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Abstract. Large forms of sorted patterned ground belong to the most prominent geomorphic features of periglacial and per-

mafrost environments of the mid-latitudes and polar regions, but they were hitherto unknwon for the tropics. Here, we report

on relict large sorted stone stripes (up to 1000 m long, 15 m wide, and 2 m deep) on the ca. 4000 m high central Sanetti Plateau

of the tropical Bale Mountains in the southern Ethiopian Highlands. These geomorphic features are enigmatic since forms of

patterned ground exceeding several metres are commonly associated with distinct seasonal ground temperatures, oscillating5

around 0 °C. For a systematic investigation of present frost phenomena and relict periglacial landforms in the Bale Moun-

tains, we conducted extensive geomorphological mapping. The sorted stone stripes were studied in more detail by applying

aerial photogrammetry, ground-penetrating radar measurements, and 36Cl surface exposure dating. In addition, we installed

ground temperature data logger between 3877 and 4377 m to analyse present frost occurrence and seasonal ground temper-

ature variations. Superficial nocturnal ground frost was measured at 35-90 days per year, but the ground beneath the upper10

few centimetres remains unfrozen the entire year. Seasonal frost occurrence would require a mean annual ground temperature

depression of about 11 °C, corresponding to an air temperature decrease of about 6-8 °C (relative to today) as inferred from a

simple statistical ground temperature model experiment. Our results suggest a formation of the large sorted stone stripes under

past periglacial conditions related to lateral and vertical frost sorting in the course of cyclic freezing and thawing of the ground.

It is likely that the stone stripes formed either in proximity of a former ice cap on the Sanetti Plateau over the last glacial15

period due to seasonal frost heave and sorting or they developed over multiple cold phases during the Pleistocene. Although

certain aspects of the genesis of the large sorted stone stripes remain unresolved, the presence of these geomorphic features

provides independent evidence besides glacial landforms for unprecedented palaeoclimatic and palaeoenvironmental changes

in the tropical Bale Mountains during the (Late) Pleistocene.

1 Introduction20

Sorted patterned ground in the form of stone polygons, circles or stripes are one of the most striking features of periglacial

and permafrost environments. They are known from the Arctic (e.g. Nicholson, 1976; Hallet, 2013), Antarctic (e.g. Hallet

et al., 2011), mid-latitudes (e.g. Richmond, 1949; Miller et al., 1954; Ball and Goodier, 1968; André et al., 2008), and high
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mountains (e.g. Francou et al., 2001; Matsuoka, 2005; Bertran et al., 2010), and were even detected on other celestial bodies

like Mars (e.g. Mangold, 2005; Balme et al., 2009). Sorted stone polygons are found in flat areas while stripes typically occur

on slightly inclined slopes. Both forms are the product of a self-organising process related to the cyclic freezing and thawing

of the ground (Kessler and Werner, 2003). Small-scale forms of patterned ground in the order of centimetres to decimetres

are common on many mid-latitude and high tropical mountains as superficial nocturnal frost is sufficient for their formation5

(e.g. Francou et al., 2001; Matsuoka, 2005). On the contrary, large sorted forms (with several metres in diameter) occur almost

exclusively in permafrost areas where the mean annual air temperature is far below 0 °C (Goldthwait, 1976). Active large

sorted stone circles, polygons, and stripes are well-documented for the High Arctic (e.g. Washburn, 1980; Kessler and Werner,

2003; Hallet, 2013) and in relict form also for some mid-latitude mountains (e.g. Ball and Goodier, 1968; Vopata et al., 2006;

André et al., 2008; Křížek et al., 2019), but they have not yet been reported for any site in the tropics.10

The absence of large sorted patterned ground in the tropics could generally be explained by the warm tropical climate, the

intense solar radiation, and minor seasonal temperature fluctuations. However, the missing observation of such landforms could

also be partly due to the remoteness of many mountains and the resulting lack of geomorphological investigations. An enig-

matic relict landform similar to the large sorted stone stripes known from the mid-latitudes and polar regions has been reported15

from the ca. 4000 m high central Sanetti Plateau of the tropical Bale Mountains in the southern Ethiopian Highlands (Miehe

and Miehe, 1994). The stone stripes on the southern part of the Sanetti Plateau are several metres wide and tens of metres long.

They are located on the slope of an eroded volcanic plug and have therefore originally been termed "trenched boulder slopes"

(Miehe and Miehe, 1994; Osmaston et al., 2005). Grab (2002) pointed out that the large – and for the tropics unique – dimen-

sion of the stone stripes may be an indicator for past sporadic permafrost on the plateau. However, a systematic investigation20

of the relict as well as present geomorphological processes and landforms on the Sanetti Plateau has not yet been performed.

When and how the stone stripes formed and what their occurrence implies for the palaeoclimate and palaeoenvironment of the

southern Ethiopian Highlands is still unexplored.

Information regarding the age and genesis of the large sorted stone stripes are essential for the reconstruction of the palaeoen-25

vironment of the Bale Mountains. Recent glacial geomorphological and chronological investigations revealed that the Bale

Mountains were extensively glaciated during the Late Pleistocene and experienced a pronounced cooling of at least 5.3 ± 0.7 °C

during the local Last Glacial Maximum between 42-28 ka (Groos et al., in press). Since the stone stripes are located near the

former margin of the ice cap on the Sanetti Plateau, it can be hypothesised that the stone stripes evolved under periglacial

conditions during the last glacial period. If cyclic freezing and thawing of the ground was indeed one of the preconditions for30

the formation of the stone stripes on the plateau, they could serve as potential climate proxy. The deviation of the present mean

annual ground temperature (MAGT) from the freezing point (0 °C) would then provide a minimum estimate for the ground

temperature depression (relative to today) during the period when the stone stripes formed.
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The aim of this study is a first systematic investigation of the relict large sorted stone stripes and contemporary frost dynamics

and phenomena on the Sanetti Plateau. To analyse the distribution of relict and active periglacial landforms, we conducted

extensive geomorphological mapping in the field supported by the analysis of high-resolution satellite images. The geometry

and internal structure of the sorted stone stripes was studied in more detail based on Unmanned Aerial Vehicle (UAV) and

ground-penetrating radar (GPR) surveys. Top surfaces of six rocks from two different stone stripes were sampled for 36Cl5

surface exposure dating. The 36Cl data were published by Groos et al. (in press) in a palaeoglaciological context, but because

of their relevance for the interpretation of the genesis of the stone stripes, we present them here again. Since knowledge on

present frost occurrence and ground temperature variations is indispensable for discussing how and under which climatic

and environmental conditions the relict structures formed, we installed thirteen ground temperature data loggers at six different

locations on the Sanetti Plateau (Fig. 1). In a final step, we combined the ground temperature measurements with meteorological10

data from nearby weather stations and applied a simple statistical model experiment to infer the minimum air temperature

depression theoretically needed for seasonal ground frost on the plateau (MAGT ~ 0 °C).

2 Study area

The Bale Mountains (6.6–7.1 °N, 39.5–40.0 °E) are located southeast of the Main Ethiopian Rift and belong to the Bale-Arsi

massif, which constitutes the western part of the southern Ethiopian Highlands (Fig. 1). Precambrian rocks and overlying15

Mesozoic marine sediments form the base of the massif and are covered by Cenozoic trachytic and basaltic lava flows (Miehe

and Miehe, 1994; Osmaston et al., 2005; Hendrickx et al., 2014). Due to the lack of geological maps, lithological informa-

tion, geochemical studies, and radiometric dating, especially in the southern Ethiopian Highlands, the exact timing of volcanic

eruptions in the region is unknown and the successive formation of the Bale-Arsi massif still poorly understood (Mohr, 1983;

Osmaston et al., 2005). Characteristic for the Bale Mountains is the central Sanetti Plateau with a mean elevation of about20

4000 m. It is bounded to the west by extensive lava flows, to the north and east by broad U-shaped valleys, and to the south by

the Harenna Escarpment. Several volcanic plugs and cinder cones like the highest peak Tullu Dimtu (4377 m) rise above the

plateau (Osmaston et al., 2005). With an area of almost 2000 km² above 3000 m, the Bale Mountains comprise Africa’s most

extensive tropical alpine environment (Groos et al., in press). Hedberg (1951) defined the afro-alpine belt in tropical Africa as

the area above ~3500 m. Others set the lower elevation of the tropical afro-alpine belt to 3200 m (e.g. de Deus Vidal Junior25

and Clark, 2019). The Bale Mountains are an important fresh water source for the surrounding lowlands. The main tributaries

of the only two perennial rivers in the Somali lowlands, Shebelle and Jubba, originate from the Bale Mountains.

The seasonal movement of the Intertropical Convergence Zone (ITCZ) and zonal shift of the Congo Air Boundary as divide

of air masses from the Indian Ocean and Atlantic determine the climate and rainfall patterns of the Ethiopian Highlands (Levin30

et al., 2009; Tierney et al., 2011; Costa et al., 2014). Due to the complex topography, the mean annual precipitation varies

considerably across the region and is strongly controlled by elevation (Gebrechorkos et al., 2019). Three seasons characterise

the current climate: The dry season lasts from November to February and is followed by two rainy seasons. While the first rainy
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Figure 1. Overview map of the experimental setup and observational network in the Bale Mountains (southern Ethiopian Highlands), located

in the Horn of Africa. The automatic weather stations as well as the high-quality (GT) and low-cost (TM) ground temperature data loggers

on the Sanetti Plateau were installed from January to February 2017. Unmanned Aerial Vehicle and Ground-Penetrating Radar surveys were

performed to obtain information on the morphology and internal structure of the stone stripes (see GPR profiles in the lower left map inset).

Six rocks from two different stone stripes were sampled for surface exposure dating. Data basis: SRTM 1 Arc-Second Global (United States

Geological Survey) for the main map and upper right inlet, high-resolution WorldView-1 satellite image (DigitalGlobe Foundation) for the

lower left inlet. Ground control points (i.e. natural objects; yellow squares in the inlet) visible in both the georectified WorldView-1 image

and the UAV images served for the georeferencing of the UAV data.

season (March to June) is more pronounced in the southern Ethiopian Highlands, the second one (July to October) is more

important in the northern highlands including the upper catchment area of the Blue Nile (Conway, 2000; Seleshi and Zanke,

2004). Relatively dry northeasterly trade winds from the Arabian Peninsula and Sea prevail in the Bale Mountains during the

dry season as a result of the large-scale atmospheric circulation (i.e. location of the ITCZ south of the equator and persistence
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of high pressure cells over Western Asia and the Sahara). Along with the northward movement of the ITCZ from March to

June, the main wind direction changes from northeast to southeast and brings moist air from the southern Indian Ocean to the

Bale Mountains (Lemma et al., 2020). Although the Gulf of Guinea and Congo Basin are important moisture sources for the

northern Ethiopian Highlands (Levin et al., 2009; Viste and Sorteberg, 2013; Costa et al., 2014), they seem of minor relevance

for the Bale-Arsi massif (Lemma et al., 2020). The Sanetti Plateau and highest peaks of the massif experience occasional5

snowfall during the rainy seasons, but the thin snowpack usually melts within hours or days (Miehe and Miehe, 1994).

3 Data and methods

3.1 Mapping of periglacial landforms

Comprehensive geomorphological mapping of glacial and periglacial landforms provides crucial data for reconstructing the

palaeoenvironment and palaeoclimate of polar and alpine regions (Chandler et al., 2018). We studied maps, photographs,10

and field notes from previous studies dealing with periglacial processes and landforms in the Bale Mountains (e.g. Messerli

and Winiger, 1992; Miehe and Miehe, 1994; Grab, 2002; Umer et al., 2004; Osmaston et al., 2005) to compile evidence

of relict and modern frost occurrence. Since periglacial landforms have not yet been described systematically, we performed

extensive geomorphological mapping on the Sanetti Plateau, along the upper Harenna Escarpment, and in the western, northern,

and eastern valleys during multiple field trips between 2016 and 2020 (Fig. 2a). In addition, we analysed high-resolution15

WorldView-1 satellite images (pixel size = 0.5 m) provided by the DigitalGlobe Foundation to identify geomorphic features in

remote areas of the mountain range. All periglacial landforms and other geomorphological features mapped in the field or on

satellite images were compiled in a catalogue (see Table A1).

3.2 UAV-based aerial surveys

For a detailed analysis of the geometry and clast size distribution of the stone stripes on the Sanetti Plateau, we conducted a20

manual aerial survey (~50 m above ground level) with a small quadcopter (DJI Mavic Pro) on the 30th January 2020 at 2 pm

local time. In total, 75 aerial images were acquired during the survey and were processed with the photogrammetric software

OpenDroneMap (following the general approach described in Groos et al., 2019) to obtain a high-resolution orthophoto (5 cm)

and digital surface model (DSM, 10 cm) of the stone stripes. Five natural objects (rocks and dwarf shrubs) visible both in the

orthorectified WorldView-1 image and at least in three aerial images were used as ground control points (Fig. 1) to process25

and georeference the UAV data (see Groos et al., 2019). The necessary elevation information were extracted from the SRTM 1

Arc-Second Global dataset. It was not possible to measure the ground control points directly in the field as a differential Global

Positioning System was not available. In principle, a small number of ground control points is sufficient to generate an accurate

DSM without any larger deformation if the surveyed area is very small (i.e. 60 x 80 m) (e.g. James and Robson, 2014; Gindraux

et al., 2017). The horizontal (XY) accuracy of the final orthophoto is ~0.3 m (relative to the orthorectified WorldView-1 image)30

and the vertical (Z) accuracy of the DSM is ~0.8 m (relative to the SRTM-1 DEM). The absolute positional accuracy of the
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Figure 2. Field work in the Bale Mountains: (a) reconnaissance and mapping of periglacial landforms, (b) ground-penetrating radar survey,

(c) sampling of stone stripes for surface exposure dating, (d-f) installation of ground temperature loggers.

orthophoto and DSM might be larger, but this can be neglected as the UAV data are not compared with other datasets. The

internal accuracy of the orthophoto and DSM is in the order of just a few centimetres to decimetres.

3.3 Ground-penetrating radar measurements

Information on the internal structure of the coarse stone and fine regolith stripes (i.e. sorting depth, presence/absence of cry-

oturbation features, etc.) are essential to study the genesis of this landform. However, investigating the internal structure of5

the sorted stone stripes by excavating a transect was conflicting with the park rules. As an alterantive we performed a ground-

penetrating radar (GPR) survey between two stripes on the southern Sanetti Plateau on the 10th February 2020 (Fig. 2b). We

made use of a Pulse EKKO PRO GPR with a 1000 MHz antenna (7.5 cm sensor width) manufactured by Sensors & Software

Inc. (for system settings see Table B1). The GPR was mounted on a compatible pushcart. As survey setting, an exploration
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depth of 1 m and pulse length of 16 nanoseconds (ns) was applied for the first line and modified to 1.5 m depth and 24 ns pulse

length for the following lines. The starting point of the GPR measurement was located 10 m above the position of the data

loggers GT07-09. The uppermost part of the volcanic plug was not accessible with the pushcart. Due to uneven terrain and

several natural obstacles like smaller stones and dwarf shrubs, the GPR profile between the two stone stripes was devided into

five separate lines varying between 3.8 and 38.5 m in length. The chaotic structure of the stones stripes prevented a GPR survey5

inside the troughs and coarse material. We used the software EKKO Project (version 5.0) for the analysis and visualisation of

the GPR data.

3.4 36Cl surface exposure dating

Previous studies have shown that the stabilisation age of periglacial landforms like rock glaciers and block fields can be suc-

cessfully dated with cosmogenic nuclides (e.g. Barrows et al., 2004; Ivy-Ochs et al., 2009; Steinemann et al., 2020). We10

sampled two sorted stone stripes on the Sanetti Plateau (Fig. 1) to exposure date the stabilisation phase of these features.

From both stone stripes, we selected three boulders for 36Cl surface exposure dating (Table C1). To avoid any uncertain-

ties related to the shielding or toppling of rocks after the stabilisation phase, we chose only boulders that were sticking out

and were wedged between other boulders (Fig. 2c). The upper few centimetres of each boulder were sampled with hammer,

chisel, and angle grinder for the subsequent laboratory analysis. An inclinometer was used in the field for measuring the to-15

pographic shielding. For extraction of the isotope 36Cl, the six samples were crushed, sieved and chemically treated in the

Surface Exposure Dating Laboratory of the University of Bern. Total Cl and 36Cl concentrations (Table C2) were measured

from one target at the 6 MV Accelerator Mass Spectrometre (AMS) fascility at the ETH Zurich using the isotope dilution

technique (Ivy-Ochs et al., 2004) and a gas-filled magnet to separate 36S (Vockenhuber et al., 2019). Surface exposure ages

were calculated from the measured Cl and 36Cl concentrations with the latest version (2.1) of the CRONUS Earth Web Cal-20

culator (http://cronus.cosmogenicnuclides.rocks/2.1/html/cl/) using the physics-based and time-dependent Lifton-Sato-Dunai

scaling framework (Lifton et al., 2014; Marrero et al., 2016). For a detailed description of the sample preparation, Cl and 36Cl

measurements, and surface exposure age calculation see Groos et al. (in press).

3.5 Ground temperature measurements

For measuring hourly ground temperatures on the Sanetti Plateau, we installed high-quality UTL-3 Scientific Dataloggers25

(hereafter GT data loggers) in 2, 10, and 50 cm depth at two different stone stripe locations and on Tullu Dimtu, covering

an elevation between 3877 and 4377 m (Fig. 1 and Table D1). The GT data loggers were developed by GEOTEST Ltd. in

collaboration with the Swiss Institute for Snow and Avalanche Research. The measurement accuracy is <0.1 °C at 0 °C. At

each of the three measurement sites, the upper 50 cm of the ground were removed to install the GT data loggers (Fig. 2d,e). We

used data loggers with an external cable and thermistor for the measurements in 10 and 50 cm depth. A standard logger without30

external cable was placed just below the surface in 2 cm depth. After the installation, each hole was filled in the same order

as during the excavation to ensure as little disturbance of the profile as possible. Additional low-cost tempmate.-B temperature

data loggers (hereafter TM data loggers) in the size of a button cell (Fig. 2f) were distributed on the plateau between 4022 and
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4377 m to increase the spatial coverage of near-surface (2 cm) hourly ground temperature measurements (Fig. 1 and Table D1).

The measurement accuracy is ± 0.5 °C in the range of -10 to 65 °C.

Several issues occurred during the measurement period from January 2017 to January 2020 and caused longer data gaps.

On Tullu Dimtu, data loggers GT13-15 were removed in May 2017, but could be recovered and reinstalled in January 2018.5

Individual outliers and longer periods with implausible measurements were deleted from the time series. Data logger GT07

was accidentally placed in 6 cm depth and not in 2 cm as intended. The relocation towards the surface after the first readout

in December 2017 led to an abrupt increase in the temperature amplitude. Therefore, we calculated hourly ground temperature

gradients between 6 and 10 cm depth from GT07 and GT08 data by applying a simple linear regression to extrapolate the GT07

measurements from 6 to 2 cm in the period 21st January to 10th December 2017. Data gaps in individual time series of the data10

loggers were filled using a simple linear regression and available data from other GT or TM loggers to generate a complete

data set for the period 1st February 2017 to 20th January 2020. We analysed the interpolated hourly ground temperature data

statistically to quantify frost occurrence and spatio-temporal ground temperature variations on the Sanetti Plateau.

3.6 Meteorological measurements

Within the framework of the DFG Research Unit 2358, automatic weather stations (AWS) were installed inter alia on the15

Sanetti Plateau between 3848 and 4377 m beginning of 2017 (Table D2). The AWS are manufactured by Campbell Scientific

and consist of a three metre galvanised tubing tripod, a grounding kit, a weather-resistant enclosure, a measurement and control

system (CR800), a solar module (SDT200), a 168 Wh battery, a charging regulator, a temperature and relative humidity probe

(CS215) with radiation shield, a pyranometer (LI-200R), a two-dimensional ultrasonic anemometer from Gill Instruments, and

a rain gauge from Texas Electronics (TR-525USW 8”). For protection, the AWS are wire-fenced by a 3 x 3 m compound.20

Air temperature, relative humidity, and global radiation are measured at 2 m height, wind speed and wind direction at 2.6 m

height, and precipitation at 1 m height. The measurement interval is 15 minutes. All measured variables are finally aggregated

to hourly averages. The AWS installed in the southern and northern part of the Sanetti Plateau measured quasi continously,

but the time series of the AWS on the central peak Tullu Dimtu was interrupted due to issues with the power supply (Table

D2). The hourly meteorological data from the different AWS are stored in an online database and gaps in the time series of all25

variables except wind speed and direction are interpolated statistically as described by Wöllauer et al. (2020).

3.7 Ground temperature modelling experiment

The potential of periglacial landforms for paleoclimatic and environmental reconstructions has already been pointed out in

pioneering studies from more than half a century ago (e.g. Galloway, 1965). For polar and alpine regions, where stone circles

and other patterned ground form, ground temperatures oscillate typically around 0 °C (e.g. Hallet, 2013). If cyclic freezing and30

thawing of the ground was one of the drivers for the formation of the stone stripes on the Sanetti Plateau, this landform may

serve as a potential climate proxy. The deviation of the present mean annual ground temperature (MAGT) from the freezing

point (0 °C) would provide a minimum estimate for the ground temperature depression (relative to today) during the period
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when the stone stripes formed. Here, we apply a simple statistical modelling experiment to infer which climatic conditions

would theoretically promote a MAGT of ca. 0 °C on the Sanetti Plateau. We first established a statistical correlation between

ground temperature and a set of meteorological variables. For the development of separate multiple linear regression models,

we considered three locations on the Sanetti Plateau where ground temperatures and meteorological variables were measured

simultaneously (Tullu Dimtu, EWCP Station, Tuluka). We chose only air temperature and global radiation as explanatory5

variables. The wind speed time series contains data gaps, precipitation is limited to individual rain events, and relative humidity

does not show a direct linear relationship with ground temperature (see Fig. E1). The multiple linear regression model at each

site was calibrated for the period 1st February 2017 – 31st January 2019 and validated for the period 1st February 2019 – 20th

January 2020. Present-day hourly ground temperatures in 2 cm (T 2cm) can then be modelled using measured air temperature

and incoming shortwave radiation:10

T 2cm,i = β0 + (β1 ×T air,i) + (β2 ×QS,i), (1)

where Tair,i (i = 1,. . . ,n) is the hourly measured air temperature in °C, QS,i is the hourly measured incoming shortwave radiation

in W m-2, β0 is the intercept, β1 is the coefficient for Tair, and β 2 is the coefficient for QS. The coefficients and goodness of fit

for each of the three linear models are provided in Table E1. For simulating a decrease in ground temperature, two additional

parameters, ∆Tair and ∆QS, were introduced:15

T 2cm,i = β0 + (β1 × (T air,i −∆T air)) + (β2 × (QS,i −∆QS)), (2)

where ∆Tair is the air temperature depression of interst (in °C) and ∆QS is the difference between the mean present-day

and past incoming shortwave radiation in W m-2. For simplicity, we set ∆QS to 30 W m-2 (the rough lowering of incoming

shortwave radiation during MIS 2 at 15 °N, see Groos et al., in press). To infer the air temperature depression of interest using

Eq. 2, we increased ∆Tair (starting with: ∆Tair = 0 °C) with every iteration until the MAGT (T 2cm) became smaller than 0°C.20

We tested all three developed multiple linear regression models (Tullu Dimtu, EWCP Station, and Tuluka) to quantify the

uncertainty of the approach originating from differences in the model coefficients β (Table E1). Since the lowest-situated stone

stripes on the Sanetti Plateau are located at an elevation of 3870-3890 m, we used meteorological data (Tair and QS) from the

Tuluka AWS at 3848 m to run the three models. Alternatively, the meteorological data from the higher-situated AWS (Tullu

Dimtu and ECWP Station) can be adjusted to the elevation of the stone stripes using a lapse rate of 0.7 °C per 100 m. Running25

each model with the locally adjusted meteorological data led to the same calculated temperature depression as using the Tuluka

AWS data. We rescaled the simulated ground temperatures in 2 cm depth (aggregated to daily values) to the maximum seasonal

ground temperature variations in 10 and 50 cm depth that are observed today to model temperature variations in these depths:

T 50cm,i = (T 2cm − a) +
(T 2cm,i −min(T 2cm))× (b− a)

(max(T 2cm)−min(T 2cm))
, (3)

where (T50cm,i) are the simulated daily ground temperatures in 50 cm depth in °C (i = 1,. . . ,n), (T2cm,i) are the aggregated daily30

ground temperatures in 2 cm depth in °C (i = 1,. . . ,n), T 2cm is the mean air temperature in 2 cm depth in °C, a (= - 1.25 °C) is

the predefined seasonal minimum, and b (= 1.25 °C) the predefined maximum of T50cm,i. For 10 cm depth (T10cm), a equals to

-3 °C and b to 3 °C.
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4 Results

4.1 Contemporary ground frost dynamics and phenomena

The Bale Mountains comprise a wide range of periglacial landforms and other characteristic phenomena related to present

and relict frost dynamics (Table A1). Contemporary frost phenomena like frozen waterfalls and needle ice as well as active

periglacial landforms like patterned ground and solifluction lobes are limited to the upper part of the valleys (>3900 m), to the5

Sanetti Plateau, and to the highest peaks. We observed needle ice (3-5 cm long) mainly along water-saturated stream banks

at sites with cold air ponding. Needle ice is a typical superficial frost phenomenon in the Bale Mountains related to diurnal

freeze-thaw cycles. It forms at clear nights throughout the dry season. Interestingly, we also found evidence for a recurring

seasonal frost phenomenon: Up to 10 m high water falls at shaded north-exposed cliffs in the Wasama Valley freeze every year

at the beginning of the dry season (i.e. October/November) and persist until the onset of the following rainy season (i.e. Febru-10

ary/March). They do not evolve at any other location in the Bale Mountains according to the local guides. Active small-scale

polygonal stone nets occur in flat and poorly drained areas on the Sanetti Plateau and unvegetated solifluction lobes can be

found above 4100 m on the southern slopes of Mount Wasama (Fig. 3).

The observed present-day ground temperatures in the Bale Mountains show characteristic daily and seasonal variations, but15

are way off from seasonal or permanent frost conditions (Fig. 4). At the location of the stone stripes on the southern Sanetti

Plateau, the mean multiannual ground temperature from the surface to 50 cm depth is 11 °C. On the highest peak Tullu Dimtu,

the mean annual ground temperature is 7.5 °C. The mean air temperature at the same location is 2 °C and therefore about

5.5 °C lower than the mean ground temperature. While the daily ground temperature range is largest near the surface and

decreases with depth, seasonal variations at all depths follow a similar cycle (Fig. 4). On the plateau, the ground cools during20

the dry season and heats up during the wet seasons. The difference between the seasonal minimum and maximum of daily

mean ground temperatures over a year is about 10 °C near the surface, 6 °C in 10 cm, and 2.5 °C in 50 cm depth. This shows

that seasonal ground temperature variations are also characteristic for tropical mountains with a pronounced diurnal climate.

Near the surface, the diurnal ground temperature amplitude varies on average between 10-20 °C during the rainy season and25

between 20-30 °C during the dry season. Extreme temperatures of up to 45-50 °C during cloudless days and down to -10 °C

during clear nights have been observed on the Sanetti Plateau. Nocturnal ground frost on the plateau occurs at 35-90 days

per year. However, the frost penetrates only the uppermost centimetres. The diurnal amplitude decreases considerably with

increasing depth. At 10 cm depth, temperatures below freezing have not been measured at any of the logger locations during

the entire study period. The annual ground temperature profile in the upper 50 cm is relatively constant. The daily temperature30

difference between the surface and 50 cm depth is rarely larger than ± 2 °C.
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Figure 3. Contemporary frost phenomena and relict periglacial landforms in the Bale Mountains: (a) view from the southern Sanetti Plateau

towards Tullu Dimtu, (b) seasonally frozen waterfall and (c) diurnal needle ice in the Wasama Valley, (d) relict blockfields along the southern

Harenna Escarpment, (e) active solifluction lobes on Mt. Wasama, (f) relict sorted stone stripes, and (g) active sorted polygons on the Sanetti

Plateau.

11



Figure 4. (a) Hourly ground temperatures in 2, 10, and 50 cm depth on the southern Sanetti Plateau (3877 m) from January 2017 to January

2020. (b) Smoothed hourly ground temperatures using a simple moving average with a window size of 91 days, highlighting seasonal ground

temperature variations. Note that the increase of the seasonal ground temperature amplitude over the measurement period is also confirmed

for other sites on the plateau and is not caused by a shift of the thermistors.

4.2 Characteristics of the relict periglacial landforms

Compared to the modern periglacial processes and landforms, the relict geomorphic features in the Bale Mountains are much

larger. Most of the relict periglacial landforms can be found along the Harenna Escarpment, on the Sanetti and Genale Plateau,

and on the slopes of the highest peaks (Fig. 5a). Characteristic for the highest peaks of the northern declivity are bare and

gentle slopes and the accumulation of coarse scree below heavily eroded basaltic and trachytic cliffs. This type of deposits are5

likely result of frost wedging in combination with other weathering mechanisms such as thermal stress. The scree slopes differ

from the chaotic spread of individual boulders below elongated cliffs at lower elevations. Weathering may still contribute to

the development of some of these landforms, but the return of Erica shrubs between the stones as well as the lack of parent
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Figure 5. (a) Overview map of relict and active periglacial landforms as well as other characteristic geomorphological features in the Bale

Mountains mapped in the field or on high-resolution satellite images. (b) Sorted stone stripes in the western and (c) southern part of the Sanetti

Plateau as seen on WorldView-1 satellite images provided by the DigitalGlobe Foundation. The six 36Cl exposure ages were calculated using

the Lifton-Sato-Dunai scaling scheme (Lifton et al., 2014; Marrero et al., 2016), are non-erosion corrected, and given in kiloannum (ka) with

total uncertainties (1σ). (d) Orthophoto and DSM cross-section profile of the stone stripes derived from the high-resolution UAV data.

material (i.e. cliffs) at some locations indicates that they mainly formed in the past. Another landform associated inter alia with

the process of frost weathering are large blockfields located between 3500 and 4000 m on the southern and western declivity

of the Sanetti Plateau. The blockfields consist of hardly weathered angular boulders and are no longer active as the presence

of lichens and partly reoccupation by Erica shrubs prove. Circular patterns across the Sanetti and Genale Plateau as well as

elevated areas of the northern declivity are not further considered here since they are, at least in some areas, of biogenic origin5

related to the activity of the endemic giant mole-rat (Miehe and Miehe, 1994).
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Figure 6. (a) Textured 3D model of the sorted stones stripes on the southern Sanetti Plateau derived from high-resolution UAV data. b)

Radargram of a regolith stripe between two coarse stone stripes. For the location of the displayed radargram section (GPR05) see Fig. 1.

The most exceptional geomorphological features on the Sanetti Plateau are large forms of sorted patterned ground compris-

ing stone circles and stripes. In addition to the known sorted stone stripes on the southern Sanetti Plateau, we also discovered

stone stripes on the western Sanetti Plateau and at one site on the lower Genale Plateau (Figs. 5a-c). On the southern Sanetti

Plateau and on the Genale Plateau, the stone stripes formed on gentle slopes (inclination: 2 – 9°) of three different volcanic

plugs between 3700 and 3950 m. The stone stripes consist of hardly weathered angular or columnar basalt boulders (Figs. 2c5

and 6a), are partly covered by lichens, and are up to 200 m long, 15 m wide, and 2 m deep as the satellite images and UAV data

show (Figs. 5b-d). While the stone stripes are trough-shaped, the areas with finer material inbetween are rampart-like (Fig. 5d).

The distance between the stone stripes equals in most cases to the width of the stripes. Typical for some of the stone stripes

is that individual narrower branches in the upper part merge downslope to a single wider stripe. As the GPR survey suggests,
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the regolith layer between the stone stripes contains no larger rocks (exceeding several decimetres) and is more than 1.5 m

deep (Fig. 6b). The surface of the underlying solid rock was not detected. All larger rocks (up to 0.5 m wide and 3 m long)

are located mainly in the troughs or on top of the regolith layer as the UAV data underline. On the slightly inclined (2 - 9°)

western Sanetti Plateau between 3950 and 4150 m, the stone stripes are 300 – 1000 m long and mainly 5 – 10 m wide (Fig.

5b). Most of the stripes are connected to eroded cliffs. In the upper part, some of the stripes diverge into multiple branches.5

Where the plateau flattens, a transition from sorted stone stripes to less developed stone circles is visible in the field, but hardly

recognisable on satellite images.

The six dated rock samples from two different locations on the Sanetti Plateau originate from basaltic (BS01-04) and tra-

chytic (BS05-06) lavaflows as it is indicated by the varying alkali and silica contents (Table C3). We obtained very high 36Cl10

concentrations, especially for the two trachytic samples (>120 × 106 At g-1) from the western part of the plateau (Table C2).

The high 36Cl concentrations translate into non-erosion-corrected surface exposure ages of 67 ± 5, 200 ± 18, and 200 ± 18 ka

for the southern and of 406 ± 46, 760 ± 580, and 790 ± 270 ka for the western stone stripes (Table C2). However, due to the high
36Cl concentrations, an erosion rate of >1 mm ka-1 or a different choice of scaling would alter the exposure ages considerably.

The “old” ages conflict with a relatively young formation age (e.g. global LGM or postglacial) as suggested by the morphology15

and hardly weathered surface of the investigated angular and columnar boulders. Long-term exposure of the sampled rocks to
36Cl-producing cosmic rays prior to or during the formation of the stone stripes could explain this mismatch. Despite the high
36Cl concentrations, a temporary ice cover overlying the stone stripes for several thousand years during the last glacial cycle

cannot be entirely ruled out from the exposure dating alone. A meter-thick ice cover would reduce the production rate, but a

period of several thousand years would not be sufficient to affect the 36Cl concentrations noticeably or zero the inheritance.20

However, a temporary ice cover overlying the stripes seems unlikely in light of the absence of any erratic boulders or other

glacial landforms near the stripes.

4.3 Modelled ground temperatures and inferred air temperature depression

At the three locations on the Sanetti Plateau (Tullu Dimtu, EWCP Station, and Tuluka), where ground temperatures and a set

of meteorological variables were measured simultaneously, ground temperature is mainly controlled by air temperature and25

global radiation (Fig. E1). The two variables can explain together about 75 ± 3 % of the ground temperature variance (Table

E1). Ground temperature and the other meteorological variables do not show any significant linear relationship. This can be

explained by the non-consideration of ground moisture. Precipitation, relative humidity, and wind speed affect ground moisture

as well as evaporation. Ground moisture and evaporation in turn alter the energy balance at the surface as well as the energy

transfer into the ground. However, the correlation between ground temperature and explanatory variables is strong enough to30

simulate the air temperature depression that corresponds to a MAGT of ca. 0 °C. The diference between the current MAGT

at the location of the southern stone stripes and the freezing point is ca. 11 °C. The difference between the seasonal minimum

ground temperature and the freezing point is around 9 °C. According to the statistical model, such a MAGT depression would

result in a mean air temperature depression of 7.1 ± 1.3 °C (the error is the standard deviation of the three model outputs),
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Figure 7. Simulated daily mean ground temperatures in (a) 2 cm, (b) 10 cm, and (c) 50 cm depth on the southern Sanetti Plateau (3877 m)

corresponding to a decrease in air temperature of 7.1 ± 1.3 °C and a decrease in global radiation of 30 W/m² relative to the present-day

conditions. (d) Smoothed daily ground temperatures using a simple moving average with a window size of 91 days, highlighting seasonal

ground temperature variations.

equivalent to a mean annual air temperature on the southern plateau of -1.6 ± 1.4 °C. The deduced stronger decrease of the

ground temperature over the air temperature is due to the observed modern statistical relationship. A cooling/warming of

the air of 1 °C relates to a decrease/increase of the ground of 1.6-1.9 °C and vice versa (see Table E1 and Fig. E1). The

geophysical reasons for this statistical relationship can be manifold. Ground temperature is mainly controlled by radiative

forcing and energy exchange between the atmosphere and ground, which in turn is affected by many factors ranging from the5

temperature, pressure and humidity of the air to the thermal conductivity, specific heat capacity, density, humidity, albedo, etc.

of the ground.

Provided that the stone stripes and circles on the Sanetti Plateau formed under periglacial conditions (ground temperatures

fluctuating around 0 °C), the occurrence of these features may indicate a past air temperature depression at this elevation in

the order of 7.1 ± 1.3 °C. However, it should be noted that changes in ground properties (e.g. modified albedo and thermal10

conductivity due to snow coverage and frost) would certainly affect the nature of the multiple linear regression models and

therefore also the simulation results. The experiment shows that seasonal ground temperature fluctuations near the surface, in
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10 cm, and in 50 cm are theoretically large enough to freeze and thaw the upper decimetres of the ground if the MAGT is

lowered by 9-11 °C (Fig. 7). Due to the small seasonal ground temperature variations in 50 cm depth, it seems unlikely that

much more than the upper half metre of the ground on the Sanetti Plateau would experience seasonal freezing and thawing

under cooler climatic conditions unless seasonal variations were stronger than today.

5 Discussion5

This study provides a first systematic investigation of the distribution and characteristics of the enigmatic large sorted stone

stripes on the central Sanetti Plateau of the tropical Bale Mountains in the southern Ethiopian Highlands. The extensive ge-

omorphological mapping in the field and on satellite images led to the documentation of previously undescribed large sorted

stripes on the western Sanetti Plateau and the lower-elevated Genale Plateau. High-resolution UAV data, GPR radargrams, and
36Cl surface exposure ages in combination with ground temperature measurements provide basic information on the geometry,10

internal structure, and age of the stone stripes as well as on the contemporary frost dynamics on the Sanetti Plateau. In the

following discussion i) we compare the stone stripes from the Bale Mountains with similar landforms in other regions, ii)

elaborate a conceptual model for their genesis considering the available data and results, and iii) assess the implications of

their occurrence for the reconstruction of the palaeoclimate and palaeoenvironment of the Ethiopian Highlands.

5.1 Comparison of the sorted stone stripes with similar landforms in other regions15

The large sorted stone stripes on the Sanetti Plateau are an exceptional geomorphic feature as they represent the only known ex-

ample of large sorted patterned ground on a tropical mountain. Most examples of sorted stone polygons, nets, and circles with a

diameter exceeding several metres originate from the High Arctic (i.e. Alaska, Greenland, Svalbard) (see review of Washburn,

1980). Well-developed relict forms of patterned ground consisting of clasts with a diameter of at least several decimetres are

also documented for several mid-latitude mountains like the Culebra Range (>4000 m; 37 °N) in southern Colorado (Vopata20

et al., 2006) or the High Sudetes (>1300 m; 50 °N) in Central Europe (Křížek et al., 2019). However, a global compilation and

comparison of large sorted patterned ground and their climatic and environmental setting is lacking in the scientific literature.

Sorted stone stripes with a width of up to 15 m and length of up to 1000 m as on the western Sanetti Plateau have even not

been reported from the polar regions. The only other location worldwide where stone stripes in the same order of magnitude

and larger have been described are the non-volcanic Falkland Islands in the South Atlantic (André et al., 2008).25

The vernacular term for extensive blockstreams and stone stripes in the Falkland Islands is “stone runs”. Stone runs cover

large parts of the eastern and western island and are connected to quartzite outcrops in the elevated areas (50-700 m). The

stone stripes in the Falkland Island show some interesting similarities and differences with the features on the Sanetti Plateau.

They occur in clusters on gentle slopes (inclination: 1-10°), are several hundred meters long, several meters wide, consist of30

large angular blocks (up to 2 m wide and 5 m long), and originate in some cases from eroded ridges and summit areas. As

on the Sanetti Plateau, the coarse stone stripes in the Falkland Islands run parallel downslope and alternate with stripes of
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fine-grained material of similar width (André et al., 2008). However, the partial emergence of stone stripes from blockfields

and downslope transition into vast blockstreams as it is typical for the Falkdland Islands is uncommon for the Bale Mountains

where the stripes are restricted to the plateau and the blockfields to the southern and western escarpment. Also the geological

(volcanic vs. sedimentary and metamorphic rocks), climatic (continental vs. oceanic), and geographical setting (tropical moun-

tain vs. mid-latitude island) between the Bale Mountains and Falkland Islands differs considerably. Typical for both locations5

is the coexistence of coarse and fine-grained material (large angular blocks and regolith) and the evidence for glaciations and

cooler conditions during the Pleistocene (Clapperton, 1971; Clapperton and Sudgen, 1976; Groos et al., in press).

The origin and genesis of the stone runs in the Falkland Islands has been discussed controversially over the last one hundred

years and numerous theories have been proposed to explain their formation as a result of different interconnected periglacial10

processes (frost shattering, frost heave, frost sorting, etc.). Based on a literature review and micromorphological analyses,

André et al. (2008) come to a more nuanced conclusion and consider the stone runs as complex polygenetic landform. The

authors hypothesise that the parent material (blocks and regolith) formed under subtropical or temperate conditions during

the Neogene/Palaeogene. They interpret the stone runs as the product of subsequent frost-sorting during the cold stages of

the Pleistocene, but the understanding of the physical processes underlying the frost-related sorting of such large clasts is still15

fragmentary (Aldiss and Edwards, 1999).

5.2 Genesis of the sorted stone stripes

The small number of analogies worldwide and the lack of a cross-section profile complicate the interpretation of the stone

stripes on the Sanetti Plateau. Since the Bale Mountains are of volcanic origin, the stone stripes could be interpreted as remains

of former lava flows. However, the regular alternation of coarse and fine-grained stripes as well as the loose and random con-20

figuration of blocks in the coarse stripes argue against this hypothesis. The coarse stone stripes consist of igneous rocks, but

volcanic processes were certainly not involved in the formation of this landform. Although some of the wider stripes resemble

river beds, surface runoff can also not explain the stone stripe pattern (e.g. the alternation of coarse and fine stripes as well as

the interruption of many stripes on the western plateau, see Fig. 5b). Furthermore, the total area (ca. 100 x 100 m) above the

stone stripe slopes on the volcanic plugs (Fig. 5c) seems too small to generate sufficient surface runoff for the formation of up25

to 15 m wide river beds. Our data and findings suggest that periglacial processes were the main driver of the formation of the

stone stripes as we will outline below.

To deduce the underlying mechanisms of the stone stripe genesis, it is important to shortly summarise the characteristics of

this landform again. Typical for the stone stripe pattern is the alternation of coarse and fine stripes on gentle slopes. Both coarse30

and fine stripes are ca. 5-15 m wide and run parallel to the maximum slope gradient. The high-resolution UAV orthophotos

show that the width of the stripes is about 10-20 times larger than the average size of the clasts. Furthermore, the UAV-based

DSM reveals that the coarse stripes are trough-shaped and up to 2 m deep (Fig. 6). Boelhouwers et al. (2003) revealed for

sorted stone stripes along an altitudinal gradient in the maritime Subantarctic that the up-doming of the fine material between
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the coarse stripes increases with elevation due to deeper frost penetration. The deeper frost penetration at higher elevations re-

sults in a deeper depths of vertical sorting and, thus, also a greater degree of lateral sorting (Boelhouwers et al., 2003). Another

relevant detail of the stone stripes is the downslope convergence of individual branches and smaller stripes to wider single

stone stripes (see Fig. 5c). All these observations correspond surprisingly well to the development of frost patterns on slightly

inclined slopes after several hundred freeze-thaw cycles as simulated by numerical computer models (see Fig. 8 and Werner5

and Hallet, 1993; Mulheran, 1994; Kessler et al., 2001; Kessler and Werner, 2003). Such numerical models can reproduce the

self-organization of different sorted grounds by varying just a few parameters (mainly stone concentration, hillslope gradient,

and degree of lateral confinement) and need about 500 to 1000 freeze-thaw cycles to form similar stripe patterns as found on

the southern Sanetti Plateau (Fig. 5c). Less cycles would lead to a more random configuration and more cycles would eliminate

the smaller branches and lead to a “perfect” sorting of the stripes (Fig. 8). Assuming downslope displacement rates of 10-50 cm10

per year (or cycle) for clasts as it is observed for small-scale periglacial features in the tropics (Francou and Bertran, 1997)

would require a similar number of cycles (about 400 to 2000) to form the 200 m long stone stripes on the southern plateau.

A precondition for the formation of patterned ground is cyclic freezing and thawing and the coexistence of larger stones and

a frost susceptible ground (Kessler et al., 2001; Kessler and Werner, 2003). Both large blocks and a frost susceptible ground15

are present on the Sanetti Plateau. A more than 1.5 metre thick regolith layer covers the underlying bedrock of the plateau as

indicated by the GPR measurements. Whether the regolith developed over the Pleistocene or during warmer periods before,

as suggested for the Falkland Islands (André et al., 2008), remains unclear. The regolith layer is rich in silt and loam (Lemma

et al., 2019) and, thus, sufficiently porous to allow capillary action and the formation of ice lenses. The absensce of any larger

stones (exceeding several decimetres) in the fine stripes as confirmed by the GPR surveys is indicative of vertical as well as20

lateral frost sorting. Another indicator for past frost sorting on the Sanetti Plateau is the up-doming of the regolith between the

coarse stone stripes (Boelhouwers et al., 2003) as well as the presence of large stone polygons in the highest and even areas of

the western plateau (Miehe and Miehe, 1994). How the sorted stone stripes could have evolved from a random configuration

of blocks below eroded cliffs in the course of cyclic freezing and thawing of the ground is illustred in Fig. 8.

25

A central question related to the genesis of the stone stripes is the MAGT and minimum frost penetration depth needed to

sort the largest clasts, which are up to 3 m long and certainly weigh between one and two tonnes. Seasonally frozen grounds

and sporadic permafrost still exist at some of the highest tropical and subtropical mountains in Africa (Kaser et al., 2004;

Vieira et al., 2017). Potential evidence for past sporadic permafrost in the Bale Mountains exists in the northeastern Togona

Valley, which was covered by a 8 km long valley glacier during the Late Pleistocene (Groos et al., in press). During or after30

deglaciation of the lower part of the valley, two large landslides (0.5 and 1.5 km long; see Fig. 5a) occurred between the 18 ka

and 15 ka moraine stages and might have been triggered by slope destabilisation due to thawing permafrost. The contemporary

ground temperature measurements show that the formation of seasonal or permanent frost to a depth of several decimetres on

the Sanetti Plateau would require a decrease of the MAGT in the order of 9-11 °C. According to the simple statistical model
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Figure 8. Conceptual model of the genesis of sorted stone stripes on a slightly inclined slope under periglacial conditions. Plan view

(downslope orientation towards the bottom of the figure): Stages during the evolution of stone stripes from a random configuration after

~50, ~500, and ~1000 freeze-thaw cycles as simulated by a numerical model that considers lateral frost sorting and the movement of stones

along the axis of elongated stone domains (for a detailed model description and the original model outputs see Werner and Hallet, 1993).

Note that in the numerical model narrower stripes merge into wider stripes over time. Oblique view: hypothetical stone stripe formation on

the Sanetti Plateau below an eroding cliff of a volcanic plug due to cyclic freezing and thawing of the ground. The current status of the

self-organisation of stone stripes on the Sanetti Plateau is similar to the configuration in the model after several hundred freeze-thaw cycles.

Cross section: principles of the stone stripe formation (although many aspects remain elusive). In the initial stage the rocks are distributed

randomly on the surface and in the fine regolith layer. With the downward penetration of the freezing front (0 °C isotherm) from the surface,

ice lenses form and cause vertical frost heave. The recurring formation of ice lenses over time leads to the upfreezing of interior stones and

the random movement of blocks on the surface. Randomly formed clusters of blocks are less prone to perturbations than indivual stones or

the fine-grained material. The freezing front descends faster in dry and well-drained stone domains than in the wetter fine-grained regolith

(which must freeze and be cooled). Since frost expands perpendicular to the freezing front, the stone domain is squezed and blocks are

trapped. Blocks in the stone domaine move along the slope gradient and form sorted stripes over time. Drawn by Francesca Andermatt.
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experiment, such a decrease would correspond to an air temperature depression of 7.1 ± 1.3 °C (relative to today).

The coldest and driest period in Africa (ca. 45-15 ka) during the last glacial period (e.g. Tierney et al., 2008) seems the most

likely climatic period for a cooling of that magnitude. Between 42-28 ka, an extensive ice cap extending down into the northern

valleys covered the Sanetti Plateau. The large stone stripes are located beyond the glacial remains and the assumed maximum5

extent of the former ice cap (Ossendorf et al., 2019; Groos et al., in press). One plausible scenario would be the development of

the stone stripes in close proximity to the ice cap over several hundred to thousand years due to seasonal freezing and thawing

of the ground. Such a scenario would also be plausible for the Falkland Islands, where the stone stripes are located outside the

former glacial remains (Clapperton, 1971; Clapperton and Sudgen, 1976). Cool katabatic winds originating from the extensive

ice cap on the Sanetti Plateau might have promoted an amplified cooling in the area of the stone stripes. The hardly weathered10

surface of the stone stripe boulders on the Sanetti Plateau supports a formation during the coldest period of the last glacial

cycle, but most of the obtained 36Cl surface exposure ages predate this period. However, it is possible that the exposure ages

do not represent the formation or stabilisation age of these features. Since the sampled igneous rocks originate from eroded

cliffs and volcanic plugs, they were likely exposed to cosmic radiation prior to (and during) the formation of the stone stripes.

Another scenario is the evolution of the stone stripes over several cold stages during the Pleistocene as proposed for the stone15

runs in the Falkland Islands (Wilson et al., 2008). This would imply the formation of sporadic permafrost during colder periods

and the complete thawing of the ground during warmer periods of the Pleistocene. In this case, the stone stripes would have

rather formed over several thousand to ten thousand than over a few hundred or thousand years. The exposure ages and high
36Cl would generally support such a scenario.

5.3 The sorted stone stripes as potential climate proxy20

The previous analysis provides first evidence that the large sorted stone stripes above 3800-4100 m on the Sanetti Plateau

most likely evolved under periglacial conditions during the Pleistocene. Ground temperatures fluctuating around 0 °C and

mean annual air temperatures below 0 °C are common for areas where large patterned ground occur (Goldthwait, 1976; Hallet,

2013). Thus, it is reasonable to assume that a MAGT in the order of 0 °C and a mean annual air temperature smaller 0 °C was a

precondition for the genesis of the stone stripes on the Sanetti Plateau. Since the present climatic conditions (the mean annual25

air tempeature is 5.7 °C at the Tuluka AWS, see Fig. 1) do not support the formation of seasonal or permanent ground frost

on the plateau, the existence of these features is an indicator for severe climatic and environmental changes in the Ethiopian

Highlands during the Pleistocene. The difference between the present MAGT and freezing point in the order of 11 °C provides

a rough estimate for the ground temperature depression during the formation of the stone stripes. Moreover, the statistical

model experiment shows that such a decrease of the MAGT would theoretically correspond to an air temperature depression30

of 7.1 ± 1.3 °C and an absolute mean annual air temperature on the southern plateau of -1.6 ± 1.4 °C. Since the exposure ages

generally support a formation of the stone stripes during MIS 2 and 3 as well as over a longer period during the Pleistocene,

it is currently not possible to link the inferred high-elevation cooling in the Bale Mountains to a specific climatic period in
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tropical Eastern Africa. To corroborate a past regional cooling of that magnitude, further evidence of large patterned ground or

other high-elevation climate proxies from the Ethiopian Highlands would be necessary.

5.4 Future research and outreach

Certain aspects of the genesis and implications of the large sorted stone stripes on the Sanetti Plateau in the Bale Mountains

remain unresolved. A key challenge for a better understanding of the palaeoclimate and palaeoenvironment of the Bale Moun-5

tains is the development of a robust geochronology. The age of the volcanic plugs, the formation phase of the regolith and stone

stripes as well as the termination of the plateau glaciation are relatively uncertain. Additional information on the depth and

internal structure (grain size distribution, indicators for cryoturbation, etc.) of the coarse and fine-grained stone stripes would

be very useful to gain further insights into the genesis of this landform. Simultaneous ground measurements in the coarse and

fine stripes would help to figure out whether the structure of the coarse stone stripes promotes a faster cooling of the ground10

than the adjacent fine stripes (e.g. Harris and Pedersen, 1998; Juliussen and Humlum, 2008; Wicky and Hauck, 2020).

Since the large sorted stone stripes are a rare and unique geomorphic feature, they represent an important geoheritage site in

Ethiopia that complements other geological sites of public iterest such as the Blue Nile Gorge or the active basaltic shield

volcano Erta Ale (Williams, 2020). The stone stripes are located in the centre of the Bale Mountains National Park. Some of

these features are accessible via dirt road. Hence, the sorted stone stripes may be another suitable destination for geotourism in15

the park.

6 Conclusions

This contribution provides a first systematic investigation of contemperorary small-scale frost phenomena and relict large sorted

stone stripes on the more than 4000 m high central Sanetti Plateau of the Bale Mountains in the tropical Ethiopian Highlands.

The coarse stone stripes on the slightly inclined Sanetti Plateau, which alternate with fine regolith stripes, are an exceptional20

geomorphic feature as they consist of very large clasts (up to 3 m long) and are up to 2 m deep, 15 m wide, and 1000 m long.

Moreover, these features are enigmatic in a way that forms of patterned ground exceeding several metres have yet only been

reported from the mid-latitudes and polar regions, but not from the tropics. The detailed analysis of the stone stripes’ geometry

and internal structure based on UAV and GPR surveys reveals an up-doming of the fine regolith stripes, a lack of larger clasts

inside the fine regolith stripes, and a downslope convergence of individual narrower stone stripes and branches into single wider25

stone stripes. All these details suggest lateral and vertical sorting in the course of cyclic freezing and thawing of the ground

as main mechanism for the genesis of the stone stripes from an intial random configuration of blocks below eroded cliffs.

Superficial nocturnal ground frost occurs frequently on the Sanetti Plateau, but the ground below the upper few centimetres

remains unfrozen the entire year. The measured ground temperatures suggest a mean annual ground temperature depression of

about 11 °C for the formation of seasonal or permanent frost, corresponding to an air temperature decrease of about 6-8 °C30

(relative to today). Two different scenarios are plausible for the genesis of the stone stripes and are in principle supported by

the exposure ages. Either they formed in proximity of the former ice cap on the Sanetti Plateau due to seasonal frost heave and
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sorting during the last glacial cycle or they developed over multiple cold phases of the Pleistocene. Although certain aspects

of the genesis of the large sorted stone stripes remain elusive, the presence of these geomorphic features provides independent

evidence besides the glacial landforms for unprecedented palaeoclimatic and palaeoenvironmental changes in the tropical Bale

Mountains during the Pleistocene.

Data availability. Ground temperature data, meteorological data, UAV data, GPR data as well as additional field photos of the stone stripes5
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Appendix A: Catalogue of periglacial landforms

Table A1. Overview of periglacial landforms and other characteristic geomorphological features in the Bale Mountains mapped in the field

and on satellite images. A compilation of glacial landforms in the Bale Mountains is provided by Groos et al. (in press).

ID Landform / Feature Status Latitude (°N) Longitude (°E) Elevation (m) Slope (°) Aspect (°)

1 Sorted stone nets active 6.84253 39.77714 4110 – 4140 0 –

2 Scree slope active 6.92509 39.78395 3930 – 4090 18 – 37 110 – 120

3 Solifluction lobes active 6.92699 39.77194 4130 – 4190 20 – 22 150 – 170

4 Sorted stone stripes relict 6.78692 39.79278 3865 – 3880 3 – 9 290 – 70

5 Sorted stone stripes relict 6.79496 39.81503 3880 – 3940 3 – 7 70 – 180

6 Sorted stone stripes relict 6.85486 39.72071 4020 – 4100 2 – 9 330 – 350

7 Sorted stone stripes relict 6.85336 39.71750 4020 – 4140 2 – 9 330 – 350

8 Sorted stone stripes relict 6.85432 39.71263 4000 – 4070 2 – 9 330 – 350

9 Sorted stone stripes relict 6.85264 39.70884 3940 – 4100 2 – 9 330 – 350

10 Sorted stone stripes relict 6.91414 39.60676 3715 – 3730 2 – 9 270 – 290

11 Sorted stone polygons relict 6.83843 39.70631 4000 – 4100 0 – 4 180 – 200

12 Sorted stone polygons relict 6.84533 39.71969 4120 – 4170 0 – 4 330 – 350

13 Blockfield relict 6.76713 39.78794 3690 – 3800 19 – 25 240 – 250

14 Blockfield relict 6.82818 39.78168 3970 – 4030 12 – 15 260 – 270

15 Blockfield relict 6.83016 39.71949 3700 – 3940 17 – 19 200 – 220

16 Blockfield relict 6.84541 39.69772 3800 – 3880 9 – 11 300 – 310

17 Blockfield relict 6.85245 39.69704 3700 – 3830 12 – 14 260 – 270

18 Blockfield relict 6.86119 39.69388 3550 – 3820 20 – 24 250 – 270

19 Blockfield relict 6.86848 39.69701 3600 – 3880 20 – 24 320 – 330

20 Scree slope relict 6.89194 39.89919 3890 – 3940 20 – 23 300 – 320

21 Scree slope relict 6.88617 39.89236 3930 – 3980 20 – 26 350 – 360

22 Scree slope relict 6.91829 39.77699 4070 – 4110 24 – 25 350 – 360

23 Scree slope relict 6.95343 39.76925 4045 – 4065 24 – 25 290 – 310

24 Scree slope relict 6.93937 39.78443 4080 – 4110 21 – 25 290 – 310

25 Scree slope relict 6.94363 39.78672 4055 – 4100 23 – 25 350 – 360

26 Scree slope relict 6.94764 39.79058 4080 – 4150 24 – 27 10 – 20

27 Landslide relict 6.92268 39.89833 3490 – 3720 2 – 30 60 – 70

28 Landslide relict 6.92644 39.90251 3490 – 3650 2 – 40 160 – 170
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Appendix B: GPR system settings

Table B1. System settings of the used Pulse EKKO PRO GPR.

Setting type Setting Setting type Setting Setting type Setting

Frequency: 1000 MHz Survey type: Reflection Start offset: 0 m

Time window: 30 ns (1.6 m) Step size: 0.010 m GPR trigger: Odometer

Sampling Interval: Normal (100 ps) Calibration: 1080.0 Antenna separation: 0.15 m

Stacks: 4 Transmitter: pE Pro Auto Antenna polarization: broadside

Velocity: 0.12 m ns-1 Receiver: pulseEKKO Pro Antenna orientation: Perpendicular

Appendix C: Cosmogenic 36Cl data

Table C1. Description of periglacial features on the Sanetti Plateau sampled for 36Cl surface exposure dating.

Rock Lithology Latitude Longitude Elevation Boulder Boulder Boulder Sample Shielding

sample (°N) (°E) (m a.s.l.) length (m) width (m) height (m) thickness (cm) factor

BS01 Basalt 6.78634 39.79297 3874 2.1 0.6 1.0 2.5 0.9961

BS02 Basalt 6.78660 39.79280 3869 1.5 0.5 1.4 4.5 0.9961

BS03 Basalt 6.78682 39.79263 3865 0.6 0.4 1.0 3.0 0.9997

BS04 Basalt 6.85491 39.72078 4050 0.8 0.6 1.1 5.0 0.9990

BS05 Trachyandesite 6.85513 39.72074 4049 0.5 0.5 1.0 4.5 0.9990

BS06 Trachyandesite 6.85550 39.72049 4045 1.5 0.5 0.6 3.5 0.9994

Data from Groos et al. (in press).
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Table C2. Cosmogenic 36Cl data and surface exposure ages of the rock samples from the Sanetti Plateau.

Rock Rock 35Cl Spike Cl 36Cl Exposure Exposure Exposure

sample dissolved (g) (mg) (ppm) (105 At g-1) age (ka)* age (ka)** age (ka)***

BS01 30.0307 2.5682 20.7 ± 0.08 30.44 ± 0.82 66.5 ± 4.5 68.2 ± 5.2 70.8 ± 5.9

BS02 30.0068 2.5584 31.5 ± 0.07 85.93 ± 1.63 200.0 ± 18.0 221.0 ± 25.0 282.0 ± 46.0

BS03 29.9887 2.5584 29.1 ± 0.04 85.66 ± 2.45 200.0 ± 18.0 221.0 ± 26.0 283.0 ± 46.0

BS04 29.9982 2.5652 40.9 ± 0.22 153.56 ± 2.58 406.0 ± 46.0 580.0 ± 180.0 –

BS05 30.0349 2.5719 1027.6 ± 11.19 1268.53 ± 25.03 760.0 ± 580.0 510.0 ± 270.0 –

BS06 30.0705 2.5682 1228.0 ± 13.43 1394.82 ± 46.40 790.0 ± 270.0 500.0 ± 300.0 –

Data from Groos et al. (in press). *Erosion rate = 0 mm ka-1. **Erosion rate = 1 mm ka-1. ***Erosion rate = 2 mm ka-1

Table C3. Major and trace element data of the six rock samples from the Sanetti Plateau.

Rock O C Na Mg Al Si P K Ca Ti Mn Fe B Sm Gd U Th

sample * * * * * * * * * * * * ** ** ** ** **

BS01 57.88 5.13 1.74 5.61 7.40 21.97 0.09 0.62 7.86 1.44 0.15 9.10 3 3.3 3.6 0.3 1.1

BS02 56.64 5.09 1.70 5.50 7.23 21.13 0.14 0.61 7.90 1.41 0.15 9.13 11 3.8 4.1 0.3 1.3

BS03 56.17 4.98 1.68 5.23 7.52 20.90 0.15 0.60 8.00 1.44 0.14 8.97 12 3.8 4.1 0.3 1.2

BS04 54.79 3.85 2.50 3.56 8.30 22.86 0.14 0.81 6.96 1.42 0.15 8.81 6 4.3 4.4 0.4 1.7

BS05 47.82 0.68 5.01 0.21 9.09 28.42 0.05 3.59 1.92 0.24 0.19 4.39 1 6.4 4.8 2.9 14.8

BS06 46.47 0.66 5.16 0.18 9.42 26.99 0.05 3.64 1.90 0.24 0.19 4.41 15 6.7 4.9 1.9 15.5

Data from Groos et al. (in press). *Unit = % w/w. **Unit = ppm.
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Appendix D: Weather stations and ground temperature data loggers

Table D1. Overview of the ground temperature data loggers installed on the Sanetti Plateau.

Data Latitude Longitude Elevation Depth Slope Aspect Start of Readout

logger (°N) (°E) (m a.s.l.) (cm) (°) (°) measurement dates

GT07 6.78665 39.79342 3877 2 ± 1 8 320 21.01.17 10.12.17, 06.01.18, 25.01.20

GT08 6.78665 39.79342 3877 10 ± 2 8 320 21.01.17 10.12.17, 06.01.18, 25.01.20

GT09 6.78665 39.79342 3877 50 ± 5 8 320 21.01.17 10.12.17, 06.01.18, 25.01.20

GT10 6.79474 39.81469 3932 2 ± 1 10 130 21.01.17 11.12.17, 06.01.18, 26.01.20

GT11 6.79474 39.81469 3932 10 ± 2 10 130 21.01.17 11.12.17, 06.01.18, 26.01.20

GT12 6.79474 39.81469 3932 50 ± 5 10 130 21.01.17 11.12.17, 06.01.18, 26.01.20

GT13 6.82617 39.81897 4377 2 ± 1 0 - 21.01.17 19.12.17, 20.01.20, 26.01.20

GT14 6.82617 39.81897 4377 10 ± 2 0 - 21.01.17 19.12.17, 20.01.20

GT15 6.82617 39.81897 4377 50 ± 5 0 - 21.01.17 19.12.17, 26.01.20

TM04 6.84411 39.87876 4129 2 ± 1 0 - 18.01.17 09.12.17, 05.01.18, 10.06.18

TM08 6.82617 39.81897 4377 2 ± 1 0 - 21.01.17 19.12.17

TM09 6.86644 39.74365 4084 2 ± 1 0 - 23.01.17 12.12.17, 15.06.18, 24.01.20

TM10 6.85509 39.71345 4022 2 ± 1 0 - 23.01.17 13.12.17, 15.06.18, 24.01.20

Table D2. Overview of the automatic weather stations installed on the Sanetti Plateau.

Weather Location Latitude Longitude Elevation First Last Data

station (°N) (°E) (m a.s.l.) measurement measurement completeness (%)*

BALE001 Tullu Dimtu 6.82693 39.81871 4377 04.02.17 31.01.20 73

BALE002 Tuluka 6.78945 39.77511 3848 02.02.17 30.01.20 100

BALE009 EWCP Station 6.84945 39.88197 4124 01.02.17 30.01.20 100

*Ratio of actual to maximum possible measurements during the respective measurement period.
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Appendix E: Ground temperature model

Table E1. Coefficients and goodness of fit of the three established multiple linear regression models (MLRM) with ground temperature

as dependent and air temperature and global radiation as explanatory variables. Distance means the distance between AWS and ground

temperature data logger, β0 is the intercept, β1 the air temperature coefficiet, and β2 the incoming shortwave radiation coefficient.

Linear regression model Elevation (m) Distance (m) β0 β1 β2 R² cal RMSE cal (°C) R² val RMSE val (°C)

MLRM Tullu Dimtu 4377 90 3.7 1.7 0.004 0.73 3.0 0.72 3.0

MLRM EWCP Station 4124 690 1.2 1.6 0.010 0.79 3.6 0.76 3.6

MLRM Tuluka 3848 2050 -0.5 1.9 0.004 0.63 4.9 0.78 4.0

Figure E1. Correlation between hourly ground temperatures in 2 cm depth and different meteorological variables at three different locations:

(a) Tullu Dimtu (GT13 vs. BALE001), (b) EWCP Station (TM04 vs. BALE009), (c) Tuluka (GT07 vs. BALE002).
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