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Abstract.     We examine the influence of incision thresholds on topographic and scaling properties of landscapes that follow 

a landscape evolution model (LEM) with terms for stream-power incision, linear diffusion, and uniform uplift. Our analysis 

uses three main tools. First, we examine the graphical behavior of theoretical relationships between curvature and the 

steepness index (which depends on drainage area and slope). These relationships plot as straight lines for the case of steady-10 

state landscapes that follow the LEM. These lines have slopes and intercepts that provide estimates of landscape 

characteristic scales. Such lines can be viewed as counterparts of slope–area relationships, which follow power laws in 

detachment-limited landscapes, but not in landscapes with diffusion. We illustrate the response of these curvature–steepness-

index lines to changes in the values of parameters. Second, we define a Péclet number that quantifies the competition 

between incision and diffusion, while taking the incision threshold into account. We examine how this Péclet number 15 

captures the influence of the incision threshold on the degree of landscape dissection. Third, we characterize the influence of 

the incision threshold using a ratio between it and the steepness index. This ratio is a dimensionless number in the case of the 

LEM that we use, and reflects the fraction by which the incision rate is reduced due to the incision threshold; in this way, it 

quantifies the relative influence of the incision threshold across a landscape. These three tools can be used together to 

graphically illustrate how topography and process competition respond to incision thresholds. 20 

1     Introduction 

Processes that shape landscapes leave topographic signatures, which can often be visualized by plotting different topographic 

metrics against one another. An example is the relationship between river gradient and drainage area, which has been used to 

analyze landscapes and river profiles, and to diagnose the processes that shape them (e.g., Montgomery and Foufoula-

Georgiou, 1993; Howard, 1994; Montgomery and Dietrich, 1994; Dietrich et al., 2003). For example, the stream-power 25 

incision model predicts that if tectonics, climate, and rock properties are uniform, then bedrock rivers should approach a 

steady state in which their gradient scales as a power law of drainage area (e.g., Tucker, 2004; Lague, 2014). This power-law 

scaling implies that river gradient data should plot as a straight line against drainage area data on logarithmic axes. The 

properties of this line can give estimates of properties of the landscape, e.g., its slope gives the concavity index (Whipple, 

2004). Plotting synthetic topographic data from landscape evolution models (LEMs) helps to illustrate the effects of different 30 

model formulations or parameterizations. For example, including a threshold in the incision term of an LEM affects the 

resulting slope–area line (e.g., Tucker, 2004; Lague et al., 2005; Deal et al., 2018). 
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In the case of landscapes that are influenced by diffusion, topographic slope does not scale as a power function of drainage 

area (e.g., Howard, 1994). Thus, slope and area data from these landscapes do not plot as straight lines. In Theodoratos et al. 

(2018), we presented a counterpart relationship for the case of landscapes produced by an LEM that includes linear diffusion 

(along with stream-power incision and uplift). This relationship predicts that in steady state, curvature and the steepness 

index (which depends on drainage area and slope; e.g., Whipple, 2001) plot as a straight line against each other on linear 5 

(i.e., non-logarithmic) axes. The slope and intercept of this line depend on characteristic scales of length and height of the 

landscape, which in turn depend on the relative strengths of the processes that shape it. Thus, this relationship predicts a link 

between topographic and scaling properties of landscapes that follow the LEM. 

 

Here, we demonstrate an example of the explanatory power of plots of the curvature–steepness-index relationship. Our 10 

example shows that these plots can visualize topographic and scaling effects of incision thresholds. Incision thresholds can 

markedly influence erosion, as shown by numerous studies. For instance, incision thresholds can influence the relationship 

between river gradient and the uplift rate (e.g., Snyder et al., 2003), the dependence of long-term erosion rates on the 

average, the variability, and the duration of precipitation events (e.g., DiBiase and Whipple, 2011; Scherler et al., 2017), and 

the dynamics of migrating knickpoints (e.g., Lague, 2014). Here, we are not further elaborating on the insights of these 15 

studies. Instead, we focus on the effects of incision thresholds on the competition between incision and diffusion, and on the 

topographic and scaling properties of landscapes reflecting this competition. The topographic and scaling effects that we 

examine have been studied before (e.g., Montgomery and Dietrich, 1992; Howard, 1994; Tucker, 2004; Perron et al., 2008). 

Here, however, we present a novel, purely graphical method to identify, quantify, and interpret these effects based on the 

relationship between curvature and the steepness index. 20 

 

In Theodoratos et al. (2018), we dimensionally analyzed a frequently used LEM with terms for uplift, linear diffusion, and 

stream-power incision without an incision threshold. In Theodoratos and Kirchner (2020), we added an incision threshold to 

this LEM and dimensionally analyzed it. Here, we summarize the definitions of characteristic scales and dimensionless 

numbers that emerged from the dimensional analyses of these two LEMs in Sect. 2. Then, in Sect. 3, we show that these 25 

characteristic scales and dimensionless numbers have geomorphologic meaning that can be expressed graphically using plots 

of curvature versus the steepness index. The graphical explanatory power of these plots is further highlighted by comparing 

plots of LEMs with and without an incision threshold (Figs. 1 and 2). 

2     Stream-power incision and linear diffusion LEMs 

2.1   Governing equations 30 

The LEM without incision threshold follows the governing equation (e.g., Howard, 1994; Dietrich et al., 2003): 

𝜕𝑧

𝜕𝑡
= −𝐾√𝐴|∇𝑧| + 𝐷∇2𝑧 + 𝑈     . (1) 

This equation gives the rate of elevation change 𝜕𝑧 𝜕𝑡⁄  as the sum of three terms, namely, a) stream-power incision 

𝐾√𝐴|∇𝑧|, where K is the incision coefficient, A is drainage area, and |∇𝑧| is topographic slope, b) linear diffusion 𝐷∇2𝑧, 

where D is the diffusion coefficient and ∇2𝑧 is the Laplacian curvature, and c) the uplift rate U. We assume that Eq. (1) has 

base dimensions of horizontal length L, height H (which we treat as dimensionally distinct from L), and time T. All 35 

quantities in Eq. (1) have dimensions that are combinations of L, H, and/or T, which we show in Table 1. 
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Note that the incision term 𝐾√𝐴|∇𝑧| is a special case of the more general incision term 𝐾𝐴𝑚(|∇𝑧|)𝑛. As we explained in 

Theodoratos et al. (2018), dimensional analysis of an LEM with generic exponents m and n would lead to equivalent results 

as the analysis of Eq. (1), but these results would be expressed with much more complicated mathematical formulas. 

Therefore, in Theodoratos et al. (2018) we focused on the case of exponents 𝑚 = 0.5 and 𝑛 = 1 and we presented the results 5 

for generic m and n in an appendix. Likewise, in the current study, the main presentation focuses on the case of 𝑚 = 0.5 and 

𝑛 = 1, and in Appendix A we demonstrate that our graphical method is also valid for the case of generic exponents m and n. 

 

Following Perron et al. (2008), we can add an incision threshold to the LEM by recasting the incision term as 

𝐾(√𝐴|∇𝑧| − 𝜃), where θ is the incision threshold. This formulation assumes that the incision rate 𝐾√𝐴|∇𝑧| is reduced 10 

everywhere by the constant quantity 𝐾𝜃. The LEM examined here is based on the assumption that sediment transport is 

detachment limited. Thus, it does not include deposition and negative incision rates would not be meaningful. Therefore, the 

incision term is set to zero where the term 𝐾(√𝐴|∇𝑧| − 𝜃) would be negative, i.e., where √𝐴|∇𝑧| ≤ 𝜃, and the governing 

equation becomes 

𝜕𝑧

𝜕𝑡
= {

𝐷∇2𝑧 + 𝑈   , √𝐴|∇𝑧| ≤ 𝜃

−𝐾(√𝐴|∇𝑧| − 𝜃) + 𝐷∇2𝑧 + 𝑈   , √𝐴|∇𝑧| > 𝜃
     . (2) 

The incision threshold θ has the same dimensions as √𝐴|∇𝑧|, i.e., dimensions of H. 15 

 

Equation (2) assumes that precipitation rates are constant in time and uniform in space, and it incorporates climatic effects 

into the incision coefficient K. Other LEMs use stochastic precipitation to drive their incision terms (e.g., Tucker, 2004, 

Whipple, 2004; Lague et al., 2005; DiBiase and Whipple, 2011; Deal et al., 2018). The incision thresholds of these LEMs 

define limiting values of shear stress or stream power, below which no incision occurs. At any given location in the 20 

landscape, these limiting values might be exceeded during some stochastic events and not exceeded during other events, 

depending on their intensities. By contrast, in the case of the LEM that we examine, the assumption of constant and uniform 

precipitation implies that any given combination of drainage area A and slope |∇𝑧| would lead to the same value of stream 

power (or shear stress) for any storm event (as all events would be equal), and this value of stream power would either be 

above or below the incision threshold. In this idealized case, defining a topographic threshold based on √𝐴|∇𝑧| is exactly 25 

equivalent to defining a threshold of stream power (or shear stress). 

 

We acknowledge that the LEMs with stochastic precipitation allow much more realistic integration of incision rates over 

time, compared to the LEM that we examine here. Therefore, these LEMs are more appropriate for studying the influence of 

incision thresholds on erosion rates compared to the LEM that we use. However, our study has a different focus. Our study 30 

focuses on how the incision threshold θ influences topographic and scaling properties of landscapes, and on how this 

influence can be graphically expressed with curvature–steepness-index lines. For these tasks, the simplified formulation of 

the incision term of Eq. (2) is more practical. It may be possible in future work to extend this approach to include incision 

thresholds driven by stochastic precipitation. 
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2.2   Characteristic scales 

The two governing equations (Eqs. 1 and 2) can be non-dimensionalized using characteristic scales of length, height, and 

time lc, hc, and tc, defined as (Theodoratos et al., 2018; Theodoratos and Kirchner, 2020) 

𝑙𝑐 ≔ √𝐷 𝐾⁄      , (3) 

ℎ𝑐 ≔ 𝑈 𝐾⁄      , (4) 

𝑡𝑐 ≔ 1 𝐾⁄      . (5) 

We summarize these and other definitions of this presentation in Table 2. The characteristic scales lc, hc, and tc can be 

viewed as intrinsic properties of a landscape, in the sense that they depend exclusively on the values of the parameters K, D, 5 

and U, and not on extensive properties of the landscape such as the size of its domain or its maximum relief. We present 

geomorphologic interpretations of these characteristic scales in Sect. 3. 

 

By combining lc, hc, and tc we can define additional characteristic scales (Theodoratos et al., 2018). For example, given that 

drainage areas A have dimensions L2, we can define a characteristic area Ac as the square of the characteristic length: 10 

𝐴𝑐 ≔ 𝑙𝑐
2 = 𝐷 𝐾⁄      . (6) 

Likewise, we can define a characteristic gradient Gc 

𝐺𝑐 ≔ ℎ𝑐 𝑙𝑐⁄ = 𝑈 √𝐷𝐾⁄      , (7) 

and a characteristic curvature κc 

𝜅𝑐 ≔ ℎ𝑐 𝑙𝑐
2⁄ = 𝑈 𝐷⁄      . (8) 

2.3   Incision-threshold number Nθ 

In Theodoratos and Kirchner (2020), we derived a dimensionless number, whose definition and interpretation we summarize 

here. Dimensional analysis of the governing equation with incision threshold θ (Eq. 2) yielded the dimensionless grouping of 15 

parameters 𝐾𝜃 𝑈⁄ . Specifically, all terms of Eq. (2) give rates of elevation change and have dimensions of Η T−1. Therefore, 

to non-dimensionalize Eq. (2), we divided all of its terms by the uplift rate U. The quantity 𝐾𝜃, which is included in the 

incision term of Eq. (2) and gives the reduction in the rate of incision due to the threshold, also has dimensions of Η T−1. 

Therefore, dividing the incision term of Eq. (2) by U yielded the dimensionless ratio 𝐾𝜃 𝑈⁄ . We defined this dimensionless 

ratio as an incision-threshold number Nθ 20 

𝑁𝜃 ≔ 𝐾𝜃 𝑈⁄      . (9) 

This analysis led to a dimensionless version of Eq. (2) that includes only one parameter, the incision-threshold number Nθ. 

This implies that Nθ is a control on the topography of landscapes that follow Eq. (2). Specifically, model landscapes that 

have equal incision-threshold numbers Nθ can be set up such that they follow geometrically similar evolutions. Model 

landscapes that have different Nθ cannot evolve geometrically similarly, and their topographies differ in ways that depend on 

their Nθ values. Simulation results illustrating these points are presented in Theodoratos and Kirchner (2020). 25 

 

We proposed two interpretations of the incision-threshold number Nθ in Theodoratos and Kirchner (2020). First, Nθ is 

defined as the incision rate reduction 𝐾𝜃 relative to the uplift rate U (Eq. 9). The uplift rate U can be viewed as a 

characteristic rate of elevation change because it is equal to the ratio of the characteristic height to the characteristic time, 

i.e., 𝑈 = ℎ𝑐 𝑡𝑐⁄  (Eqs. 4, 5). Consequently, Nθ is a normalized incision rate reduction with respect to U. Second, if we 30 

rearrange Eq. (9) as 𝑁𝜃 = 𝜃 (𝑈 𝐾⁄ )⁄ , then we can interpret Nθ as giving the magnitude of θ relative to the parameter ratio 
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𝑈 𝐾⁄ . Thus, the definition of Nθ shows that incision thresholds from different landscapes should not be compared to each 

other according to their own values, but instead according to their values relative to the ratio 𝑈 𝐾⁄  of each landscape. 

3     Graphical illustrations of topographic and scaling effects of the incision threshold 

3.1  Defining a steady-state topographic relationship between the steepness index and curvature 

In Theodoratos et al. (2018), we presented a relationship that describes the steady-state topography of landscapes that evolve 5 

according to Eq. (1). Specifically, if we set 𝜕𝑧 𝜕𝑡⁄ = 0 and we solve the governing equation for curvature ∇2𝑧, we obtain 

𝜕𝑧 𝜕𝑡⁄ = 0:          ∇2𝑧 = (𝐾 𝐷⁄ )√𝐴|∇𝑧| − (𝑈 𝐷⁄ )     . (10) 

The quantity √𝐴|∇𝑧| is equal to the steepness index (defined as 𝐴𝑚∕𝑛|∇𝑧| for drainage area and slope exponents m and n; 

e.g., Whipple, 2001). For this reason, we refer to Eq. (10) as the curvature–steepness-index relationship. 

 

In a coordinate system in which the steepness index (√𝐴|∇𝑧|) and curvature (∇2𝑧) are plotted on the horizontal and vertical 10 

axes, respectively, Eq. (10) plots as a straight line (for example, see Fig. 1, which we describe in more detail further below). 

Equation (10) is a testable, quantitative prediction; if a landscape is in steady state and has evolved according to Eq. (1), then 

curvature should plot as a straight line against the steepness index. Furthermore, this line can give estimates of the 

parameters K, D, and U, because its slope is 𝐾 𝐷⁄ , and its intercepts are ∇2𝑧 = − 𝑈 𝐷⁄  and √𝐴|∇𝑧| = 𝑈 𝐾⁄ . While we have 

not validated this prediction with data, Eq. (10) is a rearranged version of Eq. (5) in Perron et al. (2009), which has been 15 

successfully tested with real-world landscape data and has been used to estimate model parameters. Testing Eq. (10), and 

Eqs. (11–12) and Figs. 1–2, which are described further below, would be a reasonable next step after the current study. 

3.2  Characteristic scales and the curvature–steepness-index relationship 

If we substitute the characteristic scales lc and κc for the parameter ratios 𝐾 𝐷⁄  and 𝑈 𝐷⁄ , then the curvature–steepness-index 

relationship (Eq. 10) becomes 20 

𝜕𝑧 𝜕𝑡⁄ = 0:          ∇2𝑧 = (1 𝑙𝑐
2⁄ ) √𝐴|∇𝑧| − 𝜅𝑐     . (11) 

As this equation shows, an interpretation of lc and hc is that they control steady-state topography. Specifically, for a 

landscape to be in steady state, drainage area A, topographic slope |∇𝑧|, and curvature ∇2𝑧 must obey Eq. (11), which is 

parameterized by the characteristic scales lc and κc, or equivalently by lc and hc because 𝜅𝑐 = ℎ𝑐 𝑙𝑐
2⁄  (Eq. 8). We can 

graphically illustrate the control of lc and hc on the topography by plotting the curvature–steepness-index line described by 

Eq. (11). As Fig. 1 shows, the properties of such a line are controlled by lc and hc, specifically, its slope is 1 𝑙𝑐
2⁄ , and its 25 

intercepts are ∇2𝑧 = −𝜅𝑐 = −ℎ𝑐 ∕ 𝑙𝑐
2 and √𝐴|∇𝑧| = ℎ𝑐. Note that the slope of this line can be represented either as 𝐾 𝐷⁄ =

1 𝑙𝑐
2⁄  units of curvature per 1 unit of steepness index, or 1 unit of curvature per 𝐷 𝐾⁄ = 𝑙𝑐

2 units of steepness index. For 

simplicity, we use the latter notation to express the slopes of the curvature–steepness-index lines in Figs. 2–4. 

 

Likewise, the curvature–steepness-index relationship that corresponds to the LEM with incision threshold θ is controlled by 30 

the characteristic scales lc and κc. This relationship, however, is also controlled by the incision-threshold number Nθ. To 

derive this relationship, we set 𝜕𝑧 𝜕𝑡⁄ = 0 in Eq. (2) and we solve it for ∇2𝑧. When we do this for the second subdomain 
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(where √𝐴|∇𝑧| > 𝜃), we encounter the ratio 𝐾𝜃 𝐷⁄ . This ratio can be rewritten as 𝐾𝜃 𝐷⁄ = (𝐾𝜃 𝑈) (𝑈 𝐷)⁄ = 𝑁𝜃 𝜅𝑐 (Eqs. 8, 

9). Thus, we obtain the curvature–steepness-index relationship: 

𝜕𝑧 𝜕𝑡⁄ = 0:          {
∇2𝑧 = −𝜅𝑐   ,              √𝐴|∇𝑧| ≤ 𝜃

∇2𝑧 = (1 𝑙𝑐
2⁄ ) √𝐴|∇𝑧| − (1 + 𝑁𝜃)𝜅𝑐   , √𝐴|∇𝑧| > 𝜃

     . (12) 

We plot this equation in Fig. 2 in black and, for comparison, we also plot the curvature–steepness-index line without incision 

threshold (Eq. 11) in gray. The black line consists of two segments that correspond to the two subdomains of Eqs. (2) and 

(12). The first segment is horizontal and describes a uniform steady-state curvature value of ∇2𝑧 = −𝜅𝑐 for points with 5 

√𝐴|∇𝑧| ≤ 𝜃, where incision is fully suppressed by the threshold and only diffusion and uplift operate. The second segment is 

inclined and corresponds to points with √𝐴|∇𝑧| > 𝜃 where all three processes operate. 

 

Equations (11–12) and Figs. 1–2 show that the characteristic scales lc, hc, and κc describe the steady-state topography at 

points of special interest (see also Theodoratos et al., 2018). Furthermore, some effects of incision thresholds on landscape 10 

properties can be visualized by comparing the curvature–steepness-index lines with and without an incision threshold (black 

and gray lines of Fig. 2). 

 

First, the vertical-axis intercept of the curvature–steepness-index line without incision threshold (Fig. 1, Eq. 11) corresponds 

to ridges and drainage divides, which have 𝐴 = 0 and/or |∇𝑧| = 0, i.e., √𝐴|∇𝑧| = 0. This intercept shows that the steady-15 

state curvature of ridges and drainage divides is ∇2𝑧 = −𝜅𝑐 = − 𝑈 𝐷⁄  (see also Roering et al., 2007; Perron et al., 2009). 

Note that −𝜅𝑐 is the most negative value of curvature. The horizontal segment of the black line in Fig. 2 (described by the 

first subdomain of Eq. 12) expresses the fact that, in landscapes with an incision threshold θ, the points with √𝐴|∇𝑧| ≤ 𝜃 

have the same steady-state curvature as ridges and drainage divides, i.e., the most negative value of curvature. This shows 

that adding an incision threshold to the LEM results in more convex hillslopes (e.g., Howard, 1994; Theodoratos and 20 

Kirchner, 2020). 

 

Second, the curvature–steepness-index line without incision threshold (Fig. 1, Eq. 11) has a horizontal-axis intercept of 

√𝐴|∇𝑧| = ℎ𝑐. This intercept corresponds to points with curvature ∇2𝑧 = 0, which can be viewed as defining the transition 

between hillslopes and valleys (e.g., Howard, 1994). Thus, points with steepness index equal to the characteristic height hc 25 

can be used to map hillslope–valley transitions (Theodoratos et al., 2018). Adding an incision threshold θ to the LEM makes 

landscapes steeper and decreases the drainage density, i.e., makes first-order basins bigger, (e.g., Montgomery and Dietrich, 

1992; Howard, 1994; Perron et al., 2008). These two effects lead to steeper gradients |∇𝑧| and larger drainage areas A at 

hillslope–valley transitions. Specifically, as Fig. 2 shows, the horizontal-axis intercept increases from √𝐴|∇𝑧| = ℎ𝑐 (gray 

line) to √𝐴|∇𝑧| = ℎ𝑐 + 𝜃 (black line). 30 

3.3  Quantifying and visualizing the effect of the incision threshold on the scales of landscape dissection 

In Theodoratos et al. (2018), we derived an interpretation of the characteristic length lc by analyzing the competition between 

the advection and diffusion of elevation perturbations (e.g., knickpoints), which gives rise to ridges and valleys, and controls 

their characteristic sizes (e.g., Smith and Bretherton, 1972; Howard, 1994; Perron et al., 2008). Following Perron et al. 

(2008, 2009, 2012), we quantified the relative strength of advection versus diffusion using a Péclet number Pe. The 35 
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definition of our Péclet number differs somewhat from Perron et al.'s. Specifically, our definition includes a length scale l 

that we termed flow path length and that we defined as the distance along flow paths from a given point to the farthest ridge. 

 

The Péclet number is defined (e.g., Perron et al., 2008) as the ratio of a diffusion timescale tD to an incision timescale tI, each 

of which gives a measure of the strength of the respective process. Specifically, a diffusion timescale can be defined as (e.g., 5 

Perron et al., 2008) 

𝑡𝐷 ≔
𝑙2

𝐷
     . (13) 

This timescale characterizes diffusive propagation over a distance l. In Theodoratos et al. (2018), to define tI, we first 

calculated the celerity c that corresponds to the incision term of Eq. (1), which is a kinematic wave term (e.g., Whipple and 

Tucker, 1999). This celerity is equal to 𝑐 = 𝐾√𝐴. Perturbations can be assumed to be advected at this celerity (e.g., Berlin 

and Anderson, 2007; Perron et al., 2008). Lague (2014) has criticized this assumption because it does not take into account 10 

the effects of knickpoints on hydraulics (e.g., on stream width) and their feedbacks on the rate of knickpoint propagation, 

especially in the presence of incision thresholds. While we acknowledge this limitation, we nonetheless assume that the rate 

of knickpoint advection is equal to the celerity c of Eq. (17) because our current focus is on interpreting the characteristic 

scales lc, hc, and tc, which pertain to Eqs. (1) and (2), which do not describe hydraulics explicitly. Therefore, in Theodoratos 

et al. (2018), we defined the incision timescale tI as the ratio of the flow path length l, which characterizes the location of 15 

points within drainage basins, to the celerity c, which characterizes the strength of advection: 

𝑡𝐼 ≔ 𝑙 𝑐⁄ =
𝑙

𝐾√𝐴
     . (14) 

Note that small values of tI and tD correspond to strong advection and diffusion, respectively. 

 

We can quantify the relative strengths of advection and diffusion using the ratio of the respective timescales, which defines 

the Péclet number (Theodoratos et al., 2018): 20 

Pe ≔ 𝑡𝐷 𝑡𝐼⁄ =
 √𝐴 𝑙 

𝑙𝑐
2

=
√𝐴

 √𝐴𝑐 

𝑙

 𝑙𝑐 
     . (15) 

Diffusive propagation is stronger at points with Péclet number smaller than 1 and advective propagation is stronger where 

the Péclet number is larger than 1. Where the Péclet number is roughly equal to one, diffusion and advection will be roughly 

equal (when measured by tD and tI). Equation (15) shows that if a point’s flow path length l is roughly equal to the 

characteristic length lc and its drainage area A is roughly equal to the characteristic area Ac, then its Péclet number will be 

roughly equal to one. i.e., 25 

𝑙 ≈  𝑙𝑐 , 𝐴 ≈ 𝐴𝑐 ≈  𝑙𝑐
2        ⟹      Pe ≈ 1     . (16) 

Note that if the incision term has a slope exponent 𝑛 ≠ 1, then the condition |∇𝑧| ≈ 𝐺𝑐 must be included along with 𝑙 ≈ 𝑙𝑐 

and 𝐴 ≈ 𝑙𝑐
2 for the Péclet number to be Pe ≈ 1. 

 

The conditions 𝐴 ≈ 𝑙𝑐
2 and 𝑙 ≈ 𝑙𝑐 (Eq. 16) are not the only combination of A and l that give Pe ≈ 1, but they are significant 

because they lead to an interpretation of lc. Specifically, these conditions show that advective propagation, which promotes 30 

valley dissection, is dominant at points farther than lc from the ridge and with drainage area greater than 𝑙𝑐
2. Therefore, in 

Theodoratos et al. (2018) we interpreted the characteristic length lc as giving a measure of the smallest scales of dissection. 

This interpretation does not imply that valley heads are exactly 1 lc away from ridges or that they have drainage areas exactly 
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equal to 1 𝑙𝑐
2. Rather, it implies that flow path lengths and drainage areas of valley heads are of similar order of magnitude as 

lc and 𝑙𝑐
2, respectively. Furthermore, it implies that valley heads in different landscapes have l and A that scale with lc and 𝑙𝑐

2, 

respectively. 

 

Adding the threshold θ to the incision term of the LEM changes the kinematic wave celerity c and, thus, the incision 5 

timescale tI and the Péclet number Pe. Specifically, the celerity becomes 

𝑐 = {
0   , √𝐴|∇𝑧| ≤ 𝜃

𝐾√𝐴 − 𝐾𝜃 |∇𝑧|⁄    , √𝐴|∇𝑧| > 𝜃
     , (17) 

and, thus, the incision timescale tI becomes 

𝑡𝐼 ≔ 𝑙 𝑐⁄ = {

+∞   , √𝐴|∇𝑧| ≤ 𝜃
𝑙

𝐾√𝐴 − 𝐾𝜃 |∇𝑧|⁄
   , √𝐴|∇𝑧| > 𝜃

     . (18) 

Note that the diffusion timescale tD is not affected by the incision threshold. Thus, we can use Eqs. (13) and (18) to define a 

Péclet number Pe for the LEM with incision threshold θ (Eq. 2), specifically 

Pe ≔ 𝑡𝐷 𝑡𝐼⁄ = {

0   , √𝐴|∇𝑧| ≤ 𝜃

√𝐴 𝑙 − (𝜃 𝑙 |∇𝑧|⁄ )

𝑙𝑐
2

  , √𝐴|∇𝑧| > 𝜃
     . (19) 

It can be shown that Eq. (19) can be rewritten as 10 

Pe ≔ 𝑡𝐷 𝑡𝐼⁄ = {

0   , √𝐴|∇𝑧| ≤ 𝜃

√𝐴

 √𝐴𝑐 

𝑙

 𝑙𝑐 
−  𝑁𝜃

𝑙

 𝑙𝑐 

𝐺𝑐

 |∇𝑧| 
  , √𝐴|∇𝑧| > 𝜃

     , (20) 

where Nθ is the incision-threshold number (Eq. 9). Equation (20) shows that adding an incision threshold θ to the LEM 

reduces the Péclet number relative to the Péclet number for the LEM without a threshold (Eq. 15). This agrees with the fact 

that the threshold weakens the incision term. More specifically, the Péclet number for the LEM with θ is reduced by the 

quantity 𝑁𝜃(𝑙 𝑙𝑐⁄ )(𝐺𝑐 |∇𝑧|⁄ ). 

 15 

Note that the Péclet number definition by Perron et al. (2008) also includes a reduction that depends on Nθ (denoted as θ′ in 

Perron et al., 2008). The two definitions differ in that ours includes the product √𝐴 𝑙 (where A is the drainage area and l is 

the flow path length), whereas Perron et al.’s definition includes only a length scale (squared). By including √𝐴 𝑙, our 

definition can account for the scaling of A with l, which depends on the convergence or divergence of topography. The 

implications of this property of our Péclet number are discussed in Sect. 4.2.3 of Theodoratos et al. (2018). 20 

 

Using Eq. (20) we see that the conditions 𝑙 ≈ 𝑙𝑐, 𝐴 ≈ 𝑙𝑐
2, and |∇𝑧| ≈ 𝐺𝑐, which lead to a Péclet number roughly equal to 1 for 

the case without incision threshold (Eq. 16), will lead to Pe ≈ 1 − 𝑁𝜃 < 1 when θ is included. The fact that the difference 

between Pe and 1 is equal to Nθ suggests that we could obtain the value Pe ≈ 1 by adjusting the values of l, A, and |∇𝑧| such 

that they depend on Nθ. Indeed, we observe that 25 

𝑙 ≈ √1 + 𝑁𝜃 𝑙𝑐 , 𝐴 ≈ (1 + 𝑁𝜃) 𝑙𝑐
2, |∇𝑧| ≈ √1 + 𝑁𝜃 𝐺𝑐      ⟹      Pe ≈ 1     . (21) 

Note that √1 + 𝑁𝜃 𝑙𝑐 is larger than lc, which agrees with observations that incision thresholds reduce landscape dissection 

(e.g., Montgomery and Dietrich, 1992; Howard, 1994; Perron et al., 2008). 
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Equation (21) shows that, in the case of a landscape that includes an incision threshold θ, the smallest scales of dissection are 

not characterized by the characteristic length lc on its own, but rather jointly by lc and the incision-threshold number Nθ 

through the quantity √1 + 𝑁𝜃 𝑙𝑐. Consequently, the presence of θ changes the dependence of the scales of dissection on the 

LEM parameters. Without an incision threshold, the scales of landscape dissection depend on lc, which depends on the 5 

incision and diffusion coefficients K and D (Eq. 3). On the other hand, when θ is included in the LEM, the scales of 

dissection depend on √1 + 𝑁𝜃 𝑙𝑐, which depends on K and D, but also on the uplift rate U and the incision threshold θ. We 

illustrate an example of the dependence on U in Fig. 4 b. 

 

The length scales lc and √1 + 𝑁𝜃 𝑙𝑐 can be expressed graphically by the horizontal- and vertical-axis intercepts of curvature–10 

steepness-index lines, specifically, by the ratio of these intercepts (or, more precisely, by the ratio of their absolute values). 

This ratio is equal to ℎ𝑐 𝜅𝑐⁄ = 𝑙𝑐
2 in the case without incision threshold (see Fig. 1) and equal to (ℎ𝑐 + 𝜃) 𝜅𝑐⁄ = (1 + 𝑁𝜃)𝑙𝑐

2 

in the case that includes the incision threshold θ (see Fig. 2). Note that the first ratio is equal to the inverse of the slope of the 

curvature–steepness-index line, which is 1 𝑙𝑐
2⁄ . On the other hand, the second ratio is not the inverse of this slope, which 

remains 1 𝑙𝑐
2⁄  when the threshold θ is included. Instead, it is the inverse of the slope of an auxiliary line connecting the two 15 

intercepts. In Fig. 2, we show this auxiliary line with a black dashed line style. The effect of the incision threshold on valley 

dissection can be visualized graphically by comparing the slope of the curvature–steepness-index line against the slope of the 

black dashed auxiliary line. We denote this comparison as a thick white arrow. 

 

It should be noted that the characteristic length lc depends only on K and D only when the slope exponent is 𝑛 = 1. However, 20 

for other values of n, lc will also depend on the uplift rate U; in this more general case, 𝑙𝑐 = (𝐾−1𝐷𝑛𝑈1−𝑛 )1 (𝑛+2𝑚)⁄  (see 

Appendix A in Theodoratos et al., 2018). Therefore, the degree of landscape dissection in general is not independent of U. 

Specifically, an increase of U leads to a decrease of landscape dissection for 𝑛 > 1 and to an increase of landscape dissection 

for 𝑛 < 1, which agrees with previous observations of the dependence of drainage density on the uplift rate (e.g., Clubb et 

al., 2016). Interestingly, as revealed by the current study, if an incision threshold is included, the degree of landscape 25 

dissection depends on U even for 𝑛 = 1. 

3.4  How the curvature–steepness-index line responds to parameter value changes 

As we show in Figs. 3 and 4, differences in the properties of landscapes with different parameters K, D, U, and θ can be 

graphically summarized by curvature–steepness-index lines, because the slopes and intercepts of these lines depend on the 

characteristic scales lc, hc, and κc, and on the incision-threshold number Nθ, which in turn depend on the parameters. 30 

 

Figure 3 shows curvature–steepness-index lines without incision thresholds. It consists of three panels, each showing how 

the lines respond to an increase in one of the three parameters U, K, and D. In panel (a), an increase in the uplift rate U shifts 

the curvature–steepness-index line downward and to the right without changing its slope. This illustrates that the 

characteristic height and curvature hc and κc, which control the intercepts of the line, are proportional to U (Eqs. 4, 8), while 35 

the characteristic length lc, which controls the line’s slope, is independent of U (Eq. 3). The parallel shift of the line 

corresponds to more convex ridges (so that diffusion can keep up with uplift), to steeper gradients (so that incision can keep 

up with uplift), and to unchanged landscape dissection. Analogously, panel (b) shows that an increase in the incision 
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coefficient K leads to a counterclockwise rotation of the line around the vertical-axis intercept, which corresponds to a more 

dissected landscape (smaller lc), milder gradients (smaller hc), and unchanged ridge convexity (unchanged κc). Finally, in 

panel (c), an increase in the diffusion coefficient D results in a clockwise rotation of the line around the horizontal-axis 

intercept. This corresponds to a smoother landscape with less dissection (larger lc) and less convex ridges (smaller κc), and to 

unchanged steepness index at hillslope–valley transitions (unchanged hc). 5 

 

Figure 4 illustrates in four panels how curvature–steepness-index lines respond to increases in the value of either the incision 

threshold θ or one of the parameters U, K, and D. It is reminded that a curvature–steepness-index line with incision threshold 

consists of two segments, a horizontal and an inclined. Note that, as we explain in the previous subsection (Sect. 3.3), a 

curvature–steepness-index line that includes an incision threshold does not express landscape dissection through the slope of 10 

its inclined segment, which depends only on the characteristic length lc, but rather through the ratio of the horizontal- and 

vertical-axis intercepts, which is equal to √1 + 𝑁𝜃 𝑙𝑐. This ratio can be graphically illustrated by the slope of an auxiliary 

line that connects the two intercepts, such as the dashed black line in Fig. 2. In each panel of Fig. 4, we show two dashed 

black auxiliary lines to illustrate how the ratio of intercepts responds to the parameter changes. 

 15 

In panel (a) of Fig. 4, we illustrate an increase in θ. The steepness index √𝐴|∇𝑧| must reach a greater value before exceeding 

the increased θ and, thus, the horizontal segment of the curvature–steepness-index line becomes longer. The vertical position 

of this segment (along with the vertical-axis intercept) do not change, because the characteristic curvature κc does not depend 

on θ. The slope of the curvature–steepness-index line also does not change, because lc does not depend on θ. Thus, the 

increase of θ parallel-shifts the inclined segment of the line to the right. Consequently, the horizontal-axis intercept 20 

increases, which expresses the steepening of gradients and the decrease of landscape dissection. The decrease of dissection is 

also expressed by the fact that the ratio of the horizontal- to the vertical-axis intercept increases, as shown by the clockwise 

rotation of the dashed auxiliary line. 

 

In panel (b) of Fig. 4, we show that an increase in the uplift rate U parallel-shifts the curvature–steepness-index line 25 

downward and to the right. Furthermore, the horizontal- and vertical-axis intercepts move to the right and downward, 

respectively (κc and hc are proportional to U), and the slope of the inclined segment remains unchanged (lc does not depend 

on U). As we explain in Sect. 3.3, the value of U affects the value of √1 + 𝑁𝜃 𝑙𝑐, which expresses the scales of landscape 

dissection. Specifically, the increase of U leads to a decrease of Nθ. This reflects the fact that θ becomes less important 

relative to the increased U. Thus, the decrease of dissection due to the threshold is somewhat moderated by the increase of U. 30 

This moderation is graphically illustrated by the slopes of auxiliary lines connecting the intercepts of the curvature–

steepness-index lines. These auxiliary lines do not intersect and, thus, their slopes cannot be readily compared visually. 

Therefore, we plot them again in an inset such that they start from the same point. In this way, we can see that the increase of 

U leads to a counterclockwise rotation of the auxiliary lines, which expresses the increase of dissection. 

 35 

In panel (c) of Fig. 4, we illustrate the response of the curvature–steepness-index line to an increase in the incision 

coefficient K. The horizontal segment of the line remains unchanged and the inclined segment is rotated counterclockwise 

around the point of transition between the two segments. Likewise, the dashed auxiliary line connecting the horizontal- and 

vertical-axis intercepts is rotated counterclockwise. These responses express that dissection is decreased and that gradients 

become milder when K is increased. Finally, in panel (d), we show that increasing the diffusion coefficient D leads to a 40 
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clockwise rotation of the inclined segment of the line around its horizontal-axis intercept, which remains unchanged. The 

rotation results in moving the horizontal segment up and in rotating the dashed auxiliary line clockwise. These changes 

express the reduction in landscape dissection and the reduction in the convexity of ridges and hillslopes. 

4     Quantifying how the influence of the incision threshold varies within a landscape 

Thus far, we have examined how the influence of the incision threshold θ varies between different landscapes with different 5 

parameters using the incision-threshold number Nθ (Eq. 9). This number is constant for any given landscape if the parameters 

of the landscape are constant. Now, we turn our attention to how the influence of the incision threshold θ varies within a 

given landscape. 

 

We can quantify the relative influence of the threshold θ on the rate of incision using the fraction 𝜃 (√𝐴|∇𝑧|)⁄ . This fraction 10 

is equal to 𝐾𝜃, the reduction in the incision rate due to the threshold, divided by 𝐾√𝐴|∇𝑧|, the incision rate if there would be 

no threshold. Therefore, 𝜃 (√𝐴|∇𝑧|)⁄  shows by what fraction the incision rate is reduced due to the threshold. Where 

√𝐴|∇𝑧| = 𝜃, the fraction 𝜃 (√𝐴|∇𝑧|)⁄  is equal to 1, which agrees with the incision rate being reduced by 100% (i.e., being 

reduced to zero). At points with √𝐴|∇𝑧| smaller than θ, calculating the fraction 𝜃 (√𝐴|∇𝑧|)⁄  would not be meaningful; 

instead, because the threshold completely suppresses incision under these conditions, we assign a value of 1 to the fractional 15 

reduction in incision rate. 

 

We can associate the fractional reduction in incision rate to Tucker’s (2004) threshold factor Φ. Tucker (2004) defined Φ to 

quantify the fraction of precipitation events leading to shear stress above a threshold value, i.e., the fraction of events that 

lead to erosion. Tucker (2004) used Φ to express the incision term of his LEM as 𝐾𝐴𝑚𝑏𝑆𝑛𝑏Φ. In the case of the LEM 20 

examined here (Eq. 2), following Tucker’s notation, we can express the incision term as 𝐾√𝐴|∇𝑧|Φ, where the threshold 

factor Φ is equal to 1 − 𝜃 (√𝐴|∇𝑧|)⁄  for √𝐴|∇𝑧| > 𝜃 and to 0 for √𝐴|∇𝑧| ≤ 𝜃. Thus, the quantity 1 − Φ is equal to the 

fractional reduction in incision rate, i.e., 

1 − Φ = {

1   , √𝐴|∇𝑧| ≤ 𝜃
𝜃

√𝐴|∇𝑧|
  , √𝐴|∇𝑧| > 𝜃

     . (22) 

Consequently, in what follows we denote the fractional reduction in incision rate as 1 − Φ. We illustrate the properties of the 

quantity 1 − Φ with plots and maps in Figs. 5–7. 25 

 

In Fig. 5 we plot 1 − Φ versus the steepness index √𝐴|∇𝑧| according to Eq. (22). The curve consists of two parts. The first is 

a horizontal segment that describes the value 1 − Φ = 1 and corresponds to points with √𝐴|∇𝑧| ≤ 𝜃, where incision is fully 

suppressed by the threshold. The second part corresponds to points with √𝐴|∇𝑧| > 𝜃, forming part of a hyperbola that 

asymptotically approaches 0. This asymptotic approach expresses the fact that, at points with steepness index √𝐴|∇𝑧| much 30 

larger than θ, the incision threshold has a very small relative influence on the incision rate. 
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To indicate how different parts of the 1 − Φ curve of Fig. 5 correspond to different regimes of a landscape, we identify the 

point that corresponds to hillslope–valley transitions. As explained in Sect. 3.2, hillslope–valley transitions can be defined as 

points with zero curvature and, therefore, with a steady-state steepness index of √𝐴|∇𝑧| = ℎ𝑐 + 𝜃. Consequently, the 

fractional reduction in incision rates 𝜃 (√𝐴|∇𝑧|)⁄  at these points is 𝜃 (ℎ𝑐 + 𝜃)⁄ . We can rewrite this value in terms of the 

incision-threshold number Nθ as 𝑁𝜃 (1 + 𝑁𝜃)⁄ . Thus, in Fig. 5, hillslope–valley transitions correspond to the point with 5 

coordinates (√𝐴|∇𝑧|, 1 − Φ) = (ℎ𝑐 + 𝜃, 𝑁𝜃 (1 + 𝑁𝜃)⁄ ), which we mark with a black dot. The part of the curve above and 

to the left of this dot corresponds to hillslopes, and the part below and to the right corresponds to the valley network. 

 

With Fig. 6, we examine how the value of the incision-threshold number Nθ of a landscape controls the relationship between 

the quantity 1 − Φ and the steepness index √𝐴|∇𝑧|. Specifically, in Fig. 6 we show curves of 1 − Φ versus √𝐴|∇𝑧| for four 10 

landscapes with incision-threshold numbers Nθ equal to 0.2, 0.4, 1, and 2. The landscapes are assumed to have equal 

parameters K, D, and U, and therefore to have equal characteristic scales. The curves with greater values of Nθ also have 

greater incision thresholds θ and, thus, they have longer horizontal segments. Furthermore, the curves with greater values of 

Nθ go towards zero more slowly. On each curve, we show the hillslope–valley transition using a black dot. The value of the 

quantity 1 − Φ corresponding to each dot becomes larger as Nθ increases. Thus, in landscapes with smaller Nθ, the incision 15 

rate is reduced by large fractions only on the hillslopes, and in valleys it is reduced by small fractions. By contrast, in 

landscapes with greater Nθ, incision can be reduced by large fractions both on hillslopes and in valleys. 

 

Figure 7 shows maps of the quantity 1 − Φ across four steady-state landscapes. We simulated these landscapes with the 

CHILD numerical model (Channel-Hillslope Integrated Landscape Development model; Tucker et al., 2001). Details about 20 

these simulations and additional results are presented in Theodoratos and Kirchner (2020). Here, we provide brief 

information about the parameters and setup of these simulations in Appendix B. To illustrate how the spatial distribution of 

1 − Φ depends on the incision-threshold number Nθ, we ran four simulations with Nθ values of 0.2, 0.4, 1, and 2, i.e., the 

same Nθ values as in Fig. 6. The pixels of the four maps are colored according to their values of 1 − Φ using a grayscale that 

ranges from white to black. Lighter colors correspond to larger values of 1 − Φ, i.e., to stronger influence of the incision 25 

threshold. As expected, lighter colors appear near ridges and on hillslopes, where the incision threshold has a stronger 

influence. 

 

The patterns in Fig. 7 reflect the spatial distribution of drainage area and slope, because the incision threshold in Eq. (2) is 

defined as a topographic threshold. However, maps of the quantity 1 − Φ would be useful for other formulations of the 30 

incision threshold, as well. For example, Tucker’s (2004) formulation of the incision threshold assumed stochastic 

precipitation. Tucker quantified the influence of this incision threshold using the threshold factor Φ, which ranges between 0 

and 1 (and on which our quantity 1 − Φ is based, as mentioned above). Therefore, the quantity 1 − Φ could be calculated for 

the case of Tucker’s (2004) LEM, and maps of this quantity would visualize how the influence of the incision threshold is 

spatially distributed across landscapes. 35 

 

The fractional reduction in incision rate as 1 − Φ and the threshold factor Φ can be used to simplify the definition of the 

Péclet number Pe. Specifically, we can rearrange the definition of Pe (Eq. 19) such that it includes the fraction 𝜃 (√𝐴|∇𝑧|)⁄ : 
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Pe = {

0   , √𝐴|∇𝑧| ≤ 𝜃

(1 −
𝜃

√𝐴|∇𝑧|
) 

√𝐴

 √𝐴𝑐 

𝑙

 𝑙𝑐 
   , √𝐴|∇𝑧| > 𝜃

     . (23) 

If this equation is combined with the definition of 1 − Φ (Eq. 22), then we can rewrite the definition of Pe in compact form 

Pe = Φ ⋅ Pe𝜃=0     , (24) 

where Pe𝜃=0 is the Péclet number for the LEM without incision threshold (see Eq. 15). Equations (23) and (24) reveal that 

the influence of the incision threshold on the Péclet number varies across the landscape. Specifically, larger values of Pe, 

which correspond to larger values of the steepness index √𝐴|∇𝑧|, are less sensitive to the incision threshold. 

5     Summary and conclusions 5 

We present graphical methods that summarize topographic and scaling properties of landscapes following a simple stream-

power incision and linear diffusion LEM (Eq. 1), and that illustrate the effects of adding an incision threshold θ (Eq. 2). Our 

results referring to the LEM without incision threshold (Eq. 1) have been presented before (Theodoratos et al., 2018), but we 

show them here again to contrast them against those referring to the LEM with the threshold θ (Eq. 2). The two LEMs 

(Eq. 1, 2) assume that the incision term has drainage area and slope exponents 𝑚 = 0.5 and 𝑛 = 1, because this combination 10 

significantly simplifies the mathematical derivations. However, as we show in Appendix A, our results are also valid for 

generic exponents m and n. 

 

For the first graphical method, we plot steady-state relationships between curvature ∇2𝑧 and the steepness index √𝐴|∇𝑧| 

(Eqs. 10, 11, 12), which we obtain from the governing equations Eq. (1) and (2). These relationships can be viewed as 15 

counterparts of the relationship between topographic slope and drainage area, which is typically assumed to follow a power 

law in detachment-limited landscapes, but not in landscapes that are also influenced by hillslope diffusion. These 

relationships plot as straight lines (Figs. 1 and 2), whose properties (slope and intercepts) depend on the incision threshold θ 

and on the characteristic scales of the landscape, which in turn depend on the parameters of the LEM, i.e., on the incision 

coefficient K, the diffusion coefficient D, and the uplift rate U. (Eqs. 3, 4, and 8). A reasonable follow-up study would be to 20 

validate these results against real-world landscapes, and specifically to explore whether curvature and steepness-index data 

from real landscapes would plot against each other as straight lines. 

 

With Fig. 2, we show that curvature–steepness-index lines can graphically illustrate effects of incision thresholds on 

landscapes. Specifically, the ways in which curvature–steepness-index lines with and without threshold differ from each 25 

other illustrate that thresholds make hillslopes more convex and gradients steeper, and reduce the drainage density. These 

effects have been presented elsewhere (e.g., Montgomery and Dietrich, 1992; Howard, 1994; Perron et al., 2008), but the 

curvature–steepness-index lines offer new ways to visualize them graphically. In Figs. 3 and 4, we illustrate the dependence 

of these properties on the parameters K, D, U, and θ by showing how curvature–steepness-index lines respond to increases in 

these parameters, one at a time. These figures demonstrate an advantage of curvature–steepness-index lines: the topographic 30 

effects of model parameter changes are expressed as simple shifts and rotations of these lines. 

 



 

14 

 

In Sect. 3.3, we examine in more detail the effects of the incision threshold θ on drainage density and the scales of landscape 

dissection, and how these effects can be visualized with curvature–steepness-index lines. We assume that dissection is 

controlled by the competition between the advection and diffusion of perturbations (e.g., Smith and Bretherton, 1972; 

Howard, 1994; Perron et al., 2008) and, thus, we examine the effects of θ using a Péclet number Pe (Eqs. 15, 19; see also 

Perron et al., 2008, 2012; Theodoratos et al., 2018). For the LEM that does not include an incision threshold, we found in 5 

Theodoratos et al. (2018) that the characteristic length lc characterizes the smallest scales of dissection. Note that the slope of 

curvature–steepness-index lines is 1 𝑙𝑐
2⁄ ; therefore, this slope graphically expresses the scales of dissection of landscapes 

without incision thresholds. Adding the incision threshold θ, we find that the smallest scales of dissection are characterized 

by the length scale √1 + 𝑁𝜃 𝑙𝑐, where Nθ is a dimensionless incision-threshold number defined as 𝑁𝜃 = 𝐾𝜃 𝑈⁄  (Eq. 9). This 

length scale is longer than lc, which expresses the fact that incision thresholds reduce the drainage density. The square of this 10 

length scale is (1 + 𝑁𝜃) 𝑙𝑐
2 and is equal to the ratio between the horizontal- and vertical-axis intercepts of the curvature–

steepness-index line. As we show in Fig. 2, an auxiliary line connecting these two intercepts would have a slope of 

1 ((1 + 𝑁𝜃) 𝑙𝑐
2)⁄ . Thus, we can graphically visualize the effect of the incision threshold on landscape dissection by 

comparing the slope of this auxiliary line with the slope of the curvature–steepness-index line. 

 15 

The second graphical method consists of plots of the dimensionless fraction 𝜃 √𝐴⁄ |∇𝑧|, which gives the fraction by which 

the incision rate is reduced due to the threshold (see the governing equation Eq. 2). We found that this fraction is equal to 

1 − Φ (Eq. 22), where Φ is a threshold factor (see Tucker, 2004) that subsumes the effect of the incision threshold θ on the 

incision term of the LEM (see Eqs. 2, 22). Thus, we denote the fractional reduction in the incision rate as 1 − Φ. In Figs. 5–

7, we present plots and maps of 1 − Φ that illustrate how the relative influence of incision thresholds will vary across a 20 

given landscape, and how the variation of this relative influence depends on the landscape’s incision-threshold number Nθ. 

 

The two dimensionless numbers examined here, Nθ and 1 − Φ, quantify the relative influence of the incision threshold θ, the 

first with respect to the parameters K and U, and the second with respect to the steepness index. Thus, Nθ quantifies how θ 

affects different landscapes with different parameters, and 1 − Φ quantifies how the influence of θ varies across different 25 

points of a given landscape. We find that the definition of the Péclet number Pe can be rewritten in two equivalent forms 

(Eqs. 20, 24), which reveal how Pe depends on Nθ and on Φ, respectively. 

 

The three dimensionless numbers, Pe, Nθ, and Φ, along with the characteristic scales lc, hc, and tc, provide a thorough 

characterization of landscapes that follow the governing equation Eq. (2). Furthermore, plots of the curvature–steepness-30 

index relationship offer a straightforward way to graphically express the geomorphologic meaning of these dimensionless 

numbers and characteristic scales. Even though the specific definitions of these quantities refer only to the LEMs examined 

here (Eqs. 1, 2), the approach that underpins our graphical methods is more generally applicable. For example, an LEM with 

incision threshold and stochastic precipitation would have a different governing equation than Eq. (2) and, thus, a different 

curvature–steepness-index relationship than Eq. (12) and Fig. 2. However, curvature and the steepness index would still be 35 

reasonable axes for plotting data from such an LEM if it included diffusion. Likewise, the quantity 1 − Φ would follow a 

different formula than Eq. (22), but maps of this quantity would be useful in visualizing spatial patterns of the influence of 

the incision threshold across a landscape. Consequently, our graphical methods could potentially be helpful for the analysis 

of a broader range of models than those examined here.  
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Appendix A:     Curvature–steepness-index lines for generic drainage area and slope exponents m and n 

In this appendix, we demonstrate that our graphical method remains valid for the case of LEMs with incision terms that have 

generic drainage area and slope exponents m and n. 

 

For generic exponents m and n, the governing equations Eq. (1) and Eq. (2) become, respectively, 5 

𝜕𝑧

𝜕𝑡
= −𝐾𝐴𝑚(|∇𝑧|)𝑛 + 𝐷∇2𝑧 + 𝑈     , (A1) 

and 

𝜕𝑧

𝜕𝑡
= {

𝐷∇2𝑧 + 𝑈   , 𝐴𝑚(|∇𝑧|)𝑛 ≤ 𝜃

−𝐾(𝐴𝑚(|∇𝑧|)𝑛 − 𝜃) + 𝐷∇2𝑧 + 𝑈   , 𝐴𝑚(|∇𝑧|)𝑛 > 𝜃
     . (A2) 

 

Given that the steepness index is defined as 𝑘𝑠 = 𝐴𝑚 𝑛⁄ |∇𝑧| (e.g., Whipple, 2001), the quantity 𝐴𝑚(|∇𝑧|)𝑛 in the above 

equations is equal to the steepness index raised to the power n, i.e., 𝐴𝑚(|∇𝑧|)𝑛 = 𝑘𝑠
𝑛, and the incision threshold θ is a 

threshold of the quantity 𝑘𝑠
𝑛. 10 

 

Setting 𝜕𝑧 𝜕𝑡⁄ = 0 in Eqs. (A1) and (A2), we can derive the corresponding steady-state relationships between curvature and 

the steepness index: 

∇2𝑧 = (𝐾 𝐷⁄ ) 𝑘𝑠
𝑛 − (𝑈 𝐷⁄ )     , (A3) 

and 

{
∇2𝑧 = −(𝑈 𝐷⁄ )   , 𝑘𝑠

𝑛 ≤ 𝜃

∇2𝑧 = (𝐾 𝐷⁄ )𝑘𝑠
𝑛 − (1 + 𝑁𝜃) (𝑈 𝐷⁄ )    , 𝑘𝑠

𝑛 > 𝜃
     , (A4) 

where Nθ is the incision-threshold number, still defined as 𝑁𝜃 = 𝐾𝜃 𝑈⁄ . 15 

 

When plotted in axes of ∇2𝑧 and 𝑘𝑠
𝑛, Eq. (A3) has the same basic properties as Eq. (11), the curvature–steepness-index 

relationship for 𝑚 = 0.5 and 𝑛 = 1, and 𝜃 = 0. Specifically, Eq. (A3) plots as a straight line with a slope equal to 𝐾 𝐷⁄ , a 

vertical-axis intercept equal to − 𝑈 𝐷⁄  and a horizontal-axis intercept equal to 𝑈 𝐾⁄ . Consequently, for generic exponents m 

and n, changes in the values of the parameters K, D, and U are still expressed graphically as shifts and rotations of the 20 

curvature–steepness-index line, as seen in Fig. 3 for the case of 𝑚 = 0.5 and 𝑛 = 1. 

 

Note that the characteristic scales of length and height lc and hc are not equal to √𝐷 𝐾⁄  and 𝑈 𝐾⁄  for generic exponents m and 

n. Rather, they are defined by the more complicated formulas: 

𝑙𝑐 = (𝐾−1𝐷𝑛𝑈1−𝑛 )1 (𝑛+2𝑚)⁄      , (A5) 

and 25 

ℎ𝑐 = (𝐾−2𝐷𝑛−2𝑚𝑈2−𝑛+2𝑚 )1 (𝑛+2𝑚)⁄      , (A6) 

(whose derivation can be seen in Appendix A of Theodoratos et al., 2018). However, the parameter ratios 𝐾 𝐷⁄  and 𝑈 𝐾⁄  still 

express the relative strengths of incision versus diffusion, and incision versus uplift. By contrast, note that the parameter 

ratio 𝑈 𝐷⁄  remains equal to the characteristic curvature κc, which expresses the relative strength of diffusion versus uplift. 

Consequently, the shifts and rotations of the curvature–steepness-index line still express changes in scaling and topographic 
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properties of landscapes, such as changes in curvature of ridges, in degree of dissection, and in gradients at hillslope–valley 

transitions. 

 

Likewise, when plotted in axes of ∇2𝑧 and 𝑘𝑠
𝑛, Eq. (A4) has the same properties as Eq. (12), the curvature–steepness-index 

relationship with incision threshold and with 𝑚 = 0.5 and 𝑛 = 1. Specifically, Eq. (A4) plots as a line with two segments, a 5 

horizontal segment at ∇2𝑧 = − 𝑈 𝐷⁄  for 𝑘𝑠
𝑛 ≤ 𝜃, and an inclined segment with slope equal to 𝐾 𝐷⁄  and horizontal-axis 

intercept equal to (𝑈 𝐾⁄ ) + 𝜃 for 𝑘𝑠
𝑛 > 𝜃. This line, too, responds to changes in the parameters θ, K, D, and U with shifts and 

rotations, equivalent to the shifts and rotations shown in Fig. 4 for the case of 𝑚 = 0.5 and 𝑛 = 1. 

 

Finally, for generic exponents m and n, the fractional reduction in incision rate 1 − Φ is defined as 10 

1 − Φ = {
   1       , 𝑘𝑠

𝑛 ≤ 𝜃

𝜃 𝑘𝑠
𝑛⁄    , 𝑘𝑠

𝑛 > 𝜃
     , (A7) 

which plots as shown in Figs. 5 and 6, but in axes of 𝑘𝑠
𝑛. 

Appendix B:     Setup of numerical simulations 

We prepared the maps of Fig. 7 with results from numerical simulations that we performed using the CHILD model, 

originally for the work discussed in Theodoratos and Kirchner (2020). In that work, we present much more information 

about these simulations and their results. Here, we briefly summarize the model setup and parameterization. 15 

 

All four landscapes in Fig. 7 have incision coefficient 𝐾 = 2 × 10−6 a−1, diffusion coefficient 𝐷 = 0.5 × 10−2 m2a−1, and 

uplift rate 𝑈 = 0.5 × 10−4 m a−1. Each landscape’s incision threshold θ depends on the value of its incision-threshold 

number Nθ according to 𝜃 = 𝑁𝜃 ⋅ (𝑈 𝐾⁄ ) (see Eq. 9), where 𝑈 𝐾⁄ = 25 m for all landscapes. Therefore, the landscapes have 

the incision thresholds seen in Table B1. 20 

 

We simulated the four landscapes on triangular irregular networks (TINs) with total extent of 7.5 km ⨯ 11.25 km and 

average TIN edge length of 20 m, which resulted in around a quarter million TIN points. Each map in the left column of 

Fig. 7, shows a part of the TIN, specifically, a rectangular region with size of 5 km ⨯ 4 km, centered around the largest 

drainage basin of the corresponding landscape. 25 

 

Details about the implementation of the governing equation (Eq. 2) in CHILD (Tucker et al., 2001) can be found in 

Theodoratos et al. (2018) and in Theodoratos and Kirchner (2020). 

 

Table B1: Incision-threshold numbers Nθ and corresponding incision thresholds θ of the four landscapes illustrated in Fig. 7. The 30 
parameter ratio 𝑈 𝐾⁄  is equal to 25 m for all landscapes. 

Incision-threshold number: 
Nθ 

( – ) 
0.2 0.4 1 2 

Incision threshold: 
𝜃 = 𝑁𝜃 ⋅ (𝑈 𝐾⁄ ) 

(m) 
5 10 25 50 
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Tables 

Table 1: Descriptions and dimensions of the terms, variables, and parameters in the governing equations Eq. (1) and Eq. (2). Dimensions 

are expressed in terms of the model’s fundamental dimensions of horizontal length L, vertical length (height) H, and time T. 

Symbol Description Dimensions 

𝜕𝑧 𝜕𝑡⁄  Total rate of elevation change at a point (𝑥, 𝑦) H T–1 

Rates of elevation change due to: 

−𝐾√𝐴|∇𝑧| stream-power incision (in Eq. 1) H T–1 

−𝐾(√𝐴|∇𝑧| − 𝜃) threshold-limited stream-power incision (in Eq. 2) H T–1 

𝐷∇2𝑧 linear diffusion H T–1 

U uplift H T–1 

(x, y) Horizontal coordinates L 

z Elevation H 

t Time T 

A Drainage area L2 

|∇𝑧| Topographic slope H L–1 

∇2𝑧 Laplacian curvature H L–2 

K Incision coefficient T–1 

D Diffusion coefficient L2 T–1 

U Uplift rate H T–1 

θ Incision threshold H 

√𝐴|∇𝑧| Steepness index H 

 

  5 
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Table 2: Summary of definitions and formulas used in this study. 

Description Definition Equation 

Characteristic length 𝑙𝑐 ≔ √𝐷 𝐾⁄  (3) 

Characteristic height ℎ𝑐 ≔ 𝑈 𝐾⁄  (4) 

Characteristic time 𝑡𝑐 ≔ 1 𝐾⁄  (5) 

Characteristic area 𝐴𝑐 ≔ 𝑙𝑐
2 = 𝐷 𝐾⁄  (6) 

Characteristic gradient 𝐺𝑐 ≔ ℎ𝑐 𝑙𝑐⁄ = 𝑈 √𝐷𝐾⁄  (7) 

Characteristic curvature 𝜅𝑐 ≔ ℎ𝑐 𝑙𝑐
2⁄ = 𝑈 𝐷⁄  (8) 

Incision-threshold number 𝑁𝜃 ≔ 𝐾𝜃 𝑈⁄  (9) 

Curvature–steepness-index relationship, 

without θ 

∇2𝑧 = (𝐾 𝐷⁄ )√𝐴|∇𝑧| − (𝑈 𝐷⁄ ) (10) 

∇2𝑧 = (1 𝑙𝑐
2⁄ ) √𝐴|∇𝑧| − 𝜅𝑐 (11) 

Curvature–steepness-index relationship, 

with θ 
{

∇2𝑧 = −𝜅𝑐   ,              √𝐴|∇𝑧| ≤ 𝜃

∇2𝑧 = (1 𝑙𝑐
2⁄ ) √𝐴|∇𝑧| − (1 + 𝑁𝜃)𝜅𝑐   , √𝐴|∇𝑧| > 𝜃

 (12) 

Threshold factor Φ = {

0  , √𝐴|∇𝑧| ≤ 𝜃

1 −
𝜃

√𝐴|∇𝑧|
  , √𝐴|∇𝑧| > 𝜃

 (22) 

Fraction of incision rate reduction 1 − Φ = {

1  , √𝐴|∇𝑧| ≤ 𝜃
𝜃

√𝐴|∇𝑧|
  , √𝐴|∇𝑧| > 𝜃

 (22) 

Flow path length l: the distance along flow paths from a point to the farthest ridge N/A 

Diffusion timescale 𝑡𝐷 ≔
𝑙2

𝐷
 (13) 

Kinematic wave celerity, without θ 𝑐 = 𝐾√𝐴 N/A 

Incision timescale, without θ 𝑡𝐼 ≔ 𝑙 𝑐⁄ = 𝑙 (𝐾√𝐴)⁄  (14) 

Péclet number, without θ Pe𝜃=0 ≔ 𝑡𝐷 𝑡𝐼⁄ =
 √𝐴 𝑙 

𝑙𝑐
2

=
√𝐴

 √𝐴𝑐 

𝑙

 𝑙𝑐 
 (15) 

Kinematic wave celerity, with θ 𝑐 = {
0   , √𝐴|∇𝑧| ≤ 𝜃

𝐾√𝐴 − 𝐾𝜃 |∇𝑧|⁄    , √𝐴|∇𝑧| > 𝜃
 (17) 

Incision timescale, with θ 𝑡𝐼 ≔ 𝑙 𝑐⁄ = {
+∞   , √𝐴|∇𝑧| ≤ 𝜃

𝑙 (𝐾√𝐴 − 𝐾𝜃 |∇𝑧|⁄ )⁄    , √𝐴|∇𝑧| > 𝜃
 (18) 

Péclet number, with θ 

Pe ≔ {

0   , √𝐴|∇𝑧| ≤ 𝜃

√𝐴

 √𝐴𝑐 

𝑙

 𝑙𝑐 
 −  𝑁𝜃

𝑙

 𝑙𝑐 

𝐺𝑐

 |∇𝑧| 
   , √𝐴|∇𝑧| > 𝜃

 (20) 

Pe = {

0   , √𝐴|∇𝑧| ≤ 𝜃

(1 −
𝜃

√𝐴|∇𝑧|
) 

 √𝐴 𝑙 

𝑙𝑐
2

   , √𝐴|∇𝑧| > 𝜃
 (23) 
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Figures 

 
Figure 1: Relationship between curvature and the steepness index in steady-state topography without incision threshold. We plot a 

straight line defined by Eqs. (10) or (11), which describes how curvature should be related to the steepness index if the landscape follows 

the LEM (Eq. 1) and is in steady state. This line is parameterized by the characteristic scales of length and height lc and hc (Eqs. 3, 4); its 5 

slope is 1 𝑙𝑐
2⁄ , its horizontal-axis intercept is √𝐴|∇𝑧| = ℎ𝑐, and its vertical-axis intercept is ∇2𝑧 = −𝜅𝑐 (where κc is a characteristic 

curvature defined as ℎ𝑐 𝑙𝑐
2⁄ ; Eq. 8). These intercepts reveal topographic properties of special points in a landscape, namely, the steady-state 

curvature of drainage divides and the steady-state steepness index of hillslope–valley transitions. The characteristic length lc quantifies the 

competition between knickpoint advection and diffusion and predicts how landscape dissection scales with the parameters. Thus, the slope 

of the curvature–steepness-index line expresses visually how dissected a landscape is. Note that the line's slope can be represented either as 10 
𝐾 𝐷⁄ = 1 𝑙𝑐

2⁄  units of curvature per 1 unit of steepness index, or 1 unit of curvature per 𝐷 𝐾⁄ = 𝑙𝑐
2 units of steepness index. For simplicity, 

we use the latter notation to express the slopes of the lines in Figs. 2–4.  



 

22 

 

 
Figure 2: Effects of incision threshold on steady-state topography as reflected in the curvature–steepness-index line. We show 

curvature–steepness-index lines of landscapes with and without incision threshold using black and gray colors, respectively (see Eqs. 11, 

12). The gray line in this figure is identical to the line in Fig. 1. Adding an incision threshold to the LEM changes the resulting steady-state 

topography, as indicated by the differences between the gray and black lines. The black line consists of two segments. The horizontal 5 
segment corresponds to points where incision is fully suppressed by the threshold. This horizontal segment is at ∇2𝑧 = −𝜅𝑐, the vertical-

axis intercept of the gray line. This shows that the hilltop curvature (the most negative curvature value in the landscape) spreads to points 

on hillslopes beyond drainage divides. Thus, hillslopes become more convex due to the threshold. The inclined segment of the black line is 

parallel to the gray line, and at a horizontal distance θ to its right. Thus, the horizontal-axis intercept is increased from hc to ℎ𝑐 + 𝜃 due to 

the threshold, i.e., the hillslope–valley transition occurs at a larger steepness index value. This increase corresponds to larger drainage area 10 
A and/or steeper slope |∇𝑧|, both of which are consistent with the steepening of landscapes and the decrease of their drainage density by 

the incision threshold. In the case of the LEM that includes an incision threshold, the degree of landscape dissection is expressed by the 

length scale √1 + 𝑁𝜃 𝑙𝑐 (see Eq. 21), where Nθ is a dimensionless incision-threshold number (Eq. 9). The square of this length scale is 

(1 + 𝑁𝜃) 𝑙𝑐
2, which is equal to (ℎ𝑐 + 𝜃) 𝜅𝑐⁄ , the ratio of the two intercepts of the black line. The quantity (1 + 𝑁𝜃) 𝑙𝑐

2 is the reciprocal of 

the slope of the black dashed line that connects the two intercepts. Thus, by comparing the slope of this auxiliary line and of the gray 15 
curvature–steepness-index line, we can graphically express the effect of the incision threshold on landscape dissection, as shown by the 

white arrow.  
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Figure 3: Graphical illustration, using curvature–steepness-index lines, of how parameters influence landscape properties. The 

three plots show how curvature–steepness index lines respond to increases in the uplift rate U, incision coefficient K, and diffusion 

coefficient D. (a) An increase in U parallel-shifts the line to the right and downward. This makes the vertical-axis intercept smaller (more 

negative) and the horizontal-axis intercept bigger, showing that ridges become more convex and that gradients become steeper (i.e., relief 

becomes higher). The line’s slope remains 1 𝑙𝑐
2⁄ , indicating that the scale of dissection does not change. (b) An increase of K rotates the 5 

line counterclockwise around the vertical-axis intercept. This makes the horizontal-axis intercept smaller and the line’s slope bigger, 

showing that gradients become gentler (i.e., relief becomes lower) and that the landscape becomes more dissected (i.e., the scales of 

dissection become smaller). (c) An increase of D rotates the line clockwise around the horizontal-axis intercept. This moves the vertical-

axis intercept closer to zero and decreases the line’s slope, showing that ridges become less convex and that the landscape becomes less 

dissected (i.e., the scales of dissection become larger).  10 
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Figure 4: Graphical illustration, using curvature–steepness-index lines, of how incision threshold and parameters control landscape 

properties. The four plots show how curvature–steepness index lines respond to increases in the incision threshold θ, uplift rate U, 

incision coefficient K, and diffusion coefficient D. (a) An increase in the incision threshold θ parallel-shifts the line to the right. Note the 

difference with the shift in (b), which is to the right and downward. The shift in (a) makes the horizontal segment of the line longer and the 

horizontal-axis intercept bigger, showing that the zones of maximum convexity become wider, gradients become steeper and drainage 5 
areas of valley heads become smaller. The curvature value of the horizontal segments and the line’s slope remain unchanged. The increase 

in the horizontal-axis intercept changes its ratio to the vertical-axis intercept, which expresses the degree of landscape dissection as 

explained in Sect. 3.3. This ratio can be visualized by the dashed auxiliary lines that connect the horizontal- and vertical-axis intercepts 

and the change in the value of the ratio can be visualized by the rotation of these lines. (b) An increase in the uplift rate U shifts the line to 

the right and downward. This makes the vertical-axis intercept smaller (more negative) and the horizontal-axis intercept bigger, showing 10 
that ridges become more convex and that gradients become steeper (i.e., relief becomes higher). The changes of these two intercepts are 

not proportional and, thus, their ratio changes. This change can be visualized in the inset, where we plot the auxiliary lines such that they 

share the same starting point. This shows that the degree of landscape dissection changes when U is increased, whereas it did not change in 

the case of the LEM without incision threshold (see Fig. 3). (c) An increase in the incision coefficient K rotates the inclined segment of the 

line counterclockwise around its intersection with the horizontal segment. The horizontal segment remains unchanged. Thus, the 15 
horizontal-axis intercept becomes smaller, which shows that gradients become gentler and the landscape becomes more dissected. (d) An 

increase in the diffusion coefficient D rotates the inclined segment line clockwise around the horizontal-axis intercept. This moves the 

horizontal segment and the vertical-axis intercept closer to zero, and changes the ratio of the two intercepts, showing that ridges become 

less convex and that the landscape becomes less dissected.  
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Figure 5: How the relative influence of the incision threshold changes across a landscape. We plot the quantity 1 − Φ versus the 

steepness index √𝐴|∇𝑧|, where Φ is a threshold factor that can subsume the incision threshold θ (definitions in Eq. 22 and Sect. 4). The 

quantity 1 − Φ is dimensionless and expresses the fractional reduction in incision rate due to the incision threshold θ. The 1 − Φ curve 

presented here shows how this fraction varies across the landscape. The value 1 − Φ = 1 corresponds to points where incision is fully 5 
suppressed by the threshold, i.e., where the incision rate is reduced by 100%. Thus, the horizontal segment of the 1 − Φ curve corresponds 

to the horizontal segment of the curvature–steepness-index line in Fig. 2. At points with √𝐴|∇𝑧| much larger than θ (the far right of the 

plot), the incision rate is reduced by a very small fraction, and the 1 − Φ curve asymptotically approaches 0. The black dot on the 1 − Φ 

curve corresponds to the steepness index value ℎ𝑐 + 𝜃, which corresponds to hillslope–valley transitions, as shown in Fig. 2. The position 

of the black dot on the curve helps us visualize how large the incision rate reduction fraction is across different regimes of a landscape. 10 
This position depends on the characteristic height hc, on θ, and on the dimensionless ratio 𝜃 ℎ𝑐⁄ . We define this ratio as the incision-

threshold number Nθ (Eq. 9).  
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Figure 6: Comparison of the relative influence of incision thresholds with different magnitudes. We present curves of the quantity 

1 − Φ versus the steepness index √𝐴|∇𝑧| for four different values of Nθ. The black dots show the values of √𝐴|∇𝑧| and 1 − Φ that 

correspond to hillslope–valley transitions. The curve with 𝑁𝜃 = 0.2, the smallest of the four values of Nθ, starts with a short horizontal 

segment, and then descends steeply and approaches 0 rapidly. Furthermore, its black dot corresponds to the value 1 − Φ = 0.2 1.2⁄ =5 
1 6⁄ . By contrast, the curve with the largest value, 𝑁𝜃 = 2, starts with a long horizontal segment, descends gradually, approaches 0 slowly, 

and has a black dot with 1 − Φ = 1 3⁄ = 0.333. These differences show that as Nθ increases, a) incision is fully suppressed by the 

threshold in bigger portions of hillslopes, b) the steepness index must reach greater values for the influence of the threshold to start 

becoming negligible; and c) the hillslope–valley transition occurs at larger values of 1 − Φ, i.e., the threshold has a strong influence not 

only on hillslopes, but also on the valley network.  10 



 

27 

 

 
Figure 7: Control of the incision-threshold number Nθ on the spatial distribution of the fractional reduction in incision rate. We 

map the quantity 1 − Φ across four steady-state simulated landscapes with different values of Nθ. We use the same values of Nθ as in 

Fig. 6. Details about the setup and parameters of these simulations are presented in Appendix B. Lighter colors correspond to larger values 

of 1 − Φ, i.e., to stronger influence of the incision threshold. The spatial distribution of 1 − Φ follows the dendritic pattern of the valley 5 
network. As Nθ increases, the maps become lighter, i.e., areas with strong influence of the incision threshold become more widespread, 

both on hillslopes and in valleys. 
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