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Abstract. Surface flow on rilled hillslopes tends to produce sediment yields that scale nonlinearly with total hillslope length.

The widespread observation lacks a single unifying theory for such a nonlinear relationship. We explore the contribution

of rill network geometry to the observed yield-length scaling relationship. Relying on an idealized network geometry, we

formally develop probability functions for geometric variables of contributing area and rill length. In doing so, we contribute

towards a complete probabilistic foundation for the Hack distribution. Using deterministic and empirical functions, we then5

extend the probability theory to the hydraulic variables that are related to sediment detachment and transport. A Monte Carlo

simulation samples hydraulic variables from hillslopes of different lengths to provide estimates of sediment yield. The results

of this analysis demonstrate a nonlinear yield-length relationship as a result of the rill network geometry. Theory is supported

by numerical modeling wherein surface flow is routed over an idealized numerical surface and a natural one from northern

Arizona. Numerical flow routing demonstrates probability functions that resemble the theoretical ones. This work provides10

a unique application of the Scheidegger network to hillslope settings which, because of their finite lengths, result in unique

probability functions. We have addressed sediment yields on rilled slopes and have contributed towards understanding Hack’s

law from a probabilistic reasoning.

Copyright statement. This work has not been published in other journals

1 Introduction15

Rilled hillslopes are common in semiarid, agricultural, and recently disturbed landscapes (Figure 1). In these settings, rills

concentrate surface flow and serve as pathways for sediment transport and erosion. There is a long legacy of work that explores

the mechanics and consequences of rill processes through field observation, experimentation (Govers, 1992; Liu et al., 2000),

and numerical simulation (Hairsine and Rose, 1992; McGuire et al., 2013). This body of work highlights a number of key

observations and relationships. Among these is the observation that sediment yield at the base of a hillslope tends to vary20

nonlinearly with the total length of the hillsope, Lh [L], so that Qs ∝ Lβh where Qs [L3 T−1] is the volumetric sediment yield
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and 1.4≤ β ≤ 2.0 (McCool et al., 1993; Govers et al., 2007; Renard, 1997). Here, we consider the role of the rill network

geometry in contributing to this nonlinear relationship.

Nonlinear scaling relationships between sediment yield and slope length have been observed on all slopes for which surface

flow is a dominant sediment transport mechanism. Moore and Burch (1986) consider surface flow over smooth hillslopes. By25

rearranging Manning’s equation and solving for unit stream power, those authors demonstrate that a planar hillslope will gen-

erate a nonlinear relationship between sediment yield and slope length that is Qs ∝ L1.4
h . Note that this nonlinear relationship

is the lower end of those identified for rilled hillslopes. Nonlinear relationships with an exponent greater than 1.4 require that

flow concentrates as it moves down slope (Moore and Burch, 1986). Rill networks may form a range of geometries from nearly

parallel paths that rarely converge to dendritic networks. These different rill network geometries may contribute towards a30

range of nonlinear yield-slope length relationships.

The causes of linear and dendritic networks is extensively explored by McGuire et al. (2013). In a numerical exploration,

those authors demonstrate that the geometry of rill networks reflects the relative magnitudes of transport due to surface flow and

rain splash. In this framework, surface flow tends to create straighter rills that converge less frequently. In contrast, transport

due to rainsplash is diffusive and tends to disrupt the linear channels, which leads to increasingly dendritic networks. In this35

paper, we consider the contributions from the geometry of dendritic networks which concentrate flow.

We develop a probability theory for the geometric variables of watershed length, l [L], and contributing area, A [L2] for an

idealized rill network. From this theoretical starting point, we then extend the analysis to hydraulic variables that are related to

sediment detachment and transport. This work is related to a suite of previous studies that incorporate probabilistic approaches

to rill transport and dynamics. Most notably, our approach is similar to two previous studies. First, Lewis et al. (1994a, b)40

develop a stochastic model (PRORIL) for rill development and sediment transport that includes variable drainage density and

flow rate. In this work, the authors present the model as a tool to explore the development of rill networks. Second, Damron and

Winter (2008) employ a dynamic, but idealized rill network wherein links between nodes can change based on a node’s history.

They use this model to demonstrate the temporal characteristics of sediment passing by a node as a result of the dynamics that

occur in upslope links. These contributions effectively demonstrate the details and dynamics of rilled settings, but a description45

of the underlying probability functions of the networks and how they relate to slope length-sediment yield relationships remains

outstanding.

Other probabilistic approaches have been applied to rill settings. Nearing (1991) considered the probability of particle

entrainment as a result of the overlapping distributions of instantaneous shear stress and soil resistance. They demonstrate that

this leads to the ability for flows to entrain sediment from soils that are relatively strong. Similarly, Mei et al. (2008) consider50

the rill width as a random variable, which influences flow depth and shear stress. Using a linearized perturbation method,

they demonstrate the impact on statistical moments of hydraulic variables of flow velocity and depth. Our work considers the

probability involved with the macro-scale patterns of rill networks, and, in principle, could be combined with these efforts that

describe dynamics within rills.

We have two goals. First is to provide a rigorous probabilistic description of the rill network. In particular, we wish to55

formally develop the conditional distribution, fA(A|l), which is read as the probability distribution of contributing area, A,
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Figure 1. A rilled hillslope near Benson, AZ. Prominent sub-horizontal lines are stratigraphy of the lake sediments of the region.

given that a watershed has a length l, which is also a random variable with distribution fl(l). These two distributions combine

to create the joint distribution fA,l(A,l). This is the Hack distribution which has been extensively studied and used to identify

patterns in landscapes, but to date, a complete derivation of the distributions remains to be done (Hack, 1957; Gupta et al., 1996;

Dodds and Rothman, 2000). Second, we ask if a well defined network of rills focuses flow such that it leads to a nonlinear60

sediment yield relationship with hillslope length, Qs ∝ Lβh. Addressing these goals involves two approaches. First we extend

the probability theory for topographic variables to hydraulic and sediment transport variables of unit stream power, shear stress,

and sediment concentration. Second, we numerically route flow down the idealized and a natural rill network to evaluate and

inform the theory.

The work presented in this paper builds largely on the results presented by Dodds and Rothman (2000). Those authors use65

the Scheidegger model, Hack’s law, and some reasonable assumptions to inform a development of the form of probability

functions for geometric variables. Starting with Hack’s law, which relates the expected length of a watershed to its area, the

authors assume that the conditional distribution, fl(l|A) is Gaussian in form. From this assumption and known properties of

random walks, they are able to develop functional forms for all distributions related to the joint distribution fA,l(A,l). That

is, they develop the joint distribution, both forms of the conditional distributions, and the marginal distributions. However,70

because their work involved an assumption of the form, the parameters of the distribution lack a formal development. In this

paper, we lean heavily on this work, but contribute towards a more formal understanding of the parameters of the distributions.

Before moving on, here is a note about notation. We use fx(x;y) to denote a probability density or probability mass function

for the random variable x with parameter y. The subscript indicates the random variable for the probability function. This

becomes useful later.75
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2 Theory

2.1 Network Geometry

We develop a theory for rill network geometry that is based on the Scheidegger model (Scheidegger, 1967). These networks

have two characteristics. First, for every unit distance downslope, a rill has equal probability of moving 1/2 unit left or right.

Second, uniform drainage density is maintained, such that where two rills converge, which leaves one downslope node empty,80

a new rill is generated at the empty node (Figure 2A). These two rules sufficiently describe the network and allow for us to

develop theoretical distributions concerning the rill lengths, contributing areas, and flow variables for simple conditions. Other

network classes exist including optimal channel networks (OCN) and Peano basins (Maritan et al., 2002; Yi et al., 2018).

Optimal channel networks are constructed by iterative numerical procedures that minimize the energy expenditure within the

network (Rinaldo et al., 1993). As such, there are a great number of network configurations that satisfy the constraint and85

there are not clear rules for the construction of links and rill paths. Peano networks are a class of self-similar trees wherein

perpendicular tributaries are recursively added to the network at finer scales (Gupta et al., 1996). On hillslopes flow is in one

dominant direction so that model is unrealistic.

2.2 Hack’s Law

Central to this work is Hack’s Law, which is a nearly universal empirical scaling observation where the length of the main90

channel is related to the contributing area by an exponent,

l = θAm , (1)

where l is the length of the main channel, A is the contributing area, θ is a dimensional coefficient. The exponent m is the

subject of work that explores the fractal characteristics of networks (Hack, 1957; Dodds and Rothman, 2000; Maritan et al.,

2002; Bennett and Liu, 2016). We choose to rewrite Hack’s law with l as the independent variable,95

A= φl1/m , (2)

where φ is a dimensional coefficient for which φ 6= θ1/m (Dodds and Rothman, 2000). We find this form more suitable for the

theory developed below. Implied in Hack’s law is that it represents the expected value of A given a watershed of length l. In

reality, both A and l are random variables, and we replace A with 〈A〉 to denote the mean of an ensemble of watersheds of

length l. Written this way, (2) is an expression of the mean of the conditional distribution fA(A|l), the derivation of which is100

one of our goals.

2.3 Contributing Area

We begin with an observation on the random walks of watershed divides. Insofar as rills take simple random walks and uniform

drainage density is maintained, then watershed divides are also random walks that follow the same rules (Dodds and Rothman,
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Figure 2. (A) Paths of one realization of a Scheidegger network with open (dark gray) and closed (light gray) watersheds highlighted.

(B) Illustration of the grid and possible paths of links. Nodes are offset at downslope levels. A square grid is shown here, but there is no

requirement that it be square.

2000; Damron and Winter, 2008). The width, w(s) [L] at any particular location s [L], is the difference between two random105

walks. Characterizing divides in this way allows for the following definitions:

w(s) = b1(s)− b2(s) , (3)

A(l) =

l∫
0

w(s)ds, (4)

where bn(s) [L] denote positions of the two watershed divides, and w(s) is the width function (Figure 3) (Rigon and Ijjasz-

Vasquez, 1993; Veneziano et al., 2000; Lashermes and Foufoula-Georgiou, 2007; Ranjbar et al., 2018). The width function for110

a watershed of length l must always be positive until w(l) = 0, indicating that the watershed is closed. Equations (3) and (4)

demonstrate that A and w depend on the distribution and properties of bn(s).

The Scheidegger model serves as an example to determine the properties of bn, w(s), andA(l). Because it is discrete, it only

serves as a useful and simplified guide for the properties of networks. We use the construction of a watershed in the Scheidegger

model to inform the spatial evolution of the probability distribution for watershed width, fw(w,s). The development of such115

an expression requires definitions of initial conditions, boundary conditions, and transition probabilities. This is the primary

utility for the Scheidegger network in our case.

In the Scheidegger model, a new watershed is initiated at s= 0 where w = 0 by definition. The rill that occupies the water-

shed begins at s= 1. By necessity w(s= 1)> 0 and because the Scheidegger model is a simplified and discrete model, the

width can only be a predefined value, r [L], which is the rill spacing. An initial probability mass function informed by the120

Scheidegger network is

fw(r,s= 1) = 1 . (5)
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Figure 3. Diagrams showing (A) the positions of two random walks that define the boundary of a watershed, (B) the random walk of w(s)

and (C) its integral A(l).

Moving down along s, properties of the random walks of bn completely determine fw(w;s) and therefore fA(A|l).

The simple random walks of watershed divides move left or right a distance of 1/2r with equal probability. The width

function over a unit distance can change by [-r, 0, r], which occur with probabilities p= [1/4,1/2,1/4] and are the transition125

probabilities between any two steps. We recognize p as the components of a stencil for an implicit scheme for a central

difference solution to linear diffusion (Hornberger et al. (2014)). In order to recast this as a diffusion problem requires that

we consider a continuous rather than discrete form of fw(w,s). We restate the initial condition now as a probability density

function,

fw(w,s= 1) = δ(w− r) , (6)130

where δ is the dirac function. The boundary conditions reflect the necessity that w(s)> 0 for a watershed with length l, where

l > s. This forms a fixed boundary condition of fw(0,s < l) = 0. The analytical solution for a diffusion equation with the

specified initial and boundary conditions (Carslaw and Jaeger, 1959) is

fw(w,s) =
2w

rs
e−

w2

rs for s≤ l/2 , (7)

which is a Rayleigh distribution. The Rayleigh distribution arises for the problem of the magnitude of the sum of two normally-135

distributed variables (Siddiqui, 1962). Our problem involves the difference between two symmetrically-distributed variables,

bn, so this result is consistent with previous work.

The boundary condition merits further discussion. We have stated that when w = 0, a watershed is closed, which would

imply that there is a finite probability of that outcome at all positions. However, the boundary condition that we use prevents

watersheds from closing before s= l. We recognize that fw(w,s) is symmetric about l/2 which allows for us to use our140

boundary condition for one half of the watershed length (Figure 4) and reflect this form over the remaining half.
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Figure 4. Conceptual diagram showing all possible paths of the width function for a watershed of length, l. The red line is one realization.

The ensemble of paths is symmetrical about l/2 and the boundary condition is illustrated by no paths reaching w = 0 before l.

The moments of a random walk are key to understanding the distribution of its integral, A(l) =
∫ l
0
w(s)ds. The mean and

variance of width from (7) are

µw(s) =
√
πrs
2 (8)

σ2
w(s) = (4−π)r

4 s. (9)145

For an unrestricted Brownian random walk (i.e an infinite domain), (8) and (9) contain all of the information required for the

distribution of A(l). In that case fA(A; l) =N (0,σ2 l3

3 ) (Parzen, 1962), where σ2 is the coefficient in (9). Here, however, the

requirement that w(s)> 0 imparts finite values for the drift, µA(l), changes the scaling between the variance of the random

walk and its integral, and introduces finite skewness to the distribution. Because the result has finite skewness, more information

would be required to determine the form of the distribution. Nonetheless, the first two moments are informative. The mean area150

involves the integral of µw,

µA(l) = 2

l/2∫
0

√
πrs

2
ds=

√
πr

3
√

2
l3/2 , (10)

which is a formal expression of Hack’s law with A as the dependent variable. Note that the limit of integration and multipli-

cation by two reflect the mirrored nature of fw(w,s) about l/2. We emphasize that equation (10) is a complete derivation of

Hack’s law. Previous work has numerically or empirically demonstrated values of φ and m (Hack, 1957; Dodds and Rothman,155

2000), where m can range from 1/2, for self similar networks, to 2/3 for Scheidegger networks (Maritan et al., 2002; Yi et al.,

2018). There is little discussion about the value of φ, but it is often determined by fitting distributions or by log-log regres-

sion between l and A. Equation (10) represents a formal reasoning for both the values of φ and m. Our result is specific for

Scheidegger networks; however, a result like (10) may be obtained if one knows µw(s) and the characteristics of w(s).
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Figure 5. Plots of theoretical versus numerical values for µA(l) (A) and σ2
A(l) (B). 1:1 line is shown in black.

We now turn to the variance. From (9) we may obtain σ2
A(l). Once again, if Z(t) is the integral of an unrestricted stochastic160

process, then σ2
Z(t) = σ2t3/3 (Parzen, 1962). Here, however, the requirement that w(s)> 0 results in a different relationship.

We find instead that

σ2
A(l)≈ σ2

w

6

(l− 2)
3

3
, (11)

where the term l− 2 satisfies a requirement that a watershed of length 2 has zero variance for the contributing area. The

presence of 6 in the denominator lacks a rigorous explanation; however, we expected that σ2
A increases at a rate slower than165

what is typical for unrestricted random walks. We emphasize that this is a semi-empirical result that warrants a stronger

theoretical solution. Placing (9) into (11) we obtain

σ2
A =

(4−π)r

72
(ln− 2)3 . (12)

There is good agreement between moments from numerical simulations of random walks and theory (Figure 5) and these

moments become parameters of the distribution fA(A|l).170

Dodds and Rothman (2000) demonstrate that A(l), given a large l, is distributed as an inverse Gaussian random variable.

Inverse Gaussian distributions have a foundation in random walk theory where they describe first-passage processes. However,

Dodds and Rothman (2000) state that they identified the Inverse Gaussian as the form by postulating it and fitting parameters.

Here, we rely on their insight but have developed a basis for the moments and therefore have expressions for the parameters

based on the properties of the random walk of w(s). Setting α=
√
πr/3

√
2 and λ= (4−π)r/72 and relaxing the condition175

that σ2
A(l = 2) = 0, the inverse Gaussian distribution is

fA(A|l) =

√
α3

2πλ

l3/4

A3/2
e
−α(A−αl3/2)2

2λl3/2A . (13)

As written (13) differs from the result obtained by Dodds and Rothman (2000) for two reasons. First, we use a form of Hack’s

law with area as the dependent variable as opposed to length. Second, they have formed a new variable z = lA−2/3, where we

have simply kept the distribution as a function of A.180
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Figure 6. A. fA(A|l) according to Dodds and Rothman [2000], this study, and 100,000 numerical simulations of w(s) for for watersheds of

length 20. B. QQ-plot of theory and numerical distributions.

We numerically simulate the area enclosed by two random walks 100,000 times for watersheds of length 20 and show that the

form developed here fits numerical distributions better than the form in Dodds and Rothman (2000) (Figure 6). Those authors

limit their analysis to watersheds that involve more than 500 downslope nodes. It is unclear if there should be a significant

difference between large and small watersheds in a Scheidegger model, though we offer it as a possible explanation for the

discrepancy between our study and theirs. Now that we have developed fA(A|l), we move on to the marginal distribution185

fA(A;L) where L is a distance from the ridge. We rely on the relation,

fA(A;L) =

L∫
1

fl(l)fA(A|l)dl . (14)

We now turn to fl(l).

2.4 Watershed Length

Watershed lengths are distributed as a power law (Dodds and Rothman, 2000). We write190

fl(l) =
l−3/2

2
, (15)

which is a Pareto distribution with scale parameter 1 and shape parameter 1/2. Lengths of watersheds on hillslopes are neces-

sarily truncated by the hillslope length, LH . We first consider the distribution of watershed lengths truncated at length L < LH ,

which is some downslope position. Though watersheds longer than L are censored, the distribution is not simply truncated, but

composed of two populations. The first population contains watersheds that have closed within a length L. The other population195

contains the watersheds that are open at L and would be longer if L were larger. Proportions of closed and open watersheds

respectively are

P (l ≤ L) = F (l ≤ L) = 1−L−1/2 (16)

P (l > L) = 1−F (l ≤ L) = L−1/2 (17)
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where F (l) is the cumulative probability function. As L increases, the proportion of open watersheds decays. The complete200

Hack distribution with a maximum length L, is a mixture of the two populations and is given by

f(A,l;L) =P (l ≤ L)f(l)f(A|l ≤ L)+

P (l > L)f(A|l > L) .
(18)

Closed watersheds are addressed with the first term on the right hand side which combines (13), (15), and Fl(l ≤ L). Open

watersheds are addressed with the second term for which we suggest fA(A|l > L) is based on the inverse Gaussian, but the

variance and mean differs. For this distribution, we suggest αo =
√
πr/3 and λo = (4−π)r/12 because for open watersheds,205

the mirrored character of fw(w,s) about l/2 does not apply. A functional form for the complete Hack distribution is

fA,l(A,l;L) =
(1−L−1/2)

2
l−3/2

√
α3

2πλ

l3/4

A3/2
e
−α(A−αl3/2)2

2λl3/2A

+L−1/2

√
α3
o

2πλo

L3/4

A3/2
e
−αo(A−αoL3/2)2

2λoL
3/2A .

(19)

The square root of L grows sufficiently slowly such that the second term is significant on most hillslopes. Our target is the

integral of (19) with respect to l, for which no analytical solution exists so it must be computed numerically. Numerical

integration of (19) reveals an approximate power law distribution, with a notable peak towards the tail which is a result of the210

second term in (19). A numerical experiment consisting of 100,000 simulations of w(s) for L= 100 reveals a similar shape to

the distribution (Figure 7A). On longer hillslopes, probability is shifted towards the tail (Figure 7B).

The form of fA(A;L) merits comment. Much of the distribution is characterized by a power law distribution that decays

as A−4/3, which is a result previously highlighted for large Scheidegger networks (Dodds and Rothman, 2000). This power

law relationship results from the first term of (19). However, it is worth noting that even for very long domains, fA(A;L) will215

never be entirely monotonic. There will always be some finite probability of a watershed remaining open within that domain.

Indeed it is a requirement that at least one watershed be open for a finite rectangular domain of any size. When L is very large,

this population may defensibly be neglected and fA(A)≈A−4/3 is appropriate. On hillslopes, this population population is

expected to have a significant impact.

We emphasize that fA(A;L) is the distribution of watershed areas at a position that is a distance L from the hilltop (Figure220

2). Sediment detachment, however, occurs throughout the hillslope according to the magnitude of hydraulic variables. The

distribution that informs total hillslope detachment is the complete distribution of contributing area at all points, not just at the

terminus of a watershed. To obtain this distribution we sum over all L up to Lh. The distribution is

fA(A;Lh) =
1

Lh

Lh∑
L=1

fA(A;L) . (20)

Numerical computation of (20) produces a monotonically decaying but truncated distribution of the form fA(A;Lh)∝A−4/3225

(Figure 8). As Lh→∞, the truncation disappears. Having demonstrated the form of the distribution of A, we now turn to

hydraulic variables.

10



Area [L2]Area [L2]

(a) 
B. 

A -4/3

A -4/3

(b)

Pr
ob

ab
ili

ty
 D

en
sit

y 
[L

-2
]

Figure 7. (A) Probability distribution of contributing area on a hillslope according to theory and a numerical exercise of 100,000 simulations

of w(s) on a hillslope with 100 levels. (B) Probability distribution of contributing area for hillslopes of increasing length.
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Figure 8. Probability density function of total contributing area on a hillslope with length, Lh = 100. Dashed line is A−4/3.

3 Flow Properties

We rely on a set of deterministic relationships to extend the theory for area and rill length to hydraulic variables. For a deter-

ministic, exponential relationship between two variables x and y,230

x= ξyn (21)

and y has a known distribution fy(y), the distribution of x is

fx(x) =
1

nξ

(
x

ξ

)1/n−1

fy

[(
x

ξ

)1/n
]
, (22)

and we remind the reader that the subscript refers to the functional form of the distribution for y, but the random variable has

changed to (x/ξ)1/n. Using this relationship, we can write probability functions of discharge, rill width, unit stream power, and235
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shear stress. The task at hand is to generate distributions of these hydraulic variables and perform a Monte Carlo simulation for

sediment detachment on hillslopes of different lengths. First, we must generate the distributions from which we will sample.

We begin by relating area to water discharge, Q [L3 T−1].

3.1 Hydraulic Distributions

At steady state flow conditions and for uniform runoff, Q=AR, where R [L T−1] is a runoff rate. Because the relationship240

between A and Q is linear, fQ(Q;Lh) is the same form of fA(A;Lh). The distribution of discharge is

fQ(Q;Lh) =
1

R
fA

(
Q

R
;Lh

)
. (23)

Obtaining the distribution of discharge is key for hydraulic variables that drive sediment detachment.

Previous work addresses sediment detachment in rilled settings [Hairsine and Rose, 1992; Nearing et al.,, 1991; 1999;

Giminez et al., 2002] which highlights a number of functional forms that relate the volume or mass of detached sediment from245

the bed to hydraulic variables. Typically researchers suggest that detachment, Ds [L3 T−1], scales as a function of either unit

stream power or shear stress. We first consider stream power.

Unit stream power is a measure of the energy expenditure of surface flow on the stream bed and is written as ω = ρgShv,

where ρ [M L−3] is fluid density, g [L T−2] is acceleration due to gravity, S is fluid surface slope, h [L] is flow depth and v

is flow velocity [L T−1]. Typical models suggest that sediment detaches as a linear function of ω (Govers et al., 2007), though250

there is evidence that nonlinear relationships exist as well (Nearing et al., 1999). Channel-averaged unit stream power is simple

for rectangular or approximately rectangular channel geometries in which case, ω = ρgSQ/rw, where rw [L] is the rill width.

Therefore, we first must determine rw(A) in order to obtain ω(A).

Previous work demonstrates a relationship between rill width and discharge. Particular values differ between studies, but

in general a relationship 〈rw〉= kQγ holds where γ is a dimensionless exponent that typically ranges from 0.3-0.5 and k255

[L−2−p Tγ] is a dimensional coefficient. Gilley et al. (1990) report that k varies over an order of magnitude between 0.2 and

5 depending on the soil type. For simplicity, we set k = 1. Torri et al. (2006) present data on rill widths from three different

settings and suggest that the value of γ varies from 0.3 to 0.5 for small rills to large gullies. Using this relationship, the unit

stream power is

ω =
ρgShv

wr
=
ρgSQ1−γ

k
. (24)260

Rearranging (24) to solve for Q and setting C = k1/(1−γ)(ρgS)1/(γ−1)/R, we can write the distribution of unit stream power,

fω(ω;Lh) =
C

(1− γ)
ω

γ
1−γ fA

(
Cω

1
1−γ ;Lh

)
, (25)

where again, fA(x;Lh) refers to fA(A;Lh) where the random variable A has been replaced with x. The general form of the

distribution is similar to fA(A;Lh), though it decays at a different rate which depends on the value of γ (Figure 9a). The power

law portion of the distribution decays as ∼ ω−3/2 for γ = 1/3.265
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Figure 9. Probability density functions for (A) ω and (B) h for hillslopes with Lh from 10 to 200 by increments of 10. Longer hillslopes are

lighter colors. The distribution is not smooth for small values of h because of the discrete calculation.

Shear stress is another hydraulic variable that is often related to sediment detachment rates (Nearing et al., 1999; Govers

et al., 2007). Shear stress is written as τ = ρgSh= ω/v. Both h and v are unknown, but are related by Manning’s Equation,

v =
r
2/3
h S1/2

n
, (26)

where n is Manning’s roughness coefficient, and rh = wrh/(2h+wr) is the hydraulic radius of the rill. For our planar hillslope,

S is uniform so we only need to solve for h. Setting v =Q/wrh we can solve for h,270

h=

(
4

5

)2/3
n

S1/2

(AR)
1−5/3m

k5/3
. (27)

Following similar steps for fω(ω; l) we are able to write out fh(h, l) which must be numerically integrated to obtain fh(h;Lh)

(Figure 9b). Again, the distribution is a truncated power law that decays as h−7/4 when γ = 1/3.

A third detachment model involves the concept of transport capacity, wherein the flow accumulates sediment at rates that are

inversely proportional to the sediment concentration (Lewis et al., 1994a; Polyakov and Nearing, 2003). As a flow increasingly275

entrains more sediment down slope, the sediment concentration in the flow asymptotically approaches a maximum value. As

typically written, transport capacity is a geometric variable, not a hydraulic one. A common conceptualization is (Polyakov

and Nearing, 2003),

dc

ds
= κ(1− c/Tc) , (28)

where Tc is a maximum concentration that a flow can sustain, κ [L−1] is an empirical coefficient, c is concentration, and s is a280

position. Here, we use a volumetric form of concentration so c is dimensionless. We replace s with A and solve for c,

c(A) = Tc

(
1− e−

κ
Tc
A
)
, (29)

which may be rearranged to make A(c) such that we may obtain fA(c;Lh) as we have done for h and ω.
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3.2 Sampling Hydraulic Distributions

We numerically generate samples of ω, τ , and c by inverse transform sampling from fA(A;Lh) and applying the deterministic285

relationships laid out above. Inverse transform sampling is a method that may be employed to randomly sample from any

probability distribution. The method first generates a random sample of values from a uniform distribution between zero and

one. The random sample is then translated to values of the random variables (in this case A) by mapping the values of the

random sample to those of the cumulative distribution function which also ranges from zero to one. This is equivalent to

sampling from fA(A;L), but allows for us to do so for any distribution - even those that do not have an analytical expression290

as is the case here.

Inverse transform sampling provides samples of A and equations (25), (27), and (29) translate it to a sample of hydraulic

variables. We consider hillslopes of lengths Lh and with N rills at the first level (L= 0). To generate samples for an entire

hillslope requires NLh samples from fA(A;Lh), which corresponds to NLh nodes. For each node, we obtain a sample of unit

shear stress and stream power. Between nodes, rills accumulate flow in a linear fashion and we use the average values of τ and295

ω within a single link. The volume of detached sediment, Ds [L3 T−1] within a link is the area of the channel bed in the link

multiplied by the detachment relation,

Ds ∝ yηwr∆l , (30)

where y is a placeholder variable for τ and ω, and η is an exponent. We then take the sum of all detached sediment over the

entire hillslope. Assuming a detachment limited system and no deposition, the cumulative detachment represents the cumulative300

volumetric sediment yield, Qs(Lh).

Sampling for sediment concentration requires a slightly different procedure. Sediment concentration at any given point is

the cumulative result of all upslope detachment. Therefore, we only need to know c at the base of the hillslope, we sample from

fA(A;Lh) N times to obtain samples of Qs(Lh).

Results from the Monte Carlo simulation demonstrate nonlinear relationships between hillslope length and cumulative sed-305

iment yield (Figure 10A). As the power relationship between detachment and hydraulic variables increases, so too does the

exponent that relates hillslope length to cumulative sediment flux (Figure 10B). The observed range of the power law relation-

ship places 1.4≤ β ≤ 1.9 and many of our simulations fall within that range. Nearly all simulations that use c with different

rate constants fall within the observed range. Detachment models involving τ and ω tend to result in yield-length relationships

that are too strongly nonlinear. Our assumption; however, that all detached sediment exit the system is likely a simplification.310

If deposition were included in this model, it would reduce the nonlinear relationships possibly to near or within the observed

range.

The sampling method highlights an interesting sidebar. The theory developed above is for highly idealized networks. There

are strict requirements for drainage density, flow directions, rill width, and hillslope shape (rectangular). Under strict conditions,

the sum of contributing area at the base of a hillslope must equal the total area of the hillslope. For a hillslope with total width315

Nr, N samples from fA(A;Lh) should sum to LhNr. Such a result only occurs with very small probability and more often

the sample hillslope area is only approximately LhNr. This implies that one or some of our strict requirements have been
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relaxed. That is, our samples might represent a hillslope that is not entirely rectangular, or where drainage density is not

exactly maintained. Such an outcome is a direct result of Monte Carlo simulations and is not novel, but this system highlights

the fact that a sampling from an idealized distribution yields a sampled system that is not idealized.

L h

τ
ω

c
τ
ω

c

(a) (b)

3

Lh [L]

Figure 10. (A) Cumulative volume of detached sediment on hillslopes of length Lh calculated by unit stream power, shear stress, and

sediment concentration when wr = kQ1/3. (B) Best fit power-law relationships for different sediment detachment rules (top axis) and rate

constants, κ/Tc, for sediment concentration. The range of observed nonlinear relationships are higlighted in gray.

320

4 Numerical Modelling

We demonstrate these distributions with a simplified numerical model that [1] generates topography with a Scheidegger net-

work of rills and [2] simulates steady state overland flow using Manning’s equation and a numerical flow routing procedure

(Pelletier et al., 2005). We simulate steady state overland flow for a couple of reasons. First, our goal is to demonstrate how the

variance of hydraulic variables increases with hillslope length. Steady state flow conditions accomplish this task. Second, nu-325

merical simulations show that, depending on the slope, runoff variables rapidly approach steady state values within the first 20

minutes of heavy rainfall and change slowly afterwards (Liu and Singh, 2004). Last, part of our goal is to illustrate a first-order

behavior and the details of the hydrograph are not considered here.

To generate topography, the numerical model develops a mask of cells that identify the location of rills that satisfy the two

rules of Scheidegger networks. Topography is then generated by imposing some uniform lowering rate within the rills and330

performing linear diffusion on the interrill areas. This leads to approximately parabolic topography in interrill areas. For the

theory developed above, we assume rectangular channels so that flow depth is distributed evenly across the channel. In order

to best match theory to the condition for numerical modeling, we enforce a rectangular channel of uniform width. Under this
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~15 cm

Figure 11. Profile of a section of the natural hillslope highlighting relatively uniform rill spacing.

condition, the distribution of discharge will remain the same as theory, but hydraulic variables will differ because they depend

on channel width. However, wr is a function of Q and so the numerics can be mapped to theory.335

The natural hillslope is from a steep slope in northern Arizona, in the badlands topography of the Painted Desert. The

hillslope was scanned using a high resolution terrestrial lidar scanner, which provides topographic data with 2 cm spatial

resolution. The average slope is 1.3 and rill spacing is relatively uniform at about 15 centimeters (Figure 11). The slope is

sufficiently steep that we anticipate this particular hillslope is detachment limited.

The numerical modeling routine routes flow using a D-infinity scheme combined with Manning’s equation to simulate steady340

state conditions. The model iteratively applies a uniform rate of runoff to the surface which is routed down slope according to

D-Infinity. For each iteration, Manning’s equation solves for depth assuming that it approximates the hydraulic radius (Pelletier,

2008). After each iteration, the depth is updated accordingly and the routine repeats until it approaches a solution to a steady

state configuration of flow depth. This workflow continues until either a threshold of change in depth is reached or a set

number of iterations occur. For this work, the threshold for change in average depth between any two iterations is 1%, or about345

50 iterations for these hillslopes.

Routing flow down the idealized and natural surfaces reveal steady state patterns of hydraulic variables (Figure 12 and Figure

13). Probability distributions from the simulated surface support the theory developed above. The distributions of contributing

area and discharge reflect the form of (20) and (23) (Figure 14). The distribution of ω is a deterministic function of Q, and so

the distribution is not shown. Furthermore, because we have specified that our idealized hillslope has uniform slope, h is the350

only variable in τ that can change and so we plot the distribution of h.

Plots of exceedance probabilities for A, Q, and h (Figure 14) from the idealized surface reveal similar patterns to theoretical

distributions (Figure 9). As hillslopes lengthen, or we sample to progressively lower parts of the hillslope, probability is added

to the tail of all empirical distributions. There is good agreement between distributions of geometric variables (A and Q)

between the idealized case and the natural one (Figure 14A and B), which suggests that our theory accurately describes the355

arrangement of rills. This lends confidence to our Monte Carlo simulation and the implications for the scaling between hillslope

length and sediment yield.

Though geometric variables of A and Q match well, there is a notable difference between natural and idealized distributions

of h. The forms are again similar; however, the location of truncation for the idealized case is about half an order of magnitude
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Figure 12. (A) Map of contributing area of half of an idealized hillslope. Color scale is in log scale to make small rills visible and highlight

the entire network. (B) Map of steady state flow depths according to our numerical model for runoff values of 5 cm per hour. This illustrates

the results of numerical flow routing. From this result, we calculate exceedance probabilities that compare to theoretical distributions. Color

scale is in log scale.
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Figure 13. (A) Map of contributing area on half of the hillslope. Color scale is in log scale to make small rills visible and highlight the entire

network. (B) Map of steady state flow depths according to our numerical model. Color scale is in log scale.
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Figure 14. Exceedance probability plots for (A) contributing area, (B) discharge, and (C) flow depth from the hillslope in northern Arizona

and an idealized slope. Log-log slopes from theory are plotted on top of data. The log-log slope in (C) is for p= 1/3 in rw = kQp.

shallower than that for the natural hillslope. There are two reasons for this discrepancy. First, for the idealized case, rill widths360

are uniform. Second, the natural hillslope is rough and the bed slope contains some noise. Therefore, reductions in slope or

the quasi-random narrowing and widening of channels drives an increase in flow depth (Mei et al., 2008). Uncertainty in the

spatial patterns of channel width have a significant impact on the distributions. Coupling the work here with a more detailed

treatment of wr may yield interesting results.

5 Discussion365

We have contributed to a formal development of the probability functions for topographic variables of A and l for the Schei-

degger model. The mathematical steps involve (1) recognizing the width function as a Brownian random walk, (2) developing

the description for fw(w,s), and (3) calculating statistical moments for A based on the moments of w. These steps should be

appropriate for many networks; however, they are most applicable to Scheidegger-like networks. By this, we mean networks

for which there is a single obvious down slope direction and the surface is roughly planar such that channels do indeed take370

random walks. This is the case for rilled hillslopes, channels on alluvial fans (McGuire and Pelletier, 2016), and perhaps some

large scale river networks. It is clear that if one can characterize the paths of divide lines as some one-dimensional random walk,

then the contributing area becomes the integrated random walk and the steps above hold. Scheidegger networks are simply a

special case where the divide lines and the channels share probabilistic properties. This may not be true for other networks.

Though we have developed the moments of the distribution of A, some items remain outstanding. First, in equation (11) we375

have noted that the variance increases at a rate six times slower than that of an unrestricted integrated random walk. We suggest

this arises from the requirement that the random walk always be positive. However, we currently lack a theoretical explanation

for the value of six in the denominator. Further, we have relied on the work of Dodds and Rothman (2000) for the form of the

distribution. Although the Inverse Gaussian distribution has its foundation in random walk theory, the formal development of
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the distribution from considering the properties of the random walks remains to be done. We anticipate that the demonstration380

of fw(w;s) can contribute towards this, because the distribution of a random walk is related to the distribution of its integral.

The theory that we have developed is intended to capture the essence of runoff-driven entrainment. However, it does not

consider all processes of entrainment, namely the role of rainfall detachment (Hairsine and Rose, 1992; McGuire et al., 2013).

We have not included a theoretical treatment of this process though it may serve to reduce the nonlinear sediment yield-length

relationship. The role of raindrop impacts is greatest on bare surfaces and declines as flow depth increases. In our rilled settings385

then, rain drop detachment will be greatest at the top of the hill and will decline down slope. This is the opposite trend that

we see for flow-driven detachment, which only increases down slope. If one were to incorporate raindrop detachment into the

theory developed above, it would tend to reduce the nonlinear relationship between sediment yield and hillslope length. We

note that Figure 10 shows nonlinear relationships that are stronger than we typically observe. Therefore, including raindrop

impact may contribute to more reasonable scaling relationships. To be clear, this only impacts sediment yield calculated from390

ω or τ and not concentration, which implicitly incorporates all detachment processes and deposition.

Numerical flow routing highlights the success and challenges of applying the theory developed above. To first order, the

arrangement of rills in a Scheidegger network describes the flow routing on natural hillslopes. This is evident from the distri-

butions of contributing area and discharge. Results shown in Figure 14A and B highlight that for both cases, these distributions

decay as power laws with exponents close to the theoretical−4/3. There are, however, distinct differences between them. First,395

we note that in the natural case, exceedance probabilities RA(A;Lh) and RQ(Q;Lh) appear to decay faster than the A−1/3

that is predicted from theory. This may indicate that the idealized Scheidegger model may not be a perfect description for

this network. As mentioned above, other network classes exist such as OCN, which may more accurately describe natural net-

works. However, those networks are not amenable to the type of theory developed above because they lack the clarity in rules

for links and nodes of the network. The Scheidegger model serves as a guide to inform probability distributions and provide400

a basic reasoning for nonlinear relationships. We emphasize that despite the slight difference in power-law relationships, the

distributions are truncated at remarkably similar locations which leads to similar scaling relationships.

Another difference is apparent in the distinction between interrill and rill contributions to the distributions. For the idealized

case, the distinction between rills and interrills is clear where the interrill portion of the distribution is distinctly not a power

law. The same distinction is not clear in the natural slope. We hypothesize that interrill and rill portions do not separate clearly405

because of the rough topography in the natural hillslope which, even in the interrill areas, tends to focus flow to some degree.

The idealized hillslope lacks all roughness so that there is no variance in flow for the interrill areas.

We have specified that the mean channel width increases nonlinearly as 〈rw〉= kQγ . For the case where γ = 1/3, we expect

Rh(h;Lh) to be a truncated power law that decays as −3/4 for our idealized case. Indeed, this is the slope of exceedance

probability for the natural slope shown in Figure 14C despite slight differences in network geometry. The shape of Rh(h;Lh)410

depends on γ and the shape of RA(A;Lh). Assuming that the deterministic relationships hold, we can solve for γ given the

slopes of the power law portions of RA(A;Lh) and Rh(h;Lh). Doing so, we find 1/5< γ < 3/10 for the natural case, which

represents the lower range of values from Torri et al. (2006).
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There is a legacy of work that describes the behavior of a cohort of particles (Martin et al., 2012; Fathel et al., 2016; Wu et al.,

2019; Pierce and Hassan, 2020) that begin their motions at a common location and time. Also referred to as tracer problems,415

research in this area often targets how that cohort of particles disperses through time. The majority of this work is with regard

to transport in fluvial systems where particles take a great number of hops and intervening rest times over timescales that are

appropriate for human observation. On hillslopes, particle motion is infrequent and observation of a great number of individual

motions involving a cohort of particles is not practical for most settings. Rilled hillslopes; however, offer a unique setting where

particles may move frequently. Though an empirical or experimental component of this work remains to be done, Lisle et al.420

(1998) present probability theory that informs particle dispersion for a rilled setting. However, they consider a single rill which

may or may not nonlinearly accumulate flow in the down slope direction. We have demonstrated a probabilistic framework

for the rate of flow accumulation down slope, and, in principle, could be used as a basis for further work exploring particle

dispersion or residence times on rilled slopes.

6 Conclusions425

We have demonstrated probability functions of geometric and hydraulic variables for rilled hillslopes. The theory represents an

application of Hack’s Law and Hack statistics to hillslopes. The limited space of hillslopes introduces a fundamental difference

from the typical application of network scaling arguments (Dodds and Rothman, 2000). We show that the arrangement of rills

can lead to nonlinear relationships with sediment detachment which are similar to Qs ∝ Lβh that is typically observed in nature

(Moore and Burch, 1986; Liu et al., 2000; Govers et al., 2007). Flow routing numerical simulations on idealized and a natural430

hillslope demonstrate agreement between geometric probability distributions - lending merit to the theory.

In pursuing a theoretical form for the distribution of hydraulic variables on hillslopes, we have developed formal expressions

for the probability functions of geometric variables. From considering the properties of random walks that define drainage

areas, we have developed the joint, conditional, and marginal distributions of watershed length and area. Building on the work

in Dodds and Rothman (2000), we have provided a probabilistic basis for the moments of the conditional distribution, fA(A|l).435

The first moment of this distribution is the well known Hack’s Law. This result is specific to Scheidegger networks, but the

mathematical steps extend to others.

The work presented above is a combination of probability and determinism. We have relied on simple, but demonstrated

deterministic relationships to extend our understanding of network geometry to hydraulic variables. This represents an attempt

to explain the first-order behavior. The theory provides a foundation to consider more detailed and stochastic elements of rill440

networks such as channel geometry and width variations, variable slope, and the consequences of storm-driven hydrographs.
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Symbol Variable Units

α Constant L1/2

A Contributing Area L2

b Lateral position of divide line L

β Sediment Yield - Length exponent –

c Sediment Concentration –

Ds Sediment detachment L3T−1

fx(x) Probability density function for variable x units of x−1

g Acceleration due to gravity LT−2

h Flow depth L

k Discharge-rill width coefficient L−γ−2T−γ

κ Sediment concentration coefficient L−2

l Channel length of closed watershed L

L Down slope distance from ridge L

Lh Total Hillslope Length L

λ Constant L

m Hack Exponent –

µx Mean of variable x units of x

n Manning’s coefficient L1/3T

η Placeholder exponent for detachment models units vary

φ Hack Coefficient L2−1/m

ρ Fluid density ML−3

γ Discharge-rill width exponent –

Qs Volumetric sediment yield L3T−1

Q Water discharge L3T−1

R Runoff LT−1

Rx Exceedance Probability for random variable x –

rh Hydraulic Radius L

r Interrill spacing L

rw Rill width L

s Down slope distance L

S Fluid surface slope –

σ2
x Variance of variable x units of x2

θ Hack Coefficient L−m+1

τ Shear Stress ML−1T−3

Tc Maximum sediment concentration –

v Depth-averaged flow velocity LT−1

ω Stream power ML−3

w Watershed width L
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