Journal cover Journal topic
Earth Surface Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.928 IF 3.928
  • IF 5-year value: 3.864 IF 5-year
    3.864
  • CiteScore value: 6.2 CiteScore
    6.2
  • SNIP value: 1.469 SNIP 1.469
  • IPP value: 4.21 IPP 4.21
  • SJR value: 1.666 SJR 1.666
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 21 Scimago H
    index 21
  • h5-index value: 23 h5-index 23
Preprints
https://doi.org/10.5194/esurf-2020-88
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/esurf-2020-88
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  21 Nov 2020

21 Nov 2020

Review status
This preprint is currently under review for the journal ESurf.

Quantifying Thresholds of Barrier Geomorphic Change in a Cross-Shore Sediment Partitioning Model

Daniel J. Ciarletta1, Jennifer L. Miselis1, Justin L. Shawler2, and Christopher J. Hein2 Daniel J. Ciarletta et al.
  • 1U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, 600 4 th St. S, St. Petersburg, Florida 33701, USA
  • 2Virginia Institute of Marine Science, William & Mary, P.O. Box 1346, Gloucester Point, Virginia 23062, USA

Abstract. Barrier coasts, including barrier islands, beach-ridge plains, and associated landforms, can assume a broad spectrum of morphologies over decadal scales that reflect conditions of sediment availability, accommodation, and relative sea-level rise. However, the quantitative thresholds of these controls on barrier-system behavior remain largely unexplored, even as modern sea-level rise and anthropogenic modification of sediment availability increasingly reshape the world’s sandy coastlines. In this study, we conceptualize barrier coasts as sediment partitioning frameworks, distributing sand delivered from the shoreface to the subaqueous and subaerial components of the coastal system. Using an idealized morphodynamic model, we explore thresholds of behavioral/morphologic change over decadal to centennial timescales, simulating barrier evolution within quasi-stratigraphic morphological cross-sections. Our results indicate a wide diversity of barrier behaviors can be explained by the balance of fluxes delivered to the beach versus the dune/backbarrier, including previously understudied forms of transgression that allow the subaerial system to continue accumulating sediment during landward migration. Most importantly, our results show that barrier state transitions between progradation, cross-shore amalgamation, aggradation, and transgression are controlled largely through balances within a narrow range of relative sea-level rise and sediment flux. This suggests that, in the face of rising sea levels, subtle changes in sediment fluxes could result in significant changes in barrier morphology. We also demonstrate that modeled barriers with reduced vertical sediment accommodation are highly sensitive to the magnitude and direction of shoreface fluxes. Therefore, natural barriers with limited sediment accommodation could allow for exploration of the future effects of sea-level rise and changing flux magnitudes over a period of years as opposed to the decades required for similar responses in sediment-rich barrier systems. Finally, because our model creates stratigraphy generated under different input parameters, we propose it could be used in combination with stratigraphic data to hindcast the sensitivity of existing barriers and infer changes in pre-historic morphology, which we anticipate will provide a baseline to assess the reliability of forward modeling predictions.

Daniel J. Ciarletta et al.

Interactive discussion

Status: open (until 02 Jan 2021)
Status: open (until 02 Jan 2021)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Daniel J. Ciarletta et al.

Model code and software

Subaerial Barrier Sediment Partitioning (SBSP) Model Version 1.0: U.S. Geological Survey software release Ciarletta, D. J., Miselis, J. L., Shawler, J. L., and Hein C. J. https://doi.org/10.5066/P9DE6QCL

Daniel J. Ciarletta et al.

Viewed

Total article views: 159 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
126 32 1 159 0 0
  • HTML: 126
  • PDF: 32
  • XML: 1
  • Total: 159
  • BibTeX: 0
  • EndNote: 0
Views and downloads (calculated since 21 Nov 2020)
Cumulative views and downloads (calculated since 21 Nov 2020)

Viewed (geographical distribution)

Total article views: 128 (including HTML, PDF, and XML) Thereof 127 with geography defined and 1 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 28 Nov 2020
Publications Copernicus
Download
Short summary
The world's sandy coastlines are increasingly altered by humans and sea-level rise, yet quantitative relationships between coastal landscapes and sediment availability remain poorly described. Using a novel modeling framework, we explore the evolution of coastal barrier islands under varying rates of sea-level rise and sediment availability. Our model results suggest that as sea levels increase, minor changes in sediment availability could result in rapid changes to barrier coasts.
The world's sandy coastlines are increasingly altered by humans and sea-level rise, yet...
Citation