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Abstract. The detachment of rock fragments from fractured bedrock on hillslopes creates sediment with an initial size 

distribution that sets the upper limits on particle size for all subsequent stages in the life of sediment in landscapes. We 

hypothesize that the initial size distribution should depend on the size distribution of latent sediment (i.e., blocks defined by 

through-going fractures) and weathering of sediment before or during detachment (e.g., disintegration along crystal grain 15 
boundaries). However, the initial size distribution is difficult to measure, because the interface across which sediment is 

produced is often shielded from view by overlying soil. Here we overcome this limitation by comparing fracture spacings 

measured from exposed bedrock on cliff faces with particle size distributions in adjacent talus deposits at 15 talus-cliff pairs 

spanning a wide range of climates and lithologies in California. Median fracture spacing and particle size vary by more than 

tenfold and correlate strongly with lithology. Fracture spacing and talus size distributions are also closely correlated in 20 
central tendency, spread, and shape, with b-axis diameters showing the closest correspondence with fracture spacing at most 

sites. This suggests that weathering has not modified latent sediment either before or during detachment from the cliff face. 

In addition, talus has not undergone much weathering after deposition and is slightly coarser than the latent sizes, suggesting 

that it contains some fractures inherited from bedrock. We introduce a new conceptual framework for understanding the 

relative importance of latent size and weathering in setting initial sediment size distributions in mountain landscapes. In this 25 
framework, hillslopes exist on a spectrum defined by the ratio of two characteristic timescales: the residence time in saprolite 

and weathered bedrock, and the time required to detach a particle of a characteristic size. At one end of the spectrum, where 

weathering residence times are negligible, the latent size distribution can be used to predict the initial size distribution. At the 

other end of the spectrum, where weathering residence times are long, the latent size distribution can be erased by 

weathering in the critical zone. 30 
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1 Introduction 

The detachment of rock fragments from fractured or weathered bedrock creates sediment of various sizes that evolve during 

transport and storage on slopes and in rivers due to chemical and physical weathering. At all stages in the life of sediment, its 

size distribution influences chemical, physical, and biological processes, including throughflow of reactive fluids in soil 

(Maher, 2010; Brantley et al., 2011), river incision into bedrock (Sklar and Dietrich, 2004; Turowski et al., 2015), and the 35 
reproductive potential of aquatic habitat (Riebe et al., 2014; Overstreet et al., 2015). The first stage begins when particles are 

detached from saprolite (in soil-mantled landscapes) or fractured bedrock (when soil is absent). The resulting initial size 

distribution is the starting point for the evolution of the size distribution on the hillslope where the sediment is produced and 

therefore sets the upper limits on particle size distributions at each successive stage in the sediment’s life (Sklar et al., 2017; 

Roda-Boluda et al., 2018). Particle shape also evolves during transport downstream and can be used to estimate the distance 40 
traveled from the particle’s source when initial shape is known (Miller et al., 2014; Szabo et al., 2015). However, the factors 

that regulate variability in particle shape and the initial sediment size distribution are poorly understood.  

 
The initial size distribution and initial particle shape should depend both on the size distribution of latent blocks in bedrock 

and on the characteristic length scales of subsequent weathering processes. The “latent” size distribution is set by the spacing 45 
and orientation of fractures, foliations, bedding planes, and mineral grain boundaries. These represent preexisting planes of 

weakness and determine the volume and shape of newly created sediment particles, which can be quantified by measuring 

the distributions of the major-, intermediate-, and minor-axis particle diameters. The three-dimensional template for latent 

particles should depend on conditions experienced during formation of the rock at depth, including rate of cooling for 

igneous rocks (Lore et al., 2001), pressure and temperature for metamorphic rocks (Manda et al., 2008), and deposition and 50 
diagenesis in sedimentary rocks (Narr and Suppe, 1991). These factors are overprinted by fracturing induced by the evolving 

stress field experienced by the rock as it is exhumed from deep in the crust (Molnar et al., 2007; Leith et al., 2014; Moon et 

al., 2017). Thus the latent size distribution reflects everything that has happened to the rock before experiencing weathering 

in the near-surface environment. As weathering commences, but before particles are detached, physical and chemical 

processes can create new surfaces that can be exploited during detachment. Hence, the initial size distribution should also 55 
depend on the characteristic length scales of weathering processes, such as mineral expansion, segregation ice growth, root 

wedging, and animal burrowing, particularly on slopes where preexisting planes of weakness in bedrock are widely spaced 

(Sklar et al., 2017; Messenzehl et al., 2018). In addition to these physical weathering processes, chemical reactions such as 

mineral dissolution can create new planes of weakness and thus influence the initial size distribution created during 

detachment (Fletcher and Brantley, 2010; Brantley et al., 2011; Goodfellow et al., 2016). Although these hypotheses are both 60 
intuitive and mechanistic, to our knowledge, the relative importance of latent sizes and weathering in initial size distributions 

has not been systematically explored. The initial detachment of rock fragments is generally hidden from view under soil, 

saprolite, and weathered rock, and sizes can therefore evolve before they can be accessed and measured. This makes it 

difficult to isolate the influence of the latent size distribution from the effects of weathering processes. 
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 65 
To overcome this limitation, previous studies have compared fracture spacings measured from exposed bedrock on cliff 

faces with particle size distributions in adjacent sediment deposits. For example, at Inyo Creek, on the east side of the Sierra 

Nevada, California, where hillslope sediment size distributions are bimodal, in-situ measurements from bedrock cliff faces 

show that fracture spacing distributions do not vary with elevation and closely correspond with the likewise spatially 

invariant coarse mode of the hillslope particle size distribution (Sklar et al., 2020). Elsewhere in California, at two sites with 70 
differing fracture spacing distributions, particle sizes in stream sediment correlate with fracture spacings measured in 

adjacent bedrock cliff faces at locations where the sediment contributing area is dominated by bare bedrock (Neely and 

DiBiasi, 2020). Results from both of these studies are consistent with latent sizes in bedrock dominating over weathering on 

slopes in regulating the initial size distribution of coarse sediment. In contrast, results from a suite of sites in the Swiss Alps 

suggest that weathering by frost cracking can impose a characteristic scale upon talus particle sizes, leading to poor 75 
correlations with fracture spacing distributions on adjacent bedrock cliffs (Messenzehl et al., 2018). 

 
Here we quantify correlations between initial sediment size and fracture spacing distributions across 15 talus-cliff pairs 

spanning a wide range of settings, including rock types and climatic conditions not investigated in previous work. Our sites 

span a 3000-m range in elevation across granodiorite, andesite, basalt, metasedimentary, and chert lithologies in California. 80 
Thus our study design allows us to test the null hypothesis that the initial sizes closely match latent sizes across a wide, 

geologically driven range in latent size distributions. An alternate hypothesis is that talus cones and the latent size 

distribution exposed in cliff faces are not strongly correlated for one or both of the following reasons: (i) blocks are detached 

along only a subset of preexisting fractures, for example because of unequal fracture persistence (Kim et al., 2007), or along 

newly formed fractures, as in the case of grus production from granite with low fracture density (Wahrhaftig, 1965); (ii) 85 
physical or chemical weathering reduces particle sizes after the talus is detached from the cliff, for example when particles 

hit the adjacent slope or as they sit in the talus deposit. Neither of these alternatives to the null hypothesis are consistent with 

our results. Measurements of central tendency, spread, and shape of the talus size and fracture spacing distributions all 

correlate strongly across a 40-fold variation in median fracture spacing. We also found statistically significant differences in 

mean talus shape among rock types, contrary to the null hypothesis that initial particle shape is invariant for blocks produced 90 
from bedrock by mechanical weathering (Domokos et al., 2015). Together these results confirm that initial sediment size 

distributions can be predicted from fracture spacing distributions at sites where the latent size distribution dominates over 

weathering. They also imply that lithologic and tectonic controls on latent size distributions can have a strong influence on 

the initial size and shape of individual particles and thus on the evolution of particle size distributions across landscapes. To 

generalize our findings beyond the talus-cliff pairs studied here, we introduce a conceptual framework for quantifying the 95 
relative importance of latent sizes and weathering using the timescale of detachment of latent particles and the timescale of 

weathering that occurs before the particle is detached.  
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2 Methods 

To test the null hypothesis about strong connections between latent size and initial size and shape of sediment, we selected 

15 cliff faces and adjacent talus slopes at five sites in California, USA (Fig. 1). The talus-cliff pairs in the Sierra Nevada 100 
represent a subset of bedrock slopes featured in previous work on connections between rock-mass strength and cliff retreat 

rates (Moore et al., 2009). These include ten slopes in the vicinity of Conness Basin, Mount Tallac, and Ebbetts Pass (Table 

1), three sites where differences in lithology correspond to differences in average fracture spacing. To diversify the range of 

conditions that might contribute to differences in weathering and thereby produce deviations from the null hypothesis, we 

selected a series of five additional talus-cliff pairs at Grizzly Peak and Twin Peaks, two sites in the San Francisco Bay Area 105 
(Table 1). 

2.1 Fracture spacing distributions on cliff faces 

To quantify fracture spacing at each site, we used a horizontal scan line (Moore et al., 2009) consisting of a survey tape 

stretched across the cliff face at a constant elevation (e.g., Fig. 2). The height of the scan line above the top of the adjacent 

talus cone ranged from 0.3 to 1.5 meters in our study, depending mostly on ease of sampling. Our approach assumes that 110 
fracture spacing along a single horizontal line is representative of the contributing area of the talus, including unreachable 

sections above the scan line. We set the length of each scan line equal to the width of contact between the cliff face and its 

adjacent talus cone, which ranged between 5- and 15-meters long across our sites. Thus we limited our measurements of 

fracture spacing to the width of the talus source area. Along each scan line, we measured the position of every fracture that 

crossed the tape, irrespective of orientation. This yields a distribution of fracture spacings measured as the distance between 115 
successive fractures. Our goal was to sample the spacing between fractures that could produce a particle via rockfall. Thus 

we focused on open, through-going fractures with spacings greater than 2 mm, ignoring changes in surface roughness and 

other rock defects that did not extend far enough to intersect other fractures on the cliff face. This ignores the potential role 

of microfracturing at the scale of mineral grains (Eppes and Keanini, 2017) in generating detachable particles on the cliff 

faces. 120 

2.2 Particle size distributions in talus cones 

To quantify surface particle size distributions in talus at each of the Sierra Nevada talus-cliff pairs, we measured the a-, b-, 

and c-axis diameters of particles at evenly-spaced points along three slope-parallel transects extending from the base of the 

cliff to the toe of the talus slope (e.g., Fig. 2). To measure sizes of an equal number of particles on each slope, we divided the 

sum of the three tape lengths by 100, and used the result to define the sample spacing, which varied from 2.5 to 1 m across 125 
the sites. At each sampling point, we used a ruler to measure sizes of particles with diameters less than 300 mm and stadia 

rods to measure sizes for everything else. We matched the precision of the fracture spacing measurements by rounding 

particle diameters to the nearest millimeter and lumping diameters less than 2 mm into a <2 mm bin. In some cases, the a-, b-, 
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and/or c-axis could not be readily measured because the particle was too heavy to move and thus to fully expose it for 

identification of long, intermediate, and short axis orientations. In those cases, we assumed that the c axis was perpendicular 130 
to the surface slope and estimated the a- and b-axis diameters using the two longest exposed axes. We then estimated a 

minimum value for the c axis as the height of the particle normal to the slope. 

 
The even spacing in our talus sampling approach should yield a representative particle size distribution, even if size-selective 

transport leads to downslope coarsening, which is commonly observed on angle-of-repose slopes (Kirkby and Stratham, 135 
1975). This coarsening arises because finer particles have larger friction angles and therefore travel shorter distances before 

coming to rest in the talus cone. Because size-selective disentrainment occurs across the entire slope, the talus surface can be 

treated as a single population whose grain size distribution can be quantified representatively by uniformly spaced sampling. 

 
We addressed the potential for bias due to kinetic sieving (a vertical sorting process) by supplementing our surface-based 140 
measurements with bulk samples of relatively fine subsurface sediment accessed through openings between particles at the 

surface at five of the Sierra Nevada talus-cliff pairs. The particle size distribution of each ~2 kg sample was measured in the 

lab by standard mechanical sieving. These subsurface size distributions should match the fine tail of the latent size 

distribution measured in the scan lines if the null hypothesis is correct (i.e., the initial size distribution is strongly controlled 

by the latent size distribution). 145 
 
At the two San Francisco Bay Area sites, where the talus cones are relatively small, we measured surface particle size 

distributions using standard random point counting methods (Bunte and Abt, 2001) to sample 100 particles from each talus 

cone. At the Grizzly Peak site, we used rulers to quantify a-, b-, and c-axis diameters of sampled particles. At the Twin Peaks 

site, where talus produced from both pillow basalt and ribbon chert were small compared to talus produced at the other sites, 150 
we used a mix of calipers and rulers to quantify just the b-axis diameters. 

3 Results and Interpretations 

Spacings between individual fractures on cliff faces range from 2 to 5000 mm across the suite of sites, with median spacings 

at individual sites ranging from 10 to 390 mm (Table 2). Particle sizes span a similar range, with a-axis diameters as large as 

5450 mm, c-axis diameters as small as 2 mm, and median b-axis diameters ranging from 10 to 575 mm. Both fracture 155 
spacing and particle size vary systematically with lithology: Granodiorite sites have the largest fracture spacings and particle 

sizes while the pillow basalt site has the smallest (Fig. 3). 

 
At each site, the distribution of particle sizes in talus closely corresponds to the distribution of fracture spacings on adjacent 

cliffs. This is evident in both the similar shape and overlap of the size and spacing distributions (Fig. 3). For example, at 160 
most of the sites, the cumulative empirical distribution function (EDF) of fracture spacing is parallel to the EDFs of particle 
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size, which are also generally parallel to each other where the a-, b-, and c-axis diameters were measured together (Fig. 3). In 

many cases, the EDFs of size and spacing also overlap for at least one of the particle diameters. For example, at CB-1, the 

fracture spacing distribution closely overlaps with the size distribution of the a-axis particle diameters (Fig. 3e). In contrast, 

the overlap is closest with the b-axis diameters at EP-26, TP-1, and TP-3, and with the c-axis diameters at both MT-38 and 165 
CB-5. Only two of the sites (CB-2 and CB-3) have particle diameter EDFs that do not closely parallel the fracture spacing 

EDF, and only one (MT-39) has a fracture spacing EDF that plots outside the envelope defined by the a- and c-axis 

diameters.  

 

The close correspondence between distributions at each talus-cliff pair is reflected in cross-site correlations between the 170 
central tendency of fracture spacing and particle size distributions for each of the three particle axes (Fig. 4). In each case, 

the increase in median particle diameter with increasing fracture spacing follows a trend with a slope that is statistically 

indistinguishable (p>0.45) from a 1:1 relationship in log-log space (Fig. 4a–c). This suggests that the correspondence is 

scale-independent—and also independent of rock type—across the full range of measured sizes (up to two orders of 

magnitude for the b-axis diameters). The vertical offset between the trend and the 1:1 line is smallest for the b-axis diameters 175 
(Fig. 4b), which are 42% larger on average than the fracture spacing. The c-axis diameters have a slightly larger offset, 

plotting below the 1:1 line (Fig. 4c), while the a-axis diameters have the largest offset, with median diameters that are 

systematically greater than the median fracture spacing by a factor of ~2.5 (Fig. 4a). Given that the b-axis is the 

characteristic dimension that scales most closely with volume, the close correspondence between the b-axis diameters and 

fracture spacings (Fig. 4b) is consistent with talus production from cliffs by spallation of blocks defined by intersecting 180 
fractures without substantial size reduction during deposition. 

 

The connection between talus particles and blocks exposed on cliff faces is further supported by the close correspondence 

between the spread in the b-axis diameter and fracture spacing distributions (Fig. 4d). The relationship between the 

geometric standard deviation of the b-axis diameters and fracture spacing across all sites is statistically indistinguishable 185 
from a 1:1 relationship (p>0.67), reflecting the parallel EDFs of the b-axis diameters and fracture spacings evident at many 

of the sites in Fig. 3. Thus, both the central tendency and spread in the size and spacing distributions are closely coupled 

across the range of rock types and climates spanned by our study sites. 

 

A third aspect of the particle size and fracture spacing distributions that we explored is distribution shape. To determine if 190 
there was a match in shape between the distributions, we first fit exponential, log-normal, and power distributions to the data, 

recognizing that fracture spacing distributions in rock commonly have shapes that follow one of these distributions (Gillespie 

et al., 1993). For both the fracture spacing and talus size distributions, we found that the Weibull form of the exponential 

distribution yielded the best fit to the data in most cases. The degree to which the data follow a Weibull distribution at each 

site is illustrated in Figure 5. Data that plot on a straight line in the Weibull probability space defined by the plot axes are 195 
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indicative of a population sampled from a Weibull distribution. In addition, because the particle size and fracture spacing 

measurements are normalized to their respective medians, cumulative distributions that coincide in the plotting space are 

indicative of population distributions that have the same shape. For most sites, both the particle size and fracture spacing 

data fall along straight lines and often closely coincide, as in the case of MT-38, CB-1, CB-5, and TP-1, indicating that they 

share roughly the same Weibull distributions. In some cases, the slope of the b-axis distribution is steeper than the fracture 200 
spacing distribution, as in the case of MT-39 and CB-3, indicative of narrower particle size distributions and consistent with 

the systematically lower geometric standard deviations at these sites (Fig. 4d). In some cases, the lower tails of the 

distributions follow a steeper trend than the rest of the data, as in the case of CB-3, GP-1, and EP-26, potentially reflecting 

an undersampling of the smallest fractures that could result from the limited sample size and our emphasis on quantifying 

spacings of throughgoing fractures in the scan lines. The one rock type with data that deviate substantially from the Weibull 205 
distribution is the chert: at TP-3 and especially at TP-4, the data show curvature in the Weibull space, and the particle size 

and fracture spacing distributions do not closely match. Aside from these exceptions, the fracture spacing and talus size 

distributions have similar shapes (Figs. 3 and 5) and are closely correlated in their central tendencies and spreads across all 

six lithologies (Fig. 4), consistent with our hypothesis that fracture spacing distributions can be used to predict initial particle 

size distributions in sediment. 210 
 

Our talus size measurements do not, in contrast, support the null hypothesis that initial particle shape is invariant for blocks 

produced by mechanical weathering. We quantified shape at the 11 sites where we measured the a-, b-, and c-axes diameters 

by calculating b:a and c:a ratios, which can be plotted together on a ternary diagram that displays rods, slabs, and equisided 

blocks at the vertices (Fig. 6, after Sneed and Folk, 1958). At many of the sites, individual particles span nearly the full range 215 
of shapes represented in the diagram. Within each rock type there is little site-to-site variability in mean particle shape, 

suggesting that we can group sites together by rock type. When we do, we find statistically significant differences in mean 

particle shape among some rock types, despite substantial overlap in the distributions of individual shapes among the 

lithologies (Fig. 6). For example, talus produced from the metasediment has lower mean b:a and c:a ratios and therefore is 

more elongate on average than talus produced from the granodiorite (Fig. 6a). In addition, andesite particles are more slab-220 
like than basalt on average, with a lower mean c:a ratio (Fig. 6b). In both of these comparisons, many of the talus deposits 

have similar elevation and therefore similar climatic conditions (Table 1), indicating that the differences in shape among the 

rock types are due to intrinsic differences in bedrock rather than differences in weathering environment. Of the six possible 

comparisons, only one—between the granodiorite and basalt—had no statistically significant differences in either axis ratio. 

In the three remaining comparisons, metasediment has a lower mean b:a ratio than andesite; metasediment also has a lower 225 
mean b:a and a:c than the basalt; and finally the andesite has a lower mean c:a ratio than the granodiorite. Given the overlap 

in mean shape between the granodiorite and the basalt, which differ in mean particle size by up to a factor of 10 (Fig. 4), 

there is no evidence in our data that initial particle shape varies with size, contrary to the prediction from previous work that 

smaller particles should be more block-like on average (Domokos et al., 2015). Our results show that different rock types 
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have different initial b:a ratios and thus conflict with the prediction that the b:a ratio should have a single average value for 230 
particles produced by mechanical weathering. This suggests that lithology-specific values for initial shape may be needed 

when using shape to infer distance traveled from sediment sources (Miller et al., 2014; Szabo et al., 2015; Novak-Szabo et 

al., 2018), particularly for lithologies that have foliation and other anisotropic properties. 

4 Discussion 

The close correlation between talus size and fracture spacing distributions at our sites (Figs. 3–5) suggests that particles are 235 
detached from nearly the full network of fractures exposed on the cliff faces and do not undergo much size reduction due to 

physical or chemical weathering in talus deposits. This finding, while limited to our sites, is robust across a wide range of 

lithologies and weathering conditions, suggesting that it spans a range of processes that could lead to particle detachment and 

subsequent weathering in talus deposits, including subcritical cracking and segregation ice growth. 

 240 
Of the three particle dimensions measured here, the distribution of b-axis diameters most closely matches the fracture 

spacing distributions (Figs. 3–5). This suggests that fracture spacing measurements can be used to predict the initial size 

distribution of intermediate particle diameters. This is useful because the b-axis diameter is the most characteristic linear 

measure of particle volume and is therefore commonly used to represent particle mass in sediment transport theory and 

applications (Bagnold, 1966). Nevertheless, across our sites the b-axis is systematically ~½ phi interval larger on average 245 
than the median fracture spacing (Fig 4b); only two in 15 sites have a median b-axis diameter less than the median fracture 

spacing, which is unlikely to arise by chance (p = 0.0064). The positive deviations shown in Figure 4 contrast with previous 

measurements from other mountain landscapes in California, where sediment sizes also correlate strongly with—but are 

systematically finer than—fracture spacings in the source bedrock (Neely and DiBiasi, 2020; Sklar et al., 2020). At our sites, 

the systematically coarser b-axis diameters may be driven, in part, by vertical sorting that causes fine particles to be 250 
underrepresented in point counts conducted on talus slope surfaces. However, we find no evidence of this in our 

measurements of sediment extracted from openings between surface particles: at each site where we made these 

measurements, the size distributions of the bulk samples overlap sufficiently the fine tail of the talus distribution that they 

can be combined using established techniques (Bunte and Abt, 2001) into a single continuous distribution in which the 

median is equal to the median of the distribution of talus at the surface. This suggests that analysis of the talus at the surface 255 
provides unbiased estimates of the size distributions of material shed from cliff faces at our sites. Hence, we interpret the 

positive offset in b-axis diameters (Fig. 4b) to reflect incomplete use of exposed fractures during detachment of talus from 

cliff faces. These unused fractures are presumably contained within the talus blocks in the deposit and may be exploited 

during later size reduction by physical and chemical weathering. 

 260 
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Our analysis suggests that there are no systematic site-to-site deviations from the 1:1 trend between median b-axis diameters 

and median fracture spacings, despite the large differences in climate and thus weathering environment (Table 1). Moreover, 

there is no significant trend in residuals relative to the 1:1 trend with either mean annual temperature or average annual 

precipitation. This implies that the latent size distribution (embedded within the fractures exposed on the cliff faces) 

dominates over weathering as the main control on the particle sizes produced on slopes across our sites.  265 
 

The dominance of latent size over weathering is also supported by previous analyses of correlations between fracture density 

and erosion rates at the Sierra Nevada sites, where talus deposit volumes accumulated since deglaciation ~13,000 years ago 

were used to quantify cliff retreat rates (Moore et al., 2009). Higher fracture density (and thus lower fracture spacing) 

corresponds to faster cliff retreat rates (Table 2), because denser fractures contribute to lower rock mass strength, and thus 270 
make bedrock cliffs more susceptible to erosion (Howard and Selby, 2009; Moore et al., 2009). Thus, at these sites, where 

weathering is minimal and cliffs are still responding to deglaciation, fracture spacing controls both initial size and the 

production rate of sediment through its effects on rock mass strength. In soil mantled landscapes, in contrast, where hillslope 

erosion rates are set by stream incision rates, theory and observations suggest that faster erosion should generally lead to 

larger particle sizes due to lower regolith residence times (TR) and thus less-extensive weathering in the critical zone (Sklar 275 
et al., 2017; Callahan et al., 2019). At our Sierra Nevada sites, and in general at other sites where TR ~ 0, latent size should 

commonly dominate over weathering in setting initial particle size distributions. 

 

Our analysis of cliff retreat rates and fracture spacings from the Sierra Nevada points to another potentially insightful 

timescale: TP (T), the time required to liberate a latent particle having the characteristic, median size, calculated following Eq. 280 
(1): 

𝑇𝑇! = 𝐹𝐹"#/𝐸𝐸            (1) 

Here, F50 is the median fracture spacing (L), a proxy for the characteristic latent particle size, and E is the erosion rate of the 

fractured bedrock surface (L/T), equal to the cliff retreat rate at the Sierra Nevada sites. Application of Equation 1 to data 

from our sites indicates that TP ranges from as short as 88 years to produce a layer of 60-mm diameter latent particles at EP-285 
26, the most rapidly eroding cliff face, to as long as 16,500 years to produce 330-mm diameter particles at CB-1, indicating 

that the entire post-glacial accumulation time and more was needed to detach a single layer of latent particles with the 

characteristic median size at the most slowly eroding cliff face (Table 2). The calculated TP at the remaining talus-cliff pairs 

in the Sierra Nevada sites is less than 13,000 years, consistent with the assumption in the erosion rate calculations (Moore et 

al., 2009) that all of the sediment was produced after the glaciers retreated.  290 
 
The relative importance of latent size and weathering can be evaluated by quantifying the ratio of TR to TP, as in Eq. (2): 

𝑇𝑇$/𝑇𝑇! =
%
&
/ '!"

&
= 𝐻𝐻/𝐹𝐹"#           (2) 
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Here, H is the thickness of saprolite and weathered rock (L), and the erosion rate at the top of fractured rock is assumed to be 

equal to the erosion rate at the base of soil (such that the thickness of saprolite and weathered rock is in steady state). At our 295 
sites, which represent an extreme end member with no saprolite or weathered bedrock (i.e., H~0), TR/TP << 1, and the latent 

size distribution dominates over weathering in setting initial particle size. In contrast, weathering may dominate over latent 

size distributions when TR/TP >> 1, at the other endmember, where erosion is slow, saprolite and/or weathered bedrock is 

thick, and fractures are closely spaced. In between the two endmembers, we envision a spectrum in the relative importance 

of weathering and latent size as a function of TR/TP. This spectrum is illustrated conceptually in Figure 7 for three cases with 300 
the same slope and erosion rate: Increasing saprolite and weathered bedrock thickness and decreasing fracture spacing 

should lead to higher TR/TP ratios (from left to right in Fig. 7), which in turn would correspond to finer initial sediment size 

distributions produced at the top of fractured bedrock or saprolite (cf. Fig. 7a, b, and c). Fig. 7a depicts a case at the 

transition from bare bedrock (e.g., the cliff faces studied here), to slopes with patchy soil cover, such as those observed at the 

other California sites where fracture spacing and sediment size have been quantified (Neely and DiBiasi, 2020; Sklar et al., 305 
2020). Such sites should have enhanced potential for weathering relative to our sites. This might help explain why the 

median b-axis diameters plot higher than median fracture spacings at our sites and vice versa at the other sites in California. 

In landscapes that are completely covered with regolith and weathered rock (Fig. 7b–c), the signal of the latent size 

distribution (and also of initial shape; Fig. 6) may fade before liberation of sediment into the soil. Thus, initial size should be 

dominated by weathering as residence times increase and thereby increase in exposure to chemical and physical weathering 310 
(Fig. 7c). 

5 Conclusions 

The detachment of rock fragments from fractured bedrock on hillslopes creates sediment with initial size distributions that 

set the upper limits on particle size for all subsequent stages in the life of sediment as it is exposed to chemical and physical 

weathering during transport from source to sink. We hypothesize that the initial size distribution should depend on two main 315 
factors: the size distribution of latent sediment (i.e., blocks defined by throughgoing fractures); and weathering that occurs in 

fractured bedrock both before the sediment is detached and during the detachment process (e.g., disintegration along crystal 

grain boundaries). However, the initial size distribution is difficult to measure, because the interface across which sediment 

is produced is often shielded from view by overlying soil. Talus deposits that have accumulated beneath cliff faces offer an 

opportunity to test the hypothesis that, when weathering is minimal, the initial size distribution should strongly reflect the 320 
latent size distribution defined by fractures on the cliff faces.  

 

Here, we presented measurements of fracture spacing and particle size distributions from talus-cliff pairs spanning a wide 

range of climates and lithologies in California. Median fracture spacing varies by a factor of 40, median particle size varies 

by a factor of 60, and both of these variables correlate strongly with lithology. In addition, fracture spacing and talus size 325 
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distributions are closely correlated with each other in central tendency, spread, and shape, with b-axis diameters showing the 

closest correspondence with the fracture spacing at most sites. This suggests that weathering has not modified latent 

sediment, either before or during detachment from the cliff face. In addition, talus has not undergone much weathering after 

deposition and is slightly coarser than the latent sizes implied by the fractures, suggesting that the talus contains unexploited 

fractures inherited from the cliff face. These results differ from previous work elsewhere in California, where b-axis 330 
diameters are systematically finer than bedrock fracture spacings, likely due to post-detachment weathering in the patchy soil 

deposits where particles were sampled (Neely and DiBiasi, 2020; Sklar et al., 2020). Together, these observations support a 

new conceptual framework illustrating the relative importance of latent size distributions and weathering on setting the initial 

sediment size distribution in mountain landscapes. In this framework, hillslopes occupy a spectrum defined by the ratio of 

two characteristic timescales: the residence time in saprolite and weathered bedrock, and the time required to detach the 335 
characteristic particle size. Where weathering residence times are negligible, as at our 15 talus-cliff pairs, the latent size 

distribution can be used to predict the initial size distribution. At the other end of the spectrum, where weathering residence 

times are long, the latent size distribution will provide limited predictive information about initial sediment distributions. 
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Table 1. Study sites in Sierra Nevada and San Francisco Bay Area       
Location Pair Lithology Latitude Longitude Elevation MAT1 MAP2 
    (°N) (°W) (m) (°C) (mm) 
Conness Basin CB-1 Granodiorite 37.9763 119.3082 3262 1.3 1190 
Conness Basin CB-2 Granodiorite 37.9750 119.3033 3293 1.1 1226 445 
Conness Basin CB-3 Granodiorite 37.9797 119.3006 3171 1.5 1179 
Conness Basin CB-5 Metasediment 37.9928 119.2870 3140 1.3 1152 
Ebbetts Pass EP-24 Andesite 38.5655 119.8084 2530 4.8 1343 
Ebbetts Pass EP-25 Andesite 38.5665 119.8114 2549 4.8 1343 
Ebbetts Pass EP-26 Basalt 38.5473 119.8136 2732 3.9 1455 450 
Ebbetts Pass EP-28 Basalt 38.5483 119.8144 2744 3.9 1455 
Mount Tallac MT-38 Granodiorite 38.9430 120.1235 2134 6.5 1481 
Mount Tallac MT-39 Granodiorite 38.9420 120.1247 2195 6.5 1481 
Grizzly Peak GP-1 Basalt 37.8903 122.2346 393 13.8 727 
Twin Peaks TP-1 Pillow basalt 37.7504 122.4483 260 13.6 705 455 
Twin Peaks TP-2 Pillow basalt 37.7502 122.4476 252 13.6 705 
Twin Peaks TP-3 Chert 37.7533 122.4480 280 13.6 705 
Twin Peaks TP-4 Chert 37.7533 122.4480 280 13.6 705  
1Mean annual temperature (Prism Climate Group, 2019) 
2Mean annual precipitation (Prism Climate Group, 2019)  460 
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Table 2. Results             
Pair Fracture a-axis b-axis c-axis Fracture b-axis Erosion Tp Layers 
 spacing1 diameter1 diameter1 diameter1 geometric geometric rate  removed3 
 (mm) (mm) (mm) (mm) stdev stdev (mm/yr) (yrs)    
CB-1 330 375 250 130 0.346 0.357 0.02 125,000 0.8 465 
CB-2 200 500 270 205 0.458 0.612 0.09 3,000 5.9 
CB-3 280 720 420 190 0.551 0.477 0.05 8,400 2.3 
CB-5 120 335 220 95 0.309 0.306 0.25 880 27 
EP-24 80 225 150 55 0.283 0.255 0.31 484 50 
EP-25 155 320 200 70 0.401 0.294 0.12 1,667 10 470 
EP-26 60 95 55 25 0.285 0.201 0.68 81 150 
EP-28 70 160 100 65 0.358 0.338 0.26 385 48 
MT-38 390 1010 575 310 0.387 0.333 0.09 6,389 3.0 
MT-39 200 850 570 280 0.411 0.352 0.14 4,071 9.1 
GP-1 77 130 82 48 0.286 0.203 - - - 475 
TP-1 10 - 10 - 0.251 0.328 - - - 
TP-2 10 - 14 - 0.314 0.215 - - - 
TP-3 24 - 27 - 0.214 0.14 - - - 
TP-4 19 - 26 - 0.257 0.184 - - -  
1Fracture spacings and particle diameters are reported as medians of distributions measured in field 480 
2Cliff retreat rates were measured by Moore et al. (2009). 
3Layers removed is the number of layers of thickness equal to the median fracture spacing that have been removed since the 
glacier retreated and is calculated as 13,000/TP, where TP is calculated according to equation 1. 
 
  485 
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Figure 1. Study site map (upper left) and representative talus-cliff pairs from each site, with label designating lithology (red 
B squares = basalt; pink G circles = granodiorite; purple M diamond = metasediment; orange A triangles = andesite; purple P 
triangles = pillow basalt; green C triangles = chert). Scale varies between images. See Table 1 and text for site descriptions. 
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 490 
Figure 2. Field survey methods, showing example of transect line and scan line layout at EP-26 site in the Sierra Nevada 
(top) with detail of scan line at EP24 (lower left) and Transect 2 at CB-5 (lower right). Scale in the top image highlights a 
person near Transect 3. Tape in lower left is labeled in 10 cm increments.  
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 495 
Figure 3. Particle size and fracture spacing distributions for each study site, sorted by median b-axis diameter in descending 
order from left to right and top to bottom. Colored lines show fracture spacing distributions, solid black lines show b-axis 
diameter distributions, dashed lines show a- and c-axis diameter distributions. (Major-axis diameters plot to the left of the 
intermediate-axis diameters). Color codes and labels for lithology are as in Fig. 1; see Table 1 for site abbreviations. At the 
chert and pillow basalt sites, only b-axis diameters were measured (see text). 500 
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Figure 4. Central tendency and spread of particle size and fracture spacing distributions for median a-axis diameter (a), 
median b-axis diameter (b), median c-axis diameter (c), and the geometric standard deviation of the b-axis diameters (d). In 
each case, across the wide range in particle sizes and fracture spacings represented by the different lithologies sampled here, 505 
there are strong correlations between the particle size and the fracture spacing distributions that are roughly parallel with a 
1:1 relationship (a–d). The correspondence is especially close for the b-axis diameters (b), though they are systematically 42% 
larger on average than the fracture spacings. Symbol type and color represent lithology as in Fig. 1. 
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Figure 5. Comparison of distribution shape for the b-axis diameter (open symbols) and fracture spacing (colored) 510 
distributions in Weibull probability space. Points fall along a straight line in these plots when the sample is drawn from a 
population having a Weibull distribution. Best fit linear regressions for b-axis diameters and fracture spacings are shown as 
dashed and colored lines, respectively. Colors correspond to lithologies following conventions in Fig. 1. For most sites, most 
points plot along a straight line, implying that their population distributions are Wiebull-like. In addition, the data commonly 
overlap, consistent with a close match between the shape of the particle size and fracture spacing distributions at many of the 515 
sites. Examples and exceptions are highlighted in the text. 
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Figure 6. Particle shape at sites where all three particle diameters were measured as revealed in ternary diagrams with blocks, 
rods, and slabs at vertices (inset). Although data within each site and within each lithology are widely scattered in shape, the 
central tendencies for samples grouped by lithology yield several statistically significant differences. For example, 520 
granodiorite has a higher b:a and c:a ratio than the metasediment (left), indicating that metasediment is more rod-like on 
average. Symbols and colors represent lithology following conventions of Fig. 1. 
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Figure 7.  Conceptual framework illustrating how initial sediment size is influenced by latent sediment size and weathering. 525 
Panels depict vertical profiles of subsurface weathering where initial sediment is produced by detachment at the top of intact 
bedrock (a) or saprolite (b,c). Erosion rate is the same in each panel. Where fracture spacing is wide and where the 
weathering zone is thin, latent size should dominate over weathering (a), and vice versa where fractures are closely spaced 
and the weathering zone is comparatively thick (c). These examples lie on a spectrum of outcomes that correlate with the 
ratio of two characteristic timescales: the timescale of weathering (TR) and the time required to detach a layer of 530 
characteristic (median) particles at the base of mobile regolith (TP). Higher ratios correspond to a greater influence of 
weathering and a lesser influence of latent size on initial sediment size distributions. 
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