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Abstract. Thermochronometry provides one of few methods to quantify rock exhumation rate and history, including 

potential changes in exhumation rate. Thermochronometric ages can resolve rates, accelerations, and complex histories by 

exploiting different closure temperatures and path lengths using data distributed in elevation. We investigate how the resolution 15 

of an exhumation history is determined by the distribution of ages and their closure temperatures through an error analysis of 

the exhumation history problem. We define the sources of error, defined in terms of resolution, model error and methodological 

bias in the inverse method used by Herman et al. (2013) which combines data with different closure temperatures and 

elevations. The error analysis provides a series of tests addressing the various types of bias, including addressing criticism that 

there is a tendency of thermochronometric data to produce a false inference of faster erosion rates towards the present day 20 

because of a spatial correlation bias. Tests based on synthetic data demonstrate that the inverse method used by Herman et al. 

(2013) has no methodological or model bias towards increasing erosion rates. We do find significant resolution errors with 

sparse data, but these errors are not systematic, tending rather to leave inferred erosion rates at or near a Bayesian prior. To 

explain the difference in conclusions between our analysis and that of other work, we examine other approaches and find that 

previously published model tests contained an error in the geotherm calculation, resulting in an incorrect age prediction. Our 25 

reanalysis and interpretation show that the original results of Herman et al. (2013) are correctly calculated and presented, with 

no evidence for a systematic bias.  
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1.0 Introduction 

Thermochronometry provides one of few methods to quantify rock exhumation histories. Over the last 30 years, it 30 

has been extensively applied to understand tectonics and landscape evolution. Part of its success stems from the large number 

of thermochronometer systems available (Reiners and Brandon, 2006; Reiners et al., 2005) as well as the development of 

numerical models able to convert thermochronometric data into constraints on cooling associated with exhumation by surface 

or tectonic processes (e.g., Braun, 2003; Ehlers and Farley, 2003; Ketcham, 2005; Gallagher, 2012; Braun et al., 2012; Willett 

and Brandon, 2013; Fox et al., 2014). Where exhumation occurs by surface processes, the exhumation rate is equivalent to a 35 

surface erosion rate and we will use these two terms interchangeably in this paper. Models are an integral part of 

thermochronometric data interpretation as they are needed for computing cooling histories from parent-daughter loss 

relationships with a complex thermal history, as well as for converting cooling histories into exhumation histories. Cooling or 

exhumation histories provide direct constraints on kinematics or tectonic processes and rates of surface erosional processes 

(e.g., Grasemann and Mancktelow, 1993; Seward and Mancktelow, 1994; Brandon et al., 1998; Batt et al., 2000; Moore and 40 

England, 2001; Willett and Brandon, 2002; Ehlers et al., 2003; Lock and Willett, 2008; Campani et al., 2010; Herman et al., 

2010; Barnes et al., 2012; McQuarrie and Ehlers, 2015).  

Surface erosional processes are closely linked to climate through parameters and processes such as temperature, 

precipitation and biological activity (e.g., Antonelli et al., 2018; Starke et al., 2020). Temperature determines the dominant 

surface processes, for example glacial, fluvial or hillslope, and precipitation often determines efficiency as well as its spatial 45 

distribution. Thermochronometry holds the potential to provide a measure of past erosional conditions and therefore how these 

conditions may be related to past climate, and how the coupled system has evolved (e.g., Shuster et al., 2005, 2011; Burbank 

et al., 2003; Reiners et al., 2003; Wobus et al., 2003; Vernon et al., 2008; Thomson et al., 2010a; Thiede and Ehlers, 2013; 

Fox et al., 2015, 2016; Herman and Brandon, 2015).  

 One of the fundamental questions of paleoclimate and its links to Earth processes is how the onset of Quaternary 50 

glaciations affected solid Earth processes including surface erosional efficiency. Glaciers can be very efficient agents of surface 

erosion, and regions of heavy continental or Alpine glaciation have clearly been morphologically modified. Whether 

geomorphic change has a corresponding change in net erosion rates is a more difficult question, although support for a 

Quaternary increase in global erosion rate comes from sedimentological evidence (Molnar and England, 1990; Zhang et al., 

2001; Molnar, 2004). A second open question is whether regions that have experienced Quaternary climate change, but have 55 

remained too warm for active glaciation, have also experienced an increase in average erosion rate, for example through 

increases in precipitation or climate variability (Zhang et al., 2001; Molnar, 2004). Controversy surrounds this question in part 

because many orogens experienced a decrease in precipitation in the Quaternary due to cooler air temperatures holding less 

moisture during glacial periods (e.g., Mutz et al., 2018; Mutz and Ehlers, 2019)  
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Although numerous single site thermochronometry studies have shown increases in Pliocene or Quaternary erosion 60 

rates (e.g., Zeitler et al., 1982; Tippett and Kamp, 1993; Farley et al., 2001; Shuster et al, 2005, 2011; Berger et al., 2008a,b,c; 

Vernon et al. 2008; Glotzbach et al., 2011; Valla et al., 2011, 2012; Sutherland et al., 2009; Thomson et al., 2010a,b; Avdeev 

et al., 2011; Thiede and Ehlers, 2013; Fox et al., 2015, 2016; Michel et al., 2018), the first attempt to conduct a global scale 

analysis was carried out by Herman et al. (2013). Herman et al. (2013) compiled about 17,000 thermochronometric ages from 

around the world primarily from four low-temperature thermochronometric systems, apatite and zircon (U-Th)/He (AHe and 65 

ZHe), and apatite and zircon fission track dating (AFT and ZFT)). In some cases, they augmented these systems with higher 

closure temperature thermochronometers. These data were interpreted to quantify the exhumation rate history of select regions 

distributed globally. A key objective of that study was to apply a uniform treatment of the data using a transient thermal model 

embedded in a Bayesian inverse model (Fox et al., 2014). Using this approach, Herman et al. (2013) found that of sites that 

had enough thermochronometric data to resolve a recent change in erosion rate, over 80% were dominated by an increase in 70 

erosion rate over the past 4 Myrs. These sites included both tectonically active and inactive settings, glaciated and unglaciated 

regions and locations in the northern and southern hemispheres. Although Herman et al. (2013) did not attempt to attribute 

cause to any single locality, they argued that the strong skew towards an increase in erosion rate at such varied localities 

supported a common global phenomenon, mostly likely related to climate change (Zhang et al., 2001). The spatial extent of 

regions directly sampled by thermochronometry with sufficient resolution to establish a change in erosion rate was very small 75 

(Herman et al., 2013, Figure 3). Furthermore, these sites are biased to areas with high erosion rates given that resolution of 

rate changes over the last 5 Ma requires that thermochronometers exhibit ages under 5 Ma. Herman et al. (2013) were explicit 

in their conclusions that their results do not provide an estimate of either modern global erosion rate or past global rates, but 

rather they provided a measure of how rates have changed over the last ca. 5 Ma in these local high-erosion rate regions. The 

fact that sites included a large number of mid-latitude mountain regions with evidence of Quaternary glaciations is 80 

circumstantial support that glacial erosion has contributed to this result, but this was not claimed to be proven by Herman et 

al. (2013). 

However, a recent paper by Schildgen et al. (2018) challenged these conclusions, arguing that the Bayesian inversion 

method employed by Herman et al. (2013) incorrectly interpreted spatial variability as temporal variability, resulting in a 

systematic bias towards an apparent temporal acceleration in exhumation. This contention suggests that not only are the 85 

conclusions of Herman et al. (2013) incorrect, but also calls into question the results of numerous other studies using the same 

method.  

The objective of this paper is to test the hypothesis of recent work suggesting the interpretations of Herman et al. 

(2013) contain a bias. We test this hypothesis by conducting a complete error analysis of the method of Herman et al. (2013).  

The current manuscript is structured into three main parts. First, we provide a review of concepts associated with bias and 90 

resolution inherent to thermochronometry, as well as to methods of data treatment, including the method proposed by Herman 

et al., (2013) and Fox et al., (2014) (Sections 2 and 3). This is necessary to explain potential sources of error and how to test 
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for them. Second, we conduct a series of tests based on synthetic data and a specified, therefore known, erosion rate history in 

order to isolate and identify the sources and magnitude of errors (Section 4). Third, we conduct an interpretation and assessment 

of selected examples from the original Herman et al. (2013) results in order to explain which data were responsible for resolving 95 

the various erosion rate histories, and how these were averaged in space and time (Section 5). Finally, we review the analysis 

of Schildgen et al. (2018) to identify the source of discrepancies between their results and the findings of this paper. We 

determine that Schildgen et al. (2018) made a series of self-reinforcing errors that combined to create the appearance of a 

widespread bias in the original analysis of Herman et al. (2013) that does not exist.  

2. Bias and Resolution in Thermochronometry-Derived Exhumation Rates 100 

2.1 Resolution of erosion rate from thermochronometric ages  

The problem of determining an exhumation history from thermochronometric ages is relatively simple. Expressed in 

terms of a closure temperature, Tc, which is an approximation to temperature-dependent diffusional loss of a daughter product, 

and knowing the geotherm, T(z), the rate of exhumation, or erosion rate, 𝑒, can be expressed as: 

 ∫ 𝑒(𝑡)𝜏

0
𝑑𝑡 = 𝑧𝑐,             (1) 105 

where 𝜏 is the measured age and zc is the depth to the closure temperature below a sample in one dimension. Complications to 

this approach arise from transient geotherms and the cooling rate dependence of the closure temperature (e.g., Graseman and 

Mancktelow, 1993; Mancktelow and Grasemann, 1997; Batt and Braun, 1997; Harrison et al., 1997; Moore and England, 

2001; Braun et al., 2006; Reiners and Brandon, 2006; Willett and Brandon, 2013), but the principle holds for most cases of 

monotonic cooling. A single age can resolve only a single rate of cooling between its time of closure and sampling at the 110 

surface. Resolving more complex (e.g., transient) exhumation histories requires more information.  

Several methods have been proposed for calculation of either cooling rates or exhumation rates from 

thermochronometric data. The simplest method is by using the relationship between age and elevation (Figure 2a) (Wagner 

and Reimer, 1972; Wagner et al., 1979; Parrish, 1983; Fitzgerald and Gleadow, 1988; Fitzgerald et al., 1995). This relationship 

exploits the fact that path length from the depth of closure to the surface increases with elevation. Provided that the closure 115 

isotherm is horizontal, and the exhumation rate is spatially constant over the sampling domain, the relationship is monotonic 

with the slope giving the exhumation rate. Sampling across elevation also requires sampling horizontally, so an important 

assumption is that sample points are closely located in space, typically within a few kilometres of each other, so that 

exhumation rates and the depth to the closure isotherm do not differ between points. Application of this method also requires 

that surface relief has not significantly perturbed the depth to the closure isotherm (e.g., Lees, 1910; Stüwe et al., 1994; 120 

Mancktelow and Graseman, 1997; Braun 2002a, b; Ehlers, 2005).  
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The second method for estimating exhumation rate is by calculation of a cooling rate using more than one 

thermochronometric system (e.g., Harrison et al., 1979; Dodson and McClelland-Brown, 1983; Hurford, 1986). This method 

has a long history of use for metamorphic cooling histories in orogenic belts, where it is referred to as the two mineral, or 

mineral pair method and has identical application to low-temperature systems and erosional cooling to the surface. By using 125 

two thermochronometric systems and taking the difference between closure temperatures and ages, one can calculate a cooling 

rate (Figure 2b). To convert the cooling rate to an exhumation rate requires a thermal model or knowledge of the geotherm, 

and if the geotherm is not linear, variations in cooling rate may not have corresponding changes in exhumation rate. For 

example, if the geotherm is convex upward due to upward advection of heat, a constant rate of exhumation may manifest itself 

as an increase in cooling rate as rock nears the surface. Cooling rates should thus never be directly converted to exhumation 130 

rates, without considering variations in the thermal gradient with depth (Moore and England, 2001). Different closure 

temperatures are used to resolve the time taken to pass from one closure depth to another or from the shallowest closure depth 

to the surface (Reiners and Brandon, 2006) (Figure 2b).  

Resolution of an exhumation rate history from thermochronometric ages is thus determined by the range of ages, the 

number and range of the closure temperature and the distribution of elevation of samples (Figure 1). This description of 135 

resolution differs from other problems in parameter estimation in that the resolution is determined by the value measured, i.e., 

the age, in addition to the location of a measurement. The estimation problem is to determine an exhumation rate in both space 

and time. However, the ages measured at a particular point in space determine how much time can be resolved and the number 

of thermochronometers combined with the elevation distribution determine how many time intervals can be resolved.  

The integral nature of thermochronometric data (Equation 1) implies that even time intervals without ages are 140 

sampled, if not fully resolved. For example, the “Low Resolution” region of Figure 1a contains no young ages within the 

interval, but the older ages at that location constrain the erosion rate over the last time interval. To illustrate this, Figure 1b and 

1c show an example of how a change of erosion rate at 2 Ma would still be resolved by a 4 Ma age, combined with older ages 

and using the two-mineral method. Without ages falling directly on the time of a change in rate, the change is not precisely 

resolved, but it is still detected. In this example, a 4 Ma age would detect an increase or a decrease in erosion rate, but with 145 

half (ignoring the non-linear relationship between age and erosion rate) the magnitude and spread over time.  

A third method for determining a cooling or exhumation rate uses a thermal model that calculates the thermal history 

of exhumed rocks by solving the advection/diffusion equation for prescribed parameters (e.g., rate of exhumation, 

thermophysical properties, and boundary and initial conditions). Application of a thermal model permits estimation of the 

geotherm including depths to closure temperatures, and with this information, single ages (Willett and Brandon, 2013), or 150 

multiple ages with elevations can be combined onto a single equivalent of an age-elevation relationship, greatly increasing the 

time span and details of the exhumation history resolved by data (Figure 2c) (Reiners and Brandon, 2006). 
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2.2 Spatial correlation bias  

In order to increase the applicability of thermochronometers, it is necessary to amalgamate data spatially. Even an 

age-elevation profile is a collection of data across some spatial region. Important questions in these methods are over what 155 

distance is this valid, and are there unintended consequences to spatial averaging? In particular, it has been suggested that 

spatial variations in age can be mistakenly combined to produce an inference of temporal change. For example, if elevation 

and erosion rate covary over some region, amalgamating ages might produce a linear elevation trend, but not one that reflects 

the average erosion rate. With spatial variation in erosion rates, it is possible to combine the ages in a way that would mimic 

an increase in erosion rate with time (Willenbring and Jerolmack, 2016; Schildgen et al., 2018). However, there are many ways 160 

in which thermochronometric ages can be averaged or combined to construct an erosion rate history, so it is important to 

evaluate methods to establish potential bias from specific assumptions. 

To frame this problem, we show a thought experiment in Figures 2d, e, similar to the one set up by Willenbring and 

Jerolmack (2016). Figure 2d shows ages from 3 thermochronometers, exhumed at a constant rate, and set at 3 different closure 

depths. We define three sets of ages, each of which experienced exhumation at a different rate: at the average rate, and varying 165 

from the average by a value of s, but in opposite directions. These data can be regarded as coming from 3 regions, each 

exhuming at a different, but steady rate. For simplification, we will keep the closure depth constant and assume no elevation 

differences for the ages, although a range in elevation is equivalent to independent closure temperatures. The ages define 3 

lines, the slope of each gives the local exhumation rate (Figure 2e). Willenbring and Jerolmack (2016) (their Figure 3) defined 

a deviation in age, rather than exhumation rate, but their example is otherwise equivalent.  170 

There are many ways in which these data can be analysed and erosion rates derived, mostly depending on how much 

variability in the exhumation history one attempts to resolve and with what spatial resolution. If one recognizes that these data 

come from three independent areas, data from each area, i.e., a,b,c or d,e,f, or g,h,i define an exhumation history that is steady 

in time and any regression of age and depth to the closure isotherm gives the correct erosion rate value, with temporal resolution 

determined by how many data are available at each location. If one fails to recognize that these data have independent 175 

exhumation rates, they will be averaged, but there are many ways that this can be done. The simplest way is to average the 

rates from all 9 points shown as Average 1 in Figure 2b. This gives an unbiased, i.e., correct, measure of the regional median 

erosion rate, but with no time resolution. To resolve time variation requires averaging subsets of the data, for example, by 

taking a regression of the data in Figure 2d with a moving window or with a piecewise constant slope. Willenbring and 

Jerolmack (2016) argued that there is a limit to resolution at short times (shown as a fine dashed line in Figure 2d,e) so that 180 

the region below this limit is unsampled. They calculated an average exhumation rate as the expected value of the measured 

rates, integrated at a fixed time, but excluding the region below this limit; their average is shown as Average 2 on Figure 2e.  

However, using a constant time window to average rates (Figure 2d), or to regress closure depth against time (Figure 

2d) presents some statistical problems. Time is not the independent variable in this problem. The time information is entirely 
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from measured thermochronometric ages, which makes time a dependent variable, so one should not regress depth against age. 185 

In fact, if one regresses age against depth (Figure 2d) with a moving depth window, one obtains the correct, unbiased regional 

mean erosion rate (Figure 2e, Average 1). Any change in the average erosion rate will be detected with resolution determined 

by the number of sampled closure depths. 

A second aspect to this problem reflects the fact that thermochronometric data represent an integral quantity, namely 

the integral of the exhumation rate (Equation 1) from the time of closure to the present day. As such, a moving window in time 190 

that includes only ages that fall into that window (Average 2) does not include the constraint provided by the older ages.  For 

this reason, the Average 2 in Figure 2, has to our knowledge, never been used in thermochronometry studies, and methods 

such as that of Herman et al. (2013) that are based on the integral as shown in Equation (1) do not default to this condition. 

Recognizing the integral nature of a thermochronometric age, all data older than a time of interest should be included 

in the determination of the rate across that interval. Applying this method gives Average 3 in Figure 2e. This average is 195 

unbiased at younger times. If there is an upper limit to the closure temperatures or elevation, the average is biased for early 

times that are undersampled at high erosion rates. The bias is downward with respect to the regional average, but only at times 

early in the exhumation history. For example, in Figure 2d, e the average is biased for times prior to the age of point C, the 

oldest age in the region of high uplift rate.  

However, the main problem with the regional averages as shown in Figure 2 is that spatial averaging invariably leads 200 

to cases where it is impossible to fit the data. If data with a common closure temperature and elevation but variable ages are 

combined, a physical model, based on exhumation down a temperature gradient, cannot fit all the data. If an old age is fit well, 

the younger age cannot be fit simply by increasing the cooling rate. A sample at this location has already closed with respect 

to that thermochronometer and as an integral quantity, it cannot go back and close again. This is evident in Figure 2d, which, 

as a plot of age against depth to the closure isotherm should exhibit a monotonic function of age against depth if there is a 205 

common exhumation history. There is no monotonic functional fit to these 9 ages. Variations in either elevation or closure 

temperature will result in ages distributed along one of the three lines in Figure 2d, but does not produce a monotonic function, 

except in the special case where age perfectly covaries with elevation, even across zones of differing exhumation rate.  

What should be clear from this exercise is that bias is not inherent to thermochronometric data, nor is it an inevitable 

consequence of spatial averaging. Bias is inherent to the method used to analyse the data. It should also be clear that the 210 

problems with bias often arise from trying to derive too much information from too few data. If an analysis attempts to derive 

a multistep cooling history from ages using a single thermochronometric dating method and ages have no path length 

differences due to variations in elevation, it will fail. If an analysis is used to derive a regional exhumation rate, constant over 

space and time, any number and value of ages can be used and most analyses will yield an unbiased estimate of the average 

rate. This is a classic trade-off problem in estimation theory. The number of data and their distribution across space and time 215 

must be matched to the complexity of the exhumation history that is to be inferred. In other words, the distribution of the data 
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determines the complexity of the solution that can be resolved as well as any potential bias. Analysis of bias cannot be separated 

from the question of resolution. In the following sections, we present a full bias and resolution analysis of the method of 

Herman et al (2013) to assess method behaviour under conditions of spatial gradients in exhumation rate. 

3.0  GLIDE Inversion Method and Error Analysis 220 

The method of Fox et al. (2014), which we present in the following sections, was designed to combine the principles 

of Figures 2a, 2b and 2c and was used in Herman et al. (2013). This approach is described in brief in this section, along with 

an analysis of the sources and propagation of error in the method. Finally, we examine the potential sources of error in post-

processing treatment of the parameter estimates.  

3.1 Inversion of spatially distributed data  225 

Fox et al. (2014) introduced a method to invert spatially distributed thermochronometric data into maps of exhumation 

rate histories. The method includes a thermal model to predict temperature, closure depths and thermochronometric ages, an 

inversion scheme based on a Bayesian parameter model in which model parameters are assumed to have Gaussian distributions 

about a prior value. Parameter estimates are found as the maximum likelihood solution based on this prior model and assumed 

Gaussian errors in the observed data (e.g., Franklin, 1970; Jackson, 1979; Tarantola and Valette, 1982; Tarantola, 2005; Menke, 230 

2012). This method was implemented in the program called GLIDE (Fox et al., 2014). 

The method is based on a forward model to predict temperature, thermochronometric ages and closure depths. This 

includes a numerical solution to the transient advection-diffusion equation, including the upward advection due to erosion. 

The solution is based on a Crank-Nickolson finite difference method to solve the advection-diffusion equation assuming a 

fixed temperature condition on the Earth’s surface and a fixed heat flux applied at the base of the thermal lithosphere (Fox et 235 

al., 2014). The numerical solution is one-dimensional, but includes the 3-D lateral heat flow induced by surface topography 

(Lees, 1910; Birch, 1950; Stüwe et al., 1994; Mancktelow and Grasemann, 1997; Braun 2002a, b), which is applied through a 

spectral method to solve for an equivalent flat surface with variable temperature. The second part of the forward model consists 

of deriving closure temperatures, which are then related to corresponding closure depths using the thermal model. Closure 

temperatures are estimated using the approach proposed by Dodson (1973), kinetic parameters for the Dodson equation from 240 

the literature (e.g., Reiners and Brandon, 2006), and a cooling rate predicted from the internal thermal model.  

To simplify the estimation problem, Fox et al. (2014) cast the forward problem in a linear form, which is possible if 

the data are defined in terms of depth, rather than time. As a linear problem, it lends itself well to least-squares optimization 

methods (Legendre, 1805). This technique has been often used and significantly developed in geophysics, and it has been 

applied to complex problems (e.g., Franklin, 1970; Lawson and Hanson, 1974; Jackson, 1976, 1979; Menke, 2012; Tarantola 245 

and Valette, 1982; Tarantola, 2005). In the simple, linear form, one equation is defined for each age, but with the full timespan 
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resolved by the age broken into multiple time intervals. The exhumation rates for these time intervals are the unknown 

parameters. This results in an underdetermined problem, in that there are multiple time intervals but only a single age at each 

point. For a single age, the forward model is expressed as: 

𝐀𝒆 = 𝒛𝒄              (2) 250 

where A is simply a vector containing multiple entries of the time interval length, with enough of them to sum to the age, 

including a partial time interval (e.g., Fig 1), e is a vector of unknown exhumation rate values over those intervals and zc is a 

vector for the depth of the closure temperature as determined from the thermal model. The inclusion of the thermal solution 

makes the problem nonlinear, as the advection term of the temperature equation includes the erosion rate inferred from the 

data. However, because the geotherm is always monotonic, this nonlinearity is weak and convergence occurs rapidly with a 255 

direct iteration, particularly if erosion rates do not vary much from the prior estimate which is used as the starting condition.  

 The measured age appears in the problem only as the sum of the vector components of A.  To address the argument 

made above that a single age can only resolve a single time interval, we include a probability constraint on each parameter in 

the form of Bayesian prior information included as a Gaussian prior model, comprising an expected mean value and variance 

for each exhumation rate on each time interval. For the simple, single age problem, this has the effect of providing equal 260 

weighting to each time interval so that the value of e for each time interval is equal and the multiple time intervals act as a 

single time interval. For a multiple age problem, each age provides one row vector that is combined into a matrix A, where we 

link all the individual solutions by assuming a spatial correlation structure that links the exhumation rate for a specific time 

interval, but retains no correlation across time. With the Bayesian prior constraints, the linear optimized solution is defined as  

𝒆𝒑𝒐𝒔𝒕 = 𝒆𝒑𝒓𝒊𝒐𝒓 + (𝐂𝐀𝐭	(𝐀𝐂𝐀𝐭 + 𝐂𝛜)-.)	(𝐳𝐜 − 𝑨𝒆𝒑𝒓𝒊𝒐𝒓)    (3) 265 

where A is a matrix that includes a row for each age, C is the prior covariance matrix, or model covariance, that encapsulates 

the spatial correlation structure; 𝐂𝛜 is the data covariance (which is a diagonal matrix that represents errors on the measured 

ages, converted to an equivalent uncertainty on closure depth); 𝒛𝒄 is a vector of the sample closure depths; 𝒆𝒑𝒓𝒊𝒐𝒓  is a vector 

that represents the mean prior exhumation rate; 𝒆𝒑𝒐𝒔𝒕 is the inferred, i.e., posterior, exhumation rate, which is a vector of 

estimated exhumation rates at each data location for each time interval in A. The exhumation rates are shown as maps of 𝒆𝒑𝒐𝒔𝒕 270 

during each time interval. 

From Equation 3, one can define the ‘inverse operator’, 𝐇, as  

𝐇 = 𝐂𝐀𝐭	(𝐀𝐂𝐀𝐭 + 𝐂𝛜)-.             (4) 

and each element of C is given by  

𝐶(𝑖, 𝑗) = 	𝜎0𝑒𝑥𝑝 :−
1!"
2
;             (5) 275 
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where 𝜎0 , L and dij are the prior variance, the correlation length scale and the separation distance between samples, 

respectively.  These parameters, together with the mean erosion rate for each parameter, constitute the prior model that must 

be specified as part of the inverse model construction. 

 This inverse model formulation thus treats each age as an independent estimate of the closure depth at a single point. 

If two or more ages from different thermochronometers are collocated, they independently constrain their corresponding 280 

closure depth (Figure 2b). Elevation is taken into account as data through its effect on the distance between the closure depth 

and the sample location (Figure 2c). Because there is an underlying thermal model, the relationship between erosion rate, 

exhumation path and predicted age obeys the physical constraint that a rock can only pass through its closure temperature 

once. The imposed spatial correlation on erosion rates links the temperature solutions in space, thereby allowing nearby data 

to be combined either as multiple realizations of the same closure depth, or, if from different thermochronometers, as estimates 285 

of different closure depths, thereby resolving a variable-rate cooling history. 

3.2 Error Analysis 

There are a number of standard methods to assess the quality of a solution. The two metrics used by Fox et al. (2014) are the 

posterior variance and the resolution. The posterior covariance matrix is given by 

𝐂𝐩𝐨𝐬𝐭 = 𝐂 −𝐇𝐀𝐂              (7) 290 

and provides a measure of how the uncertainty on a parameter is reduced from its prior value. The prior is regarded as an 

estimate of the parameter, so following the addition of data, the uncertainty, expressed through this variance, must be lower. 

The diagonal terms of Cpost are the variance of a given parameter, with off-diagonals giving the covariances. As a quality 

measure, we will show the normalized posterior variance, which is the posterior variance normalized by the prior variance, so 

that the mapped quantity for the ith parameter is: 295 

𝜎6 =
7𝑪𝒑𝒐𝒔𝒕𝒊𝒊

7𝑪𝒑𝒓𝒊𝒐𝒓𝒊𝒊
  (8) 

                  

The other quality metric, resolution, needs more explanation. If we take the true solution, the forward model (Equation 2), and 

assume that there is uncorrelated measurement noise associated to each datum, the depth to the closure temperature can be 

expressed as: 300 

𝐳𝐜 = 𝐀𝒆𝒕𝒓𝒖𝒆 + 𝜺, 

where 𝜺 is a vector of noise values, and etrue are the true values of the parameters. 

With the inverse operator, H (Equation 4), the posterior estimate of the parameters from Equation 3 in terms of the true 

parameters is given as: 
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𝒆𝒑𝒐𝒔𝒕 = 𝒆𝒑𝒓𝒊𝒐𝒓 +𝐇𝐀=𝒆𝒕𝒓𝒖𝒆 − 𝒆𝒑𝒓𝒊𝒐𝒓> + 𝐇𝜺, 305 

or, subtracting the true parameters from each side, we obtain the error in the estimate as: 

𝒆𝒑𝒐𝒔𝒕 − 𝒆𝒕𝒓𝒖𝒆 = (𝐇𝐀 − 𝐈)=𝒆𝒕𝒓𝒖𝒆 − 𝒆𝒑𝒓𝒊𝒐𝒓> + 𝐇𝜺,    (9) 

where I is the identity matrix. There are two components to the error. The second term, 𝐇𝜺, represents the propagation of noise 

into the estimate. The first term is what is referred to as the ‘resolution error’ or ‘resolution bias’ in the parameter estimate 

(Jackson, 1979). The closeness of HA to the identity matrix determines the quality of the estimate. If HA is equal to I, and the 310 

noise is negligible, the estimate is equal to the true parameters. If HA is null, or at least has all terms much less than 1, the 

resolution goes to zero and 𝒆𝒑𝒐𝒔𝒕 = 𝒆𝒑𝒓𝒊𝒐𝒓,	meaning the new, posterior estimate is the same as the prior value; we have not 

added information by including the data.  

 The matrix quantity, HA, is thus fundamental to assessing resolution errors, and this is referred to as the resolution 

matrix: 315 

𝐑 =HA.           (10) 

The resolution matrix represents how effectively the model can be inverted to recover the true parameters. Failure to recover 

the true solution is bias, which, if we neglect the error due to noise in the data, can be written as: 

𝒆𝒑𝒐𝒔𝒕 − 𝒆𝒑𝒓𝒊𝒐𝒓 = 𝐑(𝒆𝒕𝒓𝒖𝒆 − 𝒆𝒑𝒓𝒊𝒐𝒓).     (11) 

As with the error expression above, if R is the identity matrix, every parameter is perfectly resolved. However, this will never 320 

be the case, nor is it even ideal. There remains the second term in Equation 9 for the propagation of noise, 𝐇𝜺. To minimize 

this term, H should be as small as possible and it is not possible to satisfy both HA=I and H=0. Furthermore, as posed, the 

thermochronometry problem is massively under-constrained, and the only way to get a meaningful solution is to add additional 

information inherent to age-elevation relationships and multiple thermochronometers by spatial averaging of nearby data.  

 The resolution matrix has dimensions of (m x m), where m is the number of parameters in the problem, i.e., the number 325 

of time intervals sampled by data times the number of data. With reference to Equation 11, there is one row corresponding to 

each parameter estimate. This row has m entries, each entry corresponding to one of the erosion rates at some other location 

and/or another time interval. Again, if that row has only the diagonal value equal to 1 and the remainder of the row were equal 

to zero, the estimate would be exactly correct. The other entries in a row corresponding to erosion rates within the same time 

interval, but at other spatial points, comprise a set of weighting factors that define the spatial averaging for that parameter. 330 

This corresponds to a spatial resolution kernel (Backus and Gilbert, 1968).  The remaining row entries give the contributions 

from other time intervals, either at the same data location or at other locations. These values give a type of leakage of 

information across time intervals, or what Ory and Pratt (1995) referred to as contamination kernels. Both space and time 

averaging are unavoidable and not necessarily bad, but both kernels should be tracked. The spatial resolution kernel is relatively 
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simple as it is dominated by local data, but supplemented by data within the spatial correlation structure. Resolution kernels 335 

typically resemble the correlation function, which falls off exponentially. The contamination kernels are much more complex 

as they reflect the number of data and the ages and thus the time intervals sampled. To simplify portrayal of these large 

matrices, Fox et al. (2014) suggested integrating over the spatial dimension. This collapses the resolution kernel onto the 

parameter point, while keeping the area of the kernel as the value of what we called the temporal resolution. The quantity 

mapped by Fox et al. (2014), Herman et al. (2013) and in this paper is thus not the diagonal of the resolution matrix, R, but 340 

this integrated value. As such, it does not give a measure of the spatial resolution, only a sense of the temporal resolution, that 

is, how well the time interval is resolved in the neighborhood of the point of interest, and how much contamination enters from 

the other time intervals. 

 Another important point regarding models with poor resolution is the nature of the bias. Again, this depends on the 

resolution matrix. The parameter estimate is given by Equation 3 as: 345 

𝒆𝒑𝒐𝒔𝒕 = 𝒆𝒑𝒓𝒊𝒐𝒓 +𝐇=𝐳𝐜 − 𝑨𝒆𝒑𝒓𝒊𝒐𝒓>,       

which implies that the prior information is being treated as data. Expanding, it can be expressed in terms of the resolution 

matrix as 

𝒆𝒑𝒐𝒔𝒕 = 𝐇𝐳𝐜 + (𝐈 − 𝐑)𝒆𝒑𝒓𝒊𝒐𝒓.     (12) 

This shows that the parameter estimate is a weighted average of the data and the prior model, with the weights dependent on 350 

the resolution. At high resolution, R is close to I and the prior plays no role. At low resolution, R is close to zero, H is close 

to zero, and the estimate will go to the prior.   

Perhaps the simplest illustration of how resolution in time reflects parameterization is the effect of time interval 

length. With reference to Figure 1, consider the case of inversion of a single age with no neighbours. If the age falls within the 

youngest time interval, the resolution of that time interval will be equal to 1.0. For example, with time intervals of 10 Ma and 355 

an observed age of 8 Ma, the time interval of 10 to 0 Ma at that location will be well resolved and equal to 1. If, however, the 

same age is inverted with a parameterization including a time interval length of 5 Ma, there are now two relevant time intervals 

(0 to 5 Ma and 5 to 10 Ma) and the resolution of exhumation in each time interval will be 0.5. The estimated exhumation rate 

with each parameterization will be identical; only the resolution value will change. A similar result is obtained with larger 

inversions involving spatial correlation. A larger correlation length will always increase the numerical values of resolution, 360 

whereas the time interval number will always decrease the resolution. This does not imply that the solution is “better” as the 

correlation length increases, nor is it because more data are averaged. It is simply reflecting the fact that the parameter is no 

longer a local exhumation rate, but is a regional average, and is therefore easier to resolve, much as the standard error on the 

slope of a linear regression is always smaller than the standard deviation of the data about the regressed line.  
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 In addition to the resolution errors and the noise propagation errors, there is a third type of error in inverse models, 365 

model error. This refers to errors in the model parameterization and its lack of ability to represent the physical processes giving 

rise to the data. Model error is perhaps the most difficult error to estimate as it emerges as the result of complexities in the real 

world that are intentionally simplified or ignored to make the problem tractable. Often these complexities are unknown, so the 

model error cannot easily be treated through error analysis. For example, if we build a thermo-kinematic model with a structural 

block that is uplifting with a constant rate, but in reality, the region of the model has three independent blocks with different 370 

uplift rates, our model has error. We might obtain the correct average uplift rate with our single-block model, but it is 

impossible to find 3 independent uplift rates with 1 parameter, so our model is biased. Thermo-kinematic models constructed 

so as to have a small number of parameters, e.g., a few tectonic blocks, with fault orientations specified, etc., tend to have large 

model errors because they cannot express the generality of the behaviour needed to fit to data. Underdetermined models, such 

as implemented in GLIDE, where there are more parameters than data (each data point has several time intervals contributing 375 

to its value) tend to have little or no model error from the kinematic parameterization.  

  There are a number of other potential model errors in the thermochronometry inversion problem as used here. First 

is the thermal physics underlying the geotherm calculation. Boundary conditions and initial conditions for the geotherm are 

important unknowns, but are specified, not parameterized, so if specified wrongly they can introduce model error. The effect 

of advection on a geotherm is included, but this is also unknown for the parts of the space and time domain where the upward 380 

velocity is not resolved by age data. A second model error comes through the kinetics of thermochronometric closure to 

daughter product loss. We have used a closure temperature formulation, which is an approximation. Closure temperature has 

implicit assumptions of monotonic cooling and first-order Arrhenius kinetics. Fission track annealing can be approximated by 

first-order kinetics, but not particularly well, and this introduces error. In addition, the kinetic parameters and model for each 

thermochronometric system are assumed and fixed for each model, so complexities such as compositional effects or uranium 385 

damage effects on diffusion or track annealing might not be correctly implemented.  The third potential model error is the 

statistical spatial correlation model implicit to GLIDE. Spatial correlation imposes a smoothness in space on the erosion rate 

and this could fail to capture all the variability in nature and thus introduce bias into the solution. This correlation bias is, 

however, not a simple model error, as it is a “soft” constraint. Smoothness is only through a correlation, not a parameterization, 

so it must be balanced against fitting the data. Depending on the number and quality of the data, where quality is relative to 390 

the strength of the spatial correlation, specified by the prior parameter variance, smoothness may or may not be forced on the 

solution. This is a much weaker constraint than, for example, in, thermo-kinematic models with rigid blocks, where the 

parameterization imposes equivalence instead of correlation within each block. The model bias is thus linked to the resolution 

bias and they must be analyzed together.  

To summarize for purposes of our analysis in the following section, the complete error has 3 components, model 395 

errors, resolution errors, and random noise errors, 

𝒆𝒑𝒐𝒔𝒕 − 𝒆𝒕𝒓𝒖𝒆 = 𝜺𝑴 + 𝜺𝑹 + 𝜺𝑵.     (13) 
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The first two, model and resolution errors, constitute bias and the third is the stochastic noise propagation. The latter two are 

defined in Equation 9. The first two will be analysed in section 4 of this paper. Stochastic noise propagation will not be 

investigated in this study. 400 

3.3 Errors in Post-Estimation Parameter Analysis 

Results of the inversion method described above are typically presented as maps of erosion rate across particular time 

intervals along with the corresponding normalized posterior variance on the exhumation rate and the diagonal value of the 

resolution matrix, integrated over the spatial dimension as described above. In many cases, these model results are subjected 

to additional analysis to increase their utility, and it can be important to document the propagation of error through any post 405 

inversion analysis.  

For example, the study of Herman et al. (2013) was directed towards the question of erosion rate change during the 

Quaternary, so results were summarized by taking the ratio of values across two time intervals, 6 to 4 Ma and 2 to 0 Ma. 

Herman et al. (2013) intended this to be only an illustrative presentation of the results. However, this analysis was generalized 

by Schildgen et al. (2018) into a metric that they called ‘normalized erosion rate difference’, denoted NR in this paper, such 410 

that 

𝐍𝐑 =	 (?)-?*)
ABC(?*,?))

  ,     (14) 

that e2 is the erosion rate in the 2-0 Ma time interval and e1 is the erosion rate in the 6-4 Ma time interval. For this to serve as 

an interpretation tool, it is important that the error and resolution analysis are propagated through this operation, otherwise this 

information is lost, in particular given that the ratio of two variables is a biased operation (Marsaglia, 1965).	Bias in a ratio 415 

follows from the fact that a 1/y function is nonlinear, going to infinity as y goes to zero. A perturbation towards a positive 

value thus has a smaller effect than a perturbation towards a smaller, i.e., closer to zero, number. The effect becomes larger as 

the mean y becomes smaller. The overall ratio is thus biased towards high numbers, with an effect most pronounced where y 

is small.  

In the context of the changing erosion rate problem this means that the normalized erosion rate difference is 420 

introducing a bias towards an erosion rate increase, which is not a good characteristic for a metric when the point of the exercise 

is to search for bias towards erosion rate increases in the inversion methodology. Nonetheless, we will calculate this quantity, 

NR, throughout this paper. However, we will provide a corresponding quality measure by propagating the posterior parameter 

variance into this metric. This is difficult to do for a general posterior distribution, but we can derive an expression if we 

assume that the erosion rates have variances that are Gaussian and correlated, so that correlated variables, E1 and E2, with 425 

expected values,	𝑒.  and 𝑒0 , variances, 𝜎.0 , 𝜎00 , and covariance, 𝜎.,0 , one can find an approximation of the variance and 

covariance of a function of the variables from the Taylor Series expanded about the expected value of the function. Provided 

that the expected value of the function is the function evaluated at the expected value, the variance is approximated by 



 

15 
 

𝜎0 	= 𝐸{[𝑓0E(𝑒0, 𝑒.)(𝐸0 − 𝑒0) + 𝑓0E(𝑒0, 𝑒.)(𝐸. − 𝑒.)]0} 

				= 𝑓0E0(𝑒0, 𝑒0)𝜎00 + 2𝑓0E(𝑒0, 𝑒.)𝑓.E(𝑒0, 𝑒.)𝜎.,00 + 𝑓.E0(𝑒0, 𝑒.)𝜎F0               430 

Note that we drop the maximum value evaluation for simplicity, assuming that E2 is the larger value. The alternative case 

where E1 is larger is easily reproduced following the same analysis. This gives the function: 

𝑓(𝐸2, 𝐸1) = G)-G*
G)

       

With the first order Taylor expansion for f about the mean, and partial derivatives 

𝑓0E =
G*
G))

 ,         435 

𝑓0E =
-.
G)

 .         

We obtain the variance of the function (Equation 14) as: 

𝜎0 = 𝑒.0𝑒0-H𝜎00 − 2𝑒.𝑒0-I	𝜎.,00 + 𝑒0-0	𝜎.0     (16) 

As is the case with the bias in the expected value of the ratio, the variance of the normalized erosion rate difference scales with 

the mean erosion rates raised to some negative power.  Thus, it is very sensitive to the estimated exhumation rates, and will 440 

grow rapidly in regions where the function values are small. The variance goes to infinity as the erosion rate goes to zero. This 

analysis does not provide an estimate of the bias, but at least the variance estimate will give a sense as to where the NR has 

introduced the largest bias.  

4.0 Synthetic Data Tests for Resolution and Model Errors 

One of the fundamental tools for analysis of an inverse model is to generate synthetic data using a forward model and 445 

then to invert those data to investigate how effectively the original parameters can be recovered. A careful model construction 

with a suite of experiments is capable of evaluating sources as well as magnitudes of error. In this section, we present a 

comprehensive set of tests, designed to isolate and identify sources of error in the GLIDE method for erosion history estimation. 

4.1 Synthetic Data Tests and Sources of Error 

We demonstrated above (Equation 13) that errors can be classified as one of three types, (1) model bias, (2) resolution 450 

bias or (3) propagated noise from observed data. In this paper, we will ignore (3), although these errors can be important for 

estimation problems, especially for low quality data. Model bias (1) is difficult to identify in natural cases, but in a synthetic 

test, it can be identified by eliminating resolution errors and noise errors, for example, by using many, accurate, data. The most 

important error is likely to be resolution bias (2). Resolution bias is a function of the data distribution in space and time and so 

can be assessed by constructing and comparing multiple data sets, as well as by examining the resolution matrix structure. 455 
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Synthetic data models have been used in two studies to analyse errors in the GLIDE inversion method. Fox et al. 

(2014) showed one model with two contrasting zones of uplift and showed very good recovery of the original parameters. In 

contrast, Schildgen et al. (2018) presented three forward-inverse tests (their Figures ED 2, 4, 5) in which they found very large 

errors identified as a difference between the input and inferred parameters. It is important to determine whether the errors 

identified by Schildgen et al. (2018), and referred to as spatial correlation bias, are model errors or resolution errors, because 460 

the tests for each type of error are different. Model errors should not be dependent on the quantity or quality of the data.  A 

model error cannot be eliminated by adding more, or higher quality data. It represents a failure of the model to represent reality, 

not a failure of the data to recover that reality, so no amount of data will eliminate the error. On the other hand, if errors are 

resolution errors, one must analyse the characteristics of the data distribution in space and time to assess under what conditions 

these errors arise. The presence of large resolution errors in one model or one data set cannot be generalized to other models 465 

or other natural data sets, because resolution errors are unique to the distribution of the data in space, elevation and, foremost 

in the thermochronometry problem, the values of the ages. Resolution errors can be recognized by high sensitivity to data; if 

the addition or removal of data changes the result, it suggests that there are significant resolution errors so that additional data 

will improve the estimate. In the following sections, we conduct a complete error analysis, separate model bias from resolution 

bias, and establish the importance of each. 470 

4.2 Synthetic Data Tests for Model Errors in Correlation Structure 

Model errors are any errors arising from the construction of the forward model and its inability to correctly predict 

the data.  For example, the correlation structure implicit to GLIDE could produce an overly smooth erosion rate function that 

does not fit the age data; this would constitute a model error. Errors in the thermal model would be another type of model error, 

and we will investigate this in section 4.5. For brevity, we will not investigate systematics in the closure age calculations or 475 

other potential model errors.  

 Testing model errors in GLIDE is complicated by the fact that GLIDE is not strictly linear (section 3.1). The geotherm 

calculated in GLIDE depends on the erosion rate for the advective component to heat transfer. Its inclusion requires an iteration 

in order to solve simultaneously for the temperature, the advection and the erosion rate. The non-linearity is not strong because 

the geotherm is always monotonic and at low erosion rates advection is negligible. However, in a synthetic data test, it creates 480 

a complex response to errors from other causes, complicating interpretation and isolation of errors, particularly because the 

main test of our analysis includes an extreme erosion condition with 36 Myr of erosion at 1 mm/yr. To simplify the problem, 

we start our analysis with a suite of models that removes this nonlinearity by fixing the geotherm for the full model simulation. 

Later in this paper, we will restore the transient geotherm calculation to show how the nonlinearity affects the error. By 

breaking the models into these two sets of experiments, we can more accurately isolate the source of errors. 485 

 To evaluate errors, we construct the same test presented in Figure ED2 of Schildgen et al. (2018), referred to as the 

Western Alps case. This model has two regions, each with different, but constant and steady exhumation rate and separated by 
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a vertical fault crossing the domain diagonally. The true solution is shown by the colour of the inset boxes in Figure 4a, d and 

is 1.0 mm/yr in the NW and 0.25 mm/yr in the SE.  Six synthetic data sets were constructed using up to 5 thermochronometric 

systems and either the fixed geothermal gradient model (Figure 3 a,b,c,d) or the full transient thermal model (Figure 3e,f). The 490 

model topography is taken from a region of the western Alps and the sample age distribution roughly corresponds in pattern 

to the Alpine data set. 

To isolate model errors, it is necessary to remove resolution errors. With reference to Equation 9, resolution errors 

can be eliminated by one of two ways, either by obtaining a model with R=I or by setting eprior=etrue. Either of these will result 

in nullifying the entire contribution of the resolution errors. Because we have no data errors (measurement noise), the only 495 

remaining errors will be the model errors (Equation 13).  

As a first test (Figure 4), we attempt to produce a model with R=I. In principle, this requires an infinite number of 

data, but it will be adequate to simply use a large data set, with ages distributed across the time span of interest (Figure 3a). 

The first model results are shown in Figure 4. These show that the parameters are recovered very well with this data set. The 

largest errors are in the peripheral regions that have no data, suggesting that these errors are due to inadequate data coverage, 500 

and so constitute resolution errors. For a perfect test for model errors, we should add more data to these regions. Similarly, 

some smoothing of the solution is visible across the fault boundary, but this occurs primarily where there are no ages near the 

boundary on one side or the other of the fault. This smoothing extends less than one correlation length into the adjacent domain 

and occurs in all time intervals nearly equally, i.e., both the 2-0 Ma and 6-4 Ma time intervals have a small amount of 

smoothing, so that the net result with respect to inferred acceleration (Figure 4g) is zero. In fact, there is no trace of spurious 505 

acceleration in either the high uplift or the low uplift region throughout the model. We calculated the normalized erosion rate 

difference (NR) (Equation 14); values are all very close to 0 throughout the domain (Figure 4g). Interestingly, the variance on 

the NR is very large in the lower right half of the domain. This is due to a combination of the lower resolution of this region 

and the low erosion rate given the dependence of the variance on the erosion rate (Equation 16). Also interesting is the lack of 

any acceleration in the low erosion rate domain. There are no ages younger than 6 Ma in this domain so it does not have ideal 510 

resolution, similar to the left side of Figure 1 with poor resolution for the last 6 Myr. Although we are mainly addressing model 

errors, this example indirectly addresses the resolution question. According to the spatial correlation hypothesis, the well-

resolved, high erosion rates of the upper left region should be averaged into the late time intervals to the lower right region. 

This has not happened in spite of the low resolution.  This is an illustration of the importance of the integral nature of 

thermochronometric ages (Figure 1). Older ages constrain the integrated erosion rate at their location, so any inappropriate 515 

averaging of the high erosion rates to the NW into the solution in the SE, would result in a misfit to these ages. 

 For this first test, the smoothing errors that do occur are a function of the spatial correlation, but only weakly. In 

Figure 5, we show another version of the model of Figure 4, using the same data set (Figure 3a) but with a longer correlation 

length of 100 km, compared to 30 km in Figure 4. The results are only slightly different. In fact, the solution in the peripheral 

regions is improved with the larger correlation length. There is likely more smoothing around the diagonal fault, but the 520 
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difference is so small that it is not readily visible in Figure 5. Resolution is higher, but this is because of the definition of the 

parameters as regional averages, not as local erosion rates. Even with a strong spatial correlation, there is no inappropriate 

averaging of the high erosion rates into the region of low erosion rate. Therefore, there is no spatial correlation bias, no 

inappropriate spatial averaging, and no spurious acceleration. 

As a second test for model error, we eliminate the resolution error by the second method, i.e., setting the prior model 525 

equal to the known, true solution. From Equation 9, this assures that the resolution errors are zero, and we are left with only 

model errors. The previous model used a data set with very high density in order to force the resolution matrix to be close to 

I.  In this second test, high resolution is not needed, so we use a sparser data set, shown in Figure 3c. This is not a trivial test. 

There is no reason why a model with the correct prior will obtain a posterior solution that is exactly the same. In fact, this is 

one of the best tests for model bias, because if the test shows errors, these errors indicate a failure in the model, not errors or 530 

inadequacies in the data. For example, if the correlation structure is forcing excessive smoothness onto the solution, this will 

emerge as error in this test. Results are shown in Figure 6 and are conclusive; there is essentially zero error in this model. Even 

the peripheral regions with no data, that were not well fit in Figure 6, show no error. The model shows that there is no model 

bias associated with the spatial correlation structure. If there are errors in the inversion methodology, they are linked to the 

resolution of the data and thus to the data distribution. This result establishes that the real issue in these and, likely, most 535 

thermochronometric models, is in determining how many data, and in what configuration, are required to constrain a solution 

and how to recognize and bound resolution errors. This is the subject of the next section. 

4.3 Synthetic Data Tests for Resolution Errors 

The tests in section 4.3 showed conclusively that there is no model bias in the method of Herman et al. (2013). 

However, an estimation problem with sparse data such as most thermochronometry problems will be dominated by resolution 540 

errors, and model behaviour with sparse data is a much more interesting and important question. In this section, we conduct a 

suite of tests to determine any potential systematics in resolution errors in the GLIDE inversions.  

Resolution errors are easy to calculate, but difficult to generalize, because each natural or model data set has a unique 

distribution in space, elevation and time and therefore unique resolution errors that must be evaluated individually. In the 

current problem, we are trying to estimate a field quantity (erosion rate) over two spatial dimensions and time, so this is a 545 

three-dimensional estimation problem. It is further complicated by the fact that time resolution is controlled entirely by the 

value of the thermochronometric ages, so we have no experimental control on time resolution, other than by application of 

different thermochronometers with different closure temperatures. Age variations with elevation increase the time range and 

are equivalent to having multiple thermochronometer samples with different closure temperatures in this regard, but we will 

not extensively investigate this aspect of the problem. Given the complexity of possible data characteristics (number, spatial 550 

distribution, elevation distribution, closure temperatures, a proper analysis of any specific erosion rate function requires tens 

to hundreds of experiments. However, by conducting models with a variety of data sets reflecting a range of data sparsity, we 
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can establish the general behaviour of the system and should detect any sort of systematic errors such as, for example, a 

common tendency towards false acceleration.  

There is a second purpose to these models. Now that we have established that errors will be errors of resolution, we 555 

should assess how well our posterior metrics of resolution and variance characterize this error. Knowing where we have error 

is in some ways more important than the error itself, as this determines the utility of the analysis in the real world where we 

do not know the “correct” answer. We would like to know how well we are able to bound our estimates and where they are 

unreliable. 

The results in Figures 4 and 5 have already told us something of the importance of resolution. They provide evidence 560 

that with good data coverage, we will recover the proper solution with little bias. In fact, the models in Figures 4 and 5 are not 

particularly high data density. The SE corner has no ages under 6 Ma, which implies poor resolution for the 6 Ma to 0 Ma time 

interval. The high uplift region is well resolved because we generated ages for 5 independent thermochronometers with 

different closure kinetics. The synthetic data are well distributed across time to resolve the temperature history over the last 10 

Ma (Figure 3a). There is also an increase in age range for each thermochronometer due to the elevation spread, and this 565 

provides additional resolution through the age-elevation relationship.  However, prior to the oldest age in the high uplift area, 

there is no information, so local resolution goes to zero, and there will be a transition from poor to good resolution through 

time. 

We illustrate the importance of age range by conducting inverse model experiments with a second, sparser data set to 

test the impact on parameter recovery, error, and posterior statistics. Figure 7 shows an inversion experiment using Data Set B 570 

(Figure 3b and Table 1) which has a good age distribution, but very few data distributed across space. In spite of the sparsity 

of data, the solution recovery is very good, with the central region around the data accurately estimated. Peripheral regions are 

again poorly resolved, but there is no false acceleration emergent from these errors.  

The importance of the posterior statistics becomes apparent with this model. The region of well-resolved erosion rate 

in the 2 to 0 Ma time interval is small and the high values of the resolution statistic surround the data well (Figure 7b). The 575 

maximum resolution is about 0.6, but values of about 0.4 define the accurate solution. The reduced variance plot (Figure 7c) 

is more conservative and indicates only a few points where the variance has been reduced to below 0.5. The erosion rate in the 

6 to 4 Ma time interval is poorly resolved with almost the entire model under a value of 0.4.  

We constructed another data set (Set C) with better spatial coverage, but poor temporal coverage (Fig 5c) to 

demonstrate how resolution is dominated by the values of the ages (Figure 8a). Data Set C has no high temperature 580 

thermochronometers, so all ages in the high uplift zone are less than 6 Ma. Losing the high temperature systems seriously 

degrades the quality of the solution. Time intervals older than 6 Ma are almost fully unresolved. The solution accuracy matches 

the resolution, with a reasonably good solution in the 2 to 0 Ma time interval and a poor solution in the other time intervals. In 

the slow uplifting region, the solution is uniformly poorly resolved, but not highly inaccurate.  
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The poor resolution of this model is useful to demonstrate another important characteristic of Bayesian models, such 585 

as GLIDE. As shown in Equation 12 as the resolution goes to zero, so does the inverse operator and the solution will revert to 

the prior solution. This is what we observe in Figure 8a, where the prior model has a uniform value of 0.35 mm/yr. Everywhere 

in the model where the resolution is low, the erosion rate reverts to a value of 0.35 mm/yr. This is particularly apparent in the 

earlier time intervals where there are no ages controlling the rate; the erosion rate here has nearly uniformly taken the prior 

value. The corresponding resolution is near zero and the variance is not reduced below its prior value, so it is clear that this is 590 

not a resolved parameter. We confirm this finding by running the same inversion, with different values of the prior erosion 

rate. Figures 8b and 8c show models with Data Set C and all other parameters as in Figure 8a, except that the prior erosion rate 

is set to 0.65 mm/yr and 1.65 mm/yr, respectively. The differences between these models demonstrate the influence of the 

prior on the estimate. The regions of the model with low resolution are sensitive to the prior, but the bias depends on why the 

resolution is low. If there are no older ages constraining a time interval, as in Figure 1a, right column, the solution takes a 595 

values at or near the prior. If, however, resolution is low, but there are still older ages constraining the average erosion rate, as 

in Figure 1a, left column, the solution takes an average erosion rate consistent with the older ages. If there is a dependence on 

the prior model, it is weak.  Regions with good resolution, for example the central part of the high uplift region from 2 Ma to 

0 Ma, have little to no dependence on the prior. The solution in these areas is robust in that time interval. However, in the high 

uplift region the earlier time intervals are poorly resolved; even the 6 to 4 Ma interval has no point with resolution higher than 600 

0.4 and at this level of resolution, it still shows sensitivity to the prior model. The low erosion rate region is less sensitive to 

the prior because the ages, which are all over 10 Ma, constrain the average erosion rate over these time intervals. However, 

individual time intervals are not resolved. Given the sensitivity to the prior and the low values of resolution and variance, the 

low-erosion rate region in these models should be regarded as unresolved, whereas parts of the high-erosion rate region could 

be regarded as marginally acceptable.  605 

The model of Figure 6 can be included with the models of Figure 8 to define a suite of four examples where the only 

inversion parameter that has changed is the prior value of the erosion rate. Note that the resolution and posterior variance do 

not change between these four models, because these metrics depend on the data, and the prior variances, but not the prior 

erosion rate.  The same is not true for the variance of the NR, because of its dependence on the value of the erosion rates. 

Surveying the solutions of all four of these models, we see that the range of outcomes for the NR is very wide from no 610 

acceleration (Figure 8) to acceleration everywhere (Figures 8 a, b) to neutral or deceleration in the high uplift zone with 

acceleration in the low uplift zone (Figure 8c). This range of behaviour is the result of combining the poorly resolved 6 to 4 

Ma interval with the well-resolved 2 to 0 Ma time interval. The former depends on the prior model and the latter is reasonably 

robust and accurate. Although interpretation of the NR with this variability would be problematic, this problem is largely 

avoidable by noting the error in the NR. The variance in the NR is almost always large indicating that the values entering the 615 

ratio have large uncertainty and so the NR itself is highly uncertain. The low uplift rate region never has a standard deviation 

under 0.5, indicating that the NR is never resolved in this region. The high uplift rate region has a lower standard deviation on 
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the NR and could be considered to be on the edge of resolved, and in fact it is these regions that appear resolved by the other 

metrics as well. The solution is moderately accurate here, although there are still dependencies on the prior, so we would 

interpret this solution as marginally reliable.  620 

As a final test of resolution errors, we directly test the influence of the ages from the low-uplift rate region on the 

high-uplift rate region by removing all ages from the low-uplift rate region and inverting the remaining ages. This should 

remove any spatial correlation bias, leaving only resolution bias. For this test, we constructed an additional synthetic data set 

that had a more uniform spatial distribution to illustrate spatial smoothing effects without a superimposed data density effect 

(Set D) (Figure 3d). Figure 9 shows three models using this data set.  There are two models in the leftmost columns using the 625 

full Data Set D, but different values of the prior erosion rate of 0.35 mm/yr and 1.0 mm/yr. Resolution and reduced variance 

do not depend on the prior erosion rate, so are applicable to both models.  On the right is a model with all data removed from 

the low-uplift rate region. This model has a prior erosion rate of 0.35 mm/yr. We do not show the corresponding model with 

the half data set and a prior of 1.0 mm/yr because it returns exactly and uniformly the correct erosion rate of 1.0 mm/yr. To 

provide a more complete temporal view, we show 7 time intervals reaching 14 Ma, where the first ages appear in the high-630 

uplift zone. The full data model evolves much as the other models above. The fast uplift rate region has no resolution in the 

early history because there are few or no ages that sample this part of space-time parameter space. Solutions depend strongly 

on the prior value and resolution and variance reduction characteristics are low. As time progresses and ages begin to appear 

in the fast-uplift area (12 Ma to 6 Ma), the resolution increases, and the accuracy of the inferred erosion rate increases. By 6 

Ma, there are sufficient ages on each side of the fault, so that the erosion rate is correctly inferred. There is smoothing across 635 

the fault, but this error diminishes as resolution increases at younger times.  

The right 3 columns of Figure 9 show the estimated erosion rates for inversion of only the data in the NW (high 

erosion rate) region. The result is almost identical to the model with the full data set and low prior (compare columns 1 and 5). 

Both solutions still have large errors in the early timesteps where there are few data constraints, but their similarity indicates 

that these are resolution errors, not spatial averaging errors. There are differences in predicted erosion rates, but these are 640 

limited to the immediate proximity of the fault (less than one correlation length). As in other models of our paper, the spatial 

correlation errors are largest where there are no data near the fault, indicating that the spatial correlation is not averaging age 

data so much as interpolating empty space between the data. Spatial smoothing is also visible in the high prior, full data set 

model, again limited to the immediate vicinity of the fault. There are much larger errors in the low erosion rate region, but 

these are resolution errors in the half-data set model, introduced by the removal of all data from this region. 645 

4.4 Tradeoffs and Age Misfit 

Estimated erosion rates in the GLIDE model represent a balance between three factors: (1) fit to the age data, (2) 

consistency with the prior probability model, and (3) averaging with nearby data in space. A parameter estimate is a weighted 

average of these three types of data where the weights are a function of the correlation length parameter, the data variance 
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(assumed errors in the ages) and the prior erosion rate variance. In particular, the averaging between the prior model and the 650 

data is controlled by the ratio of the data variance to the parameter variance, which serves as a regularization or damping 

parameter for the problem. We saw above that in the absence of data constraints, the parameters revert to the prior model. 

Similarly, if the data number or quality goes to infinity, the ratio between the data variance and the prior variance is small and 

the solution will be required to fit the data. This suggests an additional test that can be conducted to estimate the relative 

importance of spatial smoothing or low-resolution reversion to the prior model. Data residuals, that is the difference between 655 

predicted ages and observed ages, provide a metric for relative weighting between data fit and the other two factors, spatial 

smoothing and fit to the prior.  

We demonstrate this characteristic with the age residuals from the full-data model of Figure 9; residuals are shown in 

Figure 10a.  As we discussed with reference to Figure 2, it is not possible to fit different ages with a common temperature 

history if they have the same elevation above the closure isotherm, so where spatial averaging is occurring, it appears as a 660 

difference between predicted and observed ages. This is also true for errors resulting from excessive weight on the prior. Where 

the prior model is pulling the parameter estimate towards a false value, the age will no longer be fit. Figure 10a shows two 

groups of large residuals in age. These correspond to the youngest ages in the low erosion rate zone and the oldest ages in the 

high erosion rate zone. The residuals are opposite in sign. The misfit of the low erosion rate ages is a spatial correlation effect. 

The predicted ages are too young, because of smoothing of the high erosion rates into the low erosion rate zone, during the 665 

late timesteps when resolution to the SE is low. The large residuals all come from data close to the boundary fault where one 

can see the erosion rate errors as edge smoothing in Figure 9; ages in this region are misfit. The residuals in the high uplift 

region are different. They include the spatial correlation errors, but also a bias to the prior given that the prior erosion rate is 

low. We can try to separate these by changing the prior model. However, rather than changing the prior erosion rate which has 

a large effect on the estimated parameters, we ran a new model where we increased the prior variance on the erosion rate. By 670 

increasing the variance, the influence of the prior is reduced and the relative weight of the age data is increased. The residuals 

for this model are shown in Figure 10b. The misfit to the ages in the low erosion rate region is unchanged, but the residuals in 

the high uplift region are now close to zero. This indicates that we have obtained a more accurate solution with decreased 

weight on the prior, identifying that the errors in the high-erosion rate region were dominated by resolution errors and bias to 

the prior. The prior variance in all the models so far has been small (standard deviation of 0.1) which implies a strong influence 675 

of the prior on low resolution timesteps.  

The large residuals reflect the transition from poorly resolved timesteps to well-resolved timesteps. The model of 

Figure 9, as well as several of the models using Data set A have inaccurate parameter recovery for the high uplift rate zone in 

the 6 to 10 Ma range. This is surprising given that the model included a relatively large number of ages across this interval. 

An explanation is provided by the data residual analysis. The ages that are misfit in Figure 10a are in this 6 Ma to 10 Ma range. 680 

It is apparent that the estimated solution has a strong tendency to stay at the prior value rather than fit these ages. During the 

early history, there are no ages to constrain the high uplift rates, so the solution stays at the low value of the prior. During 
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progressively younger timesteps, the high uplift zone ages begin to appear and pull the solution towards the correct, high value. 

But during this transition (approx. 10-6 Ma in this model) the number of ages is insufficient to counter the weight of the prior. 

Only as more young ages come into the problem (approx. 8-4 Ma) can the ages pull the solution fully from the prior to the 685 

correct value. The number of ages required to obtain an accurate solution is large compared to most natural examples, but this 

is a consequence of the extreme conditions of this synthetic model. In the high uplift zone, the true erosion rate is 7 standard 

deviations away from the prior erosion rate for the full 30 Ma of the model run. These conditions place a strong demand on 

the data in order to balance the effect of the prior model which is far from the true solution. Even the tens of data present in 

Data Set A or D over the 6 to 10 Ma window were not sufficient.  By increasing the prior variance (Figure 10b), we have 690 

reduced the weight of the prior; the ages are again fit, and the erosion rates are estimated accurately. Most natural cases, 

without such an extreme erosion rate history, would require fewer data to counterweight the prior and obtain the correct 

solution. Normally in a model study with such a large variation in erosion rates, we would have increased the prior variance 

so that fewer data were needed to achieve an accurate solution, but we thought it important to keep the inversion conditions of 

Herman et al. (2013), even for these extreme models. As is always the case, an artificial model cannot be directly translated 695 

into a prediction of behaviour in a natural case. What can be taken from these models is that there will always be a transition 

between a poorly-resolved time interval, where an estimate is influenced by the prior model and a well-resolved interval where 

age data is sufficient to constrain the solution to the correct solution. Where that transition is depends on the number and 

precision of data, and the relationship between the true solution and the assumed prior model, and must be estimated on a case-

by-case basis from characteristics such as resolution metrics and data residuals. 700 

An important caveat to all the models in this section is that the analysis applies only to the case where data are accurate 

and consistent with the forward model. In nature, this will not be the case as there will always be differences in cooling 

processes or diffusion kinetics that are not accounted for in the model. In this case, estimated parameters may be pulled in 

directions other than to the prior or to the true solution. For this reason, some regularization of the model and misfit to the data 

is always desirable. 705 

4.5 Synthetic Data Models for an Erosion Rate Gradient 

The models thus far have all considered the case of a sharp discontinuity in erosion rate. The other common case, 

hypothesized to be important in creating false inferences of erosion rate increase, is a gradient in erosion rate and thus age. We 

reconstructed a simple example of a gradient model by generating ages using a constant gradient of erosion rate from 0.1 to 

1.0 mm/yr across a 90 km domain (Figure 11b). We generated ages using 4 thermochronometers, but no variations in elevation. 710 

Data were generated on a regular grid to avoid non-generalizable effects arising from randomized positions and elevations. 

This model is effectively one-dimensional, but we portray results in map form to be consistent with the other models. A fixed 

geotherm was used to avoid model errors. Results are shown in Figure 11, with additional models in Appendix A. The true 

solution is recovered nearly perfectly over the last 6 Ma. As with the other models, as resolution deteriorates back in time, the 
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solution reverts to the prior parameters (Figure A2). We constructed a suite of models using subsets of the data and changing 715 

the prior model and correlation length (Figures A3-A6). In all cases, in the absence of data constraints, the solution reverts to 

the prior, but there is no evidence of spatial correlation errors. Larger correlation lengths actually improve the model 

predictions, which is not surprising given that a constant gradient in a function corresponds to perfect spatial correlation. 

Interesting to these models is that it is the older, zircon ages that provide the best constraints on the erosion rate history. The 

absence of young ages does not lead to large errors in the case where the exhumation rate is steady. Provided that there are 720 

older ages to constrain the long-term average exhumation rate, there is no tendency to a false acceleration (Figure A4).  

These models are consistent in their result. There is no visible effect of spatial averaging and no false inference of an 

increase in erosion rate due to spatial averaging along the age gradient. There are resolution errors for early time intervals that 

are poorly sampled by ages, where the solutions revert to the prior model, but for young timesteps that are poorly resolved, 

but have older, high closure-temperature ages, the solution remains accurate because it is constrained by the older ages that 725 

provide an integral constraint on the erosion rate. This result reflects the two principles we expressed above. First, correlation 

is not equivalence and a linear variation in erosion rate implies perfect correlation of erosion rates, without requiring that they 

be equal or averaged. Second, erosion rates cannot vary to fit neighbouring ages without a large misfit to local ages. For a 

steady erosion rate with a spatial gradient, any temporal variations in erosion rate that do not satisfy the integral constraint will 

result in age misfit, so there is no statistical advantage in creating an erosion rate history with a false increase in rate.  730 

 

4.6 Synthetic Data Models for Errors in the Thermal Model 

All models above use a thermal model that has been simplified from the normal, transient model incorporated into 

GLIDE.  This was done to remove the coupling between the thermal model and erosion rates that can lead to complex error 

propagation. At low erosion rates, heat advection is small and the effect on the geotherm is small, but the test model we are 735 

using includes a region with an erosion rate of 1 mm/yr for 36 Myr, so the advective component of the heatflux is large and 

the geothermal gradient increases by a factor of nearly 4 (Figure 3). This is extreme compared to the real world where such 

large erosion rates are rarely sustained for long, but as a test case, extreme conditions are acceptable. However, unless the high 

uplift area has thermochronometers with very high closure temperatures, ages are unlikely to exceed 15 Ma (Figure 3) which 

leaves the first 20 Ma of the thermal history unconstrained. In the absence of data constraints, the erosion rate reverts to the 740 

prior value. For any synthetic test with a low prior erosion rate, the geothermal gradient will be badly in error, leading to errors 

in the erosion rate. Geotherm errors are primarily a non-linear, and often negative, multiplier to errors in the erosion rate. For 

example, if erosion rates early in a thermal history are too low because of a low prior, the geothermal gradient will be too low 

and the late history erosion rates will be too high to compensate and fit the data ages.  

 To demonstrate some of these effects, we generated two synthetic data sets using the full transient model internal to 745 

GLIDE (Set E, F Figure 3e, f). Set E has good temporal coverage in the high uplift region, but poor coverage of the low uplift 
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region. Set F has poor spatial coverage for the entire domain. To demonstrate that the thermal model does not introduce any 

model errors, we first invert Data Set E with the prior model set equal to the true solution. As above, and following Equation 

12, this eliminates the resolution errors leaving only model error; results are shown in Figure A6. As in all other models with 

the prior solution set equal to the true model, the true solution is recovered nearly perfectly, so there are no model errors or 750 

method bias. By setting the prior model to the true model, the thermal model is now correct, meaning that it is equivalent to 

the model used to generate the ages, so there are no model errors arising from spatial correlation, data smoothing, the geotherm 

calculation or other sources related to the model. Any errors in subsequent models are due to data inadequacy, i.e., resolution, 

and resolution errors amplified by subsequent errors in the thermal model.  

 As a second experiment, we inverted Data Set E using a prior erosion rate of 0.35 mm/yr (Figure 12). The data 755 

distribution and number in this model is close to that of Data Set A, so we expect the resolution errors to be small (see Figure 

6), but errors are considerably larger. The difference is the amplification due to model error in the geotherm. Errors are largest 

on the high uplift side of the fault, but are present on both sides. Estimated erosion rates are significantly larger than the true 

values. This is a consequence of an estimated geothermal gradient that is too low. Although the errors are large, they produce 

a false deceleration, not an acceleration. This indicates that, not only is the average gradient in the geotherm incorrect, but also 760 

the curvature is incorrect. Because of the error in the geothermal gradient and curvature, a low prior (as used in Herman et al., 

2013) is likely to produce a false deceleration in regions of sustained high uplift, although we would not over-generalize this 

result. 

  As an additional test of mixing resolution errors with model errors, we decimated the test-data set to make a sparse 

data set, although we kept the temporal range appropriate for the time range of interest (Figure 3f). Inverting with the low prior 765 

value (Figure 13) gave a result similar to Figure 12, although the spatial domain was much noisier, with highs and lows 

depending on the data locations and values. Where Figure 12 shows a uniform deceleration, Figure 13 shows a mix of 

acceleration and steady regions, with the best resolution indicated for the steady regions. Resolution metrics show that the 6 

to 4 Ma time interval is only marginally resolved, whereas the 2 to 0 Ma time interval is well resolved.  

Thermal model errors are difficult to identify in the posterior statistics. A systematic geotherm error does not appear 770 

in either resolution or posterior variance metrics and regions that these metrics indicate as well-resolved can have very large 

errors. This is different from the resolution errors, which were well characterized. The best solution to this problem in natural 

problems is to minimize model errors by calibrating the final geothermal gradient against modern heat flow measurements 

(Willett and Brandon, 2013). In some cases, pressure-temperature-time constraints from metamorphic assemblages might serve 

the same purpose, but the time component is necessary if the geotherm is transient. In the synthetic data models of this paper, 775 

we could have calibrated each model to the final gradient used to generate the ages and we would have obtained much more 

accurate models, but following the methodological principle of isolating error and variables, we chose rather to hold the initial 

condition constant for all models. Again, we would like to emphasize the point that the synthetic data models presented here 

are not intended to simulate actual applications, nor do they represent the way in which the inverse model would be applied to 
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a natural example; they are numerical experiments intended to give insight into the performance of the methodology and 780 

sources of errors. 

5.0 Tectonics and Spatial Variability in thermochronometric Ages 

In this section, we turn our attention from error analysis to discuss spatial variability in thermochronometer ages in 

tectonic settings as characterized by both thermo-kinematic models and natural data studies. The synthetic data experiments 

(Section 4.0) showed that spatial gradients, or spatial discontinuities, introduce no significant errors, systematic or otherwise, 785 

to the GLIDE model inversion, provided data coverage is adequate. We also showed that data adequacy is defined more by 

the temporal coverage provided by multiple thermochronometers and the elevation distribution, rather than the spatial coverage 

of samples, so it is somewhat of a misdirection to stress spatial variability. Nonetheless, having extensive regions of spatially 

uniform exhumation rate increases the probability that one can obtain good age-elevation profiles or can combine age data 

from independent thermochronometers that are not perfectly co-located and still achieve good resolution. The resolving 790 

capability of data is determined by the complexity of the erosion rate field being sampled, so resolution should be evaluated 

in the context of tectonic variability.  The following sections discuss spatial variability and age patterns from the modelling 

literature, make an evaluation of age variability and resolution in a set of natural examples, taken from the original study of 

Herman et al., (2013), and, finally, provide a discussion on how one can, or cannot, differentiate between tectonic and climatic 

variability impacts on erosion rate. 795 

5.1 Tectonic Settings and Age Gradients 

There has been considerable work done with thermo-kinematic and thermo-dynamic models to provide prediction of 

the relationship between erosion rate and thermochronometric ages (e.g., Mancktelow and Grasemann, 1997; Stüwe and 

Hintermüller, 2000; Ehlers and Farley, 2003; Braun, 2005; Braun et al., 2012; Nettesheim et al., 2018; Koptev et al., 2019). 

Many of these studies have demonstrated that, even in complex tectonic settings, there are broad regions characterized by 800 

constant rates of exhumation and thus constant thermochronometric age. It should be noted that when we speak of gradients 

in age in kinematic models, we refer only to gradients in cooling age, where the cooling is related to the last phase of orogeny 

and exhumation. In any tectonic setting, there is a contrast between active areas exhibiting young cooling ages and the 

surrounding regions unaffected or weakly affected by current tectonics (e.g. the pre-orogenic ages of Willett and Brandon, 

2002). Pre-orogenic ages are typically tens if not hundreds of millions of years old and such ages are either removed from the 805 

analysis if they are older than the model runtime, or, if left in, have minimal effect, given that an age whose exhumation spans 

multiple time intervals, devoid of other ages, has little influence on the young history, e.g. Figure 11. In addition, the 

fundamental concepts of the thermal model, including the definition of a closure temperature, are predicated on monotonic 

cooling, so multiple heating episodes cannot be resolved.  
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Some examples of tectonic settings and the predicted distribution of cooling ages are illustrated in Figure 14, taken 810 

directly from the literature cited in the caption. In extensional settings (Figure 14a), most exhumation occurs by erosion on 

uplifted footwall blocks of normal faults. Footwalls are often tilted or flexed in response to unloading during fault slip, so one 

would expect a gradient in exhumation rate with the highest rates found near the fault. One of the most studied normal fault 

systems is the Wasatch Fault in Utah which has extensive thermochronometry data including both AFT and AHe data 

(Armstrong et al., 2003) and a complete suite of thermo-kinematic models (Ehlers et al., 2001; 2003). These studies 815 

demonstrated footwall tilt and a gradient of exhumation rate, but also showed that at high rates of exhumation, the gradients 

in age were reduced to the point that they could barely be resolved. This was supported by the observations. Within 20 km of 

the fault, AFT ages were constant within error (Armstrong et al., 2003). AHe ages showed a small gradient, which, after 

correction for elevation effects, resulted in a difference of about 3 Ma over a 20 km transect. The low spatial gradients are a 

consequence of the high rate of exhumation, which compresses the age-exhumation rate relationship. The Wasatch studies are 820 

most notable for their extensive sampling with two thermochronometers (AFT and AHe) and it is the age difference between 

AFT and AHe that resolves a temporal change in erosion rate (Ehlers et al., 2003). Ehlers et al. (2003) found a small decrease 

in exhumation rate in the last 5 Ma, whereas Herman et al. (2013) found a small increase; this difference is due to the difference 

in the closure kinetics assumed by each of these studies. 

Thrust ramps (Figure 14b) have also seen considerable attention due to the high exhumation rates and common 825 

occurrence of young ages. A number of thermo-kinematic models have been published based on ramp-flat, fold-fault 

kinematics (Whipp et al., 2007; Lock and Willett, 2008; Herman et al., 2010; Coutand et al., 2014; McQuarrie and Ehlers, 

2015; McQuarrie and Ehlers, 2017). These models consistently show that a constant-dip ramp produces a broad zone of 

constant uplift rate and thus, with a steady surface elevation, a region of constant age. The hanging wall at the lower end of 

the ramp is typically bounded by a fault-bend fold whose geometry controls the wavelength of a transition from the ramp zone 830 

of constant age to the hinterland where there is no exhumation and thus inherited ages. If the up-dip limit of the ramp feeds 

into a flat, there is a fault bend fold whose geometry controls the transition from the ramp zone of constant age to the foreland 

zone of inherited ages. If the ramp reaches the surface, and all remnants of the fault-propagation fold are eroded, there can be 

a narrow zone of older ages in the hanging wall exposed to cooling into the footwall, but otherwise, there is a sharp transition 

between the cooling zone and inherited ages in the foreland. Gradients in cooling age associated with fault motion are young 835 

to old from the centre of the ramp to the thrust, but are steep, short and rarely observed in the field.  

Orogenic or accretionary wedges have also been much studied, although the complexity of their internal deformation 

makes it difficult to generalize. One must also differentiate between models that assume a surface erosion rate and allow this 

to drive kinematics (Barr and Dahlen, 1989; Batt et al., 2001) and those that allow the surface erosion rate to be freely 

determined with the deformation (Willett, 1999; Batt and Braun, 1997; Fuller et al., 2006; Michel et al. 2018, 2019). 840 

Summarizing some of the latter, Willett and Brandon (2002) made the explicit point that within the deforming wedge, rock 

uplift rates will be constant to maintain self-similar growth and that exhumation rates and ages will also be constant unless 



 

28 
 

some surface process acts independent of the rock uplift associated with wedge growth. Their summary figure included nested 

reset zones of constant age (Willett and Brandon, 2002) (Figure 14c). The prowedge of an orogenic belt (right side of Figure 

14c) is characterized by an unreset frontal zone where particle paths are too shallow to permit heating above closure 845 

temperatures. The transition to the reset zone can be in either prowedge or retrowedge and can be either discrete, associated 

with a single structure, or diffuse, often exhibiting partially reset ages, but is rarely defined by a spatially extensive gradient 

of reset ages.  

The point of these examples is to demonstrate that tectonic activity is not, in and of itself, evidence for spatial 

variability of thermochronometric ages. All tectonic settings contain extensive domains with constant or near-constant ages. 850 

Furthermore, there is a well-known effect of age compression at high rates of exhumation whereby thermochronometric ages 

become less sensitive to changes in exhumation rate as the rates increase (Ehlers et al, 2001). At high exhumation rates, even 

large changes in exhumation cannot be resolved by ages with typical measurement uncertainty, whereas temporal differences, 

i.e., due to changes in elevation or closure temperature do not suffer from this compression effect. The consequence is that 

regions with the young ages needed to resolve Plio-Pleistocene cooling have little sensitivity to spatial variations in age and 855 

require good temporal coverage, as we will illustrate in the sections below. 

5.2 Spatial Patterns of Exhumation and Acceleration: example from the western Alps 

Given the insights into potential sources of error in the inverse models (section 4.0) and tectonic causes for age 

gradients, or the lack thereof (section 5.1), we turn next to the natural examples to assess where there is potential systematic 

error. The synthetic models of section 4.0 were conclusive in showing that there is no model bias, but that resolution errors 860 

and their amplification through thermal model errors could lead to specific errors. We conduct an analysis of the resolution 

errors for a number of the original sites, which are specific to each site and data set. In addition, we use these examples to 

demonstrate problems that arise through the use of the proposed NR metric as an interpretation tool.  

 The Alps have served as an important example for the application of GLIDE (Fox et al., 2015, 2016; Schildgen et al. 

2018), so we will continue this focus here. Figure 15 shows the GLIDE inversion estimate of exhumation rate, together with 865 

resolution metrics and the normalized erosion rate difference. The ages used in the inversion are shown in Figure 15l. They 

are also shown in Figures 15a-i, plotted within the time interval in which they fall, to give a better sense as to which time 

intervals are constrained. Exhumation rates are well constrained throughout the external Alps which lie northwest of the 

Penninic line fault (PLF in Figure 15). There are numerous ages that fall within the 6 to 0 Ma range, as well as by older ages 

in both external and internal Alps, southeast of the PLF.  870 

 There is a clear increase of erosion rate in the external Alps, closely associated with the young ages. NW of the 

Penninic line, exhumation rates are notably higher in the 2 to 0 Ma time interval (Figure 15a), defining an acceleration with 

respect to the previous time intervals. The high erosion rates are centreed on the high external Alps where the youngest ages 

are clustered. This zone of high erosion rate has numerous ages in the 6 to 4 Ma time interval, which is a typical age for the 
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AFT samples from the region. The ZFT ages are older (8 to 16 Ma), and AHe ages are younger than 6 Ma. Erosion rates in 875 

this region are thus well-resolved across all time intervals.  

The good resolution of the Alpine ages can be confirmed by comparison to the model results shown in Figures 4-9, 

12, 13. To properly make a comparison between the models and the natural example, one must estimate the data density in 

both space and time and select the model with synthetic data distribution most similar to the natural example. With the data 

density of the Alps, the closest models are those using data set A or E (Figure 3). Even here, the true age distribution for the 880 

Alps is likely better than any age distribution of the models, because the extremely high and sustained erosion rate in half of 

the synthetic model domain compresses the model ages into a narrow time range. Nonetheless, the models all show that with 

the data coverage of the natural Alps, we expect only small resolution errors with a very well-resolved history in the external 

Alps to the NW, a resolved average erosion rate with no resolution of late change in erosion rate in the internal Alps to the SE 

and a smoothed transition between the two. 885 

The region of accelerated erosion SE of the Penninic Line in Figure 15 is larger than the counterpart in the synthetic 

models (e.g., Figure 12). There are several reasons for this. First, the data resolution of the synthetic models and the natural 

data are not identical, so there are resolution errors throughout the natural example and direct comparison with the model will 

never be perfect. Second, the uplift functions are very different and this affects the temporal resolution. The vertical fault with 

13 km of relative offset in the synthetic data example makes a good synthetic test, but it should not be mistaken for the actual 890 

uplift pattern in the Neogene Alps, which has no major active structures (Egli and Mancktelow, 2013). Finally, and most 

importantly, the synthetic model and actual Alps differ in that the external Alps do have an acceleration in exhumation, whereas 

the synthetic model does not. The increase in erosion rate in the external Alps is robust and well-resolved by its local ages. 

Smoothing of this signal from the external Alps during each independent time interval into the surrounding regions, i.e. SE of 

the PLF gives the appearance of an acceleration in these regions. The synthetic model had no acceleration in the high uplift 895 

region, so any smoothing of the high uplift area into the low uplift area was equal over each time interval.  

It should also be noted that even if there were a sharp boundary between young and old ages from the external to the 

internal Alps, it would not be at the Penninic line as portrayed in this paper and Schildgen et al. (2018). There are a number of 

ages younger than 4 Ma SE of the Penninic Line faults (most clearly seen in Figures 17e and 17h) and these extend the high 

uplift zone to the south. The high uplift zone in Figure 15a continues SE into the internal Alps for a distance of less than one 900 

correlation length beyond the southernmost young ages. This is the same smoothing effect we observed in the synthetic data 

models (e.g., Figure 4 or Figure 12).  

   The normalized erosion rate difference (NR) map (Figure 15j) gives a very different story. The maximum acceleration 

is shown in the middle of the study area centred on a region with almost no age data younger than 6 Ma. Furthermore, the high 

acceleration region is large, covering the entire internal Alps at a value larger than the external Alps, where most of the young 905 

ages are found. It is this relationship that was the basis of the conjecture of Schildgen et al. (2018) for inappropriate spatial 

averaging, as there is no intuitive basis for this large acceleration zone centred on a data gap, rather than on the data. However, 

it is here that the shortcomings of a plot based on the NR ratio emerge. Comparison between the erosion rate maps and the 
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normalized erosion rate difference map show that the two have very little in common. The offset in maximum values is the 

most obvious, but the extent of the large values of NR far to the south and east is peculiar given the data distribution and the 910 

lack of deviation in erosion rates from the prior value of 0.35 mm/yr through most of the south east of the study area. The 

problem is not in the erosion rate maps; it is apparent only in the normalized erosion rate difference maps. The problem is 

further clarified by looking at the error associated with the NR (Figure 15k). It shows that the lowest variance in the NR is 

centreed on the external Alps where the data density is highest and the erosion rates are best resolved. The variance in NR 

increases rapidly to the SE with high values encompassing most of the internal Alps. The shift of the locus of NR, relative to 915 

its error and its underlying parameters is a feature of a ratio expression where the quantity in the denominator has a wide range 

of values. Regions where the denominator is small, i.e., the internal Alps, have a large ratio, but also increasing sensitivity to 

error in the denominator. This effect creates a bias, a bias that is manifested as a false acceleration in regions of low erosion 

rate. 

As with the synthetic data models, a test of the resolution can be provided by checking for sensitivity to the prior 920 

model. We reran the Alpine data inversion using a prior erosion of 1.35 mm/yr (Figure 16). As expected, the peripheral regions 

all have a high erosion rate reflecting the higher prior. However, the central external Alps are almost unchanged, reflecting the 

high resolution. The high-resolution contours (above 0.5 to 0.6) mark the region that is robust against changes in the prior. The 

internal Alps to the SE hold their lower erosion rate because of the older ages. There are also somewhat higher erosion rates 

at all time intervals in the external Alps. This is a model effect due to a difference in the geothermal gradient between the two 925 

models, in response to the increased advection of the early history in the high-prior model.  

As an even more direct test of the hypothesis that the inferred acceleration is an artefact of mixing regions, we 

produced another inverse model for the Alps, but in this case, we omitted all the data from the internal Alps in the SE, thus 

inverting only the data from the external Alps, similar to the synthetic data model in Figure 11. Results are shown in Figure 

17. Comparing the inverse model of all the data (Figure 17a, b, c) to the model of just the external Alpine data (Figure 17d, e, 930 

f), one can see that the solutions in the external Alps are essentially identical, proving that there is no influence of the old ages 

to the SE on the erosion rate estimates in the NW. This result is consistent with what we found in the comparable synthetic 

data example (Figure 11). 

These three models are conclusive; the acceleration found in the Alps is not the product of inappropriate spatial 

averaging. In the external Alps it is well resolved by the local data which span the timespan of interest. In the internal Alps, 935 

the erosion rates over this timespan are poorly resolved and so the solution from the NW is smoothed into this area, but not 

sufficiently that the older ages of this region are misfit.  

5.3 Analysis of other natural examples for an increase in exhumation rates 

According to the re-analysis of Schildgen et al. (2018), of the 32 sites identified in the Herman et al. (2013) study as 

showing sufficient thermochronometric data to resolve an erosion rate history over the past 6 Ma, 23 of them were what they 940 

called “spurious”. Furthermore, for those cases that were not spurious, and many sites that were argued to be spurious, they 
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interpreted the cause as either “tectonic” or “glacial”, where glacial refers to Quaternary changes in erosion rate associated 

with the onset of glaciation. This second point will be discussed later (Section 6.2). The first issue, whether or not results are 

justified or spurious, will be assessed here. Although Schildgen et al. (2018) applied a variety of criteria as to what constitutes 

a spurious result, we will focus here only on the question of potential spatial correlation bias, where this is defined as 945 

inappropriate spatial averaging of data resulting in a false acceleration.  

To clarify how to address spatial averaging, and its impact on the conclusions of erosion rate change, we suggest that 

this should be posed as a set of questions. Are the local data sufficient to resolve an increase or are unrelated data from large 

distances being used, and is an inferred increase robust with respect to the method of analysis? A spurious result should be 

limited to an artefact that arises only because of the inappropriate combination of data, model bias, or resolution errors. For 950 

the case of a spurious acceleration, a better analysis or knowledge of the “true solution” would reverse the conclusion. This 

definition does not include smoothing errors if that smoothing includes an area that exhibits a true acceleration based on its 

local data. Smoothing errors are easily recognized and if removed, either by a better analysis or simply masking parts of the 

domain, the conclusions would be unchanged; an acceleration would be inferred in any case. In this sense, results are not 

regarded as being area dependent; the definition of an artefact must apply to the best resolved parts of the study area, not just 955 

peripheral regions. Thus, the errors in Figure 10a, b would constitute a spurious acceleration, but the acceleration inferred for 

the transition between the external and internal Alps in Figures 15, 16, 17 would not be regarded as spurious, because it would 

not arise without the existence of a neighbouring region with a resolved and true increase in erosion rate. 

The previous section presented the Alps as an example of this reanalysis. As a second example of site interpretation, 

the Nanga Parbat region of the western Himalayan syntaxis is analysed with results shown in Figure 18. In order to understand 960 

how resolution arises, we have plotted the age data in different ways. First, the full age distribution is shown as a histogram 

(Figure 18l). This shows that there are 5 thermochronometers with ages bracketing the timespan of interest. It is important to 

show how many ages bracket each time interval, so these are shown on the resolution and variance plots. All ages greater than 

6 Ma are shown in white on the erosion rate maps; values less than 6 Ma as black diamonds. Taken together, these maps give 

a good sense as to which data are constraining which erosion rates. The fact that the resolution and variance plots mirror the 965 

data reflects local support of resolution. These figures miss the additional resolution provided by elevation range, but this 

information can be visualized indirectly from dispersion in the age histogram. Figure 18 shows that the core region of the 

Nanga Parbat syntaxis is well resolved by the local data. With 5 thermochronometers yielding ages under 10 Ma, the resolution 

of the exhumation history is excellent. There are older ages outside the massif, so to confirm that these are not inappropriately 

influencing the solution, we removed all ages from outside the syntaxis core and reran the inversion. Results are shown in 970 

supplementary Figure A7 and are essentially unchanged. We could also change the prior model or the correlation length and 

the conclusions would be unchanged. The acceleration is the result of effectively co-located data from 5 thermochronometric 

systems, and is not an artefact of the method or of inappropriate averaging, so by our definition, is not spurious. This result is 

consistent with the model of Figure 11, that shows that with data coverage of this density, old ages from other regions have no 
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influence on the solution in well-resolved regions. The region with resolution above a value of 0.4 or perhaps 0.5 includes all 975 

the ages less than 6 Ma, none of the region with no ages under 6 Ma, and would be regarded as well resolved. In contrast, the 

map of NR has lost all the information regarding resolution (Figure 18j). It shows simply a broad, long spatial wavelength 

increase. However, the error on NR shows that the resolved part of this map is also restricted to the Nanga Parbat core region 

(Figure 18k). This region also shows a clear increase in erosion rate with time. We also note that previous studies using 

different approaches found the same result, including this increase in rate (Zeitler, 1984; Thiede and Ehlers, 2013).  980 

 A third example with good spatial and temporal coverage is the Olympic Mountains of NW Washington State (Figure 

19). Here there are three thermochronometers providing coverage of the 10 Ma to present timespan and a fourth providing a 

longer timescale average rate. These data are dominantly from the central core of the mountain belt with older, largely unreset, 

ages found in the western region where it has been argued that the combination of lower erosion rates and shallow particle 

trajectories through the orogenic wedge result in a frontal unreset zone (Brandon et al., 1998; Pazzaglia and Brandon, 2001).  985 

The GLIDE inversion delineates a well-resolved circular region in the core of the mountain belt centreed on the data, with 

ages falling into all three time intervals. The region is resolved by local data and as the synthetic models show, with resolution 

at this level, old ages far removed from the resolved region have no influence on the erosion rate history (Figure 11). The 

Olympics provide a particularly good example of the distortion that occurs through application of the NR operator. The NR 

field (Figure 19j) shows maximum values offset to the NW relative to the data. This is an artefact of the division operator, as 990 

shown by the error on the NR which remains centred on the data. Consideration of the NR map in isolation could lead to the 

interpretation that the acceleration is a consequence of spatial averaging, but this would be incorrect. 

As a fourth example, the Marlborough region of New Zealand (NZ) is one of the most complex tectonic settings 

considered in these studies. This complexity leaves much latitude for interpretation. In addition, the data are sparse with only 

two thermochronometers applied in the region (Figure 20). The tectonic complexity includes changing rates of fault slip on a 995 

system of oblique but dominantly strike-slip faults, which could result in local changes of erosion rate that are not characteristic 

of the region as a whole. The youngest AFT ages are all found south of the Wairau and Alpine Faults and north of the Hope 

or even the Clarence Faults (see Schildgen et al., 2018, Figure S16). These are supplemented by a handful of ZFT ages in the 

2 to 10 Ma range. In fact, there are three distinct local areas where there are nearly co-located ZFT and AFT of the correct age 

to constrain the erosion rate history from 6 Ma to the present; these are visible as the 3 nearly co-linear points in the 6 Ma to 4 1000 

Ma resolution or variance plots of Figure 20. Not coincidentally, the best resolution and variance reduction occurs along an 

axis connecting these 3 points (e.g., Figure 20k). The two southern points sit on a common tectonic block and the northern 

point on a second block. However, the data on each of these blocks is sufficient to resolve an erosion rate history with no 

contribution from data points outside these blocks. This case is thus analogous to the models of Figure 4 or Figure 12, where 

there are two adjacent blocks, one with a good distribution of ages from multiple thermochronometers, one with only old ages. 1005 

Just as there was no averaging across the fault in those models, we see little evidence for averaging across the fault in this 

natural case. An appropriate threshold for the resolution and reduced variance would both be about 0.5 to capture these 3 
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regions and only these regions with no major inclusion of the other tectonic blocks. Again, the NR is diffuse, broad and offset 

from its error, so it does not reflect the important characteristics of the inverse model result. In contrast, the correct threshold 

value of the resolution (0.5) or even better, a similar value of the reduced variance, would nearly follow the block limiting 1010 

faults.  

The important point illustrated by this NZ example is that it is the existence of collocated ages from different 

thermochronometers that increases the resolution to the point that we would interpret them as a well-constrained erosion rate 

history. There are several regions to the north and south of the resolved region that also have a number of ages under 6 Ma, 

but these regions have exclusively AFT ages, and ages from a single thermochronometric system, are insufficient to bring 1015 

resolution into an acceptable range. It is the sampling of different closure temperatures at different times that determines the 

resolution and the erosion rate history. It is not a combination of ages from a single thermochronometer sampling different 

erosion rate histories from across the entire region. Instead, we see most of the region at or near the prior value, with the 

exception of the tectonic block between the Wairu and Hope faults, which shows rapid uplift in the last 2 Ma. Again, we 

conclude that there is no spurious acceleration as an artefact of the method. The predicted model is consistent with all the ages, 1020 

the predicted accelerated uplift is limited to one, or at most two tectonic blocks, and the data constraining that history are 

identifiable and have a common history. 

 As a fifth and final example, we consider the data from the Fiordland region of New Zealand (Figure 21). In contrast 

to the Marlborough region, the data coverage here is excellent with widely distributed AFT and AHe ages, most of which are 

younger than 10 Ma, as well as some older ZFT and ZHe ages. The ages fall nearly uniformly across the centre of the region 1025 

within all three time intervals of interest (Figure 21), resulting in resolution values approaching 1.0 in many places within all 

three time intervals. A threshold resolution value of 0.5 would enclose the region with data; a slightly smaller number would 

include more of the surrounding areas but would not change the interpretation. The NR is again offset from the data, with the 

locus of its largest values shifted to the southeast, so any direct interpretation of its spatial distribution would be misleading. 

There is some structure to the erosion rate pattern, for example higher rates in the north across the full 6 Ma interval, but in 1030 

general the erosion rates are regionally consistent and show an acceleration in the last 2 Ma. This result is based on local ages, 

is resolved by the temporal distribution of ages from four thermochronometers and cannot be considered spurious. 

6.0 Discussion  

6.1 Bias, Errors and Resolution in GLIDE 

 The central question investigated in this paper is whether there is a systematic error in the methodology of Fox et al. 1035 

(2014) and Herman et al. (2013) that resulted in an apparent acceleration in inferred erosion rates. As we argue above, this 

question can only be addressed if one identifies the source of errors within the analysis. We have dissected the possible source 

of errors and shown that, neglecting measurement errors, which should not be systematic, there are three potential sources of 
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error: (1) model errors due to the parameterization including spatial correlation smoothing; (2) model errors due to incorrect 

prediction of the near-surface geotherm; and (3) resolution errors that result from inadequate data coverage of space and time. 1040 

The synthetic data, forward-inverse models presented above show that (1) do not exist in any important form, although they 

are evident in smoothing of sharp boundaries; that (2) are a potentially serious source of error in erosion rates, but do not 

predict a systematic tendency towards acceleration; and that (3) can be large, but depend on the individual data distribution as 

well as the prior model parameters, and also have no generalizable tendency towards acceleration.  

 Resolution errors are the result of data inadequacies, primarily in time, where multiple thermochronometric systems 1045 

or elevation dispersion are needed in order to give a range of ages adequate to resolve a temperature history. Although every 

data set has a unique distribution and therefore unique resolution errors, we were able to make some generalizations through 

analysis of a range of data examples. First, we found that with a large number of data, distributed appropriately in age, all 

errors, including resolution errors, go to zero. In fact, it did not require a particularly large number of data to obtain excellent 

estimates in our tests, provided the age coverage is appropriate (Figure 9). Nor was there any evidence for inappropriate spatial 1050 

averaging in high density models. There was smoothing of sharp boundaries, but even here, this occurred primarily where data 

were insufficient to resolve the boundary. As data density decreases, resolution errors become larger. If data are too few, there 

are large resolution errors, not surprising as it requires data to resolve complexity in either space or time. The distribution of 

data in time is much more important than the distribution in space, at least with relatively simple patterns of erosion rate 

(compare Figures 7 and 8). Errors in the analysis with sparse data followed a specific pattern. Areas with poor resolution and 1055 

no older ages revert to the erosion rate values of the Bayesian prior model. Regions with poor resolution, but older ages take 

a solution steady in time and consistent with the integral constraint provided by the older ages. As data are added to the 

inversion, the solution is always a balance between the prior model and the erosion rates needed to fit the data. The resolution 

matrix and its integrated value reflects the weights given to the data relative to the prior. If the prior is equal to the true rate, 

there is no error (Figures 6, A6).  Distal data play a minimal role in this averaging process. The weighting between fitting the 1060 

data and remaining near the prior is set by the parameter variance. Overfitting to the prior model is evident in data residuals.  

 The idea that spatial differences in age, i.e., a combination of old and young ages from distinct regions, will always, 

or even frequently, combine to produce an apparent increase in erosion rate is false.  Models in this paper were consistent in 

demonstrating this point. The reason why this argument fails is that there is no temperature history that can fit multiple data 

that have different ages, but the same distance to the closure isotherm (a combination of closure temperature and sample 1065 

elevation). An inverse method based on optimization of age prediction and including variable exhumation in both space and 

time will therefore favour spatial variability over temporal variability. With reference to Figures 2d and 2e, a model with 

spatially variable erosion rates can fit all ages perfectly, but there is no common exhumation history that can fit all ages by 

including excessive and false changes in time. An exhumation history forced to combine disparate ages, but optimizing fit to 

the ages might tend towards lower rates in the early history and higher rates in the later history, dependent on fitting criterion, 1070 

but it will never fit the ages well. This points to the importance of using data residuals to test for model bias as shown in the 

example of Figure 10. If there is significant spatial averaging or excessive weighting of the prior model, the ages are badly fit. 
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A model that fits all ages well can only do so by accurately resolving spatial variations in erosion rate.  The GLIDE method, 

based on the soft constraint of spatial correlation, but designed to optimize age fit has a strong statistical tendency towards 

spatial variation rather than temporal variation. 1075 

 Given that resolution errors are the primary concern with thermochronometric data modelling, it is important to 

quantify resolution for specific data sets and estimate resolution errors. For this reason, much of the study of Herman et al. 

(2013), and related papers (e.g., Fox et al., 2015, 2016; Jiao et al., 2017), have estimated resolution errors, investigating 

sensitivity to the prior model parameters (see supplement to Herman et al. (2013)), and developed new statistics such as the 

temporal resolution matrix as an integral of the resolution kernel (Fox et al., 2014). The synthetic models in this paper show 1080 

that the resolution metrics do a good job in delineating relative resolution. Resolution remains a relative measure, and 

determining a precise confidence level a priori is not possible, but can be estimated based on spatial patterns, the relationship 

to sample locations, fit to the age data and sensitivity to the prior. As a relative measure, resolution scales with other parameters 

including correlation length and assumed prior variances.  

 Although resolution errors do not tend to produce a false acceleration, there are combinations of data and prior model 1085 

that can lead to a false acceleration. For example, in the case of isolated young ages, less than 2 Ma, with a low prior, the 

young ages give a high rate of erosion in the last time interval and if there are no higher closure temperature data nearby, the 

earlier time intervals will take a value near the prior, leading to an apparent acceleration. However, the early time intervals 

will not be well resolved, so this should be recognized for what it is, a mix of resolved and unresolved time intervals. The 

danger is that the resolution does not have an absolute level, so there is a chance that early time intervals will be at the margin 1090 

of acceptable, even though the constraining data are either too old, or too far away to constrain the erosion rate well.  For this 

to occur it requires an unfortunate combination of ages in both space and time. Ages must have a very specific distribution in 

order to raise the resolution value, but not pull the erosion rate away from the prior value. The danger of this combination was 

recognized by Herman et al., (2013) which is in part why Herman et al. (2013) made a comparison of the 6-4 Ma time interval 

and the 2-0 Ma time interval rather than the 4-2 Ma time interval and the 2-0 Ma time interval. Comparing the last two time 1095 

intervals is easier and would still make the point that Quaternary climate change might have impacted erosion rates. However, 

it is much more difficult to resolve two time intervals with a gap between them, so the 6-4 Ma time interval was used in order 

to make a more conservative estimate of potential accelerations by imposing a stricter condition on the resolution. 

 One case that we did not present in the modelling study was the extreme poor resolution that results when all data 

come from a single thermochronometric system. We have conducted simulations to evaluate this, but the results were as one 1100 

would expect. It is impossible to find a resolved temperature history with a single thermochronometer, with the exception of a 

fortuitous elevation distribution, in which case the estimate is both resolved and accurate. This is not surprising. When a 

thermal model is used as the basis of the analysis, and all ages have a common closure temperature, there is no means of 

resolving more than one point in time, as can easily be recognized by the principles shown in Figure 1 and Figure 2, and shown 

in Herman et al. (2013) Figure ED3.  This is why most sites identified by Herman et al. (2013) as having sufficient resolution, 1105 

have ages from more than one thermochronometers, and those that do not, have an advantageous elevation distribution.  
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The other major source of error in forward and inverse modelling of thermochronometric data is in the determination 

of the crustal geotherm. Erosion rates derived from thermochronometric data depend on the geothermal gradient just as strongly 

as they depend on the measured age (Moore and England, 2001; Ehlers, 2005; Reiners and Brandon, 2006; Willett and 

Brandon, 2013), so it is essential that thermal models are accurate. By linking the thermal advection in GLIDE to the erosion 1110 

rates derived from the ages, geotherm errors become part of the model errors in the tests of this paper. Geotherm errors were 

occasionally large in the synthetic data models, although this was in part a consequence of the extreme erosion rate scenario 

used in these tests and the fact that the true model was often far from the prior. This leads to a large error in the geotherm if 

old ages do not exist to constrain advective heating. An acceleration or deceleration as determined by multiple 

thermochronometers depends, not on the gradient, but on the curvature of the geotherm. A false acceleration would be obtained 1115 

if the predicted geotherm has less curvature than reality (England and Molnar, 1990), but a systematic error in the gradient 

affects all rates equally and therefore does not lead to a false acceleration. This effect was demonstrated in Figure 12, where 

the gradient was too low, so the estimated erosion rates were too high, but there was no false acceleration. In fact, the error 

produced a false deceleration.  

Transience in lithospheric geotherms is a consequence of many geodynamic and surface processes. Crustal thickening 1120 

or thinning lead to downward and upward advection, respectively, as well as changes in the distribution of heat production 

within the lithospheric column. Erosion leads to upward advection of heat. These transient states of the thermal lithosphere 

persist for tens to hundreds of millions of years reflecting the timescale of equilibration of the thermal lithosphere (Sclater and 

Francheteau, 1970; McKenzie, 1978; England and Thompson, 1984; Furlong and Chapman, 2013). Modelling methods 

sometimes approximate lithospheric transience with a thermal boundary condition at a shallower depth in the lithosphere, often 1125 

because of computational limitations, but this should always be recognized as an approximation. A basal boundary condition 

can be either a constant temperature or constant gradient (also referred to as a constant flux condition based on Fourier’s Law) 

and can be applied at a material point, e.g. at the base of the crust, which moves up or down with time, or at a spatial point, 

e.g. at a constant depth. A constant gradient has the advantages that the time to a new steady state is longer than the fixed 

temperature approximations, and is therefore closer to that of the full physical problem. The constant gradient and material 1130 

point boundaries have the advantage that advective heating or cooling through the boundary is approximated, by changing 

temperature in the former, and changing position in the latter, making these appropriate conditions to be applied in the shallow 

lithosphere. The worst approximation is a constant temperature applied at a constant depth. A fixed temperature suppresses 

advective heat flux across the boundary, so that if applied at a shallow depth in the lithosphere, energy is not conserved within 

the lithosphere, the geothermal gradient is suppressed and the timescale of transience is greatly reduced. 1135 

The 1-D thermal model of GLIDE will fully account for the transience due to vertical advection in response to surface 

erosion. With erosion rate as a general function of space, it is also capable of resolving lateral variations in exhumation in 

response to spatial variations in tectonic displacements. The model misses lateral conduction of heat, but given that this 

becomes important only very close to faults with high and sustained rates of displacement, this is a small restriction on solution 

validity. 1140 
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In practice, avoiding geotherm errors in thermochronometric studies is best done by estimating and incorporating the 

modern geothermal gradient obtained by heat flow studies and (if available) other geologic evidence for P-T-t conditions at 

depth. If the final geotherm from the inverse model is calibrated to the observed final geotherm, errors at the time of age 

closure will be small, even with a simplistic thermal model.  

6.2 Summary of problems in Schildgen et al. (2018) 1145 

The primary hypothesis of Schildgen et al. (2018) is that there exists a “spatial correlation bias” in all the results of 

Herman et al. (2013). The analysis above found no evidence of systematic bias, so it is important to evaluate why Schildgen 

et al. (2018) came to such different conclusions.  

Schildgen et al. (2018) presented a series of forward-inverse model experiments similar to those presented in section 

4 of this paper. However, those models all showed large errors throughout the spatial domain that were not evident in the 1150 

results of our experiments. The data sets were not identical in terms of data locations and the values of the ages, so resolution 

varied between models, but not sufficiently to account for the large differences, particularly as we presented a range of models 

with varying resolution. The source of the discrepancy lies in the way in which Schildgen et al. (2018) calculated the thermal 

histories and ages used for the experiment. Schildgen et al. (2018) used an independent model to generate the synthetic data 

(Pecube, Braun et al. 2012), and a second model to invert those data in their model tests (internal GLIDE thermal model, Fox 1155 

et al., 2014). Both codes include advection, conductive heat transport and a three-dimensional representation of surface 

topography, and so are capable of reproducing identical results. However, Schildgen et al. (2018) applied different boundary 

conditions in the forward and inverse models. In the forward model using PECUBE, they applied a constant temperature 

boundary condition at 30 km, whereas GLIDE uses a constant flux boundary condition. These are fundamentally different 

conditions and result in different geotherms. By using one geotherm to generate synthetic age data and a second geotherm to 1160 

invert those data, it becomes impossible to recover the original exhumation rates.  

To demonstrate the importance of constant temperature vs. flux boundary conditions, we calculate geotherms using 

the parameters Schildgen et al. (2018) used for their first example, the western Alps, although the conclusions apply to all 

tests. The differences in a 1-D version of these two models are shown in Figure 22, which includes the same initial geothermal 

gradient and exhumation rate of 1 mm/yr, appropriate for the high erosion rate region of the model. With such a high 1165 

exhumation rate, the geotherm in the Pecube model has reached steady state by 20 Ma, but at a low average gradient suppressed 

by the fixed temperature boundary condition which restricts the advective heat transport from the mantle. In contrast, the flux 

boundary condition predicts a higher average geothermal gradient and remains in a transient state as the temperature in the 

lower lithosphere has not yet reached its final value. The difference in the depth to the closure temperature for all low-

temperature systems is up to several kilometres.  1170 

To illustrate the age disparities that result from such different basal boundary conditions, we regenerated the ages 

using the exhumation rates of the Alps synthetic model, but using the thermal model assumptions made in GLIDE; assuming 
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a flux boundary condition and a total length of time of 36 Myr. We calculated the ages for both high- and low-uplift rate 

regions. The predicted ages are significantly different (Figure 23) with the Schildgen et al. (2018) ages systematically older, 

by up to a factor of 2. This difference is due to the lower thermal gradient and deeper closure temperature depths predicted 1175 

from a constant temperature boundary condition (compare blue and red curves in Figure 22). In addition, the systems with 

higher closure temperatures are affected more strongly and the magnitude of the error increases.  

 The use of different thermal models for the forward and inverse model invalidates this exercise as conducted by 

Schildgen et al. (2018). The inverse model will do a good job in fitting the ages, but it can only do so by producing the “wrong” 

erosion rate. Furthermore, because the errors in the synthetic ages have increased bias, that is they get systematically larger 1180 

with increasing closure temperature, the inversion is likely to infer an increase in erosion rate with time in order to fit these 

ages. The impact on GLIDE-inferred erosion rates from these age errors cannot be assessed exactly because of the coupling 

between erosion rate and advection. The error in the ages results in an error in the advective heat transport, so the resultant 

geotherm will differ from that of Figure 22, but it is clear that the errors will be large, and it is no surprise that the results 

presented in Schildgen et al. ED Figures 3, 5 and 6 show large errors. However, rather than being an artefact of the inversion 1185 

methodology, or an effect of spatial averaging of erosion rates, this is an inevitable consequence of introducing a large 

methodological error into the experiment design by calculating ages incorrectly. This is confirmed by the fact that the 

experiments conducted above (e.g. Figures 4, 7, 9, 11, 12) show nothing comparable to the errors in Schildgen et al. (2018).  

The second part of the Schildgen et al (2018) critique was a reinterpretation of the age data and the Herman et al. 

(2013) results through their proposed normalized erosion rate difference (NR) maps. This analysis is also problematic because 1190 

of the problem discussed above with the use of a ratio in evaluating two values with errors. The division of two random 

variables is a biased operation, and this bias is towards larger numbers as the denominator becomes small. The methodology 

used by Schildgen et al. (2018) was thus to take the results of Herman et al. (2013), reprocess them using a biased operator 

(NR), identify that the resultant map contains bias and conclude that the original analysis was flawed. Furthermore, because 

they did not propagate uncertainty through their NR operator, they lost all relative and absolute uncertainty. The NR bias has 1195 

a tendency to shift the locus of largest values of acceleration towards regions with low average erosion rate, because of the 

effect of division by small numbers. The result is a systematic shift and amplification of the signal found by Herman et al. 

(2013) (e.g., Figures 15 to 21), so that the locus of high values always sits offset from the data locations and the best-resolved 

part of the signal. Some of these regions were likely, incorrectly, included in the Herman et al. (2013) analysis, and the ratio 

error does skew the final results in Herman et al. (2013), but not enough to change the sign of the signal, as we demonstrate 1200 

below. The ratio error was much more important to the Schildgen et al. (2018) analysis because their major conclusion, that 

there exists a spatial correlation bias, was based on an interpretation of the spatial pattern of the NR, a pattern that is badly 

distorted with respect to the original findings of Herman et al. (2013).  

The danger in interpretation of the NR map was illustrated by the example of the Alps (Figures 15, 16). The distortion 

of the NR with respect to the data and the inversion predictions was clear with the highest values of the NR offset from the 1205 
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data by tens of kilometers. By interpreting the spatial pattern directly, Schildgen et al. (2018) hypothesized that the inversion 

method was averaging data from the interior and exterior Alps with their differing exhumation histories. We tested this 

hypothesis and found it false (Figure 17).  

This was not an isolated example. In case after case, Schildgen et al. (2018) interpreted the spatial pattern of NR in 

terms of spatial averaging of age data. For the Nanga Parbat region, they wrote “the linear inversion performed by ref. 6 1210 

[Herman et al., 2013] suggests a broad zone of late-Cenozoic erosion-rate increases both within and outside the massif. This 

result is a consequence of combining data from inside and outside the NPHM [Nanga Parbat-Haramosh Massif], across the 

active bounding fault zones …”. We tested this hypothesis (Figure A7) and again found that it is false. The data local to the 

Haramosh Massif are sufficient to resolve the full history including the acceleration with no need to include data from outside 

the massif (Figure A7). 1215 

The Olympic Mountains of NW Washington State provided an example of an increase in exhumation rate resolved 

by four thermochronometers, co-located in the core of the mountain belt (Figure 19). However, the NR map shows the largest 

increases in exhumation rate offset from the data and Schildgen et al. (2018) directly interpreted the spatial pattern of the NR 

field, stating that: “the global inversion found normalized increases in exhumation rates …with the largest increases in the 

region with the steepest spatial gradient in ages (Figure S11c). This difference likely arises because the vertical exhumation 1220 

paths assumed in the linear inversion model used by ref. 6 [Herman et al. 2018] are inappropriate for this setting, and because 

data that experienced disparate exhumation histories were combined.” We see the same error made as in the Alps and Nanga 

Parbat; the largest, well-resolved, erosion rate increase occurs on top of the co-located ages from 3 thermochronometers, not 

where the steepest spatial gradients occur. The hypothesized combination of disparate exhumation histories is conjecture based 

on interpretation of distal, often statistically insignificant, parts of the NR map. The spatial gradient in age is not expected to 1225 

have any effect on the result as shown by the model in Figure 11, and in any case, is located away from the well-resolved 

regions. More recent, and independent work modelling the Olympic thermochronometric data (Michel et al., 2018, 2019) 

investigate the effects of 3-D thermo-kinematics and found that results did not differ significantly from 1-D models. They 

found the same acceleration as Herman et al. (2013). The acceleration is real, based on local data, not an artefact and there is 

no basis for referring to this result as spurious.  1230 

Fjordland, New Zealand is very similar with a high-density data set sampled across the high relief mountain range. 

The data, the inversion result, the resolution indices, and the uncertainty on the NR ratio all indicate a signal centred on the 

data (Figures 21 a-i, k). Only the NR breaks this pattern with an offset to the SE (Figure 21j). In this case, there are not even 

other data to the SE to call on for inappropriate spatial averaging. However, Schildgen et al. (2018) still assess this acceleration 

as spurious, stating: "the broad zone of increased exhumation rates is probably at least partly linked to correlating samples 1235 

across active (or recently active) faults.” … with “peak values frequently occurring in areas of relatively low relief”, so it is 

evident that they are putting weight on the large values of NR rather than focusing on the resolved values, which are directly 

over the high topography and young ages. Although there may be some effect of faults at short wavelengths (Sutherland et al., 
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2009), there is no evidence that these would create some fictitious artifact in acceleration, rather than simply being averaged 

as in Figure 2. Short wavelength variations provide no explanation for either the observed acceleration or for the offset of the 1240 

maximum values of NR with respect to the data. We find no justification for the assignment of “spurious” to the original 

finding of Herman et al. (2013).  

We could continue to discuss each example covered by Schildgen et al. (2018) in their Table (1) and data supplement, 

but we have reviewed all sites and the results are the same as the examples above. In each case, the only evidence presented 

for a spatial correlation bias is the spatial pattern within the NR map and its relationship to the data distribution.  1245 

Although the main concern of this paper is the hypothesized existence of a spatial correlation bias, Schildgen et al. 

(2018) also discussed other potential issues in the analysis of Herman et al. (2013). Their assessment and attribution of 

“spurious” to a specific site result in Herman et al. (2013) was based on a mixture of criteria, so the meaning varies from site 

to site. The classification from their assessment includes: (1) data errors through inclusion of inappropriate data; (2) model 

errors, for example interpreting settings that have 2-D kinematics with GLIDE’s spatially-variable, 1-D exhumation model; 1250 

(3) localized valley incision, rather than regionally constant erosion; and (4) inappropriate spatial averaging. The last is the 

main topic of this paper. The first, data errors, are certainly present in the Herman et al. (2013) study. With nearly 18,000 data, 

some are undoubtedly not simple cooling ages. The issue is how many, how to identify them, and most importantly, what 

impact would their removal have on the Herman et al. (2013) result. The first two issues are challenging, often subjective; the 

last is a straightforward test, requiring the removal of questionable data and rerunning the inversion. However, Schildgen et 1255 

al. (2018) did no testing for the importance of data errors. They hypothesized many potential problems, but tested none of 

them, so even if data errors are real, we have no sense of how they impacted the inversion results. Lacking any evidence that 

they are significant to the GLIDE results, we will not address these in this paper. Model errors due to complex kinematics, 

exhumation or cooling paths are also suggested to be a source of error, but as with the data errors, no tests of this hypothesis 

were constructed by Schildgen et al. (2018). To test this would require comparing 2- or 3-D thermokinematic models to the 1260 

spatially-variable 1-D model of GLIDE for individual sites. Results from such tests are difficult to intuit given that the thermal 

model in GLIDE is not simply 1-D, but includes 3-D topography effects through an analytical formulation and 2-D variation 

in vertical velocity, advection and diffusion. Missing are only horizontal components of advection and diffusion, and these are 

typically small compared to the former. Until these tests have been completed, the importance of model errors remains 

speculative. The models presented above suggest that there is no important impact of spatial gradients (Figure 11) or age 1265 

offsets (Figures 4 to 10) on GLIDE results, at least not independent of the question of data resolution. 

Localized valley incision is particularly problematic as a criterion for a spurious increase in erosion rate. Schildgen 

et al. (2018) argue that because the volume of sediment removed by valley incision is less that that removed by spatially 

uniform erosion the Herman et al. (2013) result is “spurious”. However, Herman et al. (2013) made no prediction of sediment 

yield. Herman et al.’s (2013) predictions were for erosion rate and change in erosion rate at the site of thermochronometric 1270 

age measurement, with the principal prediction being for the direction of change. Although changes in sediment yield are one 
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of the implications of the Herman et al. (2013) result, it is not the only one. If Herman et al. (2013) results were exclusively 

reflecting deep valley incision, they would still be an important metric of a globally widespread change in surface erosional 

processes and rates, such as an increased importance of valley glacial incision. Most importantly, the occurrence of deep 

valleys does not invalidate the thermochronometry analysis; erosion rates in the valley remain accurate, even if the valleys are 1275 

transient and morphologically young (Braun, 2002a). The rates might not apply to the entire landscape, for example to the 

upper parts of the landscape, but, on average, the erosion rate of the region must increase if the valley incision rate increases, 

and given that determination of the sign of the change in erosion rate is the primary objective, an overestimation of the affected 

area has no impact on the conclusions of Herman et al. (2013) or this paper. In our view, the local valley incision identified by 

Schildgen et al. (2018), rather than being a refutation of the result of Herman et al. (2013), should be regarded as a confirmation 1280 

that Herman et al. (2013) correctly determined the sign of the change.  

It should be noted that apart from the synthetic data models, which were calculate with the wrong geotherm, Schildgen 

et al. (2018) is an interpretation, not an analysis. There is no reproducible methodology. It is an interpretation of past studies, 

including Herman et al. (2013), and an assessment of the raw data. This type of analysis is susceptible to another type of bias, 

not yet discussed, which is known as confirmation bias. This emerges when some observations are selectively used, and others 1285 

selectively ignored in order to support a preconceived hypothesis. We see ample evidence for this bias throughout the Schildgen 

et al. (2018) interpretation. Because their working hypothesis was that the increases in erosion rate found by Herman et al. 

(2013) were a consequence of spatial gradients in ages from single thermochronometric systems, often averaging data from 

large distances, these conditions were searched for, and often exaggerated. This is perhaps most evident in their portrayal of 

the thermochronometric expression of tectonic structures. In Figure 14, we presented several settings which have extensive 1290 

thermo-kinematic modelling work, establishing age patterns which are best characterized as showing constant or near constant 

ages over extensive spatial domains. Schildgen et al. (2018) presented a summary of these same settings in their Figure 1, but 

with all figures depicting steep age gradients. These gradients do not appear in the original studies cited above, nor, as far as 

we can determine, in any of the studies cited in their paper. For the normal fault model, the shallow gradient reported by Ehlers 

et al. (2003) is exaggerated to the maximum possible gradient with an isochron perpendicular to the surface, implying footwall 1295 

tilt, not of the 10 to 15° observed, but of 90°, something that does not occur in this setting. For both the thrust ramp and the 

orogenic wedge, the zones of constant age have been replaced with a gradient younging towards the bounding ramp. The 

literature has no support for this gradient. With a thrust ramp there is either no gradient or a slight increase in age due to 

footwall cooling, but never a decrease in age. In fact, the Schildgen et al. (2018) versions of the ramp and wedge settings imply 

a normal sense of shear across the ramp hanging wall or across the entire retrowedge (a rock at the ramp fault is moving faster 1300 

than a rock in the orogen interior) and such a strain rate field has never been observed or emerged from a model. The natural 

settings indicated on their figure are similarly incorrect. New Zealand is not a simple thrust ramp, but rather is in a 

transpressional setting, so the ages do young towards the foreland, but the kinematics are not those of a simple ramp and any 

thermo-kinematic model fit to those ages has had to include more complicated kinematics with multiple blocks or internal 
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deformation (e.g., Beaumont et al., 1996; Herman et al., 2009). The Central Himalaya have been much studied, with a number 1305 

of papers arguing that the ages are constant across the major structural ramp (Burbank et al, 2003; Herman et al., 2010). As 

with rapidly moving normal faults, this is partially a consequence of compression of the age-erosion rate relationship at high 

erosion rate (Whipp et al., 2007; Thiede et al., 2009; Thiede and Ehlers, 2013). For the accretionary wedge model, rather than 

showing the youngest ages in the retrowedge (Figure 16f), the Olympics have no reset ages (Batt et al., 2001), the Apennines 

have distinctly older ages towards the retro-deformation front with the youngest ages in the core of the mountain belt (Thomson 1310 

et al., 2010b), Taiwan has constant ages (Willett et al., 2003; Fellin et al., 2017), and the Alborz as a transpressional system 

has no systematic pattern, with most ages unreset (Ballato et al., 2015). Thus, the age gradients depicted in Figure 1 of 

Schildgen et al. (2018) and hypothesized in their interpretation are perplexing because a figure intended to illustrate spatial 

patterns of ages, has altered those patterns from the original studies, adding characteristics that do not exist in the original 

studies. Such bias also exists in their site by site assessment, where their interpretation contradicts many previous works using 1315 

a variety of other analysis methods, that found increases in exhumation rate (e.g., Zeitler et al., 1982; Ehlers et al., 2006; Thiede 

and Ehlers, 2013; Michel et al., 2018; Vernon et al., 2008; Shuster et al., 2005; Sutherland et al., 2009; Thomson et al., 2010a, 

b; Avdeev et al., 2011; Shuster et al., 2011; Ballato et al., 2015; Bracciali et al., 2016). In each of these cases, the original study 

results were rejected and Schildgen et al. (2018) designated the outcome as spurious with little explanation and no objective 

tests as a basis for this contradiction. 1320 

 

6.3 Climate or Tectonics – Chicken or Egg, Revisited 

A final and important question in any study addressing the impact of climate change on erosion rate is differentiating 

between changes in erosion rate due to changes in tectonic process from changes in erosion rate resulting from changes in 

climatically-modulated surface processes. Although this question is not exclusive to thermochronometry, it remains 1325 

fundamental to the interpretation of any analysis (Kirby, 2018).  

In their study, Schildgen et al. (2018) found that, in cases where there is an increase in erosion rate, none were 

conclusively climate-driven and there were no more than two or three that were even potentially influenced by climate change. 

This is a surprising conclusion, not so much that tectonics appears to dominate, but that such an assessment would even be 

attempted. Unravelling the effects of tectonics and climate-modulated erosion has been regarded as one of the unsolved 1330 

challenges in Earth Science over the last 30 years and is commonly referred to as the “chicken or egg” paradox within the field 

(Molnar and England, 1990; Zhang et al., 2001; Molnar, 2004). This problem is regarded as a paradox because of the feedback 

between erosion and tectonic uplift. An increase in erosion rate due to climatic factors leads to an increase in rock uplift due 

to isostatic unloading. If that uplift manifests itself through surface deformation, tectonics becomes the consequence of erosion, 

not the cause. The alternative, that internal stress change drives a change in tectonic deformation rate and thus erosion rate, 1335 

cannot be differentiated from the isostatic response scenario; observations are essentially identical. Erosion rates and tectonic 
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activity are nearly always correlated, but there is no basis to assign cause to one and response to the other because of the strong 

feedback between deformation and gravitational unloading.  

Quantifying tectonic influence on exhumation rates is often conducted using thermokinematic models, which combine 

models of tectonic displacements with thermal advection-diffusion models in order to predict thermochronometric ages. 1340 

However, these cannot be used to test the relative importance of climate-change driven erosion and tectonic-driven erosion. 

The feedback between erosion and tectonics is based on stress changes in response to erosional unloading, and 

thermokinematic models have no stress calculations. Stress modelling including the impact of erosion on deformation requires 

use of a dynamic model and although these have been applied to tectonics-erosion coupling and thermochronometry prediction 

(e.g. Batt et al., 2001; Fuller et al., 2006; Bendick and Ehlers, 2014), their inability to predict specific realizations of stochastic 1345 

processes, such as brittle fault formation, or river basin geometry preclude their use for specific site studies. 

For these reasons, Herman et al. (2013) made no attempt to attribute cause to erosion rates or accelerations at any 

given site. This was regarded as an unanswerable question. Rather, the argument was that there were so many sites that showed 

an acceleration, a coincidence of a tectonic cause was not likely and Quaternary climate change leading to enhanced erosion 

rates was a more probable explanation for skewing the direction of the change (Molnar, 2004). Some sites may well have had 1350 

an increase in tectonic uplift rate; in particular in young mountain belts like Taiwan or the Southern Alps of New Zealand, 

where there is independent evidence for the acceleration of orogenesis. However, independent proof of the cause of a change 

in tectonic uplift rate is difficult to obtain and is nearly always circumstantial in nature. There is too much subjectivity involved 

with such a complex problem, so Herman et al (2013) simply kept all sites and evaluated the composite. In an unbiased and 

constantly changing world, half the sites would be expected to show an increase and half a decrease.  1355 

 In contrast, Schildgen et al. (2018) offered an assessment as to the cause of each change in exhumation rate. They 

presented no new methodology nor any solution to the problem of establishing cause and effect in a system with feedback. 

Their paper joins quite a few others that have missed the difference between cause and correlation (Molnar, 1990), but it is 

surprising that Schildgen et al. (2018) give such a definitive answer to such an elusive question.  

Any interpretation of cause is also complicated by the fact that the primary means to date or establish rates of tectonic 1360 

processes over million-year timescales is thermochronometry. To use thermochronometry to establish tectonic deformation 

rates to explain thermochronometric cooling rates is circular. There are few other methods to date rates of deformation.  In 

some isolated cases geochronology can be used, for example on syn-tectonic volcanic flows, but really the only independent 

method capable of resolving tectonic deformation rates across a 5 Ma timescale with enough precision to identify changes in 

rate is sedimentary growth strata with established bio- or magneto-stratigraphy. These do not exist at any but a handful of the 1365 

sites studied in both papers because most sites are in highly exhumed, often crystalline-cored mountain belts. An exception is 

the Alps where constraints on the tectonic activity in the Alps also come from the peripheral foreland basins, the Molasse 

basin, and the Po Basin, both of which show Quaternary rock uplift, indicating that erosion has recently begun to outpace 
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tectonic crustal thickening leading to flexural isostatic rebound (Champagnac et al., 2007, 2009; Willett, 2010). The frontal 

fold and thrust belts on both sides of the Central Alps ceased motion in the Pliocene, sometime prior to 3.4 Ma in the Jura 1370 

(Bolliger et al., 1993; Becker, 2000), and in the early Pliocene for the Lombardic thrust belt, as evident in growth strata and 

thrust-sealing post-tectonic sediments of the Po Basin (Fantoni et al., 2001; Willett et al., 2006). The major structures, including 

the Mont Blanc shear zone, Mont Blanc back-thrust, and the Penninic thrust had also ceased motion by the end of the Miocene 

(Egli and Mancktelow, 2013). The geologic evidence thus points to the cessation of tectonic activity throughout the Alps over 

the last 5 Ma, at the same time that the erosion rates are increasing in the external Alps. Similarly, the Apennines show a 1375 

decrease in the frontal thrust propagation rate over the last few million years, anti-correlated with an increase in exhumation 

rate (Boccaletti et al., 2010).  

6.4 Potential improvements to the study of Herman et al. (2013) 

The study of Herman et al. (2013), like any study, could be improved. With the insights of several years of additional 

work using the inversion method, we have learned much that could be applied to the global assessment (Ballato et al., 2015; 1380 

Herman and Brandon, 2015; Fox et al., 2015, 2016; Margirier et al., 2015; Yang et al., 2016; Bertrand et al., 2017; Jiao et al., 

2017; Siravo et al., 2019; Vincent et al., 2019). However, the substantive changes that we would make would be to the way 

we handled the post-processing of the results. We see no major problems with the inverse method, but the treatment of the 

resultant erosion rate fields has some errors. 

First, it is worth clarifying what the conclusions of Herman et al. (2013) were. The Herman et al. (2013) study analysed 1385 

exhumation rates globally, but selected only regions that had temporal resolution above a specified limit, primarily requiring 

a significant number of ages under 5 Ma. This limited the analysis to sites with high erosion rates, most of which are tectonically 

active. The null hypothesis tested by Herman et al. (2013) was that these specific regions, individually or collectively, have 

had no change in erosion rate over the past ca. 5 Ma. The analysis was applied to age locations, but then transferred to a set of 

regularly-spaced grid points for visualization.  They found that over 80% of sites with sufficient resolution had experienced 1390 

an increase in erosion rate over the past 6 Ma.  It is important to note that such an analysis does not provide a global erosion 

rates and was never intended to provide an estimate of global erosion rates over any time frame. A correlation to global climate 

change and global sediment flux was made, under the explicitly-stated assumption that the high erosion rate, mountainous 

areas make a significant contribution to global rates. This comparison was made in time, but not by volume.  

 In post-processing results, Herman et al. (2013) summarized the magnitude of the change in erosion rate by taking 1395 

two time intervals (6-4 Ma and 2-0 Ma), taking their ratio on a point by point basis and compiling their distribution into a 

histogram (Herman et al. (2013), Fig 2). This approach is subject to the same ratio bias as the normalized difference used by 

Schildgen et al. (2018). A ratio analysis should not be used when the goal is to estimate the magnitude of a change, the range 

of values and uncertainty is large and some values are approaching zero. 

This bias is avoided by using a difference instead of a ratio. We demonstrate this by recalculating the change of 1400 

erosion rate found by Herman et al. (2013) replacing the ratio of the 6-4 Ma time interval and the 2-0 Ma interval with a simple 
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difference between the two (Figure 24). We have done this for 3 values of the resolution cutoff, all larger than the .25 used in 

Herman et al. (2013). The principal effect of the change to a difference is to truncate the distribution reported in Herman et al. 

(2013) by removing the largest values. These large values were the consequence of small, but uncertain, numbers in the 

denominator of the ratio. However, the general form of the distribution and the positive mean remain the same as in Herman 1405 

et al. (2013). The principal result of Herman et al. (2013) is thus unaffected by this bias.  

Resolution and other posterior variables depend on a wide range of data parameters and inverse model parameters, 

so their absolute value is often scalable. In particular, they are subject to the well-known trade-off in inverse theory between 

resolution and variance reduction. To reduce the effects of noise in the data, resolution is sacrificed through spatial averaging. 

The tradeoff is between a well-resolved average parameter vs. a poorly-resolved local parameter. High resolution corresponds 1410 

to less reduction of noise variance. The degree of regularization of the model also comes into the absolute values of the 

resolution and variance. This comes primarily through the damping that occurs by setting a noise variance on the data (Equation 

3). The regularization is determined by the ratio of the noise variance and the prior parameter variance.   

As the resolution cut-off is increased, the number of resolved points is reduced (Figure 25). With a cut-off value of 

bias of 0.5, there are fewer than 200 points worldwide. However, these remain distributed globally, and a resolution cut-off of 1415 

0.4 gives over 500 points with a much broader spatial distribution. The mean change in erosion rate increases slightly with the 

increase in the resolution cut-off value. This indicates that the increase in erosion rate is defined by the best resolved points 

and the effect of a lower resolution cut-off is primarily to include more of the peripheral regions, where this signal is smoothed 

into surrounding regions. 

A better approach to that taken by Herman et al. (2013) or our analysis in Figures 24 and 25 would be to assess 1420 

resolution individually for each local data set. Because the number of data and data density vary from site to site, a constant 

value of the temporal resolution metric used as a threshold does not result in constant confidence in the erosion rate estimate, 

and the uniform resolution cut-off used by Herman et al. (2013) is not the best approach. An individual site assessment using 

the various metrics for resolution including sensitivity to the prior model, data residuals and age maps as we have shown in 

this paper would yield a more consistent level of confidence in local estimates. It is essential that such local site assessment be 1425 

guided by recognition of the source of errors as we have identified in section 4 above. Otherwise, errors of unknown origin 

could be misidentified, for example as spatial averaging. 

A change in the resolution analysis would not change the conclusions of Herman et al. (2013). The best resolved parts 

of the models are the ones with multiple thermochronometers or elevation gradients and it is these that serve as the basis for 

the signal of increasing erosion rate. Herman et al. (2013) did check for sensitivity to the prior (see supplement to their paper) 1430 

and took into account data distributions and multiple posterior metrics, so the interpretation is fundamentally sound and we 

see no reason to alter the conclusions of the original paper. The primary advantage of an improved resolution analysis would 

be to obtain a better estimate of the areas affected by changing erosion rates.  

There is one bias in the Herman et al. (2013) study that has not appeared in any of the critiques of the paper. Sites 

with high erosion rates will be more likely to have experienced a recent acceleration than deceleration; sites with low modern 1435 
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rates are more likely to have experienced a deceleration in the recent past, and because low-rate sites are removed from the 

analysis due to lower resolution, and because erosion rates cannot be negative, this does create a bias in the analysis suite of 

Herman et al. (2018). For a given modern erosion rate, there is some probability as to what the erosion rate would be at any 

point in the past, i.e. at 2 Ma, and this probability will be skewed because of non-negativity and truncation of low rates. We 

believe this skewness will be small because tectonic-driven erosion rate changes are heavily damped by geomorphic processes 1440 

and isostasy (Whipple and Meade, 2004), but we acknowledge there are few data and no systematic treatment of this problem. 

This is a bias on the median change, i.e. the mean or median of the distribution of Figure 24, and if this distribution were closer 

to zero-median, we would have investigated it in Herman et al. (2013). However, this is not a bias on the result at any individual 

site, so is not the main topic of the current manuscript. 

 1445 

6.5 Data Requirements for Resolving Late Cenozoic Changes in Erosion Rate 

 There are several lessons learned from this exercise with regards to the ability of thermochronometric data to resolve 

changes in erosion rate over the last 5 Ma, as well as for the physical conditions that would optimise future experimental design 

and case studies to address this problem.  

First, temporal resolution is key for resolving erosion histories from thermochronometer data. To resolve a change in 1450 

erosion rate in time requires a minimum of two ages with different depths to closure, requiring a distribution in elevation or 

differences in closure temperature. To resolve a Plio-Pleistocene change, requires at least two ages less than 5 Ma. Although 

high relief profiles can provide good time records using a single chronometer, it is primarily through the use of multiple 

chronometers that an exhumation history with a change in rate can be resolved. Current low-temperature dating methods are 

limited to fission track dating and (U-Th)/He dating of apatite and zircon, but the range of sampled temperature can be 1455 

expanded through the use of track length measurements or the use of grain size, composition or crystal damage diffusion 

models (Flowers et al., 2009). New methods incorporating models of Helium diffusion profiles in apatite (e.g. 4He/3He 

thermochronometry, Shuster and Farley, 2004) or new ultra-low temperature methods (e.g., OSL thermochronometry, King et 

al., 2016) will also greatly improve the ability to resolve young histories. 

Second, the absolute value of the exhumation rate is important for resolving an erosion history. Because current 1460 

methods have a limited range of closure temperature, to obtain ages under 5 Ma requires high rates of exhumation. High 

geothermal gradients also result in lower ages, but the range of values of heat flow is small compared to the potential range of 

value of exhumation rate. To obtain young ages restricts study to regions experiencing rates of exhumation over about 0.1 

mm/yr.  

Third, the need for high rates of exhumation necessarily pushes studies of exhumation rates into tectonically active 1465 

areas, where the high relief and high rock uplift rates results in sufficiently high rates of exhumation. Tectonic activity does 

not preclude the resolution of temporal changes in exhumation rate. If there are spatial variations in exhumation rate, the 

number of data required to resolve both spatial and temporal variability increases, but there is no reason to presume that an 
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analysis will fail to distinguish between spatial and temporal variability. It is important that temporal sampling does not 

inadvertently covary with spatial variability, for example by collecting higher temperature thermochronometers from one 1470 

region and lower temperature chronometers from another region with differing exhumation histories. Provided that age-

elevation profiles are obtained over a small area or multiple thermochronometers are available from a common location, 

temporal and spatial variability can be resolved. 

Finally, there is no escape from the chicken-and-egg problem for identifying the underlying cause of variable erosion 

rates. Tectonic changes that drive a change in erosion rate, or conversely erosion rate changes driving a change in tectonic 1475 

uplift rate through isostasy cannot be distinguished. The best one can do is make a circumstantial case based on spatial 

limitations. For example, if an increase in erosion rate is observed with a geometric relationship to faults with independently 

determined activity, and such a rate change is not observed in neighbouring regions, that provides circumstantial evidence that 

tectonics is changing independent of climate. However, it is important that there be a control case, i.e. a neighbouring region 

with no change in rate. Without a control, a single site cannot be used to argue cause and effect.  1480 

 

7.0 Conclusions 

An extensive error analysis of the thermochronometric age inversion method of Herman et al. (2013) (GLIDE) yielded a 

number of conclusions, many of which are relevant to other studies based on thermal modelling of thermochronometric ages 

for cooling or exhumation histories. We summarize as follows. 1485 

(1) The only significant model errors in GLIDE are associated with the calculation of the geotherm, demonstrating the 

importance of calibration against modern heat flow measurements or past P-T-t constraints and inclusion of 

appropriate physical boundary conditions. The importance of an accurate thermal model should not be 

underestimated. 

(2) Resolution errors are present in all thermochronometric age inversions, but vary from effectively zero with high data 1490 

coverage to very important with sparse data. Temporal coverage, i.e., a wide range of ages with different closure 

temperatures or elevations is much more important to constrain resolution than spatial distribution. At low resolution, 

solutions tend towards the prior value specified in the inversion, unless there are older ages present that contrain the 

long-term erosion rate. 

(3) Posterior error metrics including resolution and posterior variance provide an accurate measure of resolution errors. 1495 

Other valuable tests for resolution include sensitivity to the prior and analysis of data residuals. Metrics are relative, 

not absolute measures. Posterior metrics do not accurately reflect model (e.g., geotherm) errors. 

(4) The spatial correlation bias hypothesized in Schildgen et al. (2018) does not exist in any significant way.  There is 

spatial smoothing of exhumation estimates across discontinuities, but even these vanish with sufficient data. Gradients 

in exhumation rate resulted in no spatial averaging errors.   1500 
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(5)  It is possible to obtain errors with false increases in erosion rate as resolution errors, but only for specific 

combinations of ages and the prior model. As resolution errors, they are characterized by bias to the prior, not spatial 

averaging, and are recognizable through the resolution statistics and sensitivity to the prior.  

(6) The basis for the conclusions of the Schildgen et al (2018) paper was a combination of incorrect calculation of the 

ages used in their test models, post-processing of GLIDE inversion results using a biased operator, and a set of 1505 

subjective interpretations, hypothesised but untested. 

(7) The original conclusions of Herman et al. (2013) remain largely valid. The interpretation as to the underlying cause 

as tectonic or climate change is, as it was in the original publication, open. The question as to the adequacy of the 

sample size to characterize global changes also remains open.  The adequacy of the data to resolve changes at specific 

sites remains open to further assessment. However, we find no evidence for a bias in the analysis method, no 1510 

systematic errors in the analysis method, or any reason to disregard the conclusions of that study. 

 

Code Availability 
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FIGURE CAPTIONS 

 

Figure 1: (a) Illustration of how the distribution of thermochronometric ages constrains exhumation rate in time 
and for different exhumation rates.  Discrete time intervals as used in an inverse model are indicated. Hypothetical 
ages are shown for 6 thermochronometer systems with different closure temperatures. Age-elevation relationships 1815 
extend age range for a single thermochronometer as shown by ellipses enclosing samples with the same symbol. 
Note that there is no resolution for times greater than the oldest age at a site. For time intervals younger than the 
youngest age, only a single (low resolution) time interval can be resolved. (b) Example of how erosion rate is 
estimated over an unsampled time interval through the use of older ages. Assumed change of rate at 2 Ma with the 
youngest age being 4 Ma. Red curve is for an increase in rate; blue curve is for a decrease. (c) Inferred erosion rates 1820 
using two mineral method. Note that the change in each case is underestimated, but still detected. 

Figure 2: Methods for combining thermochronometric ages with variability due to spatial variations in exhumation 
rate or elevation. Squares and circles represent thermochronometers from independent systems as in Figure 1. (a) 
Plot of age against elevation for three, effectively co-located data. Slope is an estimate of exhumation rate. (b) 
multi-thermochronometer method for determining exhumation rate over two intervals by measuring cooling rate 1825 
between time of passage of closure temperature. (c) Combining elevation and multi-thermochronometer methods, 
using a thermal model to calculate closure depths. (d) Hypothetical age distribution for three thermochronometers 
across a region including three spatial domains with different exhumation rates. Exhumation rates are at the regional 
average and at plus or minus some deviation, 𝞼, from the average. Limit of resolution shows the age below which 
no change in exhumation rate can be resolved. (e) Several proposed methods for averaging the ages of (d) to 1830 
produce an exhumation rate. “Average 1” represents the average rate of all 9 ages and is an unbiased estimate of 
the regional median rate. Average 1 is also obtained by taking the median age for each closure temperature and 
converting this to a rate. “Average 2” is obtained by averaging only the ages that fall within a specific time window. 
“Average 3” is obtained by averaging the rates from all ages older than a specific time. Methods in (a), (b), (c) and 
“Average 1” in (e) are unbiased estimates of local or regional median exhumation rate, although the resolved 1835 
timespan varies. Averaging methods 2 and 3 in (e) are biased, although over different time spans. 

Figure 3: Synthetic age data sets for model bias and resolution tests, comprising two zones with differing erosion 
rate. Colors represent ages from different thermochronometer systems corresponding in closure temperature to: 
green: AHe, blue: AFT, yellow: ZHe, red: ZFT and black: muscovite 40Ar/39Ar. Data Sets A, B, C. D were generated 
using a constant geothermal gradient. Data sets E, F were generated using the GLIDE transient thermal model with 1840 
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a flux boundary condition. (g) Observed ages from the Alps to sow that the number of data and age range are similar 
to all synthetic data models. 

Figure 4: Synthetic data test for model errors. True solution is constant exhumation rate through time, with high 
exhumation rate (1 mm/yr) in upper left corner and low exhumation rate (0.25 mm/yr) in lower right corner, 
identical to the test proposed by Schildgen et al. (2018). Inset boxes in (a) and (d) show the true solution. Thermal 1845 
model is replaced with a constant geothermal gradient to remove potential errors associated with the geotherm 
calculation. The correlation length scale (30 km) is given by the black bar in (a). Other parameters given in Table 
(1). Synthetic ages are shown in Figure 3a and (i) where the size of the point corresponds to one of four closure 
systems, AHe, AFT, ZHe, or ZFT; these are calculated with a constant geothermal gradient in both the forward 
thermal and inverse model. Data points in (a) and (d) show age locations with ages less than 6 Ma as black 1850 
diamonds; ages greater than 6 Ma as white circles. Black data points in (b), (c), (e) and (f) show the locations of 
ages that fall inside the respective time interval. Estimated exhumation rate is shown with the temporal resolution 
and posterior variance for the time intervals indicated. (g) and (h) show the normalized exhumation rate difference 
(NR) and its posterior 2σ error. True solution is recovered very well in the centre region where data density is high. 
No spurious acceleration is visible.  1855 

Figure 5:  Synthetic data test for model error with a correlation length scale of 100 km. True solution is constant 
exhumation rate through time, with high exhumation rate (1 mm/yr) in upper left corner and low exhumation rate 
(0.25 mm/yr) in lower right corner identical to the test proposed by Schildgen et al. (2018). Inset boxes in (a) and 
(d) show the true solution. Thermal model is replaced with a constant geothermal gradient to remove potential error 
in the geotherm calculation. The correlation length scale is given by the black bar in (a). Other parameters given in 1860 
Table (1). Synthetic ages are shown in (i) where the size of the point corresponds to one of four closure systems, 
AHe, AFT, ZHe, or ZFT; these are calculated with a forward thermal model identical to the inverse model. See 
caption to Figure 6 for additional details.  The correlation length scale is more than 3 times that used in Figure 4.  

Figure 6: Synthetic data inversion test using reduced data density Set C (Figure 5) and a prior erosion rate of 1.0 
mm/yr in the NW corner and 0.25 mm/yr in the SE corner. This is equivalent to the true erosion rate used to generate 1865 
the synthetic ages. Other inversion parameters in Table 1.  See Figure 4 caption for other formatting details. 

Figure 7: Synthetic data inversion test using reduced data density Set B (Figure 3b). Data have good coverage in 
time, but poor coverage in space. Prior erosion rate is 0.35 mm/yr. Other inversion parameters in Table 1. See 
Figure 4 caption for other formatting details. 

Figure 8: Synthetic data inversion test using reduced data density Set C (Figure 3c). Data have moderately good 1870 
coverage in space, but poor coverage in time.  Prior erosion rate is (a) 0.35 mm/yr, (b) 0.65 mm/yr, (c) 1.65 mm/yr. 
(d) Temporal resolution and reduced variance applicable to all three models. (e) Age data. Other inversion 
parameters in Table 1. See Figure 4 caption for other formatting details. 

Figure 9: Synthetic data inversion test using reduced data density Set D (Figure 3d). Prior erosion rate is 0.35 
mm/yr and 1.0 mm.yr. In right side column, all age data from the low uplift region (SE) are removed.  Other 1875 
inversion parameters in Table 1. See Figure 4 caption for other formatting details. The similarity in the HW region 
of the two models shows that there was no spatial averaging of older ages into high uplift region. 

Figure 10: (a) Data misfit for left model in Figure 9. Prior erosion rate is .35 mm/yr; prior standard deviation of 
erosion rate is 0.1 mm/yr. (b) Inverse model of same data, but with prior standard deviation of erosion rate of 1.0 
mm/yr. Reduces residuals in (b) show that the errors were due to bias to the prior, not spatial averaging. 1880 
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Figure 11: Synthetic data model for a gradient in erosion rate varying from .1 mm/yr on left edge to 1.0 mm.yr on 
right edge. True solution and data locations are shown in (b). Ages are shown in (c). All four thermochronometers 
are given at each data location. There are no variations in elevation. Inverse solution for last three time-intervals 
shown in (a) Other models including for subsets of data shown in Appendix A. 

Figure 12: Synthetic data inversion test using synthetic Data Set E calculated using the full, transient thermal model 1885 
internal to GLIDE (Figure 3). The prior erosion rate is 0.35 mm/yr. Other inversion parameters in Table 1. See 
Figure 4 caption for other formatting details. 

Figure 13: Synthetic data inversion test using synthetic Data Set F calculated using the full, transient thermal model 
internal to GLIDE, but sparse data (Figure 3). The prior erosion rate is 0.35 mm/yr. Other inversion parameters in 
Table 1. See Figure 4 caption for other formatting details. 1890 

Figure 14: Tectonic settings in which thermo-kinematic modelling has established extensive regions of nearly 
constant exhumation rate. Dashed line shows an isochron  (line of constant age). (a) Normal fault footwall block 
(Ehlers et al., 2003). (b) Thrust ramp (Lock and Willett, 2008; McQuarrie and Ehlers, 2015, McQuarrie and Ehlers, 
2017). (c) Orogenic wedge (Batt and Braun, 2000; Willett and Brandon, 2003; Fuller et al., 2006).  

Figure 15: Erosion rate history in the western Alps based on analysis from Herman et al. (2013) and Fox et al. 1895 
(2015, 2016). (a-c) Inferred erosion rate between 2 and 0 Ma, with temporal resolution and posterior variance. (d-
f) Inferred erosion rate between 4 and 2 Ma, with temporal resolution and posterior variance. (g-i) Inferred erosion 
rate between 6 and 4 Ma, with temporal resolution and posterior variance. (j) Normalized erosion rate difference 

(Equation 14), (k) 2σ error on the normalized erosion rate difference (Equation 16). Inversion parameters are similar 
to Herman et al. (2013). A prior erosion rate of 0.35 mm/yr and a correlation length scale of 30 km have been used. 1900 
In (a), (d) and (g) the black diamonds indicate ages less than 6 Ma; white dots indicate ages older than 6 Ma. In 
resolution and variance plots the ages that fall within that time interval are shown as black circles. PLF is the 
Penninic Line fault. 

Figure 16: Erosion rate history in the western Alps based on analysis from Herman et al. (2013).  Model is identical 
to that of Figure 15, except that the prior erosion rate is taken to be uniform at a value of 1.35 mm/yr.   1905 

Figure 17: Erosion rate history in the western Alps excluding all data SE of the Penninic Line fault (PLF) (d-f), 
compared to history including all data (a-c) (identical to Figure 15). All inversion parameters are identical. The 
erosion rates and observed increase of erosion rates in the external Alps are virtually indistinguishable between the 
two models, confirming that the solution in the NW external Alps and the observed acceleration is determined by 
the local data. 1910 

Figure 18: Erosion rate history for the Western Himalayan syntaxis in the region of Nanga Parbat. Estimate based 
on analysis from Herman et al. (2013). Inferred erosion rates (a, d, g) for three time intervals, from 6 Ma to present, 
shown along with the temporal resolution (b, e, h) and reduced variance (c, f, i). (j) Normalized erosion rate 
difference (NR) and its associated error (k) are also shown. (l) Histogram shows age distribution broken out by 
thermochronometric system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include 1915 
ages less than 6 Ma as black diamonds and ages greater than 6 Ma as white dots. Resolution and variance plots 
include the ages that fall within the respective time interval. An inverse model with all data from outside the massif 
omitted is shown as Figure A7. There is no appreciable difference in the result. 
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Figure 19: Erosion rate history for the Olympic mountains of NW Washington State, USA. Estimate based on 
analysis from Herman et al. (2013). Inferred erosion rates (a, d, g) for three time intervals, from 6 Ma to present, 1920 
shown along with the temporal resolution (b, e, h) and reduced variance (c, f, i). (j) Normalized erosion rate 
difference (NR) and its associated error (k) are also shown. (l) Histogram shows age distribution broken out by 
thermochronometric system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include 
ages less than 6 Ma as black diamonds and ages greater than 6 Ma as white dots. Resolution and variance plots 
include the ages that fall within the respective time interval.  1925 

Figure 20: Erosion rate history for the Marlborough region, New Zealand. Estimate based on analysis from Herman 
et al. (2013). Inferred erosion rates (a, d, g) for three time intervals, from 6 Ma to present, shown along with the 
temporal resolution (b, e, h) and reduced variance (c, f, i). (j) Normalized erosion rate difference (NR) and its 
associated error (k) are also shown. (l) Histogram shows age distribution broken out by thermochronometric 
system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include ages less than 6 Ma as 1930 
black diamonds and ages greater than 6 ma as white dots. Resolution and variance plots include the ages that fall 
within the respective time interval.  

Figure 21: Erosion rate history for the Fjordland region of New Zealand. Estimate based on analysis from Herman 
et al. (2013). Inferred erosion rates (a, d, g) for three time intervals, from 6 Ma to present, shown along with the 
temporal resolution (b, e, h) and reduced variance (c, f, i). (j) Normalized erosion rate difference (NR) and its 1935 
associated error (k) are also shown. (l) Histogram shows age distribution broken out by thermochronometric 
system. Inversion parameters are similar to Herman et al. (2013). Erosion rate plots include ages less than 6 Ma as 
black diamonds and ages greater than 6 Ma as white dots. Resolution and variance plots include the ages that fall 
within the respective time interval.  

Figure 22: Influence of basal boundary condition on the geothermal gradient. a) Two models are shown. Both 1940 
initiate at a constant gradient (black), and with identical thermophysical properties. The blue line is the geotherm 
after 20 Myr assuming an exhumation rate of 1 mm/yr and using a fixed temperature at a depth of 30 km. By 20 
Ma, the geotherm has reached a steady state. The red lines are the transient geotherms for an exhumation rate of 1 
mm/yr and using a flux boundary condition applied at 30 km. Steady state will not be reached for another ca. 50 
Ma. In GLIDE, ages are predicted on one of the red curves through the course of the model run. Schildgen et al. 1945 
(2018) used synthetic ages calculated using the blue geotherm, inverted them using temperatures predicted from 
the red geotherms, and concluded that the failure to recover the correct exhumation rate demonstrated a problem 
with spatial correlation in the GLIDE inversion method. 

Figure 23: Comparison between ages predicted with Pecube using a constant temperature boundary condition at 30 
km (Braun et al., 2012) and GLIDE (Fox et al., 2014) using a flux boundary condition at 30 km. The ages were 1950 
generated assuming the same exhumation rates (i.e., 1 mm/yr NW of the Penninic Line fault and 0.25 mm/yr SE 
of Penninic Line fault). Green points are AHe ages, blue points are AFT ages and red points are ZFT ages. The two 
exhumation rates zones are represented by circles (1 mm/yr) and diamonds (0.25 mm/yr), respectively. Outliers in 
lower right corner were likely placed on wrong side of the fault in one of the models and were removed from the 
inverse analysis. 1955 

Figure 24: Recalculation of the global change in erosion rate between 6-4 Ma and 2-0 Ma from the inversion results 
of Herman et al. (2013). Change is expressed as the difference between the erosion rate inferred for each of these 
time windows. Results are shown using three values for the resolution cutoff, from .3 to .5.  
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Figure 25: Distribution of points where thermochonometric ages permit resolution of a change in erosion rate from 
6 ma to the present based on the inverse model analysis of Herman et al. (2013). Changes are expressed as a 1960 
difference with distribution of values shown in Figure 24. Each frame contains points above a specified resolution 
cutoff.  
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TABLE CAPTION 

 

Table 1: Parameters and results for synthetic data models.  
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Figure Data Correlation 

Length 

Prior 

Erosion 

Rate 

Notes Results 

 

Figure 4 Set A 

326 data 

5 systems 

 

30 .35 Fixed Geotherm No error 

Figure 5 Set A 

326 data 

5 systems 

 

100 .35 Fixed Geotherm 

High correlation length 

No error 

Figure 6 Set C 

143 data 

3 systems 

 

30 True 

solution 

Fixed Geotherm 

Poor temporal coverage 

No error 

Figure 7 Set B 

48 data 

4 systems 

30 .35 Fixed Geotherm 

Poor spatial coverage 

No error 

Figure 8 Set C 

143 data 

3 systems 

 

30 .35 

.65 

1.65 

Fixed Geotherm 

Poor temporal coverage 

Large errors 

For small prior 

Small errors for 

large prior 

Figure 9 Set D 

160 data 

30 .35 

1.0 

Fixed Geotherm 

uniform spatial coverage 

No errors 
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5 systems 

 

All data removed from low uplift 

Figure 11 4 systems 

 

30 1.65 Fixed Geotherm 

Constant Gradient in erosion rate 

No error 

Figure 12 Set E 

326 Data 

5 systems 

30 .35 Transient Thermal Model No error 

 

Figure 13 Set F 

42 Data 

5 systems 

30 .35 Transient Thermal Model 

Sparse Data 

Moderate error 

 

 


