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This manuscript seems to have been written as a detailed rebuttal of the conclusions of
the paper by Schildgen et al. (2018) which questioned the accuracy of the linearised in-
version method of Fox et al. (2014) of thermochronological data. Specifically Schildgen
et al. (2018) suggested that the methodology encouraged the incorrect interpretation of
spatial variability as temporal variability, and thereby creating a systematic bias towards
an apparent temporal acceleration in exhumation. No doubt the authors are motivated
by the fact that the earlier paper, published in Nature I see, brings into question much
published work by the present authors.

My overall reaction is that the present manuscript contains some useful information in
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that it sets out all of the resolution and uncertainty issues associated with the method
of Fox et al. (2014).

The present manuscript quantitatively describes through theory and example the
sources of uncertainty and bias in the Fox et al. (2014) approach, including those aris-
ing from theory errors (due to forward modelling) data errors and the limited resolution
caused by data sampling and the physics of the data-model relationship. Again this is
largely in the context of combatting assertions by Schildgen et al. (2018), nevertheless
I think this exposition is in principal useful to have in the literature.

At the same time the manuscript is excessively long (my version is 78 pages) and
an arduous and at times repetitive read in parts. I question how many readers will
understand it all in its present form. There is a good argument to move a lot of this
material to an appendix or supplementary material without loss of the main points. I
realize that the authors are probably intent on getting this full detail into the literature,
but I think having it all in the main body of a paper will certainly diminish its likely impact.
I suggest the Bayesian Inference tutorial material could be moved to an Appendix or
left out and the results cited as they are required. In addition do we really need to
see all numerical tests? again use of appendices would help. Much of the underlying
theory of Bayesian inference appears in the literature cited, but there are also many
books outside of the Earth Sciences literature, admittedly two popular ones, Menke
and Tarantola are cited here and so perhaps better use of specific results in those
books could be used here.

Some of the writing is clumsy, an example is on line 251 ‘...an inversion scheme based
on inverse problem theory which minimizes Gaussian errors in observations, and a
Bayesian parameter model in which model parameters are assumed to have Gaussian
distributions about a prior value’. Some more conciseness would be a help here and in
many other places. Note that in Bayesian inference we don’t actually ’Minimize Gaus-
sian errors in observations’ rather a Likelihood function p(d | m) expresses the prob-
ability of observing the data given a model. It may or may not take a Gaussian form,
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indicating all departures from fitting the data perfectly are expected to be described
by a Gaussian PDF. Its maximization occurs in Maximum Likelihood techniques not
Bayesian Inference. One might consider Maximizing the Posterior PDF as one way of
characterising that PDF but this differs from Likelihood maximisation when the prior is
not uniform. Of course when the data model relationship is linear and Likelihood and
Prior are Gaussian then the posterior PDF is also Gaussian.

While I have not studied the Fox et al. (2014) paper in any detail it is clear from the
account here that it is a linearised Bayesian inversion method combining a prior with
a Likelihood to estimate a Gaussian approximated posterior probability distribution.
This approach is well known and understood, especially in the geophysical literature
for many decades. The works of Tarantola and Valette being a prime embodiment of
the approach. The present manuscript gives a summary of the linearised theoretical
results as they pertain to quantification of resolution and model covariance matrices
and their interpretation. It appears to me to be a competent summary of linearised
inversion within a Bayesian framework, my comments above notwithstanding. I do feel
that some references to the latest editions of some well established books such as
Menke (2012, rather than 1984) or Aster, Borchers and Thurber (2018, 3rd edition)
could assist the reader in this regard, as all of the relevant theory is set out there. The
paper references relevant to linear discrete parameter estimation, or which this is an
example, are, correctly, to the original works from the 1970s-1980s which is good to
see.

From L430 onward the authors’ analyse the Normalised erosion rate metric, NR, eqn.
(14) (lines 425-475). This is a nonlinear function of the model parameters recovered in
an inversion. I note that there is a detailed critique of this term, as it was important to
Schildgen et al. (2018) to support some of their arguments. A discussion is given of
Expectation of a ratio (Line 440). This expectation identity relies on the terms x and x
being independent which they are clearly not in eqn. (14), since both involve e1 and
e2. There must be a cross term affecting the Expectation of theFrom L430 onward ratio
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which is ignored here. This is an error.

The authors continue on and obtain an approximation of the variance of NR using a
Taylor expansion, as well as discussing its bias and its complicated behaviour. Quan-
tities such as variance and expected value of some property of the model parameters
while analytical, are just moments of what is in reality a probability distribution over
NR constrained by the data. Since the point of Bayesian inversion is to determine a
Posterior probability distribution of the model parameters then by drawing from that
(Gaussian) distribution and calculating NR provides a posterior ensemble of NR values
from which a complete (non Gaussian) PDF can be inferred. A better (more complete)
approach would be to map out that PDF in full rather than drawing inferences from
estimates such as variance, which are at best only partially characterise its behaviour.
How well can a variance describe a high skewed distribution anyway? As I understand
it this is the objective of the authors, i.e. trying to quantify the uncertainty and bias
in the NR term, in which case it is better to examine the actual distribution, if its ac-
cessible, and I think here it must surely be. The PDFs give the full picture, low order
moments such as variance and expectation do not.

The authors are correct in their assertions (L1305-1310) that the Bayesian solution
will tend to go to the prior when data influence is poor, which means have large data
covariances. This is well known and a fundamental property of Bayesian inference.
However it is not the case that the posterior will tend to the prior when data, or averaged
data (in this case), are inconsistent. It is not entirely clear to me that this is what the
authors are suggesting, but I got the impression it might be implied by their discussion
of resolution and the influence of the prior (multiple sections across the manuscript).
This seems to be a pertinent point in their rebuttal of the Schildgen results. Inconsistent
data (e.g. tight constraints on a subset of model parameters which do not agree) is
quite a different thing from weak data constraints (e.g. due to large data noise). Only
the weak constraint case does the posterior tend to the prior, not the inconsistent data
case.
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A toy example makes this clear. Consider a single prior variable with Gaussian un-
certainty. Imagine that new data are a direct observation of this variable. The weak
data case is when measurements occur with large errors relative to the Gaussian prior.
They will have little affect on the prior mean, i.e. posterior tends to the prior. The incon-
sistent data case is when measurements with errors comparable to the Gaussian prior
are widely separated. Here the posterior mean may be far from the prior mean. As I
say its not entirely clear to me whether the authors have mistook one for the other in
their arguments, but even if they haven’t, I think it best to explicitly clarify this difference
in the manuscript so that there is no confusion in the readers mind.

How is the closure temperature estimation from Dodson (1973) applicable here? Isn’t
this a rather approximate method in itself? How relevant is it to low temperature ther-
mochronological data such as fission track and He? As I understand it there is a contin-
uous response, in terms of annealing of diffusion over a range of temperatures, which
would be a significant proportion (say 50%) of the estimated closure temperature. In
this case the measured age is not directly related to the time that the system became
closed (i.e. started to accumulate fission tracks or He). Shouldn’t one ideally solve the
full FT annealing and He diffusion equations to find when and at what depth the system
became closed? This does not appear to be done here. No doubt if it were this would
create a more nonlinear inversion problem which may be more difficult to handle with
the linear/linearized inversion approaches used here? These issues should probably
be discussed and justified.

Ultimately any inverse model result is conditional on the assumptions (e.g. model res-
olution matrix depends on the assumed linear relationship between model and data).
I agree that using different forward models to generate synthetic data and perform an
inversion introduces unquantified ‘theoretical errors’ in an inversion test. Quantifying
such errors however is usually difficult, especially systematic errors.

The question of spatial vs temporal variability in inference results, which is at issue as
one of the central arguments between the present authors’ and those of Schildgen et
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al. (2018). From what I can tell the original work of Fox et al. collected and smoothed
over data sets spatially by introducing a Gaussian prior imposing a spatial (smoothing)
covariance. Much is discussed on this point here and whether this introduces bias and
encourages spatial variability to be mis-interpreted as temporal variability. The present
authors obviously argue not, however its not clear to me why use of global spatial prior
smoothing of Fox et al. is even necessary. It seems a rather backward step in itself,
compared to more sophisticated ‘data adaptive’ spatial smoothing approaches popular
in Bayesian methods these days. I’m thinking here of Bayesian spatial sampling known
as Partition modelling which has been around for more than twenty years, See Denison
et al. (2002 for a summary). That type of approach allows sharp local variations to be
recovered if they are supported by the data, e.g. by sampling data across a discon-
tinuity. This is much more preferable than simply imposing global spatial correlation
via a prior. I see Partition Modelling has already been applied to in low temperature
Thermo-chronology problems by Stephenson et al. (2006) almost than a decade and
a half ago. This paper or any related work is not cited or discussed. In that sense I see
a lot of energy here expended here on defending the validity of what appears to be a
somewhat outdated framework.

My impression is that the manuscript is detailed defence of the Fox et al. (2014) in-
version approach which may be useful for readers to see in some form. However it
is unnecessarily long and could probably start at page 35 after an introduction. A
manuscript 50% shorter would be more appropriate and I expect have more impact.

Minor points:

I can see no content in eqn. (8)? - It appears blank to me.
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