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Abstract. 

Regional monitoring of rock slope failures by the seismic technique is rarely studied due to significant source

location errors, and it still lacks the signal features needed for understanding events of this type because of the complex mass

movement involved. To better understand events of this type, ten known events along highways in Taiwan were analyzed.

First, a hybrid approach (GeoLoc) composed of cross-correlation-based and amplitude-attenuation-based approaches was

applied, and it produced a location error of maximum 3.19 km for the ten events. Then, we analyzed the ratio of local

magnitude (ML) and duration magnitude (MD) and found that a threshold of 0.85 yields successful classification between

rock slope failure and earthquake. Further, the GeoLoc can retrieve the seismic parameters, such as signal amplitude at the

source  (A0)  and  ML of  events,  which  are  crucial  for  constructing  scaling  law  with  source  volume  (V).  Indeed,

Log(V)=1.12ML+3.08 and V=77,290A0
0.44 derived in this study provide the lower bound of volume estimation, since the

seismic parameters based on peak amplitudes cannot represent the full process of mass loss. Second, while video records

correspond  with  seismic  signals,  the  processes  of  toppling  and  sliding  present  column-  and  V-shaped  spectrograms,

respectively. The impacts of rockfall directly link directly to the pulses of seismic signals. Here, all spectrogram features of

events can be identified by event volumes larger than 2,000 m3, corresponding to the farthest epicenter distance ~2.5 km. The

previous results were obtained using the GeoLoc scheme for providing the government rapid reports for reference. Finally, a

recent event on 12th June 2020 was used to examine the GeoLoc scheme’s feasibility. We estimated the event's volume by

the two scalings: 3,838 m3 and 3,019 m3
, which was roughly consistent with the volume estimation of 5,142 m3  from the

digital  elevation  model.  The  physical  processes,  including  rockfall,  toppling,  and  complex  motion  behaviors  of  rock

interacting with slope inferred from the spectrogram features were comprehensively supported by the video record and field
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investigation. We also demonstrated that the GeoLoc scheme, which has been implemented in Sinwulu catchment, Taiwan,

can provide fast reports, including the location, volume, and physical process of events of this type to the public soon after

they occur.
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1. Introduction

Failures caused by the instability of rock mass are the most common geohazard in mountainous terrain. For this

type  of  mass  movement,  rock  instability  can  refer  to  the  falling,  toppling,  slumping,  sliding,  spreading,  creeping,  or

avalanche of the mass block (Varnes, 1978). A lack of direct observations in the field leads to a challenge in determining the

type of mass movement. In general, a rockfall involves physical processes, such as detachment, falling, rolling, bouncing,

and fragmentation. It mainly interacts with the substrate, not necessarily with other moving fragments. A rockslide is usually

due  to  instability  along  a  bedding  plane  or  a  discontinuous,  weakened  structure,  and  often  failure  with  a  complex

mechanism. A rock topple is forward rotation and overturning of the rock body (Hungr et al., 2013). Here, we use the term

‘rock slope failure (RSF)’ to represent the aforementioned terms, including rockfall, rockslide, and rock topple along the

highways, which can potentially cause damage to humans and the environment.

RSFs that occur along the highways may threaten road users and damage the road and facilities. Thus, it is essential

to get precise information about the timing, location, and moving volume of such events within a short time for the purpose

of issuing warnings and understanding the physical process of failures for assessment of hazard management, field survey,

and slope protection after events. Recently, the seismic technique has been widely used for those purposes for RSF events,

not only on a local scale (Vilajosana et al., 2008；Helmstetter & Garambois, 2010；Zimmer et al., 2012；Zimmer and

Sitar, 2015; Dietze et al., 2017; Roy et al., 2019), but also on a regional scale (Dammeier et al., 2011; Manconi et al., 2016;

Fuchs et al., 2018).  In the case of a free-fall event, the leading seismic signals corresponding to crack propagation and rock

impact occupy a higher frequency band than do the signals induced by rock detachment and rebound (Levy et al., 2011;

Dietze et al., 2017; Roy et al., 2019). A series of field-scale block rockfall experiments were conducted to generate signal

templates related to the rolling, bouncing, and impacting of a single block mass, with their respective pulse features shown in

the spectrograms. During rock fall, the mass particle might be fragmented, and the individual particles not only interact with

the topographic surface but also collide with each other (Hilbert et al., 2017; Saló et al., 2018). Based on a combined analysis

of the seismic signals and high-speed video cameras, Saló et al. (2018) found that the impact of large rock boulders on slope

can generate lower frequency seismic signals than the impact corresponding to the process with fragmented blocks. Then, for

the sliding phase, Manconi et al. (2016) indicated that the spectrograms induced by sliding-controlled behaviour exhibit the

traditional triangular shape, which is the same feature as that of landslides (Chen et al., 2013; Hibert et al., 2014) and snow

avalanches (Suriñach et al., 2005). Recent studies also concluded that massive, rapid landslides, which include the processes
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of acceleration and deceleration, could generate strong long-period (10-150 second) seismic signals (Ekström and Stock

2013; Chao et al., 2017). By contrast, the on-site seismic signals of RSFs with frequencies up to 50-100 Hz would be very

helpful in exploring the source dynamics. However, most of the studies based on regional seismic networks focused on lower

frequencies ranging from 0.1-20 Hz due to the attenuation effect of wave propagation (Deparis et al., 2008; Dammeier et al.,

2011; Manconi et al., 2016; Fuchs et al., 2018), resulting in an imperfect understanding of the physical process of RSF.

Some studies have proposed a fully automatic scheme for locating and estimating the size of landslides (Chao et al.,

2017),  rockslides  (Manconi  et  al.,  2016; Fuchs et  al.,  2018),  and debris flows (Walter  et  al.,  2017) for  rapid response

purposes. A present, there are two approaches to scanning the location of an RSF: the cross-correlation (CC) method and the

amplitude source location (ASL) method. CC has been applied to sources with unclear phases in seismic arrivals, but this

technique is susceptible to the regional velocity model, station coverage, and signal-to-noise ratio (SNR) of observed signals

(Chen et al., 2013; Hibert et al., 2014), which are factors that influence location error. In contrast to CC, ASL does not

require a priori  knowledge of the velocity structure and can estimate not only the source location but also the seismic

parameters, such as the elastic attenuation of seismic waves (α) and seismic amplitude at the source (A0) (Aki and Ferrazzini,

2000; Jones et al., 2013; Röösli et al., 2014; Ogiso and Yomogida, 2015; Walter et al., 2017). However, ASL significantly

relies on not only large bursts of seismic amplitude, which are influenced by the site conditions, but also the distribution of

epicenter distance between each station and the source. Besides, the event size is a crucial issue for making a rapid report

after event occurrence. Recently, a simple scaling between the source magnitude and volume has been well established,

covering a wide range of source volumes from 100 to 106 m3. But, there is a scatter trend in the data distribution for volumes

ranging from 102 to 105 m3 (Roy et al., 2019), which is shown in this research.

In this study, we develop the GeoLoc scheme which can determine the location of geohazard, classify the source type,

estimate  the  event  volume  (V),  and  may  offer  the  information  about  the  physical  process  of  RSF  events.  Thus,  all

information yielded by the GeoLoc scheme may make possible rapid reports to the government. The method of location

determining also uses the GeoLoc, by combining the CC and ASL techniques with horizontal and vertical seismic signals. In

this case, ten RSFs with volumes ranging from 108 m3 to 164,000 m3 that occurred along highways (Table S1; see  S1 in

Supplement) and were documented by the Directorate  General  of  Highways (DGH) in Taiwan are used to explore the

feasibility of the GeoLoc. Further, the retrieved seismic parameters, A0  from ASL and local magnitude (ML) are used with

event volume to build regressions for volume estimation. With available videos published on public platforms (Table S2),

we demonstrated that important physical processes related to seismic signals could be clarified, when the far thest epicentral

distance is less than 2.5 km from events of at least 2,000 m3. After the successful feasibility test of ten events, a recent RSF

event occurred on June 12, 2020, which was used to underscore the implications of the potential use of this rapid reporting

system of RSF events that occur on slopes near highways.
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2. Background setting and Seismic data

Taiwan is located at the boundary of the Eurasian Plate, and the Philippine Sea Plate (Fig. 1a) , resulting in complex

tectonic structures and high seismicity. A combined effect of extreme climate-forced erosion and strong earthquake shaking

frequently causes RSF events. Vehicular traffic along three provincial highways, which cross the Taiwan Island from east to

west, suffers from the potential threat of seismic failures, especially at Taroko National park along the east flank of central

cross-island highway, which attracts more than four million tourists every year. Thus, a rapid RSF report system is sorely

needed for the safety of highway travellers. In practice, after RSFs occur on highways, the materials blocking the road are

cleared, and unmanned aerial vehicle (UAV) surveys are routinely performed by DGH. Some events can be captured by

video and/or recorded by eyewitnesses. The above information allows us to obtain preliminary data about an RSF, such as

the  location,  occurrence  time,  volume,  and  its  physical  process.  Additionally,  the  Broadband  Array  in  Taiwan  for

Seismology (BATS) seismic network, maintained by the Institute of Earth Sciences, Academia Sinica (IESAS) (Kao et al.,

1998) and the Central Weather Bureau (CWB), is well distributed throughout Taiwan and provides high-quality seismic

records for studying RSFs. The present broadband seismic network provides an opportunity to monitor RSFs. However, the

primary purpose of this network is to monitor earthquakes. To enhance the station coverage along the highways for the high-

risk areas (Crespi et al., 1996; Petley, 1998), temporal seismic arrays have been set up since March 2015 in Liwu catchment

(shown as L-NET in Fig. 1b), consisting of one broadband seismometer (Guralp CMG-6TD; Station LW01) and four short-

period sensors (KINKEI-KVS300; Stations LW02-LW05) and in Sinwulyu catchment (shown as S-NET in  Fig. 1c), with

seven  broadband  seismic  stations  (Trillium Compact:  CLAB,  DLNB,  WLUB and XAMB;  Guralp  CMG-6TD:  SW01-

SW03). A total of 13 BATS/CWB broadband stations and 12 temporal stations are thus used in this study.

3. Flow chart of the GeoLoc scheme

This research has a flow chart  showing the specific  steps involved in a near-automatic scheme (GeoLoc).  The

GeoLoc  scheme  consists  of  a  4-step  automatic  procedure:  (1)  data  pre-processing,  (2)  location  process,  (3)  source

classification, and (4) volume estimation (Fig. 2). However, manual time-frequency analysis is necessary for extracting the

frequency band of bandpass  filtering,  the signal  duration,  and the physical  process.  The first  of  the two procedures  is

addressed in Section 3.1 and Section 3.2, respectively. Once the best location of the source is determined, the classification

of the source type is required. We analyzed the ratio of local magnitude and duration magnitude (ML/MD) for the source

classification and established scaling laws of V, ML, and A0 to estimate the event volume for the detected RSF event (see

Section 4.2). The current GeoLoc scheme does not involve analyzing the physical process in automatic implementation (see

Section  4.3).  However,  the  optional  time-frequency  analysis  could  provide  an  event’s  physical  process  based  on  the

spectrogram features, such as V-shaped, column-shaped, and pulse-like patterns. The GeoLoc scheme can be operated as a

partly automatic monitoring system that delivers rapid reports providing the best source location and volume of the event to
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the road users and government for RSF hazard assessment and mitigation. Comprehensive details are given in the following

sections.

3.1 Data pre-processing

Based  on  the  occurrence  time  and  location  of  RSFs  documented  by  the  DGH,  the  three-component  seismic

recordings from nearby stations with a 180-second-length window can be cut and then undergo the pre-processing, including

removing mean and linear trend. Further, the time-frequency spectrograms are constructed. In the present study, a filtering

range is selected that can effectively explain the strong power spectral density (PSD) distributed in the time-frequency map

of all stations.  A series of spectrogram analyses utilizes the S-transform (Chen et al., 2013). Fig. 3 shows an example of

determining the filtering range for Event S4. The spectrogram of station ELDB shows a strong PSD with a wide frequency

range of 1-30 Hz. In contrast, the PSD distribution of station SYNB is contained at frequencies below 8 Hz, while the high-

frequency signals should decay due to the attenuation of seismic wave propagation. Indeed, cutoff frequencies of 1-8 Hz are

used in the bandpass filter for Event S4. Other events are shown in Figs. S1-S4. The filtering range from 1 Hz to 8 Hz can be

applied to most events, except for the two large-scale events (Events M1 and N1) and one single boulder impaction (Event

S5). Thus, the 1-8 Hz frequency range would be adopted in the real-time monitoring and the test of source classification.

Then, we compute the root-mean-square (RMS) amplitudes of the filtered horizontal (N-S and E-W) and vertical waveforms

and extract the horizontal and vertical envelope functions from the filtered RMS waveforms. Only when envelope functions

have an SNR higher than 1.5, and the detected station number is over two, is the GeoLoc location process considered. The

SNR is calculated from the ratio between short-term and whole-term (180 seconds in time length) averages. The short-term

average is the average value of a ± 5-second time window whose center is the peak envelope amplitude.

3.2 Location process

In the GeoLoc location process,  events are detected by at  least two stations with signal-to-noise ratios (SNRs)

exceeding 1.5 in the envelope functions. GeoLoc combines the cross-correlation (CC) method (Chen et al., 2013) and the

amplitude  source  location  (ASL)  method  using  the  vertical  and  horizontal  envelope  functions  for  source  location

determination.  The  ASL technique  not  only  locates  the  event  but  also  provides  the  seismic  parameters  of  the  signal

amplitude at  the source  (A0)  and  signal  decay  constant  (α) based on the best  fit  of  the amplitude decay  curve,  which

represents the peak-amplitude at i-th station (Ai) decay with increasing source-to-station distance (r i) (equation (1); Walter et

al.,  2017).  This ASL approach is available only when the epicentral  distance  is well-distributed for  a  large number of

stations.  In  the  case  of  a  lack  of  seismic  recordings,  the  CC approach,  which  relies  on  each  station  pair’s  waveform

similarity, can provide a possible solution to the estimated event location. However,  the CC needs a velocity model to

compute the theoretical travel-time difference between two stations. In contrast, ASL does not require prior knowledge of

the velocity structure. Compared to ASL, the CC method produces only an event location.  A velocity model of Wu et al.

5

130

135

140

145

150

155

https://doi.org/10.5194/esurf-2020-94
Preprint. Discussion started: 2 December 2020
c© Author(s) 2020. CC BY 4.0 License.



(2007) is adopted in this study. A  ± 25 second time window is used for the location process, and its center is the peak

envelope  amplitude (black  traces  shown in Fig.  4).  A grid  point  on the free  surface  topography with 0.01° spacing is

established for location search. For the ASL method, we assume surface waves are the dominant seismic wave type induced

by RSFs (Dietze et al., 2017), so n value in equation (1) of 0.5 (n = 1 for body waves and n = 0.5 for surface waves) is used

to account for the amplitude attenuation due to geometrical spreading.

Ai (r )=
A0
r i
n e

−α r i                                                                                                                              Equation (1)

 

The GeoLoc was applied to determine the CC location (XCC, YCC) and ASL location (XASL, YASL) simultaneously by

minimizing the misfit functions for events recorded by at least two stations. The misfit functions used in the ASL and CC

approaches are calculated from discrepancies in the peak envelope amplitude and cross-correlation amplitude, respectively.

The relative fitness value is then defined by the normalized misfit functions with ranges from 0 to 1. We then compute the

uncertainties (σX ASL/CC, σY ASL/CC) of location results using the standard deviation of longitude and latitude for the source grid

points with the relative fitness value higher than 0.95.  Then, the location result of the grid point with the highest relative

fitness is chosen as the best solution.  To understand the relationship between location uncertainty and location error, it is

necessary to find the location error between the true location and the resulting source location. We found that the resulting

locations with uncertainties (σX and σY) less than 5 km exhibit the small location error (< 3.19 km). Thus, a threshold of

location uncertainty of 5 km is used, and only location results satisfying this threshold are available and discussed later in the

next section. For an event, the total amount of available result location (N) is 4. We characterize the quality of a solution for

the RSF event based on the N-value. The quality level labels are A: 3 ≤ N; B: 1 ≤ N < 3 and C: N = 0. The best-result source

location is determined by the minimum uncertainties from N. In Event S4, the three result location satisfies the uncertainty

threshold (red frame, Fig. 4), so the location quality is A. Then, the best-result source location is produced by the ASL with a

vertical envelope. For the Event N1, N is two belonging to the quality level B. The best location is the output by the CC with

a horizontal envelope. 

4. Results and Discussion

4.1 Location

After analysing ten RSFs along highways, the events with quality levels A (Events S4 and M3) and B (Events S1,

S3, S6, and N1) that occurred during the non-typhoon period were determined with location errors between 0.97 and 3.19

km (Fig. 5a). The volume of those events is more massive than 2,000 m 3 (Table S1). Small event size and high background

noise  level,  which  result  in  poor  waveform  quality  causing  the  location  quality  level  C,  are  two  significant  factors

contributing to location error. For example, the two smallest events with a volume of 108 m 3 (Event S5) and 400 m3 (Event

M2) exhibit a high location error of 3.76 and 44.14 km, respectively. Even though Event M1 is the largest event, it can lead
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to a large location error of 23.61 km because of the high background noise level during the typhoon period with low SNR

value at each station (Table S1). 

A hybrid GeoLoc scheme provides a functional event location for the different station coverage conditions and the

distribution of epicentral distances. In general, the CC method mainly relies on station coverage. Thus, Event S4 shows that

location uncertainty has a clear trend along the station gap, existing in the northeast-to-southwest direction. However, there

is a relative lack of influence on the result derived from the ASL method (Fig. 4). On the contrary, Event N1, with proper

station  coverage,  still  leads  to  a  high  location  uncertainty  in  the  ASL case,  which  underscores  that a  well-distributed

epicentral distance is a crucial factor for the ASL method. 

4.2 Source discrimination and volume estimation

For rapid RSF hazard assessment along roads, successful source classification and event size estimation are needed.

Manconi  et  al.  (2016)  proposed  that  the  ratio  between  the  local  magnitude  (ML)  and  the  duration  magnitude  (MD)

(ML/MD=0.8) could effectively distinguish rockslide event from earthquake sources. To further examine the threshold of

ML/MD in our case, we selected ten local earthquakes from the CWB catalogue (Table S3) and collected seismic records of

earthquakes  from BATS and  S-NET stations.  We applied  the  same  analysis  procedures  as  in  the  RSF event,  and  all

earthquakes analyses resulted in location quality levels of A or B. For both earthquakes and RSFs, the magnitude scales of

ML and MD for the best location are computed, and then the ratio of ML/MD is derived (see S3 in Supplement). In the case of

the earthquakes, the average ML/MD ratio is 0.98, with a minimum value of 0.86. For the RSFs, ML/MD ratios are on average

0.24 and never exceed 0.82. Thus, the threshold of ML/MD of 0.85 is used to distinguish RSFs and earthquakes (Fig. 5b). We

also found that the relationship between ML and MD in local earthquakes is consistent with the regression line derived in Shin

et al. (1993) (see S3 in Supplement; Fig. S5). 

To mitigate the hazards caused by RSFs, rapid determination of source volume is essential for making emergency

responses. We first build an empirical relation of Log(V)=1.12ML+3.08 as shown in Fig. 5c. The ASL method in the GeoLoc

location process can provide the seismic amplitude at the event source (A0), which is an additional parameter in estimating

event size. Before exploring the relationship between V and A0, a test was conducted to investigate the influence of location

uncertainty on the A0 value. After making the amplitude correction of A0 for the specific events (see S4 Supplement), we

further established a simple power scaling of V=77,290A0
0.44 with a linear correlation coefficient (R) of 0.68 (Fig. 5c) and A0

ranging  from 1.60×10-5 to  6.61×10-2 cm/s  (Table  S1).  However,  the  volume estimate  from the  two scalings  could  be

underestimated because both ML and A0 were derived based on the peak amplitude. We expected that ML and A0 were

sensitive to the moment of the highest  energy release,  such as the most significant boulder impact from a sequence of

rockfall or the rock mass impact on the slope/road from the toppling event, which cannot represent the entire process. Thus,

the estimation from ML-V and A0-V offer the lower bound for total volume loss.
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Another parameter  α is  linked to the seismic energy lost due to attenuation along with wave propagation. We

collected the α values from three events (Table S4), where their ASL results yielded the location uncertainty threshold. The

result indicates that the attenuation is more rapid in the Sinwulyu catchment than Liwu catchment due to the geological

background (see S4 in Supplement). 

4.3 Physical process

Most of the RSFs were recorded by cameras and/or documented by news reports (Table S2), which provided an

advanced understanding of the relation between the physical processes and the associated seismic signals. Based on events

with a comprehensive video of the above observations, we can classify physical processes due to their different behaviors: (i)

fast and large mass sliding, (ii) complex interactions between the rock mass and propagation surface, and (iii) intact rock

detached  from  the  cliff.  For  Event  S4,  a  video  camera  captured  the  phases  corresponding  to  the  falling,  bouncing,

fragmenting, and impacting of multiple rock boulders during the initial stage. Approximately 19 seconds later, debris rapidly

slid downward and deposited on the slope and road. At the termination stage, a few boulders fell. Before the comparison

between the seismic signals and video, we collect the spectrogram from the closest station (ELDB; epicentral distance is 1.26

km) for Event S4 and find the time point (19 seconds in the video shown at the top of Fig. 6a to UTC 7:03:31) associated

with the strongest PSD values. We assume that rapid debris mass sliding contributes to stronger PSD amplitudes. During

initiation and termination, a relatively weak PSD amplitude is observed at frequencies lower than 2 Hz. Similarly, in the

beginning, the video of Event N1 shows a rock mass sliding down from the scarp continuously, which can redistribute stress

acting on the sliding surface. Finally, the large mass moves rapidly downward. Again, we align the timing (24 seconds in the

video to UTC 01:08:39) of the peak PSD value with the large mass movement inferred from the video. The closest station,

YHNB, is  8.7  km from Event  N1.  Indeed,  high-frequency signals  decay  rapidly  with  increasing  propagation distance,

resulting in seismic energy with a frequency content below 10 Hz and a short signal duration of 15 seconds. We also found

that SW02 for Event S4 with an epicentral distance of 7.70 km exhibits a similar spectrogram pattern (Fig. 3) to YHNB (Fig.

S4). We can demonstrate that the signals from stations at greater epicentral distances cannot capture the event’s full process,

leading to discrepancies between the event durations detected by the video and the seismic records. In the case of a small-

sized event (Event S6), there is no visible lower-frequency signal (< 2 Hz) observed at the nearest station, SW02 (Fig. 6d).

Thus, only large mass sliding (MS) can cause a relatively low frequency of 1-3 Hz (MS shown in Figs. 6a and 6b), which

coincides with the findings of a recent landslide study (Zhang et al., 2020). The interaction of the rock mass (IRM) acting on

the slope favors the generation of higher frequencies (> 3 Hz; Deparis et al., 2008; Zimmer et al., 2012; IRM as shown in

Figs. 6a, 6b, and 6d). Temporal changes in mass removal related to the aforementioned physical processes usually exhibit the

V-shaped spectrogram (Figs. 6a and 6d) observed by the nearby stations.

For Event S2, we align the timing (57 seconds in the video to UTC 08:43:27) of the peak PSD value with the

impact inferred from the video. The video shows apparent crack nucleation before the toppling. In the beginning, the leading
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seismic phase of 2 Hz is associated with the intact rock being detached from the cliff (white box shown in Fig. 6f), which

may correlate to the seismic response from the hillslope. This leading phase could easily be detected in the slope-scale

monitoring of rockfall (Roy et al., 2019). The total duration associated with the detachment to deposition of approximately

16 seconds is consistent with the signal duration identified from the spectrogram of station ELDB (50 to 66 seconds in the

video shown in Fig.  6f).  Notably, compared to the spretrogram for the sliding-dominant behavior,  that  for the toppling

process exhibits a column shape (T phase shown in 3f), showing a wide range of frequencies. Similarly, Event M3, which

corresponds to the detachment and impact mechanism (e.g., an overhanging rockfall whose impaction behavior is similar to

toppling), also creates column-shaped spectrograms (Fig. 6c). For the two smallest RSFs (Events S5 and M2) without video,

we  also  conducted  a  combined  analysis  based  on  spectrograms  and  field  photos,  and  we  found  that  the  pulse-like

spectrogram features can be linked to the impacts of small-to-large sized boulder masses (see S5 in Supplement) 

In  summary,  seismic  signals  can  provide  an  additional  constraint  on  source  physical  processes,  but  they  are

influenced by the magnitude of the source and the source-to-station distance, which controls the radiation and attenuation of

seismic  waves.  Rapid,  massive  sliding  events  with  volumes  above  5,000  m3 show  a  specific  seismic  phase  of  MS.

Furthermore, the complex interaction of a sliding rock mass exhibits relatively high-frequency signals, which is termed the

IRM phase. The transition zone between IRM and MS is approximately 2-3 Hz. IRM can be over 20 seconds on the volume

scale  of  larger  than  2,000  m3,  corresponding  to  the  farthest epicenter  distance  of  ~2.58  km.  Moreover,  V-shaped

spectrograms are induced by the combination of IRM and MS phases, which could be detected only by the closer stations.

For an event acting with the toppling process and/or impact-dominant mechanism, the giant boulder mass directly impacts

the ground and exhibits column-shaped spectrograms, which are up to 30 Hz (T phase). Our simple typology of physical

processes  based on seismic features  in  signal  duration and frequency content  recorded by the closer  station (epicenter

distance less than 2.5 km) is summarized in Fig. 6e. Indeed, our typology is unavailable when the distance is larger than 2.5

km. For example, the V-shaped spectrogram feature cannot be captured by the Station YHNB for the Event N1 with MS

behavior.

4.4 GeoLoc scheme applied for rapid report

To test how the GeoLoc scheme can provide a rapid report, an event that occurred at 01:09 on 12th June 2020

(UTC) was used. This event was only recorded by the BATS seismic station of TDCB (the epicentral distance of ~600 m).

The seismic signals  of  a  closer  station would help evaluate  the feasibility  of  making source  classification and volume

estimation and understanding the event’s physical process. With a priori knowledge of source location, we directly compute

the  seismic  magnitude.  The result  shows the  ML and  MD of  0.36  and  2.75,  respectively.  A ML/MD of  0.13  can  yield

successful  source  identification  using  the  threshold  of  0.85  proposed  in  this  study.  Furthermore,  we  utilize  the  peak

amplitude of 1.09×10-3 cm/s recorded  by Station TDCB to be A0-value for  the volume estimation.  Application of two
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regression scaling relations derived in this study (Fig. 5c and 5d) yield the source volumes (V) of 3,838 m 3 and 3,019 m3,

respectively, roughly consistent with the preliminary volume of 5,142 m3 estimated from the digital surface model (Fig. 7a).

Three-component spectrograms from the Station TDCB are shown in Fig. 7b. Based on our simple typology of the

physical process,  the spectrogram of the TDCB was used, and its physical process can be divided into three parts: (i)  the

pulse-like features can be observed during the period from 01:09:25 to 01:09:38 (green rectangle in Fig. 7b), corresponding

to multiple rockfalls.  (ii) the emergent  column-shape spectrogram (01:09:38 to 01:09:45 in Fig.  7b) relates  to the rock

toppling process with mass impacting and/or impact of the boulder rock mass.  Finally, the process turned to the complex

interactions between the fragmented rock mass and propagation surface with the PSD dominating over 2 Hz of theIRM

phase.

To examine the aforementioned physical processes, we obtain the video released by the DGH. At the beginning of

the video, the motion type of the rock mass includes rolling, bouncing, and impacting the hillslope and road surface in the

first 15 seconds of the video. Then, the massive rock mass topples (18 seconds, Fig. 7c) and hits the slope (19 seconds), and

finally raises a cloud of dust (after 19 seconds). After aligning the time point (19 seconds in the video to UTC 01:09:42) of

the peak PSD value with the significant impact inferred from the video, the above spectrogram features are consistent with

the motion behaviors extracted from the video, except for the IRM phase. Based on the photos captured by the drones (Fig.

7a), the run-out distance is around 200 m, which implies the mass material continued to move rather than just stop, so it

generated a continuous signal of 50 seconds.

Notably, the real-time broadband waveforms from 5 stations (CLAB, XAMB, WLUB, ELDB, SYNB shown in Fig.

1) distributed along the southern provincial highway and one station (YULB) outside the Sinwulu catchment, are ready for

real-time implementation. Based on the flowchart of the GeoLoc scheme shown in Fig. 2, we first fixed a bandpass filtering

of 1-8 Hz, which  can be applied to most events in this catchment,  except for one single boulder impaction (Event S5).

Certain thresholds of ML/MD  (0.85) and propagation distance (10 km; see Fig. S8) are used to ensure successful  source

discrimination. Two scaling lines established in this study are available for rapid volume estimation. However,  manual

checks are still needed to obtain the signal duration (required in calculating MD) and physical process, which can easily be

automatized by machine-learning-based classification approaches. Since June 2020, the GeoLoc-based monitoring system

has been in operation online and is under testing.  

5. Conclusions

The  GeoLoc  scheme  has  been  developed  to  successfully  study  ten  RSFs  by  using  the  seismic  signals  from

permanent  and  temporary  seismic  networks,  providing  estimations  of  the  location  and  associated  seismic  parameters,

namely, A0, α, ML and MD. For the source discrimination, a certain threshold of the ML/MD of 0.85 can essentially classify

the sources of RSFs and earthquakes. We further built two regression equations for the V-A0 and V-ML relations, which are

crucial for estimating the lower bound of source volume after an event occurrence. By analysing the videos and seismic
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signals from the nearest station with epicenter distance of less than 2.5 km, we can comprehensively understand the main

physical processes that control the seismic signals’ features. For example, the characteristics in spectrograms induced by the

multiple rockfalls, the impaction of boulder mass (similar to toppling), and the complex interactions between the rock mass

and propagation surface exhibit pulse-like, column-shaped, and V-shaped features, respectively. 

In practice, for the events with location quality levels A and B, we can provide information on the source location,

volume estimate, and physical process within a short time. For the events with quality level C, only the physical process

from the spectrogram features can be retrieved. The result of this research is vital for the government to make effective

emergency responses after an RSF occurrence. Rapid estimation of location and volume would be helpful for effective road

control and hazard management. The physical process also delivers a useful message to engineering geologists for better

understanding the failure mechanisms of RSFs and for designing slope protection plans. Before implementing the GeoLoc

scheme in real-time, a detailed geological survey is necessary for better understanding potential failure mechanisms and

highlighting high-risk slopes. Currently, the GeoLoc scheme shown in Fig. 2 has already been adopted in the Sinwulyu

catchment,  which is a high-risk area of RSFs in Taiwan, and it could be readily applied in other places with high RSF

activities, such as the Alps in Europe, the Southern Alps in New Zealand, Yosemite National Park in America, etc. as well. 
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Figure  1. Research  area  and  distribution  of  seismic  stations.  (a)  Topographic  map  of  Taiwan  shows three  provincial

highways (red lines) and BATS/CWB stations (blue square). (b) Liwu catchment, the east flank of the central  provincial

highway, and the temporary seismic network (L-NET, green square). (c) Sinwulyu catchment, the east flank of the southern

provincial highway, and the temporary seismic network (S-NET, green square). The data of Digital Elevation Model (DEM)

of Taiwan and two catchments are from Government Open Data Platform, Taiwan.

Figure  2.  Flowchart  of  the  GeoLoc  scheme,  including  data  preprocessing,  location  process,  source  classification,  and

volume estimate. All steps are automatic, except the steps with rectangular dashes which involved manual check in this

research. fL and fH are the lower and upper band of the bandpass filtering. (X, Y) ASL/CC-H/Z is the best location form the ASL or

CC with horizontal or vertical components.  (σ X, σ Y) ASL/CC-H/Z are those location uncertainties based on the relative fitness

over 0.95.  n is the number of methods with components (total: n=4) whose location error less than 5 km threshold. The

result with minimum location error defines the best location. 
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Figure 3. Recorded waveform and spectrogram of Event S4. The green dashed line is the range of the bandpass filter, which

should cover the signals of all stations recorded during the event.   
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Figure 4. The result of CC and ASL in Events S4 and N1. The left panel is the horizontal and vertical envelope function of

the detected stations of the Events S4 and N1. The black lines with 50-second signals are used in the CC. The right panel is

the result of the CC and ALS with a horizontal and vertical component. The circle and diamond symbols present the best

result of the CC and ASL, respectively. The black lines are the contour of a relative misfit with 0.9. The uncertainty of the

location is estimated based on the standard deviation of longitude and latitude for the source grid points with the relative

misfit higher than 0.95. The red frames highlight the results satisfying the threshold of location uncertainty of 5 km. 
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Figure 5. Results of the location process by the GeoLoc scheme, ML/MD of the RSFs and earthquakes, scaling of seismic

parameters, and source volumes. (a) Results of location quality levels A and B from GeoLoc and their location uncertainties.

The number beside the station name shown in the upper right corner is the SNR value for the horizontal (blue) and vertical
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(orange) envelopes. The circle and diamond symbols are the results of CC and ASL, respectively. The symbol in the grey

box is the best result of location, and the value beside the symbol indicates the location error. (b) The black and grey circles

are the RSFs with quality levels A and B, and C, respectively. Red triangles show the results of M L/MD for earthquakes. A

horizontal dashed line indicates a threshold of ML/MD of 0.85 used in this study. The relationships of (c) the event volume

(V) and ML, and (d) the event volume (V) and A0. The black circles show the A0 extracted from the best location result. The

open circles are the peak ground velocity (A0’), extracted from the nearest stations.  Event M1 is excluded in regression

analysis due to its high location error. The purple circle is the recent event on the 12th of June 2020. 

 

Figure 6. Spectrogram of five  events  and  classification of  physical  processes  by spectrogram features,  frequency,  and

duration. The rows are separated for the different scales of failure volumes. (a-d, f) Spectrograms of different events. The top

left  corner  is  the  event  number  and the  starting time of  the  x-axis.  The top right  corner  is  the station name with the

component and the epicentral distance (km). The purple bars above (a), (b), and (f) are the durations (secs) of the video with

the time points (Table S2). The yellow dashed rectangle is selected for analyzing the range of frequencies and duration for

(e). The pink lines are the distinct features of the sliding (IRM and MS) and toppling (T) processes. (e) Sliding and toppling

processes are distinguished by the frequency and event duration.
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Figure 7. The field photo, spectrograms, and time-lapse photos form the video of recent RSF on the 12 th of June 2020. (a)

Field photo of the event. The red color scale is the elevation difference between DEM originating from Lidar in 2012 and,

the digital  surface  model(DSM) derived from drone survey after  the event.  The main body is considered the elevation

difference larger than 3m. The black arrow indicates the camera view, and the red arrow is the distance between the road and

river bed. (b)The spectrograms of three components. The upper left corner of the spectrograms is the station name with the

components. The green, white with black lines, and orange rectangles are the spectrogram features of the physical process

corresponding  to  rockfall,  toppling  (T  phase),  and  complex  process  of  the  rock  interaction  with  slope  (IRM  phase),

respectively. The vertical purple dashed line indicates the time points from the video. (c) Time-lapse photos from the video

corresponding to the physical process of rockfall (Left panel) and toppling (Right panel). The seconds shown in the top-left

corner indicate a time tag in the video. 
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