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Abstract. Abrasion of sedimentary particles in fluvial and aeolian environments is widely associated with collisions encoun-
tered by the particle. Although the physics of abrasion is complex, purely geometric models recover the course of mass and
shape evolution of individual particles in low and middle energy environments (in the absence of fragmentation) remarkably
well. In this paper, we introduce the first model for the collision-driven collective mass evolution of sedimentary particles. The
model utilizes results of the individual, geometric abrasion theory as a collision kernel, following techniques adopted in the
statistical theory of coagulation and fragmentation, the corresponding Fokker-Planck equation is derived. Our model uncovers
a startling fundamental feature of collective particle size dynamics: collisional abrasion may, depending on the energy level,
either focus size distributions, thus enhancing the effects of size selective transport or it may act in the opposite direction by

dispersing the distribution.
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1 Introduction
1.1 Geological observations

Probably the most fundamental observation on pebbles is that they appear to be segregated both by size and shape and it is
broadly accepted that the dynamics are driven by two physical processes: transport and abrasion. Which of these processes
dominates may depend on the geological location and also on timescales, however, geologists appear to agree that, in general,
neither process should be ignored.

In coastal environments, one of the most remarkable accounts of pebble size and shape distribution is provided by Carr (1969)
based on the measurement of approximately a hundred thousand pebbles on Chesil Beach, Dorset, England. In summarizing his
results, Carr provides mean values and sample variations for maximal pebble size and pebble axis ratios along lines orthogonal
to the beach. These plots reveal pronounced segregation by maximal size and shape, i.e. on shingle beaches pebbles of roughly
similar maximal sizes and with roughly similar axis ratios appear to be spatially close to each other. Size and shape segregation
has been broadly observed in various settings (Bird, 1996; Gleason et al., 1975; Hansom and Moore, 1981; Kuenen and
Migliorini, 1950; Neate, 1967) and it was mostly attributed to the global transport of pebbles by waves (Lewis, 1931; Carr,
1969) but, in some settings, may also be related to abrasion. Indeed, a detailed account of the interaction of abrasion and
transport is given by Landon (1930) who investigated the beaches on the west shore of Lake Michigan. He attributes size and
shape variation to a mixture of abrasion and transport. Kuenen (1964) discusses Landon’s observations, however disagrees
with the conclusions and attributes size and shape variation primarily to transport. Carr Carr (1969) observes dominant sizes
and shape ratios emerging as a result of abrasion and size grading while Bluck (1967) describes beaches in South Wales where
equilibrium distributions of size and shape are reached primarily by transport and abrasion plays a minor role. Which of the
two processes (transport or abrasion) dominate may well depend on the timescales they operate on. While abrasion appears
in some scenarios to act much slower than transport, a recent study (Bertoni et al., 2016) verified mass losses on the order of
50% on a pebble beach over a 13-months period, indicating that in some settings the two processes may indeed compete in
determining size and shape distributions.

In fluvial environments, while downstream fining of sediment has been often attributed to transport Paola et al. (1992); Fer-
guson et al. (1996); Fedele and Paola (2007); Whittaker et al. (2011), other authors have pointed to the significance of attrition
Brewer and Lewin (1993); Attal and Lavé (2006); Dingle et al. (2017). In Miller et al. (2014) the authors, using field data, pro-
vide quantitative assessment of the significance selective transport with respect to attrition in downstream fining. Beyond the
evolution of smooth size and shape distributions, there is yet another common phenomenon in fluvial geomorphology where
the interaction of transport and attrition could be far from trivial. The often observed presence of isolated large boulders in
rivers Huber et al. (2020) may be explained solely by transport, as these large pieces are often not carried by the river, rather,
they move by a different process (e.g. landslide or debris flow). On the other hand, these large rocks could also be interpreted
as outliers emerging spontaneously in a pebble size distribution on which collisional abrasion certainly has strong impact in

upper reaches of rivers.
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As we can see, both in coastal and fluvial environments it is a generally accepted fact that the two processes (transport
an attrition) appear to compete in shaping the evolution of pebble shape and pebble mass distributions. How exactly this
competition may play out and in what manner attrition may contribute to this process is the subject of our paper.

We also remark that while all available observations indicate that attrition could be a relevant factor in the evolution of shape
and mass distributions, so far, in the absence of any predictive theory, no datasets have been collected which would admit to

verify any theoretical predictions. We will point out potential strategies for verification in Section 4.
1.2 Existing theory
1.2.1 Individual abrasion

Individual abrasion is a theory describing the mass and shape evolution of one individual particle (abraded particle) under
the impacts of many incoming particles (abraders) (see Figure 1(a)). In the mean field theory for the geometry of individual
abrasion only the mass and shape of the abraded particle is recorded, the effect of impacts is averaged and the evolution is
determined by the size of the abraded particle compared to the average size of the abrading particles.

The mean field geometric theory of individual abrasion (i.e. shape evolution) for sedimentary particles under collisions is,
since the seminal papers by Firey (1974) and Bloore (1977), well understood and validated (Szabé et al., 2013; Szabd et al.,
2015; Novak-Szabd et al., 2018). Still, despite the success of the Firey-Bloore geometric theory of shape evolution it was clear
(Domokos and Gibbons, 2018) that it is not suited to predict the evolution of size: in stark contrast with geological observations
summarized in Sternberg’s Law (Sternberg, 1875), predicting exponential decay of particle mass and infinite lifetime for all
particles, geometric abrasion theory predicted finite lifetime for all particles. On the other hand, Sternberg’s broadly accepted
theory of mass evolution (Sternberg, 1875) had nothing to offer regarding the evolution of shape. Recognizing this challenge,
in (Domokos and Gibbons, 2018) a unified theory, called volume weighted shape evolution has been proposed which, on one
hand, reproduces all the geometric features of the Firey-Bloore geometric theory, on the other hand, it also predicts mass

evolution in accordance with Sternberg’s Law.
1.2.2 Binary abrasion

The first stepping stone between the theory of individual abrasion and collective abrasion is the model for mutual, binary
abrasion where two particles mutually abrade each other and we track both evolutions (see Figure 1(b)). In this case one can
still write mean field equations by averaging over many collisions and the mass and shape evolution of both particles are

recorded. For any binary abrasion model of size evolution, we postulate the following requirements:
— size evolution should follow Sternberg’s Law,
— mass loss in a collision should be a monotonically increasing function of collision energy and

— the model should be fully compatible with the geometric evolution model.
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Figure 1. Schemes for (a) individual abrasion (Firey, 1974; Bloore, 1977), (b) binary abrasion (Domokos and Gibbons, 2018) and (c) col-

.‘”.

lective abrasion, respectively. Volume loss only tracked for shaded particles. Arrows represent (non-simultaneous) collision events between

particles.

The unified theory in (Domokos and Gibbons, 2018) offers a model satisfying all three requirements: by extending the Firey-
Bloore equations and Sternberg’s theory and using the kinetic energy of collision, models for binary shape evolution and for
binary mass evolution of two mutually abrading particles were put forward. These two models have been merged in (Domokos
and Gibbons, 2018) into a unified volume weighted theory of binary abrasion, compatible both with the Firey-Bloore and with

5 the Sternberg theory. The volume weighted model for binary mass evolution, describing the time evolutions for the masses

X (t),Y(t) of two particles with respective material properties mi,my can be written as

XY
Xi=—Clo——— 1
t 012X+Y3 ( )

YX
Yt__CﬂXi—&—Y’ ()

where the subscript ¢ refers to differentiation with respect to time and the constant prefactors c12 and ca1, which we call the

10  binary abrasion parameters, depend simultaneously on the materials m; and mq of the X and Y -particles, respectively.
We also note that in case of two identical particles (e.g. two particles with identical masses X =Y and identical material
properties cxy = cyx) the system (1) and (2) predicts mass evolution according to Sternberg’s Law. In case of different
masses or properties we still have infinite lifetime with one of the particles approaching zero mass asymptotically as times goes

to infinity and the other particle approaching a finite mass.
15 1.2.3 Collective size dynamics

Independently of individual (and binary) abrasion theory there exists broad interest in collective shape and size evolution
models tracking mutually colliding populations of IV particles (see Figure 1(c)). Similar problems arise in particular in the
context of coagulation (da Costa, 2015) and dynamic fragmentation processes (Cheng and Redner, 1988). In such collective
evolution models the main question is how the size distribution of particles, starting from an initial distribution, evolves in time

20 due to the mutual collisions. These models use a standard framework relying on a so-called collision kernel. In a more general
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setting, the collision kernel is referred to as the interaction kernel. Our choice of terminology is motivated by the fact that in
our case the only interactions are collisions.

The collision kernel can be derived from the binary equations (the physical model of the NV = 2 case) by incorporating
statistical effects, i.e. that collision probability may depend on particle speed or mass. In (Domokos and Gibbons, 2018) the
binary model (1) and (2) was extended to a kernel by introducing an additional scalar parameter r (to which we will also
refer to as the environmental parameter of the evolution), representing the assumption that on the average, only the collision

probability depends on particle size and the collision speed is independent of mass:

X1+TY1—T

Xi= _612X7—|—Y7 3)
YlJrTXl*’l‘

Y, = *Clei_i_Y 4)

Note that these equations are identical to the formulas (118) and (119) in (Domokos and Gibbons, 2018) with o = 0 in their
notation and taking r = v, X = Vx, Y = Vy, c15 = co1 = c. Alternative interpretations of r are also possible; we will discuss
the role of the environmental parameter 7 in detail in Subsection 2.4. Henceforth, in the main body of this paper (apart from
Appendix A) we assume that the pebble population is homogeneous, i.e. that the material for all pebbles is identical so we have
¢ = c13 = c21 and the sole role of the constant c is to set the timescales. We will incorporate this into the time variable ¢ and
henceforth, for homogeneous pebble populations, we set ¢ = 1. We will discuss the role and identification of material constants
in heterogeneous pebble populations in Appendix A.

Once the kernel has been established, we make the assumption that for large IV the collective size evolution is a stochastic
process driven by many binary events among the particles, implying that the core of the collective process is still the above
mentioned collision kernel. This allows for the construction of the master equation, also known as the Fokker-Planck equation
which describes the time evolution of the particle size distribution. Although the collective abrasion is a stochastic process,
in the NV — oo limit the collision kernel will uniquely determine the global evolution of the continuous size distribution.
The master equation (or Fokker-Planck equation) is expressing this evolution. Determining the master equation based on the

collision kernel is the second step in the statistical model.
1.3 Our model
1.3.1 Relationship to earlier models

The above-outlined structure is characteristic for coagulation fragmentation models (da Costa, 2015), in particular for non-
linear fragmentation, which describe fragmentation processes triggered by binary collisions of particles. Our model may be
regarded as a special case of the non-linear fragmentation models (Cheng and Redner, 1988) since, in addition to the standard

framework adopted in these models we also make two simplifying assumptions:

1. we only consider collisions where the relative mass loss is small (i.e. the particles lose only fragments with small relative

mass) and
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2. the small fragments generated in the collisions are not considered further in the evolution.

By implementing these two assumptions into the statistical model based on the collision kernel (3) and (4), we take the first
step towards establishing the statistical theory of collective size and shape evolution of sedimentary particles. This approach
offers multiple methodological advantages. On one hand, by using (4) as the collision kernel, our statistical model will be
compatible with Sternberg’s Law so we can expect the collective evolution also to observe this theory, albeit in a statistical
sense. On the other hand, we can also expect all our results to be compatible with an extended (future) theory which also

describes collective shape evolution based on the unified, volume weighted geometric theory in (Domokos and Gibbons, 2018).
1.3.2 Basic notations

To describe our construction we will need to address both the size evolution of individual particles (under the collision kernel)
as well as the evolution of size distributions. While particle size appears in both settings, we need to distinguish carefully:
in individual and binary models particle size evolves in time, in collective models size distribution evolves in time. As a
consequence, in the individual setting the variable denoting size may be differentiated with respect of time, in the collective
setting this is not the case. We will use X,Y to denote individual particle sizes (either volume or mass) and we will use x,y to
denote the independent variables of size distributions. Time evolution of individual particle size will be denoted by X (¢),Y (¢)
with time derivatives X;(t),Y;(¢) (arguments of a function written in subscript will refer to differentiation throughout the
paper). The time evolution of size densities will be denoted by f(z,t), f(y,t) with time derivatives f:(z,t), f:(y,t) and size-
derivatives f,(z,t), fy(y,t). We denote the expected value and variance of these size distributions respectively by E(t) and

W (t) and we will primarily use the relative variance R(t) = W (t)/E(t)? to characterize the evolution of the distributions.
1.3.3 Main results

The collision kernel (3) and (4) for mass evolution in (Domokos and Gibbons, 2018) has one single environmental parameter
r which is inherited by the corresponding Fokker-Planck equation (shown in Subsection 2.2). As we will describe in Section
2, the environmental parameter r may, depending on interpretation, represent either the size dependence of the number of
collisions or, alternatively, the size dependence of collision energy. Regardless of the interpretation, in Subsection 2.3 we find
that the value r» = 0.5 is critical as it separates two regimes of collective abrasion with qualitatively different evolution R(t) of

the relative variance :

— For r > 0.5 we find focusing processes with decreasing R(t), approaching R(¢) =0 in the limit as time approaches
infinity. Here the size distribution converges to a Dirac delta function. This parameter range corresponds to lower energy
levels. Natural abrasion processes belonging to this regime will thus amplify the segregating effects of size-selective

transport.

- For r < 0.5 we find dispersing processes with increasing R(t), thus counter-acting size-selective transport processes.

This corresponds to collisional abrasion at higher energy levels.
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Figure 2. Schematic description of the evolution of mass distribution of a pebble population: in a dispersing process the relative size variation
R(t) of the a mass distribution, either represented by an empirical histogram (Carr, 1969), or a continuous function (fo(x)) at t =0, is
increasing. In the continuum model of a focusing process R(t) decreases as time evolves however, in a discrete model with a finite number
of particles some outliers appear (indicated by dashed ellipse) with mass substantially above the average. The reduced distribution (without

the outliers) produces a decreasing relative variance, analogous to the continuous model.

As collisional abrasion may occur at a broad range of energies, these two basic scenarios of the model (illustrated in Figure
2) offer an explanation for the broad range of geological observations (Bluck, 1967; Landon, 1930; Carr, 1969; Kuenen, 1964)
in relating the relative significance of transport and abrasion in various scenarios. Our model also reflects the universality of
Sternberg’s Law by predicting, regardless of the environmental parameter r, exponential decay as the universal evolution F(t)

of the expected value.
In general, the evolution equations generated by (3) and (4) for the mean E'(¢) and the variance W (¢) are integro-differential

equations which are hard to solve analytically. To support our claims, we will use three types of approximations:

(a) We approximate the kernel (3)-(4) by its truncated Taylor series expansion and investigate the evolution of general initial

density functions. This is found in Appendix C1.

(b) We regard the full kernel, however, we only investigate density function obtained as a small perturbation of the Dirac

delta (i.e. populations of almost identical particles). This is done in Appendices C2 and C3.

(c) We numerically compute both the discrete and the continuum models. For details see Section 3.
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We will briefly refer to the first two approximations as the continuum model. In case of the third approximation we do direct,
discrete simulations of finite particle populations we use the full kernel and we call this the discrete model. One startling feature
of the latter (as compared with the former) is the appearance of outliers, i.e. particles substantially larger than the vast majority
(illustrated in Figure 2). As we can observe, the bulk of the density function closely mimics the evolution in the continuum
model. The quantitative analogy in the evolution of the relative variation R can be also recovered if we consider a reduced
density function f*(¢1,2) by omitting the outliers, i.e by applying an upper cutoff in size, omitting bins containing only one
particle. The reduced density function f*(¢1,x) is characterized by the reduced relative variation R* which will decrease in a

focusing process, however, in contrast to the continuum model, it will not approach zero, rather a positive constant.
1.4 Testing of the model for homogeneous pebble populations

As outlined above, our model is defined on two levels: the collision kernel (3)-(4) we will briefly refer to as the input level as
it defines the basic physics of the underlying collisions. The Fokker-Planck equation we will briefly refer to as the output level
as it defines the evolution of the mass density function based on the collision kernel. One may test the model at both levels.
Below we discuss the case of homogeneous pebble populations where the evolution of the mass distribution is controlled by

the single material parameter c and the single environmental parameter r:

(a) One may test the model at the input level, by fitting the kernel (3)-(4) to laboratory tests where abrasion rate is plotted
as a function of particle size. Such an experiment could be used to determine the material parameter c for a given ho-
mogeneous population. Also, if the laboratory test is imitating the environment of the natural process, the environmental
parameter r may be also obtained in this manner. We also note that the functional relationship between particle size and

abrasion rate will not only depend on the parameters but also on particle size. For details, see Appendix A.

(b) One may test the model at the output level by measuring the time evolution of full mass distributions and fitting the
respective material and environmental parameters ¢ and 7 to this dataset. While we are not aware of any such public
dataset, this could be performed in a laboratory either in a flume or in a drum experiment. In the field the optimal

solution appear to be radio-tagged pebbles (Bertoni et al., 2016).

The above simple procedures apply only for homogeneous populations. We lay out the procedures for the testing of the
model for heterogeneous populations in Appendix A where we also perform partial testing for the laboratory data obtained by
(Attal and Lavé, 2009).

2 Modeling collective size dynamics

2.1 General form of the collision kernel

The first simplification described in Subsection 1.3.1 implies that the limit where relative fragment mass approaches zero

offers a good approximation, thus it admits a collision kernel of the type used in Ernst and Pagonabarraga (2007), describing
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continuous mass evolution via coupled ordinary differential equations for the evolution of particles with masses X (¢) and Y (¢):

-X, =91 (X,)Y), Q)
—Y, =¢*(X,Y), (6)

where 1! (X,Y) and 1?(X,Y) are differentiable (C) functions, with positive values (i.e. RT x Rt — R¥). Symmetry of
the binary process implies ¢! (X,Y") = ¢2(Y, X), so often superscripts are suppressed and the kernel is simply referred to as
¥(.,.). Selection of the kernel encapsulates not only the physics of binary collisions, it also may include the mass-dependent

probability of collision between two particles. We will discuss the identification of a physically sound kernels in Subsection 2.3.
2.2 General form of the master equation

The second simplification in Subsection 1.3.1 admits the construction of the master equation solely based on the collision
kernel (by omitting additional terms for the remainder of the fragmented material). These simplifying assumptions also set
our model apart from general fragmentation models in another respect: in the latter, constant mass is prescribed as a global
time-invariant while the (integer) number of particles changes whereas in our model total mass is decreasing while the number
of particles remains constant and serves as a global invariant.

Using these considerations, for our problem the master equation is found to be

6 o0 o0 oo
filta) =5 |f tx/fty Ol y)dy fztx/fty (xydy+ftx/ftywzxydy, ™
0 0 0

where subscripts stand for partial derivatives. Without loss of generality, the evolution starts at t = 0 and we consider the initial
distribution of the volume f(0,x) = fo(z) to be a-priori known. Note that contrary to the majority of Fokker-Planck models,
our model contains solely the advection term, which readily follows from the deterministic nature of the kernel. Here we aim
to determine the collective behavior implied by (7). Nonetheless, a stochastic kernel would produce diffusion in the master
equation. Such a generalization would inevitably reduce the analytic transparency and thus the qualitative predictive capability
of the model. Whether or not it is justified from the quantitative point of view, can be decided based on extensive testing
campaigns.

We aim to understand some scenarios characteristic of pebble populations by investigating the Cauchy-type initial value
problem associated with equation (7), starting at the distribution f; with mean value F, variance W, and relative variance
Ry =W, /E3.

2.3 Collision kernels

Detailed physical modeling of the collisional event can make the interaction kernel highly complex; for a recent review on
kernels see (Meyer and Deglon, 2011). On the other hand, mathematical studies tend to prefer simple expressions for ¥(X,Y),
admitting rigorous, analytical conclusions. Our goal is to a find kernel which has strong physical basis, yet it admits an analyt-

ical approach, thus it offers a trade-off between between physical and mathematical preferences.
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We first consider two simple kernels which satisfy the mathematical requirement of leading to analytically soluble Fokker-
Planck equations. However, as we will show, these very analytical results highlight that these kernels are physically not ad-
missible. Next, we investigate the parameter dependent compound kernel suggested in (Domokos and Gibbons, 2018) which
grabs the essential physics of the investigated process, yet, the corresponding Fokker-Planck equation still admits analytical
conclusions.

First, we consider the summation kernel (denoted by {.} 1), where the mass loss rate is proportional to the sum of the masses

of the colliding particles:
PH(X,Y) =X +Y, ®)

stating that the rate of mass loss in binary collisions is proportional to the total mass of the two colliding particles. Appendix
B1 demonstrates that the relative variance of the mass in case of the summation kernel follows RT () = Roe?’, hence it is a
dispersive process regardless of the initial distribution fj.

In the very same manner let us investigate the product kernel distinguished by the sign {.}*. The product kernel is defined

via
PH(X.Y) = XY. ©

According to Appendix B2, the relative variance in this case is constant as R*(t) = Ry for all ¢ > 0, which that the model is
nor focusing neither dispersing. Note that the time-invariance of R*(¢) under the product kernel does not imply the invariance
of the PD.F f(t,x) per-se. In addition, we see a polynomial decay in the mass as E*(t) = (¢t + E; ')~ ', which contradicts
Sternberg’s law (Sternberg, 1875) that postulates an exponential decay.

In order to be in accordance with Sternberg’s law and to have a control on the evolution of the relative variance, following
the lead of (Domokos and Gibbons, 2018) we investigate the interaction law (3) and (4) which we call a compound kernel and
using the introduced general notation for kernels, we distinguish it with the {.}¢ sign:

Xl+ry17r

¢C(X,Y) = X7_|_Y’

(10)

where 0 < r <1 is a fixed parameter. Henceforth we investigate evolution of mass density functions under the Fokker-Planck
equation derived from (10). In Appendix C1 we show analytical results for the evolution if the kernel (10) is replaced by its
truncated Taylor expansion. In Appendices C2 and C3 we show analytical results for the evolution under (10), using a Dirac
delta as initial distribution. The evolution under (10) with no restrictions for the initial condition is studied numerically. The

essential properties of the three investigated kernels are summarized in Figure 3.
2.4 Interpretation of the parameter r

In natural events, both velocity and collision probability (cross-section) may depend on particle size: in laminar flows relative
velocity and collision probability is proportional to linear size, while in a turbulent flows velocity could be inversely propor-

tional to linear size and collision probability could be proportional to projected area. In the collision kernel (10) both effects

10
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Figure 3. Evolution of an initial (¢ = 0) lognormal probability density function under Fokker-Planck equation generated by various kernels.
Summation kernel: al,bl,c1. Product kernel: a2,b2,c2. Compound kernel:a3,b3,c3. First row (al,a2,a3): mean E(¢). Second row (b1,b2,b3):
relative variance R(t). Third row (c1,c2,c3): initial (¢ = 0) and final densities f(x,t).

(dependence of velocity and dependence of collision probability on speed) are represented by the single scalar parameter r, so
one may freely assign various interpretations to this parameter. In Domokos and Gibbons (2018) one particular interpretation
was used: the compound kernel was derived using the assumption that particle velocity is independent of the size (e.g. rather
determined by the surrounding fluid), but the collision probability goes as a power law with particle size, i.e. X". The effective

5 mass combined with the collision probability gives the kernel in Eq. (10). However, alternative interpretations are possible,

11
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the only essential underlying assumption is that we regard a one-parameter family of scenarios. In this family, if velocity is
proportional to X and collision probability is proportional to X then we have r~a + b.

To have a global view, it may be of interest to estimate the parameter 7 in two extreme (limiting) scenarios. Laminar flows
are characterized by a linear velocity profile. The particles hit each other if their trajectories intersect. Integration of the linear
velocity profile combined with a spherical particle shape yields a collision probability proportional to ~X2/3 or, alternatively
r ~ 2/3. The other extreme case corresponds to turbulent flows, where we have equipartition, i.e. the kinetic energy of the

/2 Since

particles is independent of their size (see e.g. Uberoi (1957)), implying that particle velocity is proportional to X ~
the area of the cross-section is proportional to X 2/3 we arrive at a collision probability X /6, or, alternatively r~1/6. As we
can see, both extreme scenarios yield r values far away to either side of the critical value r; = 1/2, so these estimates suggest
that smooth steady conditions should result in a focusing and turbulent gas-like behavior in a dispersing process. For a detailed
derivation see Appendix D.

In order to examine the validity of these assumptions we made discrete element simulations using the event driven method
Lubachevsky (1991). In event driven dynamics, collisions are considered instantaneous and resolved accordingly which is
best suited to obtain proper collision statistics. We emulated the above-mentioned processes by choosing an artificial mass
for the particles and simulating a chaotic system. The artificial mass was used to obtain different volume-velocity relations in
different scenarios. We found that in chaotic/turbulent systems that relative velocities were proportional to v ~ X ~1/2—X~1/3
and the system behaved as the continuum model with  ~ 1/6 — 1/3. On the other hand, if velocities were proportional to
v ~ X ~1/6_ X0 then the system was similar to a continuum model with r = 1 /2 —2/3. Thus the discrete element simulations

fully support the results of the compound kernel.
2.5 Fluvial abrasion

Here we interpret the intuitive picture of fluvial abrasion in the context of our statistical model. In our model a fluvial environ-
ment may be represented by a fluvial population, consisting of N + 1 particles: a very large number (IV) of small particles X*
(t=1,2,...N) representing the pebbles carried by the river and one very large particle Y representing the riverbed. Such a
scenario can not be explored directly in the context of our continuum model, however, as we will discuss in detail in Subsection
3.3, the discrete model can capture this situation even in the limit as N — co.

To make a meaningful characterization of geologically relevant scenarios, we will regard two extreme cases which represent
brackets on geological processes. In both cases we assume that the mass evolution is driven by binary collisions and we regard
the limit as V,Y — oo (while the masses X* of the small particles remain finite). Since we are interested in the mass evolution
of pebbles (and in the current paper we are not interested in the mass evolution of the riverbed) we will denote the relative
variance of the pebble population (i.e. all X particles, the riverbed Y not included) by R(t). Our aim is to establish the sign
of R:(t) as the main qualitative feature of collective dynamics, as R;(t) < 0 and R;(t) > 0 imply focusing and dispersing
processes, respectively.

In the first extreme scenario we assume that particles are chosen uniformly from the full fluvial population: i.e., the riverbed

has no special role. In this case almost all collisions will happen among a pair of small particles (X*, X7) thus the presence of
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the riverbed has no impact on the evolution of R(t). For this extreme case all predictions of our continuum model remain valid:
r =0.5 will be a critical parameter value above which we see focusing (R; < 0), below which we see dispersing (R; > 0)
behaviour. At the critical value r = 0.5 our model predicts neutral behaviour with R; = 0.

In the second extreme scenario we assume that the small particles exclusively collide with the riverbed (large particle), i.e.,
we only have (X*,Y)-type collisions. This means that the evolution for each of the small particles is an identical, independent
two-particle process governed by the model (1)-(2) for binary collisional mass evolution. In this process, in the Y — oo limit

each individual small particle X* will thus evolve as
Xi(t) = X"(0)e" an

and thus follow Sternberg’s Law. It is easy to show that for any initial distribution for the masses X*(0), in this process we
have R; = 0. The large Y -particle (riverbed) will lose some mass as well but in this publication we are not interested in that
part of the process.

Intuitively it is clear that any geologically relevant process is in-between the above two extreme cases and, although we do
not deliver a rigorous proof, it appears plausible that in a geologically relevant setting R, will be also bounded by the two
evolutions predicted for the two extreme scenarios. As for the second extreme scenario we have R; =0 we expect that for
any intermediate scenario the sign of I?; will agree with the sign of R; based on the first extreme scenario. Our results show
that the focusing behavior of the particle size distribution, or lack thereof, depends on interparticle interactions and not on the
collisions between the particles and the river bed. This would imply that all our qualitative predictions remain valid in fluvial

environments.

3 Numerical results

Here we perform computations to illustrate the main results presented in Subsection 1.3.3 by discretizing time with a fixed
time-step At. The discrete model has been simulated with custom-made codes in Matlab and Python performing M x [N/2]
collisions between pairs during one time-step At, where M is fixed model parameter and [V is the size of the population. The
simulation starts with the creation of IV particles whose volumes are randomly sampled from the initial distribution fy. Binary
collisions are performed on uniformly selected pairs, i.e., all particles have equal chance of being selected irrespective of their
volume. Once a pair is selected, the collision kernel ¢ is applied and volume decrement is computed with time-step At/M.
After the binary collision event both particles with reduced volume are replaced into the sample. In the presented simulations
we set the population size to be N = 5000, the time-step At =0.01 and M = 10. In the continuum setting f(¢,x) evolves
under eq. (7) with some initial value fy(x). This code uses the operator exponential syntax of a the Chebfun toolbox (Driscoll

et al., 2014) in Matlab.
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3.1 Focusing and dispersing regimes

The evolution of a pebble population under the compound kernel was simulated both in the frame of discrete and the continuum
model, i.e. by direct event-base simulation and by discretizing the partial differential equation. (see Sec. 1.3.3). The results show
excellent agreement with our analytical predictions: = 1/2 appears indeed a critical parameter in the model. This is illustrated

5 in Figure 4 where a lognormal distribution is used as an initial value for the evolution.

a) r=0.0 b) r=0.5 ¢) r=1.0
20 " T 20 " " 20
- = ct=0 - = c,t=0 - - c,t=0
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Figure 4. Evolution of a lognormal P.D.F in the compound kernel under the continuous (c) and discrete (d) models, at the parameter values

r = 0.0 (left panel), » = 0.5 (middle panel) and r = 1.0 (right panel) from ¢ = 0 until ¢ = 5.0. The results of the discrete simulations are

given by the histograms, the output of the continuous model are given by dashed (initial distribution) and solid lines (final distribution).

Observe the fair agreement between the discrete and the continuous models.

3.2 Fitted lognormal distribution

Although the lognormal distribution is certainly not invariant under the compound kernel (i.e. an initially lognormal density
function does not remain lognormal in the evolution), however, mass distributions in later timesteps highly resemble lognormal
dsitributions. To test this visual observation we fitted lognormal distributions to the computed mass distributions in the discrete
10 simulations. The evolution of the two parameters (respectively denoted to p and o) of the lognormal distribution are given
in Figure 5 at values of the parameter r. The criticality of = 0.5 is obvious in this setting, too: while the initially lognormal
distribution is almost invariant under the evolution at » = 1/2, the evolution of the parameters x and o take an opposite direction
in the parameter space for » = 0.0 and r = 1.0, respectively. The 95% confidence levels of the fit confirm the visual intuition:
the evolved distributions are close to lognormal: in practical applications an approximation with a lognormal distribution

15 produces an acceptable error.
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Figure 5. Parameters, 1 and o of a lognormal distributions fitted to the computed mass distribution in the compound model, at the parameter
values 7 = 0.0 (left panel), » = 0.5 (middle panel) and r = 1.0 (right panel) from ¢ = 0 until ¢ = 5.0. Thick solid lines correspond to the best

fit, thin lines indicate the 95% confidence level of the fit. Observe the narrow zone spanned by the confidence intervals.

3.3 Outliers: anomalies in smaller samples

The continuum model describes the N — oo limit of the system. In the computations shown in Subsections 3.1 and 3.2 we
either showed results based on the continuum model or, in the direct, discrete simulations we treated large (N = 5000) popula-
tions. However, if we look at the discrete simulations on smaller samples we may observe unexpected phenomena not recorded
in the previous computations. In Fig. 6 we show the mass distribution of a system at » = 0.6 with N = 2000 particles. The bulk
of the histograms can be well approximated with a log-normal distribution. However, there are 12 particles with somewhat
larger volume than predicted by the lognormal distribution and one approximately 150 times the median volume (5.3 times the
radius). Thus inside the focusing regime we may observe a situation where we have a well-defined narrow distribution which
describes the bulk of the particles but a few might escape from this process and may be left behind, at larger mass. This effect
is persistent and it was observed also for the parameter value of r~(.7.

In order to estimate the robustness of this scenario we use a simple approximation by assuming that all but one particles have
volume X and one single, exceptional particle, called *outlier’ has a volume a X with a>>1. As it is demonstrated in Appendix
E, the outlier can coexist with the population of the small particles. In the N — oo limit the condition of such a coexistence

reads

2a"
<1. 12
1+a— (12)

Numerical solution of (12) for equality yields the critical curve aci(r) on the [r,a] parameter plane, separating systems
where outliers may coexist with the population from systems where they may not. While we computed the a(r) critical

curve for the case of infinitely large populations (the N — oo limit), we stress the fact that the illustrated phenomenon is
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Figure 6. Simulation of a finite sample with N = 2000 particles. Inset (a) shows the evolution of the mean volume normalized by the
maximal volume. Inset (b) depicts the evolution of the distribution, the corresponding points in (a) are denoted by the same color.The green
curve (t = 300) is the one shown in detail in panel (c), it depicts the particle volume histogram after 300 collisions per particle. The grey
boxes show the logarithmically binned histogram, the black line is a log-normal fit to the data. Observe the existence of outliers on the right.
Inset (d) is a visual illustration of the entire population: all particles are placed randomly into a 2D container. Smaller particles were placed
first and the white content (gray scale) is proportional to the linear size of the particle. One small particle close to the mean and one large

particle (outlier) are marked with red and their position is indicated in the distribution.

inherently discrete and does not arise in the continuum model. We may explain this curious phenomenon in the following
manner. Assume that we start from a narrow distribution. Then random fluctuations in the discrete system may create particles
with large relative mass (i.e., a large parameter value a). If these fluctuations are sufficiently large to create particles above

the critical curve ac(r) then these outliers will be sustained, otherwise their mass will again approach the average mass of
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the majority. The critical curve in Figure 7. shows that in the vicinity of the critical value » = 0.5 almost any such fluctuation
will be sustained and outliers are likely to survive. However, as the parameter r is increasing, it gets increasingly less likely
to see sustained outliers. Another observation is that as the likelihood for the existence of outliers decreases, their expected
relative size is increasing which matches the common-sense observation that the larger the outlier, the less frequently it may
be observed. We also note that the relationship between the collection of small particles and the large particle is essentially
asymmetrical. While the evolution of the latter is strongly influenced by both the factor a and the control parameter r, the
evolution of the density function for the small particles is solely controlled by the latter. In other words, adding one (or a few)
very large particles to a collection of many small particles will not alter the fate of the latter, as long as the collisions between

a pair of particles are based on a uniform choice.

40 T T T
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25 -

S 20 outliers may coexist
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0.55 0.6 0.65 0.7 0.75 0.8

Figure 7. Critical curve acic(r) on the [r,a] parameter plane. Systems with parameters (r,a) associated with points above the curve admits
the coexistence of outliers while the systems associated with points below the critical curve do not admit the coexistence of outliers. Solid

line belongs to the N — oo limit, dotted line represents /N = 20 and the dashed line N = 100 particles, respectively.

4 Conclusions

In this paper we presented the first statistical model for the collective mass evolution of pebble populations under collisional

abrasion. While our model is certainly not unique, it is compatible with
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(a) existing geological observations,
(b) existing geometrical theory of individual and binary abrasion of pebbles,
(c) existing theory for individual mass evolution of pebbles (Sternberg’s Law) and

(d) exiting statistical theory of coagulation and fragmentation.

In the spirit of standard statistical theory for collective evolution, our model is based on two components: (i) the binary
collision kernel and, based on the latter, (ii) the governing equation for the evolution of probability density functions for mass
distribution. Regarding (i) we used the model from (Domokos and Gibbons, 2018) which incorporates the existing theory
for individual and binary abrasion, regarding (ii) we used the Fokker-Planck equation which is broadly used in the theory of
coagulation in fragmentation.

Our collision kernel includes the single scalar parameter » which can be associated with the energy level of the collective
collisional evolution process. We found that » = 0.5 is critical, separating two regimes with fundamentally different behaviour:
for r > 0.5 (low energy regime) we found focusing behaviour with decreasing relative variance R(t) and for r < 0.5 (high
energy regime) we found dispersing behaviour with increasing relative variance R(t). In geological terms, this result suggests
that in low energy environments collisional abrasion acts on mass distributions in unison with size-selective transport while
in high energy environments the opposite happens and the two processes are counter-acting. In accordance with prevailing
geological observations and Sternberg’s Law,, our models predicts exponential decay of particle mass in both energy regimes.

We investigated our model on two levels: (i) as a continuum model by regarding the evolution of the Fokker-Planck equation
and (ii) as a discrete model by running discrete event-based simulations. In case of the continuum model we derived our
results analytically and also from numerical simulation of the Fokker-Planck equation while in the discrete model we relied
on numerical computations. In regard of the existence of the critical parameter = 0.5 and the existence of the focusing and
dispersing regimes, the two approaches yielded quantitatively matching results.

Large boulders among many small pebbles are often visible in mountain ranges of rivers. While this phenomenon is com-
monly attributed to transport, our model suggests that under some conditions, here again transport and abrasion may act in
unison: we identified a curios phenomenon not present in the continuum model but present in the discrete model (even in the
N — oo limit). If the parameter » was in the focusing r > 0.5 range but not very far from the critical value r = 0.5, the bulk of
the distribution was narrowing (in accordance with our analytical predictions), however, we could also observe a few particles
with substantially larger mass (outliers), escaping the bulk of the distribution. We characterized the mass ratio of outliers versus
the mean of the bulk distribution by the parameter a and we derived a critical curve a.;(r) separating systems where outliers
may be observed from those where this may not happen. Our result predicts that larger outliers are less likely to be observable.

While our paper only dealt with on size distributions, however, there exist also related observations on shape: sharp peaks in
distributions of axis ratios (also referred to as equilibrium shapes) are mentioned in Bluck (1967); Dobkins and Folk (1970);
Landon (1930); Orford (1975); Williams and Caldwell (1988); Ashcroft (1990); Lorang and Komar (1990); Yazawa (1990);
Wald (1990). In Domokos and Gibbons (2012) a plausible argument was presented that equilibrium shapes may emerge on
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shingle beaches as the result of interaction of abrasion and transport. We hope that the extension of the statistical theory

presented in this paper may be capable to verify these observations.

Appendix A: Testing the model for heterogeneous pebble populations

In the context of the binary evolution model (1)-(2) we introduced the binary abrasion parameters c12 and co; and for simplicity
(since we only aimed to treat homogeneous populations) we used the same notation in the collision kernel (3)-(4). Here we
refine this concept in the statistical setting for heterogeneous populations where we regard the collective evolution of N
particles with M < N different materials m;, (¢ = 1,2,... M). (The binary case corresponds to N = 2, if the two pebbles are
made from different material then we have M = 2 and for pebbles with identical materials we have M = 1. In the latter case
in (1)-(2) we have ¢15 = c91 = ¢.)

In the statistical setting the binary abrasion parameters can be organized into an M x M matrix M with entries ¢;;, (4,7 =
1,2,...M). The binary parameter cij is defined as the constant coefficient in the collision kernel (3)-(4) associated with the
abrasion rate of a particles with material m;, bombarded by particles with material m;. Needless to say, the matrix M is
not symmetrical, in general we have c;; # c;;. In particular, if material m; is much harder than material m; then we expect
Cij K Cjj.

Based on the above considerations, the statistical model is controlled by the M x M = M? binary abrasion parameters
and the single environmental parameter 7. Testing this model can be done along the strategies outlined in subsection 1.4 for

homogeneous populations, however, more detail has to be observed.

(a) One may test the model at the input level, by fitting the kernel (3)-(4) to laboratory tests for pair-wise selected materials
m;, m;. In such a test the abrasion rate of particles of material m,; under abrasion from particles of material m; is plotted
as a function of particle size of the abraded particle (with material m;). Such experiments can be used to determine the
binary abrasion parameters c;; for a given heterogeneous population. If the laboratory test is imitating the environment of
the natural process, the environmental parameter r may be also obtained in this manner. We will show such an example

below.

(b) One may test the model at the output level by measuring the time evolution of full mass distributions and fitting the M2

material parameters ¢;; and the environmental parameter 7 to this dataset.

Next we show an example for testing the model at the input level by using the data obtained in Attal and Lavé (2009).
Here the authors report on flume experiments where they measured the abrasion rate E,; of individual limestone gravels with
diameter between D =9 and D = 39 mm mixed in approximately 400g of 10-18 mm and 18-28 mm granitic gravel. In our
terminology, we have M = 2 (two materials) and we will use m; for the limestone and ms for the granite. The joint evolution
of such a heterogeneous population is described by M 2=4 binary material constants: c11,c12,c21 and cos. The authors were
primarily interested in the abrasion rates for limestone and they produced the E;(D) plots for these particles. In this experiment

we may assume that the abrasion of the limestone pebbles was exclusively due to collisions with the granitic gravel (i.e. we
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disregard limestone-limestone collisions). Thus the only relevant collisions are between limestone and granite, and for the mass
loss X (t) of the limestone we will use equation (3) with X and Y denoting the volumes of the colliding limestone and granitic
particles respectively, and c15 denoting the binary abrasion parameter associated with limestone being abraded by granite. (Not
reported, by we may assume cy; < c12). If we replace the volume of the granitic particles by their average the abrasion rate as
function of its diameter can be calculated numerically. Note that the abrasion rate E; in our notation reads

X

Ey= e

(AL)

We fitted equation (3) to the dataset provided in Attal and Lavé (2009). We minimized the mean square error (with respect
to the results in Attal and Lavé (2009)) for the parameters r and c;2 and obtained r = 0.19,c15 = 0.28. Our fitted curves
are illustrated in Figure Al showing fair agreement between the data and the fitted model. The value of the environmental
parameter is in the range where we expect dispersing behaviour, as we discussed in Appendix D, which is in accordance with
the target of the original experiment which simulated abrasion in fluvial environments. We note that the same parameter-pair
r=10.19,c12 = 0.28 is valid for both limestone experiments (i.e. these parameters do not depend on the size of the particle).

Our fit appears to be consistent in this respect.
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Figure Al. (a) Abrasion rate E4 predicted by the compound kernel (3) fitted to experimental data in Attal and Lavé (2009). Figure 9a by
Attal and Lavé (2009) superposed with our model fits F; and F5>. Mass estimated from diameter. Least squares optimization yields » = 0.19

and Ci12 = 0.28.
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Appendix B: Some properties of the kernels in Subsection 2.3
B1 Summation kernel

Differential equations governing the time evolution of the first and second moments can be readily obtained, hence the mean

E*(t) and variance W (t) follows the following initial value problems (IVPs):

Ef(t)=—2E"(t) with ET(0)= Ej, (B1)
WiH(t)=—-2WT(t) with WT(0)=W,. (B2)

It follows, that both the expectation and the variance exhibit exponential decay, namely E*(t) = Ege=2! and W (t) =

Woe ™2t It is straightforward to show, that the relative variance R+ (t) increases exponentially

R (1) 1= ) Wo

— _ 2t
= E+(t)2 = Fge = Roe . (B3)

B2 Product kernel
In case of the product kernel the IVPs describing the evolution of the mean £E*(¢) and variance W*(¢) respectively read

Ef(t)=—(E*(t))> with  E*(0)= FEy, (B4)
W) (t) = —2W*(t)E*(t) with W*(0) = W. (BS)

Here the decay of the mean and the variance are polynomial as we find

Wy 1
E*(t)=———, and W*(t)= -9 S E—— (B6)
L Eo (., 1
Ey Eo
which result in a steady relative variance R*(¢), determined by the initial distribution fy. In specific
W) — Wo
*(t):= =—3% = —= = Ro. B7

Appendix C: Approximate investigation of the compound kernel
C1 Truncated compound kernel

The truncated compound kernel is obtained from the compound kernel as the truncated Taylor polynomial computed at y = z

with an (O(y — z):

@) =5+ (3 5) 00+ Oy -1 e
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Using the master equation, the following Cauchy problems are found that define the evolution of the mean and the variance:

EST(t) = EC Tty  with  ET(0) = Ey, (C2)
1

Wf"T(t) =— <2 +r) wel(t) with WeT(0) = Wy. (C3)

Solution of these ODE:s yields the evolution of the relative variance as

1
C,T(t) 0 ——r |t
e,Trpy. 0~ \Y _ 770 _\2
RET(t) = o = E”ge< ) (C4)

C2 A population of identical particles preserved

Here we show, that a population of identical particles, characterized by a Dirac delta function as input PD.F. is preserved in the
model with the compound kernel regardless of the value of parameter . Without loss of generality, we investigate the evolution
from the fo = d(1) initial condition, where J(z) denotes the Dirac-delta function at x. Obviously, Ey =1 and Wy = 0. We
show, that now f(¢,2) = d(c(t)) holds for any ¢ > 0. Let us assume, that at some ¢t* > 0 the distribution is f(t*,z) = d(c(t*))

with mean E°(t*) = ¢(¢*) and variance W€ (¢*) = 0, respectively. Observe that

/ FUE e (@, y)dy = 0 (z,e(t")). (©5)
0

The time derivative of the mean can be computed via

/ft ,r)xdr = — /f(t*,x)z,bc(z,c(t*))dz:—%c(t*), (C6)
0

where we used (7), applied integration by parts and employed (C5). Similarly, the evolution of the variance is found to follow:
(o)

Wt /ftt 2)adz — 2B (£ E° (1 2/f 2y e(t))oda + o(t*)? = —e(t)? + (") = 0. )
0

This shows that the variance of the distribution is constant, and as it started at Wy = 0, i.e. it vanishes whole along the
evolution. In other words, the we have a Dirac-delta (degenerate) distribution at any ¢ > 0. Employing (C6) we find, that the
1

location ¢(t) follows the initial value problem ¢, (t) = —4c(t) with ¢(0) = 1, hence c(t) = exp(—%).

C3 Dispersing and focusing behaviour identified in the population of almost identical particles

As the model lacks diffusion, the behaviour of a degenerate distribution with all the mass concentrated at a single value is
worthy to study, because long term existence of a set consisting of identical particles can take place in the model. In Appendix
C2 we show that a population of identical particles remain identical in our model. In other words, time-invariance of the Dirac-
delta distribution holds in our model, regardless of the value of the parameter . Nevertheless, the value of r affects the stability

of that Dirac-delta: next we show that the evolution for a population of almost identical particles (i.e. a perturbed version of
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the Dirac delta distribution) is either focusing or dispersing, depending on the value of r. To see this, we define a perturbed

distribution. Let € > 0 be a fixed parameter and define

R (1—-e)s(1)+1 ifl—-e<a<l+e
fo([L‘) = (Cg)
0 otherwise .

It is straightforward to show that [ Fo()ve(x,y)dy = ¢v¢(x,1), ES =1 and M(t = [ f(t,2)a?dx with M§(0) =1+
3. We aim to investigate the sign of R{ att = 0. Since R°(t) = Mg(t)E°(t) 21, we need to study the sign of M ,(0)E°(0)—
2E¢(0)Ms5(0). Integration by parts yields

E°(0)M5 ,(0) — 2M5(0)E / x)Y¢(x, 1) zdr + 2( 1+ 5 / (z,1)dx = %5—:3 (; r> +0(£%), (C9)
0 0

where algebraic manipulations leads the last equality. In accordance with the results on the truncated model, we found, that
r =1/2 is critical, at r < 1/2 the relative variance R{ is positive, it increases for any £ > 0, i.e. the population of identical
particles is unstable, small perturbations disperse the mass distribution. At r > 1/2 the relative variance Rf < 0, which shows,

that the population of identical particles is stable, the model is focusing.

Appendix D: Estimating physically possible values of r
In the paper we assumed that the particle collision probability depends on the volume of the particles as
P(X)x X" (D1)

Here we investigate two extreme scenarios, associated with the collision probabilities Psmooth (X ) and Pryrbutent (X ) where
we expect r to assume its extreme values.

The first is the smooth gradient flow. In such a case the driving fluid has a strong, but on a particle-size scale constant
velocity gradient in one of the spatial directions. Such situations may arise, e.g., in shallow water layers. Here the relative
velocity of the particles grows with the distance. If we are at distance u from the center of the particle in the direction of the
flow velocity gradient, the collision probability Pypooth (X ) can be estimated by the product of the velocity difference and the

linear cross-section of the particles. (Note that R = X '/3 is the linear size of the particle):

R
1 1 1
Psmooth(X)NE/U\/WduzgRQ:ng. o2
0

Based on (D1), this gives us an estimate for high r = 2/3.
The other extreme case is a fully chaotic motion where equipartition takes place (Uberoi, 1957). Thus the kinetic energy

of the particles (% pXwv?) is independent of their volume. Thus the speed of the particles must be proportional to X ~1/2, If
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we disregard correlations the particles have a cross-section proportional to their projected area which is proportional to X /3.

Combining the two gives us
Pusbutent (X) ~ X 12X/ = x1/6 (D3)

and based on (D1) we obtain = 1/6. Thus it is possible to have physical scenarios apparent in nature where the value of r

falls to either side of the critical value of r. = 0.5 with large enough margin.

Appendix E: Investigation of outliers in finite samples

Let us have a sample with N particles with (N — 1) having identical volume X . The last particle is an outlier with volume a X,
where a < 1. In a single binary collision, a hit between particles with volume X is called an A-type event, while a collision
with the outlier being involved is a B-type event. Based on discrete probabilistic considerations, the probability of an A-type
event equals (N — 2)/N and a B-type event is 2/, respectively. In the A-type event the average size X of the particles with
volume X after the collision that lasts for At reads

XZZ(X—X/QAt)+(N—3)X X

Computing ¢ X/X and truncating the Taylor series expansion in At after linear terms around the value At = 0 yields the time

derivative of the parameter a associated with an A-type event:

a
0 =7 (E2)

In case of the B-type event both the outlier and one of the small particles follow the compound kernel via:

attrx
X)) =— E3
(a )t 1+a ) ( )
at=rX
Xy =— . E4
=, (E4)
The second equation is employed to compute the average volume of the small particles (i.e., X associated with this event).
Now we need to truncate the Taylor series of % at At = 0. After algebraic manipulations we find
a1+r a27'r
ab = + (E5)

T 1+4a (I+a)(N-1)

Considering the probabilities of events A and B we arrive to

N-2 altr a?-r
= —2 . E6
“TON T <1+a+(1+a)(]\f—1)) (E6)

Note that an increase in the value of a, i.e., a; > 0 implies that the outlier is getting further from the population. In the case of

the N — oo limit we find

at=a<1— 2" ) (ET)

1+a
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Here the sign of the expression in the brackets determines the sign of a;, which coincides with e.q. (12) in the text. One can also
show, that if there exist a. > 1 such that a; = 0 at acy, then a; > 0 for any a > ai.. Hence, we need the aci > 1 that makes
the expression in the bracket vanish. Existence of such a critical value can be shown for the case with finitely many particles,
too. As we can see, sufficiently large outliers may with the population on the long run. The control parameter r determines

how large an outlier needs to be for sustained coexistence.
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