Reply to referee comments on “Graphically interpreting how
incision thresholds influence topographic and scaling properties of
modeled landscapes” by Theodoratos and Kirchner

We are grateful to Fiona Clubb and Philippe Steer for their feedback on our manuscript. In the
following response to their reviews, we first quote their comments (in blocks of italic text) and then
respond (in normal text).

Nikos Theodoratos and James Kirchner

1. Response to referee Fiona Clubb

The paper under review expands upon previous work by the authors on performing
dimensional analysis of landscape evolution models. The authors expand upon new
techniques of interpreting curvature-steepness index space as a way of characterizing
diffusive landscapes, similar to S-A in bedrock fluvial landscapes. They then re-define a
Péclet number (competition between advection and diffusion) for landscape evolution
models which take into account incision thresholds, as well as examining the influence of
varying incision thresholds both between and within model domains.

Thank you for this nice summary of our work.
The paper is interesting and well-written.
Thanks!

1 found the point that, if an incision threshold is included in the calculation of the Péclet
number, the degree of landscape dissection is dependent on uplift rate very interesting
and think perhaps more could be made of this in the paper. This could be a nice
hypothesis to test in real landscapes where a relationship between drainage density and
uplift rate has been observed.

Indeed, a relationship between drainage density and uplift rate U has been observed (e.g., in your
study, Clubb et al., 2016). The sign of this relationship depends on the value of the incision-term slope
exponent n. Specifically, an increase of U leads to an increase of drainage density forn > 1 and to a
decrease of drainage density for n < 1 (i.e., the relationship between U and drainage density is
positive for n > 1 and negative for n < 1). For n = 1, drainage density does not depend on U.

We reached a similar conclusion to the above in our scaling analysis of the LEM without incision
threshold in Theodoratos et al. (2018). Specifically, as described in Appendix A of that work, the
characteristic length /. is proportional to U1~/ +2mM) Thys, an increase of U leads to a decrease of
Il forn > 1 (i.e., to an increase of drainage density), to an increase of /. for n > 1 (i.e., to an decrease
of drainage density), and to no change forn = 1.

To summarize, the degree of landscape dissection generally depends on the uplift rate (and, in
addition, on the incision and diffusion coefficients). Dissection is independent of the uplift rate only in
one special case, when there is no incision threshold and the slope exponent is n = 1. Interestingly, as
revealed by the current study, if an incision threshold is included, the dissection depends on the uplift
rate even forn = 1.



We noted the above points in the paper (page 9, lines 29-35; note that the page and line numbers
mentioned in this response refer to the marked-up version of the revised paper) to highlight this
finding.

1 think the paper is suitable for publication in ESurf after a number of points (listed
below) are addressed.

Thank you.

My main issue is that more justification should be provided for the physical basis of
representing the incision threshold as purely a function of area and slope, rather than as
a minimum value of shear stress or stream power.

See our response further below, under your specific comment about this issue.

It would also be good to better situate the paper in context of the wider literature, as well
as clarifying the novelty of this paper compared to the authors’ previous work.

Having read your review, as well as the review by Philippe Steer, we realize that we have not
adequately explained what were the main goals and findings of our study. The two issues raised here
(the paper’s novelty and position within the literature) can be clarified by revising the Introduction and
Summary sections of the paper to improve the explanations of our goals and findings.

In this response, we discuss the paper’s novelty and position in the literature further below, under your
corresponding specific comments.

Specific comments:

The introduction could better set out the novelty of the work that is being presented here.
Lines 15-19 (page 2) mention the work of Theodoratos et al. (2018) and Theodoratos and
Kirchner (2020), which introduce the concept of curvature-steepness space and
dimensionally analyse a LEM with an incision threshold, respectively. This sounds very
similar to the summary of the manuscript in the abstract, and therefore leaves the reader
wondering what the novelty of this paper is compared to the previous ones.

Following on from this, it would be useful to expand the introduction with a more
thorough literature review: many studies have already examined the influence of incision
thresholds on erosion (e.g. Snyder et al., 2003; DiBiase and Whipple, 2011; Lague, 2014,
Scherler et al., 2017, Venditti et al., 2019, etc...). This work would be better set into
context with a more comprehensive review of previous studies.

The main goal of our paper was to explore the explanatory power of the relationship between
curvature and the steepness index, specifically, the visual explanatory power of plots of this
relationship. We found that simple shifts and rotations of these plots express graphically how scaling
properties of landscapes respond to changes in the values of parameters of the LEM. The scaling
properties that we examine are quantified by the characteristic scales of length and height.

To add more texture to this graphical method, we also examined the LEM with incision threshold. We
found that changes in the value of the incision threshold, too, lead to changes in scaling properties that
are graphically expressed as shifts and rotations.
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In Theodoratos et al. (2018), we showed how the characteristic scales of length and height can be used
to non-dimensionalize the LEM without incision threshold. In Theodoratos and Kirchner (2020), we
showed that the same characteristic scales can be used to non-dimensionalize the LEM that includes an
incision threshold. Thus, these two studies laid the ground for the current work. Furthermore, we used
the curvature—steepness-index relationship in Theodoratos et al. (2018) to derive geomorphologic
interpretations of the characteristic scales. However, we used this relationship to visualize the response
of landscape properties in the current work for the first time.

Additionally, in Theodoratos and Kirchner (2020) we defined the dimensionless incision-threshold
number Ny and we showed that it can be used to compare the relative importance of the incision
threshold across different landscapes. On the other hand, in the current work, we defined the
dimensionless quantity 1 — @ (the fractional reduction in incision rate), which quantifies how the
relative influence of the incision threshold varies within a given landscape.

The current work has greatly benefited from studies of the influence of the incision threshold on
erosion, such as the ones that you mention. However, our work focuses primarily on the incision
threshold’s influence on scaling properties, and on how this influence can be graphically visualized.
Therefore, the position of our paper is at the intersection of the literature on incision thresholds, on
landscape scaling, and on graphical methods.

As mentioned above, we realize now that we did not succeed in explaining our work’s novelty and
position in the literature, and so we added improvements in the Introduction (page 2, lines 10-31) and
Summary (page 15, lines 1-10).

Page 20, Line 30: The caveat of m=0.5 and n=1 is an important one considering that
many studies have found that this is not likely to be the case in the majority of real
landscapes (e.g. Lague, 2014, Harel et al. 2016). Although this caveat is mentioned here,
it would be useful to expand on how changing m and n would affect the graphical
interpretation of LEMs. Would it be at all possible to use curvature-steepness index space
if n is not equal to 1?7 Or are these tools only useful if n=1?

This is a very good question, thank you.

Our graphical methods work for any value of the exponents m and n. We added an appendix to the
paper to demonstrate this (new Appendix A, pages 16—17). Here, we briefly present the basic
equations.

For generic drainage area and slope exponents m and n, the governing equation is:

0z _ { DV2z+U , A™(|VzZ)™ < 6
ot  (—KA@™(|VzPD™—-8) +DV?z+U , A™(|vzD" > 6

Given that the steepness index is defined as kg = A™/1|Vz|, the quantity A™(|Vz|)™ in the above
equation is equal to the steepness index raised to the power n.

Setting dz/dt = 0 in this governing equation, we can derive the steady-state relationship between
curvature and the steepness index:



Vz=- Am(|Vzh)r < 0

K U
Viz = BA’"(IVZI)” -1+ N@)E , Am(vz )" > 6
where N is the incision-threshold number, defined as Ng = K6/U.

’

This relationship has the same basic properties as the relationship presented in our manuscript. It plots
as a line with two segments, a horizontal segment for A™(|Vz|)™ < 6 and an inclined segment for
A™(|Vz|)™ > 6 with slope equal to K/D and intercept equal to (U/K) + 6. This line responds to
changes in the values of parameters with shifts and rotations, as shown in Fig. 4 of our manuscript,
and these shifts and rotations express changes in the scaling properties of the landscape.

Note that, in the case of generic exponents m and n, the characteristic scales of length and height are
not equal to the parameter ratios K /D and U /K, rather they are defined by more complicated
formulas, which can be seen in Appendix A of Theodoratos et al. (2018). However, the ratios K/D
and U/K still express the relative strengths of incision, diffusion, and uplift.

Finally, for generic exponents m and n, the fractional reduction in incision rate 1 — @ is defined as
1 ,  Am(vz )" <6
1-d = 0
— , A"(|Vz)" >0 '’
Y OZDE (1vz])
which plots as shown in Figs. 5 and 6, but in axes of A™(|Vz|)", i.e., of steepness index raised to the
power n.

Page 3, Line 1, “Because a negative incision rate would not be meaningful...” doesn’t a
negative incision rate represent deposition? In terms of real landscapes this is
meaningful.

Indeed, this would be meaningful in a landscape that is influenced by deposition. However, our model
is based on the assumption of detachment-limited sediment transport, where deposition does not occur.
We added a clarification about this in the paper (page 3, lines 17-20).

Equation (2) sets the incision threshold 0 as merely a function of area and slope, such
that no incision will occur at low values of (A°0.5*S). What is this representing in terms
of physical process? Previous approaches use incision thresholds to represent discharge
variations, climatic controls on discharge, thresholds for particle motion/detachment, etc.
The paper does explicitly mention this point (Page 3 Lines 5-14), and states that using
this simplified formulation is more practical. However, in my opinion setting the incision
threshold to be dynamic would add a lot to the paper and provide more physical basis for
the parameterization.

Physically, our formulation represents a landscape where precipitation is uniform in space and
constant in time. In such a case, any given combination of drainage area 4 and slope |Vz| would lead
to the same value of stream power (or shear stress) for any storm event (as all events would be equal),
and this value of stream power would either be above or below the incision threshold. Thus, in such an
idealized case, defining a topographic threshold based on VA|Vz| would be exactly equivalent to
defining a threshold of stream power (or shear stress).



This idealized formulation represents a first-order approximation of the time-averaging that is inherent
in mathematically describing how landscapes evolve in geomorphic time scales under the influence of
processes that operate in hydrologic time scales.

We improved the discussion about this in the paper (from page 3, line 23, to page 4, line 8).

Related to this, I found it difficult to see how the variation of the incision threshold metric
(just as a function of area and slope) across the model domain would relate to the
strength of incision thresholds in real landscapes. From Figure 7, it appears that this
variation is just representing the distribution of area and slopes that you would expect in
a landscape consisting of hillslopes and valleys. How is this related to the physical
processes that would cause thresholds for incision in fluvial systems?

Indeed, the spatial patterns in Fig. 7 reflect the distribution of area and slopes, because the incision
threshold is defined as a topographic threshold, as described in our previous comment. However, the
metric 1 — @ (fractional reduction in incision rate) has a more general usefulness. For instance,
Tucker (2004) examined an incision threshold formulation that assumed stochastic precipitation, and
introduced the threshold factor @ (on which the notation of our metric 1 — ® was based). Using
Tucker’s formulation of the incision term and definition of @, one could still draw a map of 1 — @ to
visualize the spatial distribution of the relative influence of the incision threshold.

We added comments in the paper to clarify this (page 13, lines 1-8, and page 15, lines 7-9).

Page 4, Section 2.3 could be explained a bit more for readers not familiar with the
previous paper. For example, how the dimensionless grouping of K6/U was obtained.

This grouping emerged out of the non-dimensionalization of the governing equation with incision
threshold. We mention this in Sect. 2.3, but we improved our wording to make this clearer (page 4,
lines 24-27).

2. Response to referee Philippe Steer

This new paper by Theodoratos & Kirchner extends their recent developments on the
dimensional analysis of landscapes at steady-state, considering here a threshold model
for the stream power law. In particular, this paper offers a graphical interpretation of the
findings obtained in Theodoratos & Kirchner (2020) in the form of a curvature--
steepness relationship. I share most comments made by Reviewer 1 (Fiona Clubb) and do
not repeat them here. Even if some redundancy exists with previous papers of the same
authors, I do not find it problematic as it allows the reader to have a complete
understanding of this new paper without requiring to go back and forth between these
different papers. Moreover, the paper is neat and well-written and the mathematical
derivations are valid. Overall, this makes this paper readily publishable after cosmetic
revisions. My review could stop here.

Thank you for the supportive comments!

Despite that, 1 feel this is a pity that this paper only considers the dimensional analysis of
modeled topographies and not natural ones. I below will try to convince the authors to



make some significant additions to their paper, but the editor or the authors could judge
this is not necessary.

We agree that an application of our method to natural topographies would be very beneficial, but this
would require significant additions to the paper as you write. We believe that the analysis of natural
landscapes should be pursued as a separate study. This way, the results based on theory and those
based on natural landscapes would not obscure each other.

We thank you for trying to convince us to include an analysis of real landscapes. This is a very
reasonable next step, and we realize that our manuscript is not making this sufficiently clear.
Therefore, we highlighted this point in Sect. 3, where the curvature—steepness-index relationship is
defined (page 5, lines 25-26), and in the summary of the manuscript (page 13, lines 31-33).

First, my main concern is that this neat and detailed analysis is made on a model which
has a weak physical basis, in particular (as fairly acknowledged by the authors) due to
the use of a threshold on steepness (and not on shear stress) without a stochastic
description of discharge or shear stress events. In consequence, I am left to wonder what
is the real addition of a paper that considers the dimensional analysis of a model with an
unsupported physical basis.

As we wrote above in response to referee Fiona Clubb, the main goal of this paper was to demonstrate
the graphical explanatory power of the curvature—steepness-index relationship for landscapes that are
influenced by diffusion. We argue that this relationship can be viewed as a counterpart to the slope—
area power-law relationship, which is routinely used to analyze landscapes that are shaped by incision
and uplift, but not landscapes that include diffusion.

We recognize that an LEM with a stochastic incision threshold would follow a different curvature—
steepness-index relationship than the one described in our manuscript. However, the system of axes of
curvature and the steepness index would still be a useful space to plot data in, provided that the LEM
would also include diffusion. Indeed, this system of axes leads to meaningful plots for both the LEM
that includes the non-stochastic formulation of the incision threshold and the LEM that does not
include an incision threshold at all.

Based on your comment, however, we realize that our paper can become more convincing if we clarify
this issue (see page 2, lines 10-31, page 4, lines 1-8, page 13, lines 1-8, and page 15, lines 1-10). So,
we thank you for this comment!

Second, this paper left me wondering how the steepness-curvature analysis, two metrics
that are very easily measured on DEMs, resulting from this model compares with natural
landscapes. Figure 3 of Perron et al. (2019, Nature) provides a nice testable (and in my
opinion promising) natural example where the theoretical-graphical predictions of the
authors could apply (Figure 3 shows how curvature relates to A S - and not A70.5 S - in
the Gabilan Mesa first order catchments). Using this example (or another one) to
demonstrate that the curvature--steepness relationship can be used to infer some
potentially new constraints on K, D and U, complementary to classical steepness
analysis, would clearly represent a major addition to this paper and extend the interest of
this paper to a community far wider than numerical modelers. If this works well, this
would also probably help answering my first point. Indeed, this would not be the first
time that a geomorphological model, with little physical support, explains well natural



observations (i.e. the stream power model at steady-state with S-A relationships).
However, this would give a clear support (not a physical one - but an observational one)
to why we need to consider a threshold, even in its simplest form, in the stream power
incision law to simulate large-scale landscape evolution.

As we wrote above, our study aims primarily at the usefulness of the curvature—steepness-index
relationship, not at the incision threshold. Furthermore, we believe that the aims of an analysis of real
landscapes can be best pursued in a separate manuscript. However, this is a very reasonable
suggestion, which we highlight more in the revised manuscript (page 5, lines 25-26, and page 13, lines
31-33).

As an aside, we happily note that you appear to have read our work and the related literature with care,
since you have observed that Figure 3 in Perron et al. (2009) shows a relationship of curvature versus
A|Vz| not versus VA|Vz|. Our plots of curvature versus vVA|Vz| are more closely related to Perron et
al.’s (2009) Figure 3 (b), a plot of the so-called slope function S* versus drainage area A, which is
defined by Perron et al.’s (2009) Eq. (5), which is a rearranged version of our curvature—steepness-
index relationship.

1 sincerely hope these two comments will be perceived as encouragements and not as
negative criticisms by the authors.

Your comments are reasonable and very helpful. Therefore, they are very welcome!

References

Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., and Grieve, S. W. D.: The relationship
between drainage density, erosion rate, and hilltop curvature: Implications for sediment transport
processes, J. Geophys. Res. Earth Surf., 121(10), 1724-1745, doi:10.1002/2015JF003747, 2016.

Perron, J. T., Kirchner, J. W., and Dietrich, W. E.: Formation of evenly spaced ridges and valleys,
Nature, 460(7254), 502—-505, doi:10.1038/nature08174, 2009.

Theodoratos, N. and Kirchner, J. W.: Dimensional analysis of a landscape evolution model with
incision threshold, Earth Surf. Dynam., 8, 505-526, https://doi.org/10.5194/esurf-8-505-2020, 2020.

Theodoratos, N., Seybold, H. and Kirchner, J. W.: Scaling and similarity of a stream-power incision
and linear diffusion landscape evolution model, Earth Surf. Dyn., 6(3), 779-808,
https://doi.org/10.5194/esurf-6-779-2018, 2018.

Tucker, G. E.: Drainage basin sensitivity to tectonic and climatic forcing: Implications of a stochastic
model for the role of entrainment and erosion thresholds, Earth Surf. Proc. Landforms, 29(2), 185—
205, DOI: 10.1002/esp.1020, 2004.



10

15

20

25

30
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Nikos Theodoratos! and James W. Kirchner!?

1Dept. of Environmental Systems Science, ETH Zurich, Zurich, 8092, Switzerland
2Swiss Federal Research Institute WSL, Birmensdorf, 8903, Switzerland

Correspondence to: Nikos Theodoratos (theedorates@usys-ethz-ehtheodoratos.niko@gmail.com)

Abstract. We examine the influence of incision thresholds on topographic and scaling properties of landscapes that follow
a landscape evolution model (LEM) with terms for stream-power incision, linear diffusion, and uniform uplift. Our analysis
uses three main tools. First, we examine the graphical behavior of theoretical relationships between curvature and the
steepness index (which depends on drainage area and slope). These relationships plot as straight lines for the case of steady-
state landscapes that follow the LEM. These lines have slopes and intercepts that provide estimates of landscape
characteristic scales. Such lines can be viewed as counterparts of slope—area relationships, which follow power laws in
detachment-limited landscapes, but not in landscapes with diffusion. We illustrate the response of these curvature—steepness-
index lines to changes in the values of parameters. Second, we define a Péclet number that quantifies the competition
between incision and diffusion, while taking the incision threshold into account. We examine how this Péclet number
captures the influence of the incision threshold on the degree of landscape dissection. Third, we characterize the influence of
the incision threshold using a ratio between it and the steepness index. This ratio is a dimensionless number in the case of the
LEM that we use, and reflects the fraction by which the incision rate is reduced due to the incision threshold; in this way, it
quantifies the relative influence of the incision threshold across a landscape. These three tools can be used together to
graphically illustrate how topography and process competition respond to incision thresholds.

1 Introduction

Processes that shape landscapes leave topographic signatures, which can often be visualized by plotting different topographic
metrics against one another. An example is the relationship between river gradient and drainage area, which has been used to
analyze landscapes and river profiles, and to diagnose the processes that shape them (e.g., Montgomery and Foufoula-
Georgiou, 1993; Howard, 1994; Montgomery and Dietrich, 1994; Dietrich et al., 2003). For example, the stream-power
incision model predicts that if tectonics, climate, and rock properties are uniform, then bedrock rivers should approach a
steady state in which their gradient scales as a power law of drainage area (e.g., Tucker, 2004; Lague, 2014). This power-law
scaling implies that river gradient data should plot as a straight line against drainage area data on logarithmic axes. The
properties of this line can give estimates of properties of the landscape, e.g., its slope gives the concavity index (Whipple,
2004). Plotting synthetic topographic data from landscape evolution models (LEMSs) helps to illustrate the effects of different
model formulations or parameterizations. For example, including a threshold in the incision term of an LEM affects the
resulting slope—area line (e.g., Tucker, 2004; Lague et al., 2005; Deal et al., 2018).
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In the case of landscapes that are influenced by diffusion, topographic slope does not scale as a power function of drainage
area (e.g., Howard, 1994). Thus, slope and area data from these landscapes do not plot as straight lines. In Theodoratos et al.
(2018), we presented a counterpart relationship for the case of sueh-landscapes produced by an LEM that includes linear
diffusion (along with stream-power incision and uplift). This relationship predicts that in steady state, curvature and the
steepness index (which depends on drainage area and slope; e.g., Whipple, 2001) plot as a straight line against each other on
linear (i.e., non-logarithmic) axes. The slope and intercept of this line depend on the-characteristic scales of length and height
of the landscape, which in turn depend on the relative strengths of the processes that shape it. Thus, this relationship predicts
a link between topographic and scaling properties of landscapes that follow the LEM.

Here, we demonstrate an example of the explanatory power of plots of the curvature—versus-the-steepness--index
relationship.-Specificathwe- Our example shows that these plots reveal-hewcan visualize topographic and scaling effects of
incision thresholds.-a A
smallestscales-of-dissection._Incision thresholds can markedly influence erosion, as shown by numerous studies. For
instance, incision thresholds can influence the relationship between river gradient and the uplift rate (e.g., Snyder et al.,
2003), the dependence of long-term erosion rates on the average, the variability, and the duration of precipitation events
(e.q., DiBiase and Whipple, 2011; Scherler et al., 2017), and the dynamics of migrating knickpoints (e.g., Lague, 2014).
Here, we are not further elaborating on the insights of these studies. Instead, we focus on the effects of incision thresholds on
the competition between incision and diffusion, and on the topographic and scaling properties of landscapes reflecting this
competition. These topographic and scaling effects that we examine have been studied before (e.g., Montgomery and
Dietrich, 1992; Howard, 1994; Tucker, 2004; Perron et al., 2008). Here, however, we present a novel, purely graphical
method to identify, quantify, and interpret these effects based on the relationship between curvature and the steepness index.

In Theodoratos et al. (2018), we dimensionally analyzed a frequently used LEM with terms for uplift, linear diffusion, and
stream-power incision without an incision threshold. In Theodoratos and Kirchner (2020), we added an incision threshold to
this LEM and dimensionally analyzed it. Here, We-begin-this-presentation-by we summarize ing-the-governing-equations-of
these-two-LEMs-and-the definitions of key-quantities-invelved-in-theircharacteristic scales and dimensionless numbers that
emerged from the dimensional analyses_of these two LEMs in Sect. 2. Then, in Sect. 3, we show that these characteristic
scales and dimensionless numbers have geomorphologic meaning that can be expressed graphically using plots of curvature
versus the steepness index. The graphical explanatory power of these plots is further highlighted by comparing plots of
LEMs with and without an incision threshold (Figs. 1 and 2).

2 Stream-power incision and linear diffusion LEMs

2.1 Governing equations

The LEM without incision threshold follows the governing equation (e.g., Howard, 1994; Dietrich et al., 2003):
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= = —KVA|Vz| + DV?z + U . D

This equation gives the rate of elevation change dz/dt as the sum of three terms, namely, a) stream-power incision
K~/A|Vz|, where K is the incision coefficient, A is drainage area, and |Vz| is topographic slope, b) linear diffusion DV?z,
where D is the diffusion coefficient and V2z is the Laplacian curvature, and c) the uplift rate U. We assume that Eq. (1) has
base dimensions of horizontal length L, height H (which we treat as dimensionally distinct from L), and time T. All
quantities in Eq. (1) have dimensions that are combinations of L, H, and/or T, which we show in Table 1.

Note that the incision term Kv/A|Vz| is a special case of the more general incision term KA™(|Vz|)™. As we explained in
Theodoratos et al. (2018), dimensional analysis of an LEM with generic exponents m and n would lead to equivalent results
as the analysis of Eq. (1), but these results would be expressed with much more complicated mathematical formulas.
Therefore, in Theodoratos et al. (2018) as-well-as-in-the-present-study-we focused on the case of LEMs-with-exponents m =
0.5 and n = 1_and we presented the results for generic m and n in an appendix. Likewise, in the current study, the main
presentation focuses on the case of m = 0.5 and n = 1, and in Appendix A we demonstrate that our graphical method is also

valid for the case of generic exponents m and n.

Following Perron et al. (2008), we can add an incision threshold to the LEM by recasting the incision term as
K(\/ZIVZI — 9), where @ is the incision threshold. This formulation assumes that the incision rate Kv/A|Vz| is reduced

everywhere by the constant quantity K8. The LEM examined here is based on the assumption that sediment transport is
detachment limited. Thus, it does not include deposition and Beeause-a-negative incision rates would not be meaningful.
Therefore, the incision term is set to zero where the term K(x/Zlel — 9) would be negative, i.e., where VA|Vz| < 6-Fhus,
and the governing equation becomes

0z DV2z+U , VAlVzl < 0

at {—K(\/Z|VZ| —0)+DV2z+U , VAVz|>6
The incision threshold 6 has the same dimensions as vA4|Vz|, i.e., dimensions of H.

()

Equation (2) assumes that precipitation_rates are-is constant in time and uniform_in space, and it incorporates the-control-of
climate-on-ineisionclimatic effects into the incision coefficient K. qihas—th&mersmﬁhmsheld—étplay&m&mleeﬁa

: ate. Other LEMs use
stochastic preC|p|tat|on to drive their incision terms (e g., Tucker, 2004, Whipple, 2004; Lague et al., 2005; DiBiase and
Whipple, 2011; Deal et al., 2018). The incision thresholds of these LEMs define limiting values of shear stress or stream
power, below which no incision occurs. At any given location in the landscape, these limiting values might be exceeded
during some stochastic events and not exceeded during other events, depending on their intensities. By contrast, in the case
of the LEM that we examine, the assumption of constant and uniform precipitation implies that any given combination of

drainage area A and slope |Vz| would lead to the same value of stream power (or shear stress) for any storm event (as all
events would be equal), and this value of stream power would either be above or below the incision threshold. In this

idealized case, defining a topographic threshold based on v/A|Vz|.is exactly equivalent to defining a threshold of stream
power (or shear stress).
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We acknowledge that Fhesethe LEMSs with stochastic precipitation allow a-much more realistic time-integration of incision
rates over time, compared to the LEM that we examine here. Therefore, these LEMSs are more appropriate for studying the
influence of incision thresholds on erosion rates compared to the LEM that we use. However, our study has a different focus.
Our study focuses on_how the incision threshold & influences topographic and scaling properties of landscapes, and on how
this influence can be graphically expressed with-using curvature—steepness-index lines-te-derive-graphical-interpretations-of
he-effects-ofincisionthresholds-on-topographic-and-spatial-scaling-properties-of steady-state-landscapes. For thisthese tasks,
the simplified formulation of the incision term of Eq. (2) is more practical._It may be possible in future work to extend this
approach to include incision thresholds driven by stochastic precipitation.

2.2 Characteristic scales

The two governing equations (Egs. 1 and 2) can be non-dimensionalized using characteristic scales of length, height, and
time I, he, and t¢, defined as (Theodoratos et al., 2018; Theodoratos and Kirchner, 2020)

l.=+D/K , ©)

h.=U/K , 4)

t.=1/K . (5)
We summarize these and other definitions of this presentation in Table 2. The characteristic scales I¢, hc, and t; can be
viewed as intrinsic properties of a landscape, in the sense that they depend exclusively on the values of the parameters K, D,
and U, and not on extensive properties of the landscape such as the size of its domain or its maximum relief. We present
geomorphologic interpretations of these characteristic scales in Sect. 3.

By combining I, he, and t. we can define additional characteristic scales (Theodoratos et al., 2018). For example, given that
drainage areas A have dimensions L2, we can define a characteristic area A. as the square of the characteristic length:

A.=12=D/K . (6)
Likewise, we can define a characteristic gradient G,

Ge = h/l. =U/NDK ()
and a characteristic curvature

k. =h/1?=U/D . (8)

2.3 Incision-threshold number Ny

In Theodoratos and Kirchner (2020), we derived a dimensionless number, whose definition and interpretation we summarize
here. Dimensional analysis of the governing equation with incision threshold 4 (Eq. 2) yielded the dimensionless grouping of
parameters K8 /U. Specifically, all terms of Eq. (2) give rates of elevation change and have dimensions of H T, Therefore,
to non-dimensionalize Eq. (2), we divided all of its terms by the uplift rate U. The quantity K6-, which is included in the
incision term of Eq. (2) and gives the reduction in the rate of incision due to the threshold-and, thus—it-also has dimensions of
elevation-changerate-H T~1. Therefore, dividing the incision term of Eq. (2) by U vyielded the dimensionless ratio K8 /U-of
K6-to-U-is-dimensionless. We defined this dimensionless ratio as an incision-threshold number Ny

Ny :==K6/U . 9)
Our-This analysis led to a dimensionless version of Eq. (2) that includes only one parameter, the incision-threshold number
No. This implies that Ny is a control on the topography of landscapes that follow Eq. (2). Specifically, model landscapes that
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have equal incision-threshold numbers Ny can be set up such that they follow geometrically similar evolutions. Model
Iandscapes that have different Ny cannot evolve geometrically similarly, and their topographies differ in ways that depend
on their Ny values. Simulation results illustrating these points are presented in Theodoratos and Kirchner (2020).

We proposed two interpretations of the incision-threshold number Ny in Theodoratos and Kirchner (2020). First, Ny is
defined as the incision rate reduction K@ relative to the uplift rate U (Eq. 9). The uplift rate U can be viewed as a
characteristic rate of elevation change because it is equal to the ratio of the characteristic height to the characteristic time,
i.e., U= h./t. (EQs. 4, 5). Consequently, Ny is a normalized incision rate reduction with respect to U. Second, if we
rearrange Eq. (9) as Ny = 6/(U/K), then we can interpret Ny as giving the magnitude of 4 relative to the parameter ratio
U/K. Thus, the definition of Ny shows that incision thresholds from different landscapes should not be compared to each
other according to their own values, but instead according to their values relative to the ratio U/K of each landscape.

3 Graphical illustrations of topographic and scaling effects of the incision threshold
3.1 Defining a steady-state topographic relationship between the steepness index and curvature

In Theodoratos et al. (2018), we presented a relationship that describes the steady-state topography of landscapes that evolve
according to Eq. (1). Specifically, if we set dz/dt = 0 and we solve the governing equation for curvature V2z, we obtain

dz/0t = 0: V2z = (K/D)VA|Vz| — (U/D) . (10)
The quantity vA|Vz| is equal to the steepness index (defined as A™/™|Vz| for drainage area and slope exponents m and n;
e.g., Whipple, 2001). For this reason, we refer to Eq. (10) as the curvature—steepness-index relationship.

In a coordinate system in which the steepness index (vA|Vz|) and curvature (V2z) are plotted on the horizontal and vertical
axes, respectively, Eq. (10) plots as a straight line (for example, see Fig. 1, which we describe in more detail further below).
Equation (10) is a testable, quantitative prediction; if a landscape is in steady state and has evolved according to Eqg. (1), then
curvature should plot as a straight line against the steepness index. Furthermore, this line can give estimates of the
parameters K, D, and U, because its slope is K /D, and its intercepts are V2z = — U/D and v/A|Vz| = U/K. While we have
not validated this prediction with data, Eq. (10) is a rearranged version of Eq. (5) in Perron et al. (2009), which has been
successfully tested with real-world landscape data and has been used to estimate model parameters. Testing Eg. (10), and
Eqgs. (11-12) and Figs. 1-2, which are described further below, would be a reasonable next step after the current study.

3.2 Characteristic scales and the curvature—steepness-index relationship

If we substitute the characteristic scales I and #. for the parameter ratios K /D and U/D, then the curvature—steepness-index
relationship (Eq. 10) becomes

dz/dt = 0: Viz = (1/1) VAIVz| — k. . (11)
As this equation shows, an interpretation of I and hc is that they control steady-state topography. Specifically, for a
landscape to be in steady state, drainage area A, topographic slope |Vz|, and curvature V2z must obey Eq. (11), which is
parameterized by the characteristic scales lc and ., or equivalently by I. and h. because k. = h./1? (Eqg. 8). We can
graphically illustrate the control of I and h. on the topography by plotting the curvature—steepness-index line described by
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Eg. (11). As Fig. 1 shows, the properties of such a line are controlled by I, and hc, specifically, its slope is 1/12, and its
intercepts are V2z = —k, = —h, / 12 and VVA|Vz| = h,. Note that the slope of this line can be represented either as K /D =
1/12 units of curvature per 1 unit of steepness index, or 1 unit of curvature per D/K = I2 units of steepness index. For
simplicity, we use the latter notation to express the slopes of the curvature—steepness-index lines in Figs. 2—4.

Likewise, the curvature—steepness-index relationship that corresponds to the LEM with incision threshold & is controlled by
the characteristic scales Ic and «.. This relationship, however, is also controlled by the incision-threshold number Ny. To
derive this relationship, we set dz/dt = 0 in Eq. (2) and we solve it for V2z. When we do this for the second subdomain
(where VA|Vz| > 6), we encounter the ratio K8/D. This ratio can be rewritten as K6/D = (K6 U)/(U D) = N, k. (Egs. 8,
9). Thus, we obtain the curvature—steepness-index relationship:

9z/0t = 0: { Viz =K., VAIVz| < 6

Viz = (1/13) VAIVz| — (1 + Np)k. , VAIVz| > 6

We plot this equation in Fig. 2 in black and, for comparison, we also plot the curvature—steepness-index line without incision
threshold (Eq. 11) in gray. The black line consists of two segments that correspond to the two subdomains of Egs. (2) and
(12). The first segment is horizontal and describes a uniform steady-state curvature value of V2z = —k_. for points with

(12)

VA|Vz| < 6, where incision is fully suppressed by the threshold and only diffusion and uplift operate. The second segment is
inclined and corresponds to points with v/A|Vz| > 6 where all three processes operate.

Equations (11-12) and Figs. 1-2 show that the characteristic scales I, hc, and x. describe the steady-state topography at
points of special interest (see also Theodoratos et al., 2018). Furthermore, some effects of incision thresholds on landscape
properties can be visualized by comparing the curvature—steepness-index lines with and without an incision threshold (black
and gray lines of Fig. 2).

First, the vertical-axis intercept of the curvature—steepness-index line without incision threshold (Fig. 1, Eg. 11) corresponds
to ridges and drainage divides, which have A4 = 0 and/or |Vz| = 0, i.e., VA|Vz| = 0. This intercept shows that the steady-
state curvature of ridges and drainage divides is V2z = —k, = — U/D (see also Roering et al., 2007; Perron et al., 2009).
Note that —x_ is the most negative value of curvature. The horizontal segment of the black line in Fig. 2 (described by the
first subdomain of Eq. 12) expresses the fact that, in landscapes with an incision threshold 8, the points with vVA|Vz| < 6
have the same steady-state curvature as ridges and drainage divides, i.e., the most negative value of curvature. This shows
that adding an incision threshold to the LEM results in more convex hillslopes (e.g., Howard, 1994; Theodoratos and
Kirchner, 2020).

Second, the curvature—steepness-index line without incision threshold (Fig. 1, Eq. 11) has a horizontal-axis intercept of
VA|Vz| = h,. This intercept corresponds to points with curvature V2z = 0, which can be viewed as defining the transition
between hillslopes and valleys (e.g., Howard, 1994). Thus, points with steepness index equal to the characteristic height h¢
can be used to map hillslope—valley transitions (Theodoratos et al., 2018). Adding an incision threshold 6 to the LEM makes
landscapes steeper and decreases the drainage density, i.e., makes first-order basins bigger, (e.g., Montgomery and Dietrich,
1992; Howard, 1994; Perron et al., 2008). These two effects lead to steeper gradients |Vz| and larger drainage areas A at
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hillslope—valley transitions. Specifically, as Fig. 2 shows, the horizontal-axis intercept increases from vA|Vz| = h,. (gray
line) to VA|Vz| = h, + 6 (black line).

3.3 Quantifying and visualizing the effect of the incision threshold on the scales of landscape dissection

In Theodoratos et al. (2018), we derived an interpretation of the characteristic length I; by analyzing the competition between
the advection and diffusion of elevation perturbations (e.g., knickpoints), which gives rise to ridges and valleys, and controls
their characteristic sizes (e.g., Smith and Bretherton, 1972; Howard, 1994; Perron et al., 2008). Following Perron et al.
(2008, 2009, 2012), we quantified the relative strength of advection versus diffusion using a Péclet number Pe. The
definition of our Péclet number differs somewhat from Perron et al.'s. Specifically, our definition includes a length scale |
that we termed flow path length and that we defined as the distance along flow paths from a given point to the farthest ridge.

The Péclet number is defined (e.g., Perron et al., 2008) as the ratio of a diffusion timescale tp to an incision timescale t;, each
of which gives a measure of the strength of the respective process. Specifically, a diffusion timescale can be defined as (e.g.,
Perron et al., 2008)

tp == E . (13)

This timescale characterizes diffusive propagation over a distance I. In Theodoratos et al. (2018), to define t;, we first
calculated the celerity c that corresponds to the incision term of Eq. (1), which is a kinematic wave term (e.g., Whipple and
Tucker, 1999). This celerity is equal to ¢ = K+/A. Perturbations can be assumed to be advected at this celerity (e.g., Berlin
and Anderson, 2007; Perron et al., 2008). Lague (2014) has criticized this assumption because it does not take into account
the effects of knickpoints on hydraulics (e.g., on stream width) and their feedbacks on the rate of knickpoint propagation,
especially in the presence of incision thresholds. While we acknowledge this limitation, we nonetheless assume that the rate
of knickpoint advection is equal to the celerity ¢ of Eq. (17) because our current focus is on interpreting the characteristic
scales I, h¢, and t;, which pertain to Egs. (1) and (2), which do not describe hydraulics explicitly. Therefore, in Theodoratos
et al. (2018), we defined the incision timescale t; as the ratio of the flow path length I, which characterizes the location of
points within drainage basins, to the celerity ¢, which characterizes the strength of advection:

l

t; = l/C=WZ . (14)

Note that small values of t; and tp correspond to strong advection and diffusion, respectively.

We can quantify the relative strengths of advection and diffusion using the ratio of the respective timescales, which defines
the Péclet number (Theodoratos et al., 2018):
VAL VA 1

2 /A L
Diffusive propagation is stronger at points with Péclet number smaller than 1 and advective propagation is stronger where
the Péclet number is larger than 1. Where the Péclet number is roughly equal to one, diffusion and advection will be roughly
equal (when measured by tp and t;). Equation (15) shows that if a point’s flow path length | is roughly equal to the
characteristic length I and its drainage area A is roughly equal to the characteristic area A, then its Péclet number will be
roughly equal to one. i.e.,

Pe:=t,/t; = (15)
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=1, A=A, ~I1>? = Pe=1 . (16)
Note that if the incision term has a slope exponent n # 1, then the condition |Vz| = G, must be included along with [ = [,
and A ~ [2 for the Péclet number to be Pe ~ 1.

The conditions A = 2 and | = I, (Eq. 16) are not the only combination of A and | that give Pe ~ 1, but they are significant
because they lead to an interpretation of I.. Specifically, these conditions show that advective propagation, which promotes
valley dissection, is dominant at points farther than I from the ridge and with drainage area greater than (2. Therefore, in
Theodoratos et al. (2018) we interpreted the characteristic length I as giving a measure of the smallest scales of dissection.
This interpretation does not imply that valley heads are exactly 1 I away from ridges or that they have drainage areas exactly
equal to 1 2. Rather, it implies that flow path lengths and drainage areas of valley heads are of similar order of magnitude as
I and 12, respectively. Furthermore, it implies that valley heads in different landscapes have | and A that scale with I and 12,
respectively.

Adding the threshold @ to the incision term of the LEM changes the kinematic wave celerity ¢ and, thus, the incision
timescale t; and the Péclet number Pe. Specifically, the celerity becomes

0, VA|Vz| <6
c= @17
KVA—-KO/|Vz| , VA|Vz| > 6
and, thus, the incision timescale t; becomes
+o0 VA|Vz| < 6
= — l .
tI l/C ) \/ZlVZl > 9 (18)
KVA — KO/|Vz|

Note that the diffusion timescale tp is not affected by the incision threshold. Thus, we can use Egs. (13) and (18) to define a
Péclet number Pe for the LEM with incision threshold 6 (Eg. 2), specifically

0, VA|Vz| < 6
Pe:=t,/t; ={VAl - (g 1/|Vz]) VAl > 6 (19)
It can be shown that Eq. (1;)) can be rewritten as
0, VAlVz| <8
Pe:=t,/t; ={ VA I I G, VAV > o (20)

N 7
where Ny is the incision-threshold number (Eg. 9). Equation (20) shows that adding an incision threshold 4 to the LEM
reduces the Péclet number relative to the Péclet number for the LEM without a threshold (Eq. 15). This agrees with the fact
that the threshold weakens the incision term. More specifically, the Péclet number for the LEM with 6 is reduced by the

quantity No(1/1:)(G:/1Vz]).

Note that the Péclet number definition by Perron et al. (2008) also includes a reduction that depends on Ny (denoted as 8’ in
Perron et al., 2008). The two definitions differ in that ours includes the product +/A I (where A is the drainage area and | is

the flow path length), whereas Perron et al.’s definition includes only a length scale (squared). By including VA I, our
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definition can account for the scaling of A with |, which depends on the convergence or divergence of topography. The
implications of this property of our Péclet number are discussed in Sect. 4.2.3 of Theodoratos et al. (2018).

Using Eq. (20) we see that the conditions [ = I, A = I, and |Vz| = G, which lead to a Péclet number roughly equal to 1 for
the case without incision threshold (Eq. 16), will lead to Pe = 1 — Ng < 1 when 6 is included. The fact that the difference
between Pe and 1 is equal to Ny suggests that we could obtain the value Pe =~ 1 by adjusting the values of I, A, and |Vz| such
that they depend on N,. Indeed, we observe that

l~J1+Ngl, A=(1+Ny)l3 [Vz| ~ \/1+ Ny G, = Pe=x1 . (21)
Note that /1 + Ny . is larger than ¢, which agrees with observations that incision thresholds reduce landscape dissection
(e.g., Montgomery and Dietrich, 1992; Howard, 1994; Perron et al., 2008).

Equation (21) shows that, in the case of a landscape that includes an incision threshold 6, the smallest scales of dissection are
not characterized by the characteristic length I; on its own, but rather jointly by I. and the incision-threshold number N,
through the quantity \/TNQ I.. Consequently, the presence of § changes the dependence of the scales of dissection on the
LEM parameters. Without an incision threshold, the scales of landscape dissection depend on I¢, which depends on the
incision and diffusion coefficients K and D (Eg. 3). On the other hand, when @ is included in the LEM, the scales of
dissection depend on m I, which depends on K and D, but also on the uplift rate U and the incision threshold 8. We
illustrate an example of the dependence on U in Fig. 4 b.

The length scales I and \/TNQ 1. can be expressed graphically by the horizontal- and vertical-axis intercepts of curvature—
steepness-index lines, specifically, by the ratio of these intercepts (or, more precisely, by the ratio of their absolute values).
This ratio is equal to h./x. = [? in the case without incision threshold (see Fig. 1) and equal to (h, + 8)/x, = (1 + Ng)I2
in the case that includes the incision threshold @ (see Fig. 2). Note that the first ratio is equal to the inverse of the slope of the
curvature—steepness-index line, which is 1/12. On the other hand, the second ratio is not the inverse of this slope, which
remains 1/12 when the threshold @ is included. Instead, it is the inverse of the slope of an auxiliary line connecting the two
intercepts. In Fig. 2, we show this auxiliary line with a black dashed line style. The effect of the incision threshold on valley
dissection can be visualized graphically by comparing the slope of the curvature—steepness-index line against the slope of the
black dashed auxiliary line. We denote this comparison as a thick white arrow.

It should be noted that the characteristic length I, depends only on K and D only when the slope exponent is n = 1. However
for other values of n, I will also depend on the uplift rate U; in this more general case, [, = (K~1D"U~")V/@+2m) (see
Appendix A in Theodoratos et al., 2018). Therefore, the degree of landscape dissection in general is not independent of U.
Specifically, an increase of U leads to a decrease of landscape dissection for n > 1 and to an increase of landscape dissection
for n < 1, which agrees with previous observations of the dependence of drainage density on the uplift rate (e.g., Clubb et
al., 2016). Interestingly, as revealed by the current study, if an incision threshold is included, the degree of landscape
dissection depends on U even forn = 1.
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3.4 How the curvature-steepness-index line responds to parameter value changes

As we show in Figs. 3 and 4, differences in the properties of landscapes with different parameters K, D, U, and & can be
graphically summarized by curvature—steepness-index lines, because the slopes and intercepts of these lines depend on the
characteristic scales I, he, and x¢, and on the incision-threshold number Ny, which in turn depend on the parameters.

Figure 3 shows curvature—steepness-index lines without incision thresholds. It consists of three panels, each showing how
the lines respond to an increase in one of the three parameters U, K, and D. In panel (a), an increase in the uplift rate U shifts
the curvature—steepness-index line downward and to the right without changing its slope. This illustrates that the
characteristic height and curvature h; and ¢, which control the intercepts of the line, are proportional to U (Egs. 4, 8), while
the characteristic length I, which controls the line’s slope, is independent of U (Eq. 3). The parallel shift of the line
corresponds to more convex ridges (so that diffusion can keep up with uplift), to steeper gradients (so that incision can keep
up with uplift), and to unchanged landscape dissection. Analogously, panel (b) shows that an increase in the incision
coefficient K leads to a counterclockwise rotation of the line around the vertical-axis intercept, which corresponds to a more
dissected landscape (smaller Ic), milder gradients (smaller h), and unchanged ridge convexity (unchanged «c). Finally, in
panel (c), an increase in the diffusion coefficient D results in a clockwise rotation of the line around the horizontal-axis
intercept. This corresponds to a smoother landscape with less dissection (larger Ic) and less convex ridges (smaller xc), and to
unchanged steepness index at hillslope—valley transitions (unchanged hc).

Figure 4 illustrates in four panels how curvature—steepness-index lines respond to increases in the value of either the incision
threshold @ or one of the parameters U, K, and D. It is reminded that a curvature—steepness-index line with incision threshold
consists of two segments, a horizontal and an inclined. Note that, as we explain in the previous subsection (Sect. 3.3), a
curvature—steepness-index line that includes an incision threshold does not express landscape dissection through the slope of
its inclined segment, which depends only on the characteristic length I, but rather through the ratio of the horizontal- and

vertical-axis intercepts, which is equal to /1 + Ny L. This ratio can be graphically illustrated by the slope of an auxiliary

line that connects the two intercepts, such as the dashed black line in Fig. 2. In each panel of Fig. 4, we show two dashed
black auxiliary lines to illustrate how the ratio of intercepts responds to the parameter changes.

In panel (a) of Fig. 4, we illustrate an increase in 6. The steepness index vA|Vz| must reach a greater value before exceeding
the increased @ and, thus, the horizontal segment of the curvature—steepness-index line becomes longer. The vertical position
of this segment (along with the vertical-axis intercept) do not change, because the characteristic curvature x. does not depend
on 6. The slope of the curvature—steepness-index line also does not change, because I. does not depend on 6. Thus, the
increase of @ parallel-shifts the inclined segment of the line to the right. Consequently, the horizontal-axis intercept
increases, which expresses the steepening of gradients and the decrease of landscape dissection. The decrease of dissection is
also expressed by the fact that the ratio of the horizontal- to the vertical-axis intercept increases, as shown by the clockwise
rotation of the dashed auxiliary lines.

In panel (b) of Fig. 4, we show that an increase in the uplift rate U parallel-shifts the curvature—steepness-index line

downward and to the right. Furthermore, the horizontal- and vertical-axis intercepts move to the right and downward,
respectively («x: and hc are proportional to U), and the slope of the inclined segment remains unchanged (I does not depend
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on U). As we explain in Sect. 3.3, the value of U affects the value of \/TN@ 1., which expresses the scales of landscape
dissection. Specifically, the increase of U leads to a decrease of Ny. This reflects the fact that & becomes less important
relative to the increased U. Thus, the decrease of dissection due to the threshold is somewhat moderated by the increase of U.
This moderation is graphically illustrated by the slopes of auxiliary lines connecting the intercepts of the curvature—
steepness-index lines. These auxiliary lines do not intersect and, thus, their slopes cannot be readily compared visually.
Therefore, we plot them again in an inset such that they start from the same point. In this way, we can see that the increase of
U leads to a counterclockwise rotation of the auxiliary lines, which expresses the increase of dissection.

In panel (c) of Fig. 4, we illustrate the response of the curvature—steepness-index line to an increase in the incision
coefficient K. The horizontal segment of the line remains unchanged and the inclined segment is rotated counterclockwise
around the point of transition between the two segments. Likewise, the dashed auxiliary line connecting the horizontal- and
vertical-axis intercepts is rotated counterclockwise. These responses express that dissection is decreased and that gradients
become milder when K is increased. Finally, in panel (d), we show that increasing the diffusion coefficient D leads to a
clockwise rotation of the inclined segment of the line around its horizontal-axis intercept, which remains unchanged. The
rotation results in moving the horizontal segment up and in rotating the dashed auxiliary line clockwise. These changes
express the reduction in landscape dissection and the reduction in the convexity of ridges and hillslopes.

4 Quantifying how the influence of the incision threshold varies within a landscape

Thus far, we have examined how the influence of the incision threshold @ varies between different landscapes with different
parameters using the incision-threshold number Ny (Eq. 9). This number is constant for any given landscape if the parameters
of the landscape are constant. Now, we turn our attention to how the influence of the incision threshold 6 varies within a
given landscape.

We can quantify the relative influence of the threshold 6 on the rate of incision using the fraction 9/(\/Z|Vz|). This fraction
is equal to K@, the reduction in the incision rate due to the threshold, divided by K~+/A|Vz|, the incision rate if there would be
no threshold. Therefore, 9/(\/Z|Vz|) shows by what fraction the incision rate is reduced due to the threshold. Where
VA|Vz| = 6, the fraction 8 /(vV/A|Vz|) is equal to 1, which agrees with the incision rate being reduced by 100% (i.e., being
reduced to zero). At points with vA|Vz| smaller than 6, calculating the fraction 8 /(v/A|Vz|) would not be meaningful;

instead, because the threshold completely suppresses incision under these conditions, we assign a value of 1 to the fractional
reduction in incision rate.

We can associate the fractional reduction in incision rate to Tucker’s (2004) threshold factor ®@. Tucker (2004) defined @ to
quantify the fraction of precipitation events leading to shear stress above a threshold value, i.e., the fraction of events that
lead to erosion. Tucker (2004) used ® to express the incision term of his LEM as KA™»S™ ®. In the case of the LEM

examined here (Eq. 2), following Tucker’s notation, we can express the incision term as K+/A|Vz|®, where the threshold
factor @ is equal to 1 — 6/(v/A|Vz|) for VA|Vz| > 6 and to 0 for vA|Vz| < . Thus, the quantity 1 — & is equal to the
fractional reduction in incision rate, i.e.,
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1, VA|Vz| < 6

1—-d={ 6
, VAlVz| >0
VA|Vz|

Consequently, in what follows we denote the fractional reduction in incision rate as 1 — @. We illustrate the properties of the
quantity 1 — @ with plots and maps in Figs. 5-7.

(22)

In Fig. 5 we plot 1 — & versus the steepness index vA|Vz| according to Eq. (22). The curve consists of two parts. The first is
a horizontal segment that describes the value 1 — & = 1 and corresponds to points with vVA|Vz| < 6, where incision is fully
suppressed by the threshold. The second part corresponds to points with v/A|Vz| > 8, forming part of a hyperbola that

asymptotically approaches 0. This asymptotic approach expresses the fact that, at points with steepness index vA|Vz| much
larger than 6, the incision threshold has a very small relative influence on the incision rate.

To indicate how different parts of the 1 — & curve of Fig. 5 correspond to different regimes of a landscape, we identify the
point that corresponds to hillslope—valley transitions. As explained in Sect. 3.2, hillslope—valley transitions can be defined as
points with zero curvature and, therefore, with a steady-state steepness index of vA|Vz| = h, + 6. Consequently, the
fractional reduction in incision rates 9/(\/Z|Vz|) at these points is 8 /(h, + 8). We can rewrite this value in terms of the
incision-threshold number Ny as Ng /(1 + Ny). Thus, in Fig. 5, hillslope—valley transitions correspond to the point with
coordinates (\/ZIVZI, 1-— d)) = (h. + 6, Ny/(1+ Ng)), which we mark with a black dot. The part of the curve above and
to the left of this dot corresponds to hillslopes, and the part below and to the right corresponds to the valley network.

With Fig. 6, we examine how the value of the incision-threshold number N, of a landscape controls the relationship between
the quantity 1 — & and the steepness index vA|Vz|. Specifically, in Fig. 6 we show curves of 1 — & versus vA|Vz| for four
landscapes with incision-threshold numbers Ny equal to 0.2, 0.4, 1, and 2. The landscapes are assumed to have equal
parameters K, D, and U, and therefore to have equal characteristic scales. The curves with greater values of Ny also have
greater incision thresholds @ and, thus, they have longer horizontal segments. Furthermore, the curves with greater values of
Ny go towards zero more slowly. On each curve, we show the hillslope—valley transition using a black dot. The value of the
quantity 1 — @ corresponding to each dot becomes larger as Ny increases. Thus, in landscapes with smaller Ny, the incision
rate is reduced by large fractions only on the hillslopes, and in valleys it is reduced by small fractions. By contrast, in
landscapes with greater Ny, incision can be reduced by large fractions both on hillslopes and in valleys.

Figure 7 shows maps of the quantity 1 — @ across four steady-state landscapes. We simulated these landscapes with the
CHILD numerical model (Channel-Hillslope Integrated Landscape Development model; Tucker et al., 2001). Details about
these simulations and additional results are presented in Theodoratos and Kirchner (2020). Here, we provide brief
information about the parameters and setup of these simulations in Appendix B. To illustrate how the spatial distribution of
1 — @ depends on the incision-threshold number Ny, we ran four simulations with Ny values of 0.2, 0.4, 1, and 2, i.e., the
same Ny values as in Fig. 6. The pixels of the four maps are colored according to their values of 1 — @ using a grayscale that
ranges from white to black. Lighter colors correspond to larger values of 1 — @, i.e., to stronger influence of the incision
threshold. As expected, lighter colors appear near ridges and on hillslopes, where the incision threshold has a stronger
influence.
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The patterns in Fig. 7 reflect the spatial distribution of drainage area and slope, because the incision threshold in Eq. (2) is
defined as a topographic threshold. However, maps of the quantity 1 — & would be useful for other formulations of the
incision threshold, as well. For example, Tucker’s (2004) formulation of the incision threshold assumed stochastic
precipitation. Tucker quantified the influence of this incision threshold using the threshold factor @, which ranges between 0
and 1 (and on which our guantity 1 — & _is based, as mentioned above). Therefore, the quantity 1 — @ could be calculated for

the case of Tucker’s (2004) LEM, and maps of this quantity would visualize how the influence of the incision threshold is
spatially distributed across landscapes.

The fractional reduction in incision rate as 1 — @ and the threshold factor @ can be used to simplify the definition of the
Péclet number Pe. Specifically, we can rearrange the definition of Pe (Eq. 19) such that it includes the fraction 6/(vA|Vz|):

0, VA|Vz| < 6
Pe = ] Al . 23
€ <1— )L—, VAIVz| > 6 (23)
VAIVz|) JAc L
If this equation is combined with the definition of 1 — & (Eq. 22), then we can rewrite the definition of Pe in compact form
Pe =@ Pey, |, (24)

where Pegy_, is the Péclet number for the LEM without incision threshold (see Eq. 15). Equations (23) and (24) reveal that
the influence of the incision threshold on the Péclet number varies across the landscape. Specifically, larger values of Pe,

which correspond to larger values of the steepness index v/A|Vz|, are less sensitive to the incision threshold.

5 Summary and conclusions

We present graphical methods that summarize topographic and scaling properties of landscapes following a simple stream-
power incision and linear diffusion LEM (Eq. 1), and that illustrate the effects of adding an incision threshold 6 (Eq. 2). Our
results referring to the LEM without incision threshold (Eg. 1) have been presented before (Theodoratos et al., 2018), but we
show them here again to contrast them against those referring to the LEM with the threshold 6 (Eq. 2)._The two LEMs

(Eq. 1, 2) assume that the incision term has drainage area and slope exponents m = 0.5 and n = 1, because this combination
significantly simplifies the mathematical derivations. However, as we show in Appendix A, our results are also valid for
generic exponents m and n.

For the first graphical method, we plot steady-state relationships between curvature V2z and the steepness index vA|Vz|
(Egs. 10, 11, 12), which we obtain from the governing equations Eq. (1) and (2). These relationships can be viewed as
counterparts of the relationship between topographic slope and drainage area, which is typically assumed to follow a power
law in detachment-limited landscapes, but not in landscapes that are also influenced by hillslope diffusion. These
relationships plot as straight lines (Figs. 1 and 2), whose properties (slope and intercepts) depend on the incision threshold 9
and on the characteristic scales of the landscape, which in turn depend on the parameters of the LEM, i.e., on the incision
coefficient K, the diffusion coefficient D, and the uplift rate U. (Egs. 3, 4, and 8)._A reasonable follow-up study would be to
validate these results against real-world landscapes, and specifically to explore whether curvature and steepness-index data
from real landscapes would plot against each other as straight lines.
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With Fig. 2, we show that curvature—steepness-index lines can graphically illustrate effects of incision thresholds on
landscapes. Specifically, the ways in which curvature—steepness-index lines with and without threshold differ from each
other illustrate that thresholds make hillslopes more convex and gradients steeper, and reduce the drainage density. These
effects have been presented elsewhere (e.g., Montgomery and Dietrich, 1992; Howard, 1994; Perron et al., 2008), but the
curvature—steepness-index lines offer new ways to visualize them graphically. In Figs. 3 and 4, we illustrate the dependence
of these properties on the parameters K, D, U, and @ by showing how curvature—steepness-index lines respond to increases in
these parameters, one at a time. These figures demonstrate an advantage of curvature—steepness-index lines: the topographic
effects of model parameter changes are expressed as simple shifts and rotations of these lines.

In Sect. 3.3, we examine in more detail the effects of the incision threshold 6 on drainage density and the scales of landscape
dissection, and how these effects can be visualized with curvature—steepness-index lines. We assume that dissection is
controlled by the competition between the advection and diffusion of perturbations (e.g., Smith and Bretherton, 1972;
Howard, 1994; Perron et al., 2008) and, thus, we examine the effects of 0 using a Péclet number Pe (Egs. 15, 19; see also
Perron et al., 2008, 2012; Theodoratos et al., 2018). For the LEM that does not include an incision threshold, we found in
Theodoratos et al. (2018) that the characteristic length I characterizes the smallest scales of dissection. Note that the slope of
curvature—steepness-index lines is 1/12; therefore, this slope graphically expresses the scales of dissection of landscapes
without incision thresholds. Adding the incision threshold 6, we find that the smallest scales of dissection are characterized
by the length scale \/TNB L., where Ny is a dimensionless incision-threshold number defined as Ny = K6 /U (Eq. 9). This
length scale is longer than I, which expresses the fact that incision thresholds reduce the drainage density. The square of this
length scale is (1 + Ny) 12 and is equal to the ratio between the horizontal- and vertical-axis intercepts of the curvature—
steepness-index line. As we show in Fig. 2, an auxiliary line connecting these two intercepts would have a slope of

1/((1 + Np) 2). Thus, we can graphically visualize the effect of the incision threshold on landscape dissection by
comparing the slope of this auxiliary line with the slope of the curvature—steepness-index line.

The second graphical method consists of plots of the dimensionless fraction 8 /+/A |Vz|, which gives the fraction by which
the incision rate is reduced due to the threshold (see the governing equation Eq. 2). We found that this fraction is equal to

1 — @ (Eq. 22), where ® is a threshold factor (see Tucker, 2004) that subsumes the effect of the incision threshold 6 on the
incision term of the LEM (see Egs. 2, 22). Thus, we denote the fractional reduction in the incision rate as 1 — &. In Figs. 5—
7, we present plots and maps of 1 — & that illustrate how the relative influence of incision thresholds will vary across a
given landscape, and how the variation of this relative influence depends on the landscape’s incision-threshold number No.

The two dimensionless numbers examined here, Ny and 1 — @, quantify the relative influence of the incision threshold 6, the
first with respect to the parameters K and U, and the second with respect to the steepness index. Thus, Ny quantifies how 6
affects different landscapes with different parameters, and 1 — @ quantifies how the influence of 9 varies across different
points of a given landscape. We find that the definition of the Péclet number Pe can be rewritten in two equivalent forms
(Egs. 20, 24), which reveal how Pe depends on Ny and on @, respectively.

The three dimensionless numbers, Pe, Ny, and @, along with the characteristic scales I, he, and tc,-and-the-curvature—
steepness-indexrelationship; provide a thorough characterization of landscapes that follow the governing equation Eq. (2).

14



Furthermore, plots of the curvature—steepness-index relationship offer a straightforward way to graphically express the
geomorphologic meaning of these dimensionless numbers and characteristic scales. Even though Fthe specific definitions of
these quantities and-relationships-refer only to the LEMs examined here (Egs. 1, 2)—However, the approach that underpins
our graphical methods we-feHow-to-derive-these-definitions-may-beis more generally applicable. For example, an LEM with

5 incision threshold and stochastic precipitation would have a different governing equation than Eq. (2) and, thus, a different
curvature—steepness-index relationship than Eq. (12) and Fig. 2. However, curvature and the steepness index would still be
reasonable axes for plotting data from such an LEM if it included diffusion. Likewise, the quantity 1 — & would follow a
different formula than Eq. (22), but maps of this quantity would be useful in visualizing spatial patterns of the influence of
the incision threshold across a landscape.-Fherefore Consequently, our graphical methodsappreach could potentially be

10 helpful for the analysis of a broader range of models_than those examined here.
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Appendix A:  Curvature—steepness-index lines for generic drainage area and slope exponents m and n

In this appendix, we demonstrate that our graphical method remains valid for the case of LEMSs with incision terms that have
generic drainage area and slope exponents m and n.

For generic exponents m and n, the governing equations Eg. (1) and Eqg. (2) become, respectively,
0z

Fr —KA™(|Vz)* + DV?z+U , (A1)
and

d 2 m n

0z ={ DVez+U , . Am(|vzh)r <0 (A2)

at —KA™(Vz)"* - 0) + DViz+U , A™(|Vz)" >0

Given that the steepness index is defined as k, = A™/™|Vz|_(e.q., Whipple, 2001), the quantity A™(|Vz|)™ in the above
equations is equal to the steepness index raised to the power n, i.e., A™(|Vz|)™ = kI, and the incision threshold & is a
threshold of the quantity kZ.

Setting dz/adt = 0_n Egs. (A1) and (A2), we can derive the corresponding steady-state relationships between curvature and
the steepness index:

V2z = (K/D) kI = (U/D) , (A3)
and
v2z =—(U/D) , k<o
{sz = (K/D)k — (1 +Ny) (U/D) , k>80 ' (A4)

where Ny is the incision-threshold number, still defined as Ny = K6/U.

When plotted in axes of V2z and k%, Eq. (A3) has the same basic properties as Eq. (11), the curvature-steepness-index
relationship for m = 0.5.and n = 1, and # = 0. Specifically, Eq. (A3) plots as a straight line with a slope equal to K/D, a
vertical-axis intercept equal to — U /D and a horizontal-axis intercept equal to U /K. Consequently, for generic exponents m
and n, changes in the values of the parameters K, D, and U are still expressed graphically as shifts and rotations of the
curvature-steepness-index line, as seen in Fig. 3 for the case of m = 0.5and n = 1.

Note that the characteristic scales of length and height I and h¢ are not equal to /D /K and U /K for generic exponents m and
n. Rather, they are defined by the more complicated formulas:

lc — (K—anul—n)l/(n+2m) , _(AS)_
and
hc — (K—ZDn—ZmUZ—n+2m )1/(n+2m) , _(AG)_

(whose derivation can be seen in Appendix A of Theodoratos et al., 2018). However, the parameter ratios K /D and U /K still
express the relative strengths of incision versus diffusion, and incision versus uplift. By contrast, note that the parameter
ratio U/D _remains equal to the characteristic curvature ., which expresses the relative strength of diffusion versus uplift.
Consequently, the shifts and rotations of the curvature—steepness-index line still express changes in scaling and topographic
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properties of landscapes, such as changes in curvature of ridges, in degree of dissection, and in gradients at hillslope—valley
transitions.

Likewise, when plotted in axes of V2z and k2, Eq. (A4) has the same properties as Eq. (12), the curvature-steepness-index
relationship with incision threshold and with m = 0.5 and n = 1. Specifically, Eq. (A4) plots as a line with two segments, a
horizontal segment at V2z = — U /D for k* < 6, and an inclined segment with slope equal to K /D and horizontal-axis
intercept equal to (U/K) + 6 for kI > 6. This line, too, responds to changes in the parameters 6, K, D, and U with shifts and
rotations, equivalent to the shifts and rotations shown in Fig. 4 for the case of m = 0.5and n = 1.

Finally, for generic exponents m and n, the fractional reduction in incision rate 1 — @ _is defined as

(1 , kr<#
l_q"{e/ky k>0 (A7)

which plots as shown in Figs. 5 and 6, but in axes of k.

Appendix B:  Setup of numerical simulations

We prepared the maps of Fig. 7 with results from numerical simulations that we performed using the CHILD model,
originally for the work discussed in Theodoratos and Kirchner (2020). In that work, we present much more information
about these simulations and their results. Here, we briefly summarize the model setup and parameterization.

All four landscapes in Fig. 7 have incision coefficient K = 2 x 1076 a~1, diffusion coefficient D = 0.5 x 1072 m2a~?, and
uplift rate U = 0.5 x 10™* m a~1. Each landscape’s incision threshold & depends on the value of its incision-threshold
number Ny according to 6 = N,y - (U/K) (see Eq. 9), where U/K = 25 m for all landscapes. Therefore, the landscapes have
the incision thresholds seen in Table B1.

We simulated the four landscapes on triangular irregular networks (TINSs) with total extent of 7.5 km x 11.25 km and
average TIN edge length of 20 m, which resulted in around a quarter million TIN points. Each map in the left column of
Fig. 7, shows a part of the TIN, specifically, a rectangular region with size of 5 km x 4 km, centered around the largest
drainage basin of the corresponding landscape.

Details about the implementation of the governing equation (Eq. 2) in CHILD (Tucker et al., 2001) can be found in
Theodoratos et al. (2018) and in Theodoratos and Kirchner (2020).

Table B1: Incision-threshold numbers Ny and corresponding incision thresholds 6 of the four landscapes illustrated in Fig. 7. The
parameter ratio U/K is equal to 25 m for all landscapes.

N
Incision-threshold number: ( H) ‘ 0.2 0.4 1 2
0 =Ny -(U/K
Incision threshold: im)( /K ‘ 5 10 25 50
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Tables

Table 1: Descriptions and dimensions of the terms, variables, and parameters in the governing equations Eq. (1) and Eqg. (2). Dimensions
are expressed in terms of the model’s fundamental dimensions of horizontal length L, vertical length (height) H, and time T.

Symbol Description Dimensions
dz/ot Total rate of elevation change at a point (x, y) HT?
Rates of elevation change due to:
—KVA|Vz| stream-power incision (in Eq. 1) HT?
—K(VA|Vz| — 6) threshold-limited stream-power incision (in Eq.2) ~ H T
DV?z linear diffusion HT!
u uplift HT?
%y Horizontal coordinates L
z Elevation H
t Time T
A Drainage area L?
[Vz| Topographic slope HL?
Viz Laplacian curvature HL?
K Incision coefficient T
D Diffusion coefficient L2Tt
u Uplift rate HT?
0 Incision threshold H
VA|Vz| Steepness index H

20



Table 2: Summary of definitions and formulas used in this study.

Description Definition Equation
Characteristic length I, = 1/ 3)
Characteristic height he = (4)
Characteristic time t, = / (5)
Characteristic area A.=1*=D/K (6)
Characteristic gradient G. = h./l, = U/NDK (7)
Characteristic curvature k. =h./1?=U/D (8)
Incision-threshold number =KO6/U 9)
Curvature-steepness-index relationship, ~ V2z = (K/D)VA|Vz| — (U/D) (10)
without V2z = (1/12) VA|Vz| — K, (12)
Curvature—steepness-index relationship, { Viz=—-xk, , VA|Vz| < 6 (12)
with @ V2z = (1/1) VA|Vz| — (1 + Np)k. , VA|Vz| >0
0, VA|Vz| < 6
Th =
reshold factor 0] B | VAVz| > 6 (22)
VA|Vz|
1, VAlVz| < 6
. o . Cd— 0
Fraction of incision rate reduction 1-0 | VAVZ > 6 (22)
VA|Vz|
Flow path length I: the distance along flow paths from a point to the farthest ridge N/A
2
Diffusion timescale tp = % (13)
Kinematic wave celerity, without c=KVA N/A
Incision timescale, without & t,=1/c=1/(KVA) (14)
VAL VA 1
Péclet number, without 6 Peg_g =tp/t; =—3—=—F—=7 (15)
B /A L
Kinematic wave celerity, with 6 = { 0, VAIvz| < 6 @an
KVA—KO/|Vz| , JA|Vz|>6
L . , AlVz| <6
Incision timescale, with 9 t,=1/c= { e VAIVZ| (18)
l/(KNA-K0/|Vz|) , VA|Vz| >0
0, VAlVz| < 6
Pe := \/Z l I G
¢ — — Ng——S | VA|Vz|> 8 (20)
\/A_c I, I, |Vz|
Péclet number, with 6
0, VA|Vz| < 6
Pe = ) VA (23)
- , VA|Vz| > 6
( VA |VZ|> % v
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Figure 1: Relationship between curvature and the steepness index in steady-state topography without incision threshold. We plot a
straight line defined by Egs. (10) or (11), which describes how curvature should be related to the steepness index if the landscape follows
the LEM (Eq. 1) and is in steady state. This line is parameterized by the characteristic scales of length and height Ic and hc (Egs. 3, 4); its
slope is 1/12, its horizontal-axis intercept is VA|Vz| = h,, and its vertical-axis intercept is V2z = —k, (where c is a characteristic
curvature defined as h./1?-as42/h; Eq. 8). These intercepts reveal topographic properties of special points in a landscape, namely, the
steady-state curvature of drainage divides and the steady-state steepness index of hillslope—valley transitions. The characteristic length Ic
quantifies the competition between knickpoint advection and diffusion and predicts how landscape dissection scales with the parameters.
Thus, the slope of the curvature—steepness-index line expresses visually how dissected a landscape is. Note that the line's slope can be
represented either as K /D = 1/12 units of curvature per 1 unit of steepness index, or 1 unit of curvature per D/K = [2 units of steepness
index. For simplicity, we use the latter notation to express the slopes of the lines in Figs. 2-4.
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Figure 2: Effects of incision threshold on steady-state topography as reflected in the curvature—steepness-index line. We show
curvature—steepness-index lines of landscapes with and without incision threshold using black and gray colors, respectively (see Egs. 11,
12). The gray line in this figure is identical to the line in Fig. 1. Adding an incision threshold to the LEM changes the resulting steady-state
topography, as indicated by the differences between the gray and black lines. The black line consists of two segments. The horizontal
segment corresponds to points where incision is fully suppressed by the threshold. This horizontal segment is at V?z = —x,, the vertical-
axis intercept of the gray line. This shows that the hilltop curvature (the most negative curvature value in the landscape) spreads to points
on hillslopes beyond drainage divides. Thus, hillslopes become more convex due to the threshold. The inclined segment of the black line is
parallel to the gray line, and at a horizontal distance 6 to its right. Thus, the horizontal-axis intercept is increased from hc to h, + 6 due to
the threshold, i.e., the hillslope—valley transition occurs at a larger steepness index value. This increase corresponds to larger drainage area
A and/or steeper slope |Vz|, both of which are consistent with the steepening of landscapes and the decrease of their drainage density by
the incision threshold. In the case of the LEM that includes an incision threshold, the degree of landscape dissection is expressed by the
length scale \/1 + Ny [, (see Eq. 21), where Ny is a dimensionless incision-threshold number (Eq. 9). The square of this length scale is
(1 + Ng) 12, which is equal to_(h, + 6) /., the ratio of the two intercepts of the black line. The quantity (1 + Ny) I2 is the reciprocal of
the slope of the black dashed line that connects the two intercepts. Thus, by comparing the slope of this auxiliary line and of the gray
curvature—steepness-index line, we can graphically express the effect of the incision threshold on landscape dissection, as shown by the
white arrow.
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Figure 3: Graphical illustration, using curvature—steepness-index lines, of how parameters influence landscape properties. The
three plots show how curvature—steepness index lines respond to increases in the uplift rate U, incision coefficient K, and diffusion
coefficient D. (a) An increase in U parallel-shifts the line to the right and downward. This makes the vertical-axis intercept smaller (more
negative) and the horizontal-axis intercept bigger, showing that ridges become more convex and that gradients become steeper (i.e., relief
becomes higher). The line’s slope remains 1/12, indicating that the scale of dissection does not change. (b) An increase of K rotates the
line counterclockwise around the vertical-axis intercept. This makes the horizontal-axis intercept smaller and the line’s slope bigger,
showing that gradients become gentler (i.e., relief becomes lower) and that the landscape becomes more dissected (i.e., the scales of
dissection become smaller). (c) An increase of D rotates the line clockwise around the horizontal-axis intercept. This moves the vertical-
axis intercept closer to zero and decreases the line’s slope, showing that ridges become less convex and that the landscape becomes less

dissected (i.e., the scales of dissection become larger).
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Figure 4: Graphical illustration, using curvature—steepness-index lines, of how incision threshold and parameters control landscape
properties. The four plots show how curvature—steepness index lines respond to increases in the incision threshold 9, uplift rate U,
incision coefficient K, and diffusion coefficient D. (a) An increase in the incision threshold & parallel-shifts the line to the right. Note the
difference with the shift in (b), which is to the right and downward. The shift in (a) makes the horizontal segment of the line longer and the
horizontal-axis intercept bigger, showing that the zones of maximum convexity become wider, gradients become steeper and drainage
areas of valley heads become smaller. The curvature value of the horizontal segments and the line’s slope remain unchanged. The increase
in the horizontal-axis intercept changes its ratio to the vertical-axis intercept, which expresses the degree of landscape dissection as
explained in Sect. 3.3. This ratio can be visualized by the dashed auxiliary lines that connect the horizontal- and vertical-axis intercepts
and the change in the value of the ratio can be visualized by the rotation of these lines. (b) An increase in the uplift rate U shifts the line to
the right and downward. This makes the vertical-axis intercept smaller (more negative) and the horizontal-axis intercept bigger, showing
that ridges become more convex and that gradients become steeper (i.e., relief becomes higher). The changes of these two intercepts are
not proportional and, thus, their ratio changes. This change can be visualized in the inset, where we plot the auxiliary lines such that they
share the same starting point. This shows that the degree of landscape dissection changes when U is increased, whereas it did not change in
the case of the LEM without incision threshold (see Fig. 3). (c) An increase in the incision coefficient K rotates the inclined segment of the
line counterclockwise around its intersection with the horizontal segment. The horizontal segment remains unchanged. Thus, the
horizontal-axis intercept becomes smaller, which shows that gradients become gentler and the landscape becomes more dissected. (d) An
increase in the diffusion coefficient D rotates the inclined segment line clockwise around the horizontal-axis intercept. This moves the
horizontal segment and the vertical-axis intercept closer to zero, and changes the ratio of the two intercepts, showing that ridges become
less convex and that the landscape becomes less dissected.
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Figure 5: How the relative influence of the incision threshold changes across a landscape. We plot the quantity 1 — & versus the
steepness index VA|Vz|, where @ is a threshold factor that can subsume the incision threshold 6 (definitions in Eq. 22 and Sect. 4). The
quantity 1 — & is dimensionless and expresses the fractional reduction in incision rate due to the incision threshold 8. The 1 — @ curve
presented here shows how this fraction varies across the landscape. The value 1 — ® = 1 corresponds to points where incision is fully
suppressed by the threshold, i.e., where the incision rate is reduced by 100%. Thus, the horizontal segment of the 1 — & curve corresponds
to the horizontal segment of the curvature—steepness-index line in Fig. 2. At points with v/A|Vz| much larger than 6 (the far right of the
plot), the incision rate is reduced by a very small fraction, and the 1 — @ curve asymptotically approaches 0. The black dot on the 1 — ®
curve corresponds to the steepness index value h, + 6, which corresponds to hillslope—valley transitions, as shown in Fig. 2. The position
of the black dot on the curve helps us visualize how large the incision rate reduction fraction is across different regimes of a landscape.
This position depends on the characteristic height he, on 8, and on the dimensionless ratio 8 /h.. We define this ratio as the incision-
threshold number No (Eq. 9).
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Figure 6: Comparison of the relative influence of incision thresholds with different magnitudes. We present curves of the quantity

1 — @ versus the steepness index v/A|Vz| for four different values of No. The black dots show the values of vA|Vz| and 1 — & that
correspond to hillslope—valley transitions. The curve with Ny = 0.2, the smallest of the four values of Ny, starts with a short horizontal
segment, and then descends steeply and approaches 0 rapidly. Furthermore, its black dot corresponds to the value 1 — ® = 0.2/1.2 =
1/6. By contrast, the curve with the largest value, Ny = 2, starts with a long horizontal segment, descends gradually, approaches 0 slowly,
and has a black dot with 1 — @ = 1/3 = 0.333. These differences show that as Ng increases, a) incision is fully suppressed by the
threshold in bigger portions of hillslopes, b) the steepness index must reach greater values for the influence of the threshold to start
becoming negligible; and c) the hillslope—valley transition occurs at larger values of 1 — @, i.e., the threshold has a strong influence not
only on hillslopes, but also on the valley network.
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Figure 7: Control of the incision-threshold number Ny on the spatial distribution of the fractional reduction in incision rate. We
map the quantity 1 — @ across four steady-state simulated landscapes with different values of No. We use the same values of Ng as in

Fig. 6. Details about the setup and parameters of these simulations are presented in Appendix B. Lighter colors correspond to larger values
of 1 — @, i.e,, to stronger influence of the incision threshold. The spatial distribution of 1 — @ follows the dendritic pattern of the valley
network. As No increases, the maps become lighter, i.e., areas with strong influence of the incision threshold become more widespread,
both on hillslopes and in valleys.
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