1 Supplement

Effect of stress history on sediment transport and channel adjustment in graded gravel-bed rivers

4 Chenge An^{1,2}, Marwan A. Hassan², Carles Ferrer-Boix³, Xudong Fu¹

¹ Department of Hydraulic Engineering, State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing,
 China.

² Department of Geography, The University of British Columbia, Vancouver, BC, Canada.

³ Department of Civil and Environmental Engineering, Technical University of Catalonia, Barcelona, Spain.

9 Correspondence to: Xudong Fu (xdfu@tsinghua.edu.cn)

10

11 S1. Regression of sediment transport rates against the exponential function

12 In this section, we fit the instantaneous sediment transport rates during the conditioning phase of our experiment by a two-parameter exponential function. Previous researchers (Haynes and Pender, 2007; Masteller and Finnegan, 2017) have 13 14 suggested that the exponential function can be implemented to describe the temporal decrease of sediment transport rate under 15 conditioning flow. Here two of our experiments with the longest duration of conditioning phase (REF2 (15) and REF6 (15)) 16 are analyzed. Results are shown in Fig. S1. As we can see from the figure, the fitted exponential function can describe the 17 general decreasing trend of sediment transport rate during the conditioning phase, except at the beginning of the conditioning 18 phase where the decrease of sediment transport rate is much more significant than predicted by the exponential function. 19 Moreover, for the two experiments, the exponential function shows very similar values of regression parameters.

Figure S1. Regression of sediment transport rates during the conditioning phase, using an exponential function. (a) REF2 (15);
(b) REF6 (15). Solid lines denote instantaneous sediment transport rates measured by light table. Dash lines denote calibrated
exponential functions. The regression parameters and correlation coefficient are also shown in the figure.

24 S2. Sediment mobility of each size range during the experiment

25 In this section, we analyze the sediment mobility of each size range during the experiments. Figure S2 shows the 26 scaled fractional sediment transport rate $Q_s p_i / F_i$ at different time of the experiment based on the light table data, where p_i 27 denotes the volume fraction of the *i*-th size range in the bedload and F_i denotes the volume fraction of the *i*-th size range on 28 the bed surface. By scaling on the bed surface fraction, the scaled fractional sediment transport rate thus represents the mobility 29 of each size range: the larger the scaled fractional sediment transport rate is, the larger is the sediment mobility of this size 30 range. In Fig. S2(a), the sediment mobility of different experiment is similar and each experiment shows an approximately 31 horizontal line with the grain size, indicating that equal mobility dominates at the beginning of the conditioning phase. At the 32 end of the conditioning phase (as shown in Fig. S2(b)), the mobility among experiments becomes different: the shorter the 33 duration of the conditioning phase, the larger is the overall mobility. Moreover, the experiment with the shortest conditioning 34 duration (i.e., REF7 (0.25)) is still near equal mobility, except that the mobility of the finest size range is larger than other size 35 ranges. Whereas other experiments have become partial mobility with evident selective transport for sediment finer than 16 36 mm and almost no mobility for sediment coarser than 16 mm. This agrees with the observation by Ockelford et al. (2019) that 37 bedload transport is characterized by equal mobility with no conditioning flow, but becomes more strongly size selective in 38 the coarse and fine end members of the distribution as the duration of conditioning flow increases. Two isolated dots are 39 observed at the very coarse end in REF5 (5) and REF6 (15) due to sampling inaccuracy of the light table. At the end of Step 1

40 and Step 2, all experiments show evident selective transport or partial mobility, as shown in Figs. S2(c) and S2(d). With the 41 increase of flow discharge and sediment supply, the sediment transport regime in all experiments gradually return to equal 42 mobility with coarse particles being mobilized at the end of Step 3 and Step 4. The difference of mobility among experiments 43 during hydrograph is smaller compared with that at the end of the conditioning phase, and also becomes no longer corelated 44 with the duration of conditioning flow.

45

Figure S2. Scaled fractional sediment transport rate at different time of the experiment: (a) start of the conditioning phase (*t*= 15 mins); (b) end of the conditioning phase; (c) end of Step 1 of the hydrograph; (d) end of Step 2 of the hydrograph; (e) end
of Step 3 of the hydrograph; (f) end of Step 4 of the hydrograph.

49 **References**

- Haynes, H., and Pender, G.: Stress history effects on graded bed stability, Journal of Hydraulic Engineering, 33, 343–349,
 2007.
- Masteller, C. C., and Finnegan, N. J.: Interplay between grain protrusion and sediment entrainment in an experimental flume,
 Journal of Geophysical Research-Earth Surface, 122, 274–289, https://doi.org/10.1002/2017GL076747, 2017.
- 54 Ockelford, A., Woodcock, S., and Haynes, H.: The impart of inter-flood duration on non-cohesive sediment bed stability, Earth
- 55 Surface Processes and Landforms, 44, 2861-2871, doi:10.1002/esp.4713, 2019.