characterised by expanding debris cover extents (Kirkbride and Deline, 2013; Scherler 35 

et al., 2011b; Tielidze et al., 2020). The expansion of supraglacial debris cover is due to: (i) glaciological and climatological 

controls such as thrusting and meltout of sub- and en-glacial sediment onto the surface (e.g. Kirkbride & Deline, 2013; Mackay 

et al., 2014; Wirbel et al., 2018); (ii) debris input from surrounding valley walls through bedrock mass movements (Deline et 

al., 2014; Porter et al., 2010); (iii) dispersion of medial moraines (Anderson, 2000);  and, (iv) remobilisation of debris stores, 

particularly lateral moraines (Van Woerkom et al., 2019). The relative contributions of ‘glacially’ derived sediment, which 40 
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may in fact be the re-emergence of glacially modified mass movements (Mackay et al., 2014), as compared to direct subaerial 

inputs, is highly variable and there is complex coupling between hillslopes and glaciers that varies with relief (Scherler et al., 

2011a). However, recent evidence from the Greater Caucasus region (Eurasia) suggests that supraglacially deposited rock 

avalanches (RAs), attributed to processes associated with climate change, are a key factor in increasing supraglacial debris 

coverage (Tielidze et al. 2020). Magnitude-frequency relationships suggest these low frequency, high magnitude events have 45 

a disproportionate effect on sediment delivery (Korup and Clague, 2009; Malamud et al., 2004). One of these large events 

mobilises enough debris to dominate overall volumetric production and delivery rates, exceeding that of the much higher 

frequency but lower magnitude events. Here we focus on supraglacial landslide deposits (>0.05 km2), commonly associated 

with RAs, defined as landslides: (a) of high magnitude (> 106 m3); (b) perceived low frequency; (c) long runout; and (d) where 

there is disparity between high present-day rates of slope processes above ice (Allen et al., 2011; Coe et al., 2018) and expected 50 

rates based on theories of lagged paraglacial slope responses (Ballantyne, 2002; Ballantyne et al., 2014a).  

 

In formerly-glaciated landscapes, dating of RA deposits has shown a lagged response of paraglacial slope activity since 

deglaciation (Ballantyne et al., 2014b; Pánek et al., 2017). Events cluster in deep glacially eroded troughs and inner gorges at 

relatively low elevations in the landscape (Blöthe et al., 2015). Numerical modelling has shown how considerable rock-mass 55 

damage is possible during the first deglaciation cycle (Grämiger et al., 2017); some of the largest inventories highlight a close 

association with former glacier limits and the source zones of RAs, particularly in the vicinity of glacial breaches (Jarman and 

Harrison, 2019). However, almost all of our knowledge of past events relies on the presence of in-situ RA deposits. Due to 

erosional and depositional censuring such deposits are heavily biased to ice-free landscapes where rates of unmodified 

preservation are higher, although these are still unlikely to constrain true magnitude-frequencies unless rates of geomorphic 60 

turn-over are low (Sanhueza-Pino et al., 2011). In supraglacial settings, landslides, where topography allows, travel much 

further than their non-glacial counterparts due to the reduced friction of the ice surface (Sosio et al., 2012). Rapid transportation 

away from source areas also occurs because of glacier flow. This removes the simplest diagnostic evidence of a subaerial mass 

movement process – a linked bedrock source area and debris deposit. Without the associated deposit, bedrock source areas are 

easily mistaken as glacial cirques (Turnbull and Davies, 2006). Fresh snowfall or wind redistribution can rapidly cover a RA 65 

deposit that is many kilometres square in area (Dunning et al., 2015). If this occurs within the accumulation zone the deposit 

is essentially lost to all surface investigation and non-ice-penetrating remote sensing and ground-based techniques until 

eventual re-emergence in the ablation zone, after potentially considerable modification by transport processes. If a RA is 

deposited into the ablation zone, surficial visibility may be seasonal, but through time surface transport disrupts initially 

distinctive emplacement forms (Uhlmann et al., 2013). This supraglacial debris loading represents a glacier input (Jamieson 70 

et al., 2015) and can alter glacier mass balance, influence localised melt regimes (Hewitt, 2009; Reznichenko et al., 2011), and 

glacier velocity (Bhutiyani and Mahto, 2018; Shugar et al., 2012), leading to speed-ups and terminus positions asynchronous 

with current climatic conditions. Sometimes this leads to moraines that are out of phase with climate, due to the reduction in 

surface ablation and surging (or the slowing of a retreat) caused by large landslide inputs (Hewitt, 1999; Reznichenko et al., 

2011; Shulmeister et al., 2009; Tovar et al., 2008; Vacco et al., 2010). 75 

 

Currently, the detection of large supraglacially deposited landslides – other than through the most common form of ground-

based detection, eye-witness reporting – is through the application of optical satellite imagery. This is a labour and previously 

computationally intensive process, often involving the downloading, pre-processing and manual analysis of large volumes 

(gigabytes) of satellite imagery. Manual imagery analysis to identify supraglacial landslide deposits and RAs has principally 80 

been applied in Alaska. This technique enabled detection of 123 supraglacial landslide deposits in the Chugach Mountains 

(Uhlmann et al., 2013), 24 RAs in Glacier Bay National Park (Coe et al., 2018), and more recently, 220 RAs in the St Elias 

Mountains (Bessette-Kirton and Coe, 2020). These studies acknowledge that their inventories are incomplete/underestimates 
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due to analysis of summer only imagery and an inability to detect events that are rapidly advected into the ice. These are critical 

drawbacks preventing accurate magnitude-frequency relationships from being derived, but analysis of more imagery over 85 

larger areas is unfeasible due to time and computational requirements. Studies of this kind are also typically in response to a 

trigger event e.g. earthquake or a cluster of large RA events (e.g. Coe et al. (2018) in Glacier Bay National Park), spatially 

biasing inventories into areas with known activity. They therefore provide a snapshot in time, with no continuous record. 

Methods are needed which are accessible, quick and easy to apply and require no specialist knowledge, to re-evaluate 

magnitude-frequencies in glacial environments. Currently, the only method capable of identifying a continuous record of such 90 

events, is seismic monitoring (Ekström and Stark, 2013). Seismic detection utilises the global seismic network to detect long-

period surface waves, characteristic of seismogenic landslides. Seismic methods have identified some of the largest 

supraglacially deposited RAs in recent times (e.g. Lamplugh glacier RA (Dufresne et al., 2019)) which are compiled in a 

database (IRIS DMC, 2017), and, when combined with manual analysis of satellite imagery, gives information on duration, 

momenta, potential energy loss, mass and runout trajectory. However, landslides are challenging to detect using seismic 95 

methods and event positional accuracy is limited to a 20 – 100 km radius, due to the lack of high frequency waves when 

compared to earthquakes, further inhibited by the low frequencies and long wavelengths of dominant seismic waves worldwide 

(Ekström and Stark, 2013). This also results in an inability to detect landslides that are relatively low in volume, due to their 

weak seismic fingerprint (M < 5.0) and causes underestimation of landslide properties (e.g. event size and duration) because 

their runouts are seismically “quiet”, likely due to frictional melting of glacier ice (Ekström and Stark, 2013). Despite these 100 

difficulties, current studies seem to indicate an increase in the rates of rock avalanching onto ice in rapidly deglaciating regions 

such as Alaska and the Southern Alps of New Zealand, where the majority of recent (aseismic) RAs are associated with 

glaciers. This increase has been linked to climate warming (Huggel et al., 2012) and potential feedbacks with permafrost 

degradation (Allen et al., 2009; Coe et al., 2018; Krautblatter et al., 2013). These links, coupled with the availability of high 

spatial and temporal resolution optical satellite imagery, have demonstrated the need for systematic observations of landslides 105 

in mountainous cryospheric environments (Coe, 2020). Five ‘bellwether’ sites have been suggested for these purposes: the 

Northern Patagonia Ice Field, Western European Alps, Eastern Karakorum in the Himalayas, Southern Alps of New Zealand 

and the Fairweather Range in Alaska (Coe, 2020). 

 

The large archives of optical imagery, coupled with the recent boom in cloud-computing platforms, now provides the perfect 110 

combination of resources, which can be exploited to identify supraglacially deposited landslides on a large scale. Since the 

launch of Landsat 1 in July 1972, optical satellites have imaged the earth surface at increasing temporal and spatial frequency. 

Six successful Landsat missions have followed Landsat 1, making it the longest continuous optical imagery data series, 

revolutionising global land monitoring (Wulder et al., 2019). Analysis ready Landsat data is available for Landsat 4 (1982-

1993), Landsat 5 (1984-2012), Landsat 7 (1999-present) and Landsat 8 (2013-present), providing 38 years of data at a 30 m 115 

spatial resolution and a 16-day temporal resolution. These data are categorised into three tiers: (1) Tier 1 data that is 

radiometrically and geometrically corrected (< 12 m root mean square error); (2) Tier 2 data which is of lower geodetic 

accuracy (> 12 m root mean square error); and (3) Real Time imagery, which is available immediately after capture but uses 

preliminary geolocation data and thermal bands require additional processing, before being moved to its final imagery tier (1 

or 2) within 26 days for Landsat 7, and 16 days for Landsat 8. Traditionally, it has been difficult to exploit these extensive 120 

optical imagery collections such as Landsat, without vast amounts of computing resources. However, in the last decade, cloud 

computing has become increasingly accessible. This allows a user to manipulate and process data on remote servers, removing 

the need for a high-performance personal computer. Google Earth Engine (GEE) is a cloud platform created specifically to aid 

the analysis of planetary-scale geospatial datasets such as Landsat and is freely available for research and education purposes 

(Gorelick et al., 2017).  125 
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Here, we utilise Google Earth Engine (GEE), and the Landsat data archive of 38 years of optical imagery, to present the Google 

earth Engine supRaglAciaL Debris INput dEtector (GERALDINE). A free-to-use tool to automatically delimit new 

supraglacial debris inputs over large areas and timescales, which then allows for rapid user-backed verification of inputs from 

large landslides specifically. GERALDINE is designed to allow quantification of the spatial and temporal underreporting of 130 

supraglacial landslides. We describe the methods behind GERALDINE, verify tool outputs against known supraglacial rock 

avalanche inventories, and, finally demonstrate tool effectiveness by using it to find two new supraglacial landslides, one of 

which cannot be found in the seismic archives.   

2.0 Method 

GERALDINE exploits the capability and large data archive of GEE (Gorelick et al., 2017), with all processing and data held 135 

in the cloud, removing the need to download raw data. By default, it utilises Tier 1 Landsat imagery (30 m pixel resolution) 

that has been converted to top-of-atmosphere spectral reflectance (Chander et al., 2009), from 1984 – present, incorporating 

Landsat 4, 5, 7, and 8. GERALDINE also gives the user the following options: (i) to utilise Tier 2 Landsat imagery; and, (ii) 

to utilise Real Time Landsat imagery. Tier 2 imagery is valuable in regions where Tier 1 imagery is limited, e.g. Antarctica 

where there is a lack of ground control points for imagery geolocation. Real Time imagery is useful for rapid identification of 140 

landslide locations if a seismic signal has been detected but an exact location has not been identified. Landsat imagery is used 

in conjunction with the Randolph Glacier Inventory (RGI) version 6.0 (RGI Consortium, 2017). The RGI is a global dataset 

of glacier outlines excluding those of the Greenland and Antarctic ice sheets, digitised both automatically and manually based 

on satellite imagery and local topographic maps (Pfeffer et al., 2014). RGI glacier boundaries are delineated from images 

acquired between 1943 and 2014, potentially introducing errors into analysis due to outdated boundaries (Herreid and 145 

Pellicciotti, 2020; Scherler et al., 2018) (see Supplementary Information Section 1.0). However, this database represents the 

best worldwide glacier inventory available and shrinking ice as the dominant global pattern means the tool is occasionally 

running over ice-free terrain with null results rather than missing potential supraglacial debris inputs. Any updated version of 

the RGI will be incorporated when available. Additionally, the RGI can be replaced by the user with shapefiles of the Greenland 

and Antarctic ice sheets (v1.1 line 536 and 543), if analysis is required in these regions, or higher resolution (user defined) 150 

glacier outlines, if the RGI is deemed insufficient. 

2.1 Overview of processing flow 

GERALDINE gathers all Landsat images from the user-specified date range and all the images in the year preceding this user-

specified date range, within the user-specified region of interest (ROI), creating two image collections within GEE. Users 

should note that smaller ROIs and annual/sub-annual date ranges increase processing speed, with processing slowing 155 

considerably with >800 Landsat images (~160-1500 GB of data). The software clips all images to the ROI, applies a cloud 

mask, and then delineates supraglacial debris cover from snow and ice. GERALDINE acquires the maximum debris extent 

from both image collections, creating two maximum debris mosaics, then subtracts these mosaics and clips them to the RGI 

v6.0 (or user defined area if not using RGI) to output a map. This map highlights debris within the user-specified time period 

that was not present in the preceding year, which we term ‘new debris additions’. This map is viewable within a web browser 160 

as a layer in the map window. However, as it is calculated ‘on-the-fly’ (Gorelick et al., 2017), large areas can be slow to 

navigate. All files can be exported in GeoJSON (Georeferenced JavaScript Object Notation) format for further analysis, 

including to verify if detections are discrete landslide inputs. This is recommended for large ROIs. An overview of the 

workflow is presented in Fig. 1 and the detail for each step described in Sections 2.1.1–2.1.3. 
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2.1.1 Cloud masking 165 

GERALDINE masks cloud cover using the GEE built-in ‘simple cloud score’ function (Housman et al. 2018). This pixel-wise 

cloud probability score allows fast and efficient identification of clouds, suitable for large-scale analysis (Housman et al., 

2018) and has been previously applied and well-justified for use in glacial environments (Scherler et al., 2018). A 20% 

threshold is applied to every image, thereby excluding any pixel with a cloud score >20% from the image. We quantitatively 

evaluated this threshold to ensure optimum tool performance (see Supporting Information Section 2.0). Cloud shadow is not 170 

masked as it was found to have a minimal effect on the tool delineating debris from snow/ice whilst greatly increasing 

processing time. 

2.1.2 NDSI 

The Normalised Difference Snow Index (NDSI) is a ratio calculated using the green (0.52-0.6 λ) and SWIR (1.55-1.75 λ) 

bands. It helps distinguish snow/ice from other land cover (Hall et al., 1995) and excels at detecting ice where topographic 175 

shading is commonplace (Racoviteanu et al., 2008), due to high reflectance in the visible range and strong absorption in the 

SWIR range. GERALDINE applies the NDSI to all images and a threshold of 0.4 is used to create a binary image of 

supraglacial debris (<0.4) and snow/ice (≥0.4). This threshold has been utilised by studies in the Andes (e.g. Burns and Nolin, 

2014) and Himalaya (e.g. Zhang et al., 2019), but optimum thresholds often vary between 0.5 (Gjermundsen et al., 2011) and 

0.2 (Keshri et al., 2009; Kraaijenbrink et al., 2017). We justify our 0.4 threshold based on Scherler et al. (2018) who deemed 180 

it optimum for the creation of a global supraglacial debris cover map using Landsat images. We advise users to use this default 

threshold but if this appears sub-optimum in a user defined region of interest (ROI), the threshold can be fine-tuned in the code 

(v1.1 line 244 and 254). We utilise NDSI instead of newer band ratio techniques (e.g. Keshri et al., 2009) and more complex 

algorithms (e.g. Bhardwaj et al., 2015) to ensure transferability between Landsat TM, ETM+ and OLI TIRS sensors as we 

wish to harness the full temporal archive. 185 

2.1.3 Retrieving maximum debris extent 

To attain a maximum debris extent, GERALDINE reduces each image collection to an individual image using a pixel-based 

approach (Fig. 2). Every binary image (supraglacial debris: 0, snow/ice: 1) in each image collection is stacked, with pixels in 

the same geographic location stacked sequentially. If any pixel in the temporal image stack is debris, the corresponding pixel 

in the final mosaic will be a debris pixel, creating a maximum debris extent mosaic. GERALDINE is therefore debris biased 190 

due to this processing step (Fig. 2). Calculated maximum debris extent mosaics for both the user-defined time period and 

previous year are differenced, the output being new debris additions. Both the previous year maximum debris extent, and new 

debris addition mosaics, are displayed for user analysis within the GEE interactive development environment, and easily 

exportable to Google Drive (included as part of sign-up to Google Earth Engine). 

2.2 Validation 195 

A two-part validation was undertaken to assess the effectiveness of GERALDINE outputs for allowing a user to rapidly identify 

supraglacially deposited landslides: a detection validation (i.e. can the user confirm a supraglacially deposited landslide has 

occurred from a GERALDINE output?), and an area validation (i.e. how much of the area of the supraglacial landslide deposit 

has GERALDINE detected?). Although areal detection is not the main purpose of the tool, greater area detection would 

ultimately help the user with identification of supraglacially deposited landslides. Validation was performed against the 200 

already-defined RA databases of Bessette-Kirton and Coe (2016), Deline et al. (2014), Uhlmann et al. (2013) and the Exotic 

Seismic Events Catalog (IRIS DMC, 2017). To provide validation, RAs had to occur after 1984 (onset of Landsat TM era) and 

had to deposit debris predominantly onto clean-ice areas of glaciers in the RGI. Forty-eight events out of a total of 325 met 

conway-s
Texte inséré 
,

conway-s
Texte inséré 
,

conway-s
Texte inséré 
,

conway-s
Texte inséré 
,



6 
 

these criteria, their locations distributed across the European Alps, Alaska, New Zealand, Canada, Russia and Iceland (Fig. 

S5).  205 

 

GERALDINE was run for the year of the event using Landsat Tier 1 imagery; the new debris vector output file was exported 

into a GIS and after an initial qualitative step to see if the user would flag the RA from the GERALDINE output, the area of 

the deposit it detected was calculated within the GIS. We utilised the select by location tool in QGIS, to select any pixels/pixel 

clusters within/intersecting an outline of the RA manually-digitised from a Landsat image using the Google Earth Engine 210 

Digitisation Tool (GEEDiT) (Lea, 2018). We clipped selected pixels to the manually digitised RA outline and calculated the 

area of these selected pixels. The tool-detected area was then compared against the area of the manually digitised RA outline. 

These two steps allow for an assessment of GERALDINEs ability to highlight new debris inputs, and if this changes over the 

Landsat era. 

3.0 Results and Discussion 215 

3.1 Validation 

Of the 48 validation RAs, the user was able to correctly identify 44 of these events from GERALDINE output maps, a true 

positive detection accuracy of 92 %. False negatives all pre-date 1991 (Fig. 3), giving 100% successful user identification 

post-1991. These false negatives can be explained by a failure of Landsat satellites from imaging the RA deposit. This was 

due to reduced (and insufficient in this case) Tier 1 Landsat image availability pre-Landsat 7 within the GEE data catalogue, 220 

inhibiting GERALDINE from highlighting the RA as new debris. We note that if just one image featured the RA, 

GERALDINE would highlight the deposit as new debris due to its bias towards debris detection (see section 2.1.3). However, 

a true 100 % detection rate for supraglacial landslide deposits on glaciers is unlikely, due to some deposits running out over 

existing debris cover, and some having high snow/ice content or entraining large amounts of snow/ice during events, which 

can be common for landslides deposited supraglacially. This high snow/ice content can mask them as snow/ice during NDSI 225 

delineation from debris, inhibiting detection. However, events of this kind also pose significant difficulty for user delineation 

with original optical imagery. GERALDINE works best when a number of images in the image stack represent maximal debris 

cover in the preceding year, reducing false positives for the timespan of interest i.e. flagging old debris as new debris, due to 

a lack of old debris exposure in the previous year. This is particularly applicable to small (<0.5 km2) glaciers, where the overall 

significance of a single pixel increases. The debris bias of GERALDINE ensures true negative detection is also extremely 230 

high, but this high true negative detection is why user verification of new debris outputs is needed, because they are flagged 

as new debris but display no supraglacial RA characteristics i.e. lobate and elongated (Deline et al., 2014). To a user familiar 

with glacial and landslide processes, the differences in GERALDINE outputs between true positives/negatives and false 

positives/negatives are clear when running the tool to find RA inputs.  

 235 

GERALDINE RA areal accuracy increases over time from 19 % in the Landsat 4/5 era, to 71 % with the current Landsat 7/8 

constellation (Fig. 3), with the latter period characterised by increasingly modern sensors with greater spectral and temporal 

resolution. Low areal accuracy in the Landsat 4/5 era is once again a product of the GEE data catalogue having limited imagery 

for certain years in glaciated areas, reducing the ability of GERALDINE to detect the entire area of new debris additions. Areal 

accuracy increases after the failure of Landsat 4 in December 1993, at which point Landsat 5 is the sole data collector of 240 

imagery at a frequency of every 16 days. Despite this single functioning satellite, the tool detects all eight validation events 

and on average 59 % of the deposit areas between 1993 and the activation of Landsat 7 in 1999. The dual Landsat 5/7 

constellation increases tool area accuracy further to 69 %. However, a decrease in mean area accuracy is evident after the 

failure of the Landsat 7 Scan Line Corrector in May 2003 (Markham et al., 2004), decreasing tool areal accuracy by 4 %, due 

to images missing up to 20-25 % of data per image in the stack (Hossain et al., 2015). We find that a number of Landsat 7 245 
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scenes also feature stripes of no data, pre-dating the scan line corrector failure, and can inaccurately cause ‘stripes’ of new 

debris in tool outputs. The current Landsat 7/8 constellation has the highest accuracy for detecting the area of RAs at 71 %. 

The smallest new debris addition we used for validation was 0.062 km2, of which GERALDINE detected 71 % of the area, so 

we have confidence in detection greater than 0.05 km2, equating to ~56 Landsat pixels.  Even with GERALDINE performing 

well, additional refinement and/or full automation of landslide deposit identification would be an interesting, and priority, area 250 

for further investigation. We also envisage development with other higher resolution and higher repeat satellites e.g. the 

Sentinel 2 and Planet Lab constellations. However, we found that current cloud mask algorithms for these data are not sufficient 

for accurate global glacial debris delineation. 

 

GERALDINE is frequently affected by the RGI dataset causing over/under-estimation of previous year debris extents and new 255 

debris additions. For example, at tidewater glaciers that have undergone retreat since their margins were digitised, the tool 

often detects clean ice and debris at the tongue. This is dependent on the presence of ice mélange (NDSI classification as 

ice/snow) and dark fjord water (NDSI misclassification as debris) in imagery (see Supplementary Information Section 1.0). In 

addition, we found an instance where a supraglacial landslide deposit had been misclassified as a nunatak (60°27'23.7"N, 

142°33'35.7"W) and therefore this section of the glacier is erroneously missing from the RGI dataset altogether, preventing 260 

tool detection, but this is likely a single case. Topographic shading and/or bright illumination of debris cover can at times cause 

pixels to be masked from Landsat scenes due to misclassification as cloud (see Supplementary Information Section 2.0); 

however, if the tool is run over a sufficiently long period, this will not influence new debris detection. GERALDINE can also 

not detect landslide debris deposition onto an existing debris cover. Therefore, if a landslide consists of multiple failures, a 

GERALDINE output map would only detect one event, with the deposit extent being the combined total of all failures. It 265 

would be highly beneficial to combine GERALDINE with seismic detection to help delineate the amount of failures that occur. 

3.2 New Supraglacial Landslide Input Detection Example  

The Hayes Range, Alaska has a history of large supraglacial debris additions (e.g. Jibson et al., 2006), but no events have been 

documented in the last decade, in contrast to a recent dense cluster in the Glacier Bay area of Alaska (Coe et al., 2018), which 

formed part of the validation dataset. To test this, we ran GERALDINE for 2018 to highlight new debris additions on glaciers 270 

in the Hayes Range (Fig. 4a). GERALDINE used a total of 228 Landsat images for analysis; 107 to determine the 2017 debris 

extent and 121 to determine the 2018 debris extent. Landsat tiles vary from 200 MB to 1000 MB  when compressed, so, if we 

assume an average tile is 500 MB, a user would require 114 GB of local storage, a large bandwidth internet connection to 

download (which comes with an associated carbon cost), and, a PC capable of processing these data. GEE required none of 

these requirements and completed analysis in under two minutes, extracting information from every available cloud-free pixel, 275 

to maximise use of the imagery. The new debris output map produced was 6.5 MB, and contained all relevant ‘new’ debris 

information from 2018. The output map highlighted two large supraglacial landslide deposits, which occurred between 1 

January 2018 and 31 December 2018. These were manually verified and the potential window of event occurrence identified 

using satellite imagery within GeeDiT (Lea, 2018). The larger of the two deposits is from a slope collapse on the southern 

flank of Mt Hayes (4216 m) (63°35'11.7"N, 146°42'50.0"W), with emplacement determined between 10 and 25 February 2018 280 

(Fig. 4b). This supraglacial landslide was also detected using the seismic method (Ekström and Stark, 2013 see Section 1.0), 

and confirmed as occurring on 12 February 2018 (Goran Ekström, personal communication, 2019). The resulting debris deposit 

covered 9.4 km2 of the surface of the Susitna Glacier (digitised from Planet Labs Inc. imagery from 31/07/2018). The tool 

detected 27.5 % of the area of this deposit, due to emplacement predominantly in the accumulation area, with the upper half 

of the deposit rapidly covered by snow after the event. The second, smaller supraglacial landslide deposit occurred between 4 285 

and 7 July 2018, on an unnamed glacier to the east of Maclaren Glacier (63°20'21.9"N, 146°26'36.1"W) (Fig. 4c). 

GERALDINE detected 78 % of this 1.9 km2 supraglacial debris input, which transformed the glacier from 16 % debris covered 
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to 51 % debris covered, and will have important implications for glacier melt regime, velocity and response to atmospheric 

drivers. Unlike the larger supraglacially deposited landslide from Mt Hayes, this event was not automatically detected using 

seismic methods (Goran Ekström, personal communication, 2019), suggesting that its seismic signature was lower than the 290 

seismic detection limit (M < 5.0) (Ekström and Stark, 2013). Therefore, there is a high potential to detect all events using 

GERALDINE, and then provide time-location filters to seismic records to retrospectively quantify force histories and precise 

timings of events not flagged automatically as a landslide.  

 

We note that new large debris inputs are partially highlighted on the Black Rapids Glacier for 2018 (Fig. 4d), but these ‘new’ 295 

additions were actually deposited in 2002 during the Denali earthquake (Jibson et al., 2006; Shugar et al., 2012; Shugar and 

Clague, 2011). We assign this discrepancy to minimal cloud-free imagery during summer (a time when deposits are uncovered 

by snow melt), preventing the tool from highlighting their full summer extent, and causing underestimation of the 2017 debris 

cover. To a human operator, however, it is clear these debris additions are erroneous because ‘new’ debris is patchy, with 2017 

debris extent and snow/ice preventing detection of a homogeneous deposit. If GERALDINE is run annually for multiple years, 300 

the user will be able to determine the emplacement date for these earlier supraglacial landslide deposits. 

3.3 Tracking new debris transportation 

A secondary use of GERALDINE is tracking existing supraglacial landslide deposits. These deposits are transported down-

glacier by ice flow, although often the initial emplacement geometry is characteristically deformed and spread due to 

differential ablation and ice motion (Reznichenko et al., 2011; Uhlmann et al., 2013). GERALDINE can give an indication of 305 

deposit behaviour and movement by highlighting ‘new’ debris, at the lateral and down-glacier end of the deposit, as it moves 

between image captures (Fig. 5). Differencing the distance of this new debris from the previous year’s deposit extent can give 

an approximation of lateral spreading and glacier velocity over the user-specified time period, the latter of which is often 

unknown at the temporal resolution of Landsat and complex to calculate in high mountain regions (Sam et al., 2015). 

 310 

To demonstrate the evolution of a RA through time, we ran GERALDINE for 2012, 2013, and 2014 for the Lituya Mountain 

RA in Alaska. This RA occurred on 11 June 2012 and was deposited onto a tributary of the John Hopkins glacier (Geertsema, 

2012). The upper portion of the deposit was sequestered into the ice after its deposition in 2012, as is common of debris inputs 

in glacier accumulation areas (Dunning et al., 2015). However, the deposit toe remained visible on the surface, likely because 

it was below the snow line. We estimate the down-glacier transport velocity of this RA by tracking and measuring the 315 

movement of the deposit toe, to measure the displacement of the deposit leading edge. Using this method, estimates of down-

glacier transportation of the deposit leading edge between 2012 and 2013 are ~575 ± 30 m, and ~328 ± 30 m between 2013 

and 2014 (Fig. 5), the latter in agreement with glacier velocity calculated by Burgess et al. (2013) between 2007 and 2010 (250 

– 350 m a-1), and ITS_LIVE velocity from 2013 (300-400 m a-1) (Gardner et al., 2018; Gardner et al., 2019).  We suggest that 

the higher RA deposit velocities between 2012 and 2013 are a result of the immediate response of the glacier to reduced 320 

ablation rates directly beneath the debris, causing an ice-pedestal to form, from which debris is redistributed through 

avalanching off the pedestal sides, expanding debris coverage (Reznichenko et al., 2011). We note other areas are flagged as 

‘new debris’ in 2013 and 2014. These are typically where glacier downwasting has occurred exposing more of the valley walls, 

or where there has been temporal evolution of the debris cover e.g. glacier flowline instabilities. These flow instabilities can 

cause double-counting of debris when larger time windows are specified (see Herreid and Truffer, 2016). Both processes 325 

subsequently cause false classification as ‘new debris’. However, neither glacier downwasting nor evolution of the debris 

cover display supraglacial landslide characteristics, so it is highly unlikely that a user would mistake them for one. 
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4.0 Conclusion 

GERALDINE is the first free-to-use resource that can rapidly highlight new supraglacial landslide deposits onto clean ice for 

a user-specified time and location. It can aggregate hundreds of Landsat images, utilising every available cloud-free pixel, to 330 

create maps of new supraglacial debris additions. Using the output maps produced, GERALDINE gives an objective starting 

point from which a user can identify new debris inputs, eliminating the time-intensive process of manually downloading, 

processing and inspecting numerous satellite images. The method allows user identification of mass movements deposited in 

glacier accumulation zones, which have very short residence times due to rapid advection into the ice. This is a process that 

has not previously been quantified. We demonstrate its effectiveness by verifying it against 48 known, large, supraglacially 335 

deposited rock avalanches that occurred in North America, Europe, Asia, and New Zealand. GERALDINE outputs helped 

identify 92% of all 48 events, with 100% successful identification post-1991 when image quality and availability increases. 

We showcase how GERALDINE does not suffer from the traditional disadvantages of current manual and seismic detection 

methods that can cause supraglacial landslides to go undetected, by identifying two new supraglacial landslides in 2018, in the 

Hayes Range of Alaska. One of these events was not detected using existing methods, therefore, the frequency of large 340 

supraglacial debris inputs is likely historically underestimated. We suggest users should apply GERALDINE at standardised 

time intervals in recently identified ‘bellwether sites’ in glaciated high mountain areas undergoing rapid change i.e. Greenland, 

Alaska, Patagonia, the European Alps, New Zealand Alps and the Himalaya, to investigate annual rates of these large debris 

inputs. GERALDINE can become part of the repertoire of tools that enable glacial landslides/rock avalanches to be identified 

in the past, present, and future. It will improve remote detection and characterisation of these events, to help quantify and 345 

evaluate their frequency, spatial distribution and long-term behaviour in a changing climate. 

Code/data availability 

GERALDINE code and the validation dataset are available at https://doi.org/10.5281/zenodo.3524414. All other results can 

be recreated by running GERALDINE in the respective example areas. A guide on how to use GERALDINE is provided in 

Supplementary Information Section 4.0. 350 
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Figure 1: Processing flow of GERALDINE. 
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Figure 2: Reducer diagram - GEE stacks all images in the collection and 
undertakes pixel-wise analysis of debris cover, to create a mosaic of 
maximum debris cover extent. If just one pixel in the image stack is debris, 
then the corresponding pixel in the maximum debris mosaic will be debris. 
White pixels represent snow/ice, black pixels represent debris. 
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Figure 3: GERALDINE rock avalanche (RA) detection accuracy (red line) and RA area accuracy (boxplots) 
with different Landsat constellations over time. L4/5 (1984-1993) – 8 validation RAs, L5 (1993-1999) – 8 
validation RAs, L5/7 (1999-2003) – 9 validation RAs, L5/7 SLC (Scan Line Corrector failure) (2003-2013) – 
11 validation RAs, and L7/8 (2013-present) – 12 validation RAs. Dashed line represents mean, solid line 
median, box represents upper and lower quartiles, whiskers represents min and max area accuracies. 
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Figure 4: a) 2018 new debris additions in the Hayes Range, Alaska. RA outlines 
digitised using Landsat imagery and the GEEDiT tool (Lea, 2018). Inset map 
denotes location of Hayes Range. b) GERALDINE output of Mt Hayes 
landslide extent and corresponding image courtesy of Planet Labs, Inc. 
(31/07/2018). c) GERALDINE output of landslide extent on a small valley 
glacier east of Maclaren glacier and corresponding image courtesy of Planet 
Labs, Inc. (13/09/2018). d) Erroneous 2018 tool detection of Black Rapids 
glacier RA deposits, which were deposited as a cause of the 2002 Denali 
earthquake (Jibson et al., 2006). Green boxes signify areas of interest and 
correspond to magnified areas of b), c) and d), respectively. IFSAR DTM 
background from the Alaska Mapping Initiative (doi: 10.5066/P9C064CO) 
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Figure 5: Deposition and behaviour of Lituya RA, John Hopkins Glacier Alaska (58°48'54.3"N, 137°17'40.9"W) 
detected by GERALDINE when run for a) 2012, b) 2013, and c) 2014. Landsat 7 scan line corrector issue visible in 
lower right section of 2013 image (B). IFSAR DTM background from the Alaska Mapping Initiative (doi: 
10.5066/P9C064CO). 
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1.0 Randolph Glacier Inventory (RGI) v6.0 errors 
The Randolph Glacier Inventory v6.0 (Pfeffer et al., 2014) is a global dataset of digitised glacier 
outlines, excluding the ice sheets of Greenland and Antarctica. These outlines were digitised 
from images acquired between 1943 and 2014. This large temporal array of images introduces 
a variety of dataset errors, due to rapid glacial thinning and retreat, in response to climatic 
change over the last century. GERALDINE’s delineation of new debris additions on glaciers 
is impacted by these discrepancies.  
 
We run GERALDINE for the year 2018 over the Columbia glacier, a glacier which has 
undergone unprecedented retreat over the last three decades, to demonstrate RGI impacts 
(Figure S1). RGI outlines in this region were digitised from imagery acquired in 2009 but the 
glacier has retreated ~8 km since then, losing 46.9 km2 at its tongue. Clean ice is ‘found’ in the 
now ice-free area, owing to ice melange/icebergs, and debris is ‘found’ due to the dark, 
unreflective ocean surface. We advise caution with the delineation of new debris additions near 
the terminus of marine-terminating glaciers, if they have recently undergone substantial retreat. 
Glacial thinning/down-wasting can also cause discrepancies in GERALDINE outputs. All 
tributaries of the western trunk of the Columbia glacier have undergone down-wasting, 
exposing valley walls. GERALDINE delineates this down-wasting and subsequent valley wall 
exposure as surficial debris, represented by each glacier having thick lateral ‘debris’ bands 
(Figure S1B). These are likely to expand with further glacial mass wastage, until RGI outlines 
are updated in v7.0.  
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Figure S1: Retreat of the Columbia Glacier, Alaska and the impact on RGI v6.0 outline accuracy. A)  RGI v6.0 
glacier outlines (green) and the area, which is no longer glaciated (orange). B) GERALDINE new debris results 
in this area for 2018. Landsat 8 background image from 2019-08-20. 
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2.0 Cloud mask threshold validation 

To determine the optimum threshold for cloud masking we chose 13 rock avalanches (RA) 
from the validation dataset, to validate different thresholds against. The high prevalence of RAs 
in Alaska meant all events chosen for cloud mask threshold validation occurred in the region, 
with nine occurring in Glacier Bay National Park (Coe et al., 2018) and four occurring in the 
eastern Alaska Range, in particular the area around Mt Hayes (Jibson et al., 2006) (Table 1). 
This selection incorporated two areas with different climatic regimes (marine vs continental 
climate) and a wide temporal coverage incorporating all Landsat satellites, with particular focus 
on the current constellation, due to the tools main use for aiding RA detection in the present 
day. 

Table 1: Rock avalanches (RA) used for cloud mask threshold validation 

RA Name Region Year Latitude Longitude Satellite Area 
(km2) 

2 Glacier Bay 
National Park 

1986 58.794 -137.354 Landsat 4/5 0.025 

10 Glacier Bay 
National Park 

1986 58.830 -137.502 Landsat 4/5 1.371 

14 Glacier Bay 
National Park 

1986 58.647 -137.058 Landsat 4/5 0.544 

Black Rapids 
Glacier W 

Eastern Alaska 
Range (Mt 
Hayes) 

2002 63.472 -146.263 Landsat 5/7 1.136 

McGinnis 
Peak Glacier 
S 

Eastern Alaska 
Range (Mt 
Hayes) 

2002 63.547 -146.198 Landsat 5/7 1.321 

Black Rapids 
Glacier E 

Eastern Alaska 
Range (Mt 
Hayes) 

2002 63.461 -146.167 Landsat 5/7 1.612 

Black Rapids 
Glacier M 

Eastern Alaska 
Range (Mt 
Hayes) 

2002 63.466 -146.226 Landsat 5/7 1.950 

7 - John 
Hopkins 

Glacier Bay 
National Park 

2015 58.769 -137.269 Landsat 7/8 3.375 

11 Glacier Bay 
National Park 

2015 58.626 -137.281 Landsat 7/8 1.223 

23 Glacier Bay 
National Park 

2015 58.622 -137.275 Landsat 7/8 0.586 

24 - 
Lamplugh 

Glacier Bay 
National Park 

2016 58.779 -136.888 Landsat 7/8 19.174 

26 Glacier Bay 
National Park 

2016 58.635 -137.018 Landsat 7/8 0.231 

27 Glacier Bay 
National Park 

2016 58.852 -137.247 Landsat 7/8 0.146 

28 Glacier Bay 
National Park 

2016 58.844 -137.345 Landsat 7/8 0.707 

Five different cloud thresholds were tested: 10%, 20%, 30%, 50% and 90%, to investigate their 
influence on highlighting new RA events. GERALDINE was run for the year of the event, or 
in the case of the eastern Alaska Range RAs, the year after the event, because these RAs 
occurred in November 2002 and therefore appeared in no Landsat imagery during that year. 
New debris layers generated by GERALDINE were downloaded, and the area of new debris 
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detected in the location of RAs, was compared to digitised RA outlines from the same year. A 
cloud mask threshold of 20% highlighted the largest area of new RAs, delineating 60.6% of 
RA area (Figure S2). The 10% cloud threshold masked too much of each image, inhibiting its 
ability to highlight new debris. Higher thresholds did not mask enough cloud discrepancies out 
of images resulting in misclassification of cloud as debris in previous year debris extents. This 
misclassification prevented GERALDINE from highlighting new debris because debris was 
already present in the previous year. GERALDINE therefore utilises a 20% cloud threshold by 
default. 

 

Figure S2: Mean area of RA highlighted as new debris by GERALDINE, and mean area of each Landsat 
image available after cloud masking, for five different cloud thresholds. Error bars represent standard 
deviation of the mean. 
 
We provide both good and bad examples of cloud mask performance in Figures S3 and S4, 
respectively. Figure S3 showcases the cloud masks ability to accurately mask cloud that is 
obscuring part of the Lamplugh RA, removing it from further analysis (Figure S3). However, 
occasionally it can suffer over debris cover in some areas (Figure S4), due to the optical and 
temperature similarities of the debris to cirrus clouds. This has similarly been found in 
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Antarctica with sunlit rock misclassification as cloud (Burton-Johnson et al., 2016). However, 
the image stack methodology used by GERALDINE helps to negate these cloud masking 
discrepancies. 
 
 

 
 
 
 
 

Figure S3: A) Original Landsat image (LC08_060019_20160729), B) Cloud masked Landsat image. 
Masking shows good ability to eliminate cloud pixels from scenes. 
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Figure S4: A) Original Landsat image (LC08_067016_20180704), B) Cloud masked Landsat image. 
Masking shows poor ability to eliminate cloud pixels from scenes, with misclassification of lighter 
debris as cloud. 
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3.0 Global distribution of validation RAs 

 

Figure S5: Global distribution of RAs used for GERALDINE validation (48 in total). 
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4.0 GERALDINE User Guide 

The tool is freely available to use at 
(https://code.earthengine.google.com/ca49d1a7d06012f3e919fba5be6de4f3) but requires a 
Google account authorized to use Google Earth Engine (GEE), which is free of charge if used for 
research and educational purposes (sign up for Google account here: 
https://accounts.google.com/signup/v2/webcreateaccount?flowName=GlifWebSignIn&flowEntry=Sig
nUp and register for GEE access here: https://earthengine.google.com/). Exporting of tool outputs 
requires a Google Drive account, which is complementary with the Gmail account required to sign up 
for GEE. The tool is open access and GUI (graphical user interface) driven. Tutorials on how to use 
Earth Engine are available at https://developers.google.com/earth-engine/ but here we will provide 
instructions on how to use our tool to detect supraglacial debris inputs. 

Step 1: 

Open v1.1 of GERALDINE (the version described in the manuscript) by clicking on this link:  
https://code.earthengine.google.com/ca49d1a7d06012f3e919fba5be6de4f3 or access the latest 
version of GERALDINE at https://doi.org/10.5281/zenodo.3524414 (if using the latest version these 
instructions may differ slightly). 

Step 2: 

You will be greeted by the start page shown below. Click ‘New project’ to start analysis.  

Step 3: 

Draw region of interest (ROI) by zooming in and clicking around an area to draw a polygon (Note: 
large ROIs and time periods that involve >800 images can be slow to load as they are calculated 'on the 
fly' in the map window). Alternatively, upload a shapefile of your ROI to Google Earth Engine (see: 
https://developers.google.com/earth-engine/importing for more information) and specify the GEE file 
path, which can be found by sliding down the top panel and navigating to the ‘Assets’ tab in the top left 
hand panel (highlighted by red box in image below). Click OK button when your ROI is defined. 
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Step 4: 

Specify date range from which you want the tool to detect new debris additions and select if you would 
like to use Tier 2 and/or Real Time Landsat imagery in addition to the default Tier 1 imagery. Tier 2 
imagery is useful if minimal Tier 1 imagery is available i.e. in Antarctica, and Real Time imagery 
should only be used if the event has occurred in the previous 16 days (Note: for Real Time imagery 
‘End date’ must be set as todays date). Tool accuracy and speed is optimum if date ranges are annual 
or sub-annual and only Tier 1 imagery is utilised. Date must be in the format of Year – Month – Day 
e.g. 2018-12-22. Press OK once start and end date are defined.  

Step 5: 

Tool should display results on map (it can take up to 3 minutes for layers to load if analysis is being 
undertaken on >800 images). Two layers are created: a previous year maximum debris cover layer and 
a new debris additions layer. The user can view and toggle these layers by hovering the mouse over the 
‘Layers’ button in the top right hand corner of the map viewer (highlighted by red rectangle in below 
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image). To export the data click on the Export data button. 

 

Step 6: 

Instructions are displayed detailing how to export data from GEE. Once you have navigated to the Task 
tab in the top right hand panel and clicked ‘Run’ next to the layer you wish to download (note: you do 
not need to wait for layers to load within GEE before you export). The following window will be 
displayed (see image below), prompting the user to confirm or alter the filename, confirm the export 
format (GeoJSON is strongly recommended because it decreases export time), and confirm the save 
location. Once data is exported, it can be used in a GIS of your choice. Alternatively, you can save your 
files as an Earth Engine asset, this is particularly useful for your ROI, enabling you to call it in during 
Step 3, instead of redrawing it every time you use GERALDINE. 
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