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1 Response to Reviewer 1

We thank reviewer 1 for the thoughtful comments. We have considered many of their
comments and applied we think that the updated manuscript addresses many of them.
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Comment

The reviewer’s main concern is with equation (2), from which many of the main re-
sults on fA(A) follow. It is not clear how the authors obtained it and what assump-
tions are involved. In principle, the ensemble average of A, given l, is < A >=∫
A(fl(l|A)fA(A))/(fl(l))dA. So, the ensemble average of A should contain informa-

tion about the entire joint proba- bility distribution. How does it reduce to equation
(2)?

Response

Response: It is true that Hack’s Law is a statement of the mean of the conditional
distribution,

µ(A|l) =
∫ ∞

0
Af(A|l)dA . (1)

However, because fl(l) doesn’t appear anywhere in this expression, Hack’s Law does
not depend on the joint distribution - only on the conditional distribution. The joint
distribution is important for our goal of understanding flow routing and distributions of
hydraulic variables, but it is not necessary for understanding Hack’s Law.

We suspect that the reviewer is questioning how the probabilistic representation of the
mean of the conditional distribution fA(A|l) yields Hack’s law the specific form of Hack’s
Law written in (2). Hack’s Law is an empirical scaling observation which we state in
the beginning of this paragraph. Equation 2 is simply a restatement of (1) with l as the
independent variable and so it is an empirical result. One of our goals is to demonstrate
a reasoning for the nonlinear form of Hack’s Law and the value of parameters φ and m.
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Comment

Is φ really a constant?

Response

We now refer to φ as a dimensional coefficient because, as the reviewer suggests, φ
can change depending on the class of network one is considering.

1.0.1 Comment

The reviewer suggests that we clarify the new elements of this work as compared to
Dodds and Rothman (2000).

1.1 Response

We agree that much of this work builds on the reasoning from Dodds and Rothman
(2000) and we have added language to more clearly acknowledge what components
are new and which build on previous work. In particular, early on in section 2, we state
that our primary contribution here is to contribute towards a formal understanding of the
moments of the Hack distributions, whereas Dodds and Rothman (2000) developed the
forms of the distributions.

Comment

The reviewer strongly suggests dividing section 2 and 3 in subsections.

C3

https://esurf.copernicus.org/preprints/
https://esurf.copernicus.org/preprints/esurf-2020-63/esurf-2020-63-AC1-print.pdf
https://esurf.copernicus.org/preprints/esurf-2020-63
http://creativecommons.org/licenses/by/3.0/


ESurfD

Interactive
comment

Printer-friendly version

Discussion paper

Response

For section 2 we have divided into 3 sections: Geometry, Area, Length. For section 3
we have divided into 2 sections: Hydraulic distributions and Sampling.

Minor Comments

We have accepted the minor comments.

2 Response to Reviewer 2

We thank the reviewer for a careful reading and critique of our manuscript. The reviewer
correctly points out some issues that may be altered to improve a revised draft. In
our view, the reviewer’s major contribution here highlights that we should clarify the
reasoning for our initial and boundary conditions that determine the probability function
for watershed width. Further they suggest that we clarify that our theory is based on
a continuous random variable, whereas the Scheidegger model has discrete random
variables.

Comment

Starting from Eq (5), this equation does not read as it meant “a unity probability with
zero variance”. It should be expressed as an atom of probability at w = 1 and zero for
other w. Second, should it be w = 0 instead of w = 1? Right above this paragraph, it
is stated that watersheds are closed at w = 0; thus they should also initiate at w = 0.

C4

https://esurf.copernicus.org/preprints/
https://esurf.copernicus.org/preprints/esurf-2020-63/esurf-2020-63-AC1-print.pdf
https://esurf.copernicus.org/preprints/esurf-2020-63
http://creativecommons.org/licenses/by/3.0/


ESurfD

Interactive
comment

Printer-friendly version

Discussion paper

Response

We have changed language in the manuscript to highlight that the value of the Schei-
degger network is to inform the probabilistic elements of constructing watersheds and
the probability functions of geometric variables. Therefore, the discrete nature of the
Scheidegger model is only to guide the mathematics for a continuous version. We
agree with the reviewer that the initial condition should be represented as a dirac func-
tion and have made that change.

We disagree that the initial condition should be w = 0 for the following reason. It is true
that at s = 0, the watershed has a width w = 0. However, in order for the watershed to
exist, it necessarily must widen to a width of w = r at s = 1. This is where our initial
condition applies and we have clarified this in the text

Comment

The reviewer has issue with our boundary conditions, which we state are fixed bound-
ary conditions at w = 0. They suggest that given that it is possible for a watershed to
close, that there is finite probability that w = 0 and therefore the boundary condition
cannot be fw(0) = 0.

Response

We understand the reviewers comment and how the previous manuscript led readers to
that conclusion. However, we are confident in our boundary condition and have added
language and a figure to explain why. Consider the ensemble of watersheds of length
l. The width function, w(s) can take any random walk over the domain [0, l], but it must
begin and end at w = 0. At s = 1 the variance of widths of the ensemble of watersheds
of length l is 0. When s = l/2 the variance is at a maximum. While s > l/2 and as
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s → l the variance must begin to decline back towards 0. Therefore, the evolution of
fw(w, s) from 0 to l/2 is mirrored by the evolution from l/2 to l. Our boundary condition
only applies to the s ≤ l/2, or the ‘growing’ part of the watershed. The mirroring about
l/2 then allows for us to know the form of the distribution over all s < l. The calculation
of µA (Equation 10) involves multiplying the integration of µw by 2 to account for this.
The accompanying figure, which is now added to the manuscript illustrates this.

Comment

The reviewer is under the impression that we have fixed l.

Response

This is, in fact, the case for describing the conditional distribution fA(A|l). The re-
sponse above addresses this issue and illustrates how a diffusion equation is appropri-
ate for the description of fw(w, s). We consider l as a random variable for constructing
the entire

Comment

The reviewer suggests that we remove semi-colons when refering to the spatial variable
in the Fokker-Planck like equations.

Response

We have replaced these with commas. However, we have also removed most refer-
ences to a Fokker-Planck-like equation to avoid confusion.
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Comment

The reviewer got the impression that at some point we were equating Scheidegger
models and optimal criticality networks.

Response

We are uncertain about where the reviewer got this impression. We refer to OCNs
in two places in the paper. The first instance, we say “Other network classes exist
including optimal criticality networks...” We think that this clearly states that they differ
from Scheidegger networks.

The other location that we refer to OCNs is in the discussion where we highlight the
slight mismatch in form of the probability functions of area for real topography and a
Scheidegger network. We have added language to make sure that readers do not think
that we suggest Scheidegger and OCN are the same:

“However, because those networks are note amenable to the type of theory developed
above because they lack the clarity in rules for links and nodes of the network.The
Scheidegger model serves as a guide to inform probability distributions and provide a
basic reasoning for nonlinear relationships.”

Comment

Unclear how equation 11 is obtained, is it empirical?
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Response

This result is semi-empirical. We expect that the variance of A scales as σ2l3. The
presence of 6 in the denominator is not theoretically derived. If one could formally
explain this, then the problem would be complete. We have added:

“We emphasize that this is a semi-empirical result that warrants a stronger theo-
retical solution”

Comment

Rill flow length needs to be defined in the intro

Response

We have changed the appearance of “rill flow length” and now only have “watershed
length” which is defined in the intro.

Comment

Clarify how rills are “efficient”.

2.0.1 Response

We have removed the word “efficient”
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Comment

Unclear: “second we ask if the particular arrangement of the rills focuses flow such
that it leads to a nonlinear sediment yield relationship...”

Response

We have reworded this to: “Second, we ask if a well defined network of rills focuses
flow such that it leads to a nonlinear sediment yield relationship”

Comment

OCN: Optimal Channel Networks?

Response

YES, we have changed.

Comment

Line 75- “As such, . . .”: Is this referring to OCN? What is the “constraint”? OCN has a
“clear rule” to construct networks.

Response

Yes it is referring to OCN, we think this is sufficiently clear. The constraint is that it min-
imizes the energy expenditure as stated above. We disagree that OCN has a clear rule
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for constructing networks that leads to clear probabilistic insights. That OCN minimize
energy and satisfy continuity equations does not lead to particularly clear conclusions
regarding the construction of links and nodes. In contrast, the Scheidegger model is
constructed by a set of uniformly spaced paths that take simple random walks in the
cross slope dimension. Second, uniform drainage density is maintained so that when
two rills meet, another is formed. These lead directly to a graphical representation
of the network in a way that the rule for OCN does not. We do not think that further
clarification benefits this manuscript as the focus is not on OCN.

3 Reviewer 3

We thank reviewer 3 for the meaningful review and suggestions on this manuscript. We
believe that the manuscript is improved after following many of their suggestions.

Comment

... Since the primary goal is to demonstrate and understand the non-linearity of the
length-sediment relation for a rilled surface, it would have been useful to have first
discussed the relation for an unrilled surface...

3.0.2 Response

We agree with the reviewer and have added a paragraph dedicated towards address-
ing this. We review the work of Burch et al., 1986 which demonstrates nonlinear sed-
iment yield-slope length relationship on planar surfaces. Their work suggests that the
nonlinear relationship for planar and unrilled slopes approaches the least nonlinear re-
lationship observed for rilled slopes. We suggest that this similarity is shared between
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planar surfaces and rill networks with linear rills. We then review the work of McGuire
et al., 2013, which demonstrates that rill networks become increasingly dendritic with
increasing rainfall detachment. This is the scenario that leads to more nonlinear sedi-
ment yield relationships.

Comment

It would be useful to make a little section for related literature, and especially to add a
comprehensive summary of all of the relevatn findings of Dodds and Rothman since
they are employed/referred to so extensively.

Response

We have added a paragraph in the introduction summarizing these results and how we
build on them.

Comment

The section on network geometry could be greatly improved for ease of understanding
and readability by shortening and simplifying. It would be simpler to state Hacks law
in deterministic form, state its inverse in deterministic form, and note that the goal is to
derive its probabilistic representation from the theory of random walks in a Scheidegger
network. The derivation of equation 7 as currently written, could then be simplified and
disambiguated by

• noting that width is the difference between two normally distributed and indepen-
dent RVs and must be positive;
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• stating the ICs at s = 0, presumably as two rill sources separated by a distance
w = w0 ;

• noting that the distribution of the difference of two independent normal distribu-
tions z−z2 with means (µ1,µ2) and variances (σ1,σ2) is itself a normal distribution
with mean µ1 − µ2 and variance σ1 + σ2;

• noting that the first passage of a random walk with a normally distributed RV with
diffusion coefficient D starting at w = w0 is given by the Rayleigh distribution

since, as written, the description is not clear, equation (5) is confusing, while the brief
discussion of the diffusion (6) and Fokker-Planck equations will not be helpful to many
readers.

Response

We have largely taken these suggestions. We have clarified the initial conditions and
added a figure that explains them and the boundary conditions. In our case, the
Rayleigh distribution represents the distribution of watershed widths for s ≤ l/2, which
we have clarified in this case. We disagree though that w(s) is a first passage problem
because a watershed can return to the same value for w at many points along the wa-
tershed. We have; however, chosen to remove most references to the Fokker-Planck
equation for simplicity.

Minor Comments

1. Line 12 understanding Hack’s
2. Line 34 geometrical (not topological)
3. Line 169
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4. Line 197 the this
5. Line 286 , for ;
6. Line 330 length(en)
7. Line 343 geometrical (not topological)
8. Line 358 distribution a

Figure 12B needs some attention. Its not clear what its meant to be (as seen by this
reviewer.)

Response

We have accepted most of the minor comments that identify typos or improved lan-
guage. Figure 12B is included to illustrate the results from flow routing. We have
added the following language:

“This illustrates the results of numerical flow routing. From this result, we calculate
exceedance probabilities that compare to theoretical distributions.”

Response to longer term improvements

We appreciate the reviewers suggestion regarding future developments and their sup-
port for further work. Indeed some form of what they mention is the subject of current
work. We choose to keep the focus of this manuscript largely the same as in the
previous manuscript. However, we respond to a few points here.

First, we address their suggestions for a second paper and uncertainty with regard to
a Scheidegger model being suitable for understanding Hack’s Law. We understand
that the reviewer thinks that the Scheidegger model is likely a good model, but not
necessarily the best because two adjacent rills that define a ridge may not be the ones
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that meet to close it off. This is true, however, the observation that watershed divides
take simple random walks and necessarily begin at w = 1 at s = 1 holds. In fact, the
ridges form a network that is also a Scheidegger network and is simply the complement
of the channels. We think that insofar as the Scheidegger model is a simpification of
networks, it is a reasonable one for exploring Hack distributions and laws.

Second, we agree with the reviewer’s comment that our representation of channel
widths is somewhat simplistic. One could reasonably make rw a random variable that
scales with Q and we think this would be a fruitful next step, but beyond the scope of
this paper.

Interactive comment on Earth Surf. Dynam. Discuss., https://doi.org/10.5194/esurf-2020-63,
2020.
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Fig. 1.
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