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Abstract 9 

Wood is an essential component of rivers and plays a significant role in ecology and morphology. It can 10 

be also considered as a risk factor in rivers due to its influence on erosion and flooding. Quantifying and 11 

characterizing wood fluxes in rivers during floods would improve our understanding of the key processes but 12 

is hindered by technical challenges. Among various techniques for monitoring wood in rivers, streamside 13 

videography is a powerful approach to quantify different characteristics of wood in rivers, but past research 14 

has employed a manual approach that has many limitations. In this work, we introduce new software for the 15 

automatic detection of wood pieces in rivers. We apply different image analysis techniques such as static and 16 

dynamic masks, object tracking, and object characterization to minimize false positive and missed detections. 17 

To assess the software performance, results are compared with manual detections of wood from the same 18 

videos, which was a time-consuming process. Key parameters that affect detection are assessed including 19 

surface reflections, lighting conditions, flow discharge, wood position relative to the camera, and the length 20 

of wood pieces. Preliminary results had a 36% rate of false positive detection, primarily due to light reflection 21 

and water waves, but post-processing reduced this rate to 15%. The missed detection rate was 71% of piece 22 

numbers in the preliminary result, but post processing reduced this error to only 6.5% of piece numbers, and 23 

13.5% of volume. The high precision of the software shows that it can be used to massively increase the 24 

quantity of wood flux data in rivers around the world, potentially in real time. The significant impact of post-25 

processing indicates that it is necessary to train the software in various situations (location, timespan, weather 26 

conditions) to ensure reliable results. Manual wood detections and annotations for this work took over 150 27 

labor-hours. In comparison, the presented software coupled with an appropriate post processing step per-28 

formed the same task in real time (55 hr) on a standard desktop computer. 29 



2 

Keywords: River monitoring, Wood flux, Wood discharge, Large wood, Ground video imagery, Auto-30 

matic detection 31 

1. Introduction 32 

Floating wood has a significant impact on river morphology (Gurnell et al., 2002; Gregory et al., 2003; 33 

Wohl, 2013; Wohl and Scott, 2017). It is both a component of stream ecosystems and a source of risk for 34 

human activities (Comiti et al., 2006; Badoux et al., 2014; Lucía et al., 2015).  The deposition of wood at 35 

given locations can cause a reduction of the cross-sectional area, which can both increase upstream water 36 

levels (and the risk for neighboring communities), and laterally concentrate the flow downstream, which can 37 

lead to damaged infrastructure (Lyn et al., 2003; Lagasse, 2010; Mao and Comiti, 2010; Badoux et al., 2014; 38 

Ruiz-Villanueva et al., 2014; De Cicco et al., 2018; Mazzorana et al., 2018). Therefore, understanding and 39 

monitoring the dynamics of wood within a river is fundamental to assess and mitigate risk. An important 40 

body of work on this topic has grown over the last two decades, which has led to the development of many 41 

monitoring techniques (Marcus et al., 2002; MacVicar et al., 2009a; MacVicar and Piégay, 2012; Benacchio 42 

et al., 2015; Ravazzolo et al., 2015; Ruiz-Villanueva et al., 2019; Ghaffarian et al., 2020; Zhang et al., 2021) 43 

and conceptual and quantitative models (Braudrick and Grant, 2000; Martin and Benda, 2001; Abbe and 44 

Montgomery, 2003; Gregory et al., 2003; Seo and Nakamura, 2009; Seo et al., 2010). A recent review by 45 

Ruiz-Villanueva et al. (2016), however, argues that the area remains in relative infancy compared to other 46 

river processes such as the characterization of channel hydraulics and sediment transport. Many questions 47 

remain open areas of inquiry including wood hydraulics, which is needed to understand wood recruitment, 48 

movement and trapping, and wood budgeting, where better parametrization is needed to understand and 49 

model the transfer of wood in watersheds at different scales. 50 

In this domain, the quantification of wood mobility and wood fluxes in real rivers is a fundamental 51 

limitation that constrains model development. Most early works were based on repeated field surveys (Keller 52 

and Swanson, 1979; Lienkaemper and Swanson, 1987), with more recent efforts taking advantage of aerial 53 

photos or satellite images (Marcus et al., 2003; Lejot et al., 2007; Lassettre et al., 2008; Senter and Pasternack, 54 

2011; Boivin et al., 2017) to estimate wood delivery at larger time scales of 1 year up to several decades. 55 

Others have monitored wood mobility once introduced by tracking wood movement in floods (Jacobson et 56 

al., 1999; Haga et al., 2002; Warren and Kraft, 2008). Tracking technologies such as active and passive Radio 57 

Frequency Identification transponders (MacVicar et al., 2009a; Schenk et al., 2014) or GPS emitters and 58 
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receivers (Ravazzolo et al., 2015) can improve the precision of this strategy. To better understand wood flux, 59 

specific trapping structures such as reservoirs or hydropower dams can be used to sample the flux over time 60 

interval windows (Moulin and Piégay, 2004; Seo et al., 2008; Turowski et al., 2013). Accumulations up-61 

stream of a retention structure can also be monitored where they trap most or all of the transported wood, as 62 

was observed by Boivin et al. (2015), to quantify wood flux at the flood event or annual scale. All these 63 

approaches allow the assessment of wood budget and the in-channel wood exchange between geographical 64 

compartments within a given river reach and over a given period (Schenk et al., 2014; Boivin et al., 2015, 65 

2017). 66 

For finer scale information on the transport of wood during flood events, video recording of the water 67 

surface is suitable for estimating instantaneous fluxes and size distributions of floating wood in transport 68 

(Ghaffarian et al., 2020). Classic monitoring cameras installed on the river bank are cheap and relatively easy 69 

to acquire, setup and maintain. As is seen in Table 1, a wide range of sampling rates and spatial/temporal 70 

scales have been used to assess wood budgets in rivers. MacVicar and Piégay (2012) and Zhang et al. (2021) 71 

(in review), for instance, monitored wood fluxes at 5 frames per second (fps) and a resolution of 640 × 480 72 

up to 800 × 600 pixels. Boivin et al. (2017) used a similar camera and frame rate as MacVicar and Piégay 73 

(2012) to compare periods of wood transport with and without the presence of ice. Senter et al. (2017) ana-74 

lyzed the complete daytime record of 39 days of videos recorded at 4 fps and a resolution of 2048 × 1536 75 

pixels. Conceptually similar to the video technique, time-lapse imagery can be substituted when large rivers 76 

where surface velocities are low enough and the field of view is large. Kramer and Wohl (2014); Kramer et 77 

al. (2017) applied this technique in the Slave River (Canada) and recorded one image every 1 and 10 minutes. 78 

Where possible, wood pieces within the field of view are then visually detected and measured using simple 79 

software to measure the length and diameter of the wood to estimate wood flux (piece/s) or wood volume 80 

(𝑚3/𝑠) (MacVicar and Piégay, 2012; Senter et al., 2017). Critically for this approach, the time it takes for 81 

the researchers to extract information about wood fluxes has limited the fraction of the time that can be 82 

reasonably analyzed. Given the outdoor location for the camera, the image properties depend heavily on 83 

lighting conditions (e.g. surface light reflections, low light, ice, poor resolution or surface waves) which may 84 

also limit the accuracy of frequency and size information (Muste et al., 2008; MacVicar et al., 2009a). In 85 

such situations, simpler metrics such as a count of wood pieces, a classification of wood transport intensity, 86 

or even just a binary presence/absence may be used to characterize the wood flux (Boivin et al., 2017; Kramer 87 

et al., 2017). 88 
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Table 1 Characteristics of streamside video monitoring techniques in different studies. 

Article Sampling Temporal scales Camera resolution Study site 

MacVicar & Piégay (2012) 15 min segments 3 floods/18 hr/5 fps 640 × 480 Ain, France 

Kramer & Wohl (2014) Total duration 32 days/12761 frames/0.017 fps n/a Slave, Canada 

Boivin et al. (2017) Total duration 3 floods/150 hr/25 fps 640 × 480 St Jean, Canada 

Kramer et al. (2017) Total duration 11 months/0.0017 fps 1268 × 760 Slave, Canada 

Senter et al. (2017) 15 min segments 39 days/180 hr/4 fps 2048 × 1536 North Yuba, USA 

Ghaffarian et al. (2020) Total duration 2 floods/80 hr/1 fps 600 × 800 Isère, France 

Zhang et al.(2021)  Total duration 7 floods & 1 windy period 

/183 hr/5 fps 

from 640 × 480  

up to 800 × 600 

Ain, France 

A fully automatic wood detection and characterization algorithm can greatly improve our ability to 89 

exploit the vast amounts of data on wood transport that can be collected from streamside video cameras. 90 

From a computer science perspective, however, automatic detection and characterization remain challenging 91 

issues. In computer vision, detecting objects within videos typically consists of separating the foreground 92 

(the object of interest) from the background (Roussillon et al., 2009; Cerutti et al., 2011, 2013). The basic 93 

hypothesis is that the background is relatively static and covers a large part of the image, allowing it to be 94 

matched between successive images. In the riverine environments, however, such an assumption is unrealistic 95 

because the background shows a flowing river, which can have rapidly fluctuating properties (Ali and 96 

Tougne, 2009). Floating objects are also partially submerged in water that has high suspended material con-97 

centrations during floods, making them only partially visible (e.g. a single piece of wood may be perceived 98 

as multiple objects) (MacVicar et al., 2009b). Detecting such an object in motion within a dynamic back-99 

ground is an area of active research (Ali et al., 2012, 2014; Lemaire et al., 2014; Piégay et al., 2014; Be-100 

nacchio et al., 2017). Accurate object detection typically relies on the assumption that objects of a single 101 

class (e.g., faces, bicycles, animals, etc.) have a distinctive aspect or set of features that can be used to dis-102 

tinguish between types of objects. With the help of a representative dataset, machine learning algorithms aim 103 

at defining the most salient visual characteristics of the class of interest (Lemaire et al., 2014; Viola and 104 

Jones, 2006). When the objects have a wide intra-class aspect range, a large amount of data can compensate 105 

by allowing the application of deep learning algorithms (Gordo et al., 2016; Liu et al., 2020). To our 106 

knowledge, such a database is not available in the case of floating wood. 107 

The camera installed on the Ain River in France has been operating more or less continuously for over 108 

10 years and vast improvements in data storage mean that this data can be saved indefinitely (Zhang et al., 109 

2021). The ability to process this image database to extract the wood fluxes allows us to integrate this 110 
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information over floods, seasons and years, which would allow us to significantly advance our understanding 111 

of the variability within and between floods over a long time period. An unsupervised method to identify 112 

floating wood in these videos by applying intensity, gradient and temporal masks was developed by Ali and 113 

Tougne (2009) and Ali et al. (2011). In this model, the objects were tracked through the frame to ensure that 114 

they followed the direction of flow. An analysis of about 35 minutes of the video showed that approximately 115 

90% of the wood pieces was detected (i.e., about 10% of detection were missed), which confirmed the po-116 

tential utility of this approach. An additional set of false detection related to surface wave conditions 117 

amounted to approximately 15% of the total detection. However, the developed algorithm was not always 118 

stable and was found to perform poorly when applied to a larger data set. 119 

The objectives of the presented work are to describe and validate a new algorithm and computer inter-120 

face for quantifying floating wood pieces in rivers. First, the algorithm procedure is introduced to show how 121 

wood pieces are detected and characterized. Second, the computer interface is presented to show how manual 122 

annotation is integrated with the algorithm to train the detection procedure.  Third, the procedure is validated 123 

using data from the Ain River. The validation period occurred over six days in January and December 2012 124 

where flow conditions ranged from ~400 𝑚3/𝑠, which is below bankfull discharge but above the wood 125 

transport threshold, to more than 800 𝑚3/𝑠.  126 

2. Monitoring site and camera settings 127 

The Ain River is a piedmont river with a drainage area of 3630 𝑘𝑚2 at the gauging station of Chazey-128 

sur-Ain, with a mean flow width of 65 m, a mean slope of 0.15%, and a mean annual discharge of 120 𝑚3/𝑠. 129 

The lower Ain River is characterized by an active channel shifting within a forested floodplain (Lassettre et 130 

al., 2008). An AXIS221 Day/NightTM camera with a resolution of 768 × 576 pixels was installed at this station 131 

to continuously record the water surface of the river at a maximum frequency of 5 fps (Fig 1). This camera 132 

replaced a lower resolution camera at the same location used by MacVicar and Piégay (2012).  The specific 133 

location of the camera is on the outer bank of a meander, on the side closest to the thalweg, at a height of 9.8 134 

m above the base flow elevation. The meander and a bridge pier upstream help to steer most of the floating 135 

wood so that it passes relatively close to the camera where it can be readily detected with a manual procedure 136 

(MacVicar and Piégay, 2012).  The flow discharge is available from the website (www.hydro.eaufrance.fr).  137 

The survey period examined on this river was during 2012 from which two flood events, (January 1-7 138 

http://www.hydro.eaufrance.fr/
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and December 15) were selected for annotation. A range of discharges from 400𝑚3/𝑠 to 800 𝑚3/𝑠 occurred 139 

during these periods (Fig 1.e), which is above a previously observed wood transport threshold of ~300 𝑚3/𝑠 140 

(MacVicar and Piégay, 2012). A summary of automated and manual detections for the six days is shown in 141 

Table 3. 142 
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 143 

Fig 1 Study site at Pont de Chazey: a) Location of the Ain River catchment in France and location of the gauging 

station, b) camera position and its view angle in yellow, c) overview of the gauging station with the camera instal-

lation point, and d) view of the River channel from the camera. e) Daily mean discharge series for monitoring 

period from 1st to 7th January and in 15th December. 
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3. Methodological procedure for automatic detection of wood 144 

The algorithm for wood detection comprises a number of steps that seek to locate objects moving 145 

through the field of view in a series of images and then identify the objects most likely to be wood. The 146 

algorithm used in this work modifies the approach described by Ali et al. (2011). The steps work from a pixel 147 

to image to video scale, with the context from the larger scale helping to assess whether the information at 148 

the smaller scale indicates the presence of floating wood or not. In a still image, a single pixel is characterized 149 

by its location within the image, its color and its intensity. Looking at its surrounding pixels, on an image 150 

scale, allows that information to be spatially contextualized. Meanwhile, the video data adds temporal con-151 

text, so that previous and future states of a given pixel can be used to assess its likeliness of representing 152 

floating wood. Since an image is only a discrete 2D representation of the real 3D world, details about the 153 

camera parameters such as optical image deformations, geographic situation, perspective deformations or 154 

behavior regarding luminosity can be used to infer what wood should look like and where it should occur. 155 

On a video scale, the method can embed expectations about how wood pieces should move through frames, 156 

how big they should be, and how lighting and weather conditions can evolve to change the expectations of 157 

wood appearance, location, and movement. The specific steps followed by the algorithm are shown in a 158 

simple flow chart (Fig 2.a). An example image with a wood piece in the middle of the frame is also shown 159 

for reference (Fig 2.b).  160 

 161 

Fig 2 a) Flowchart of the detection software and b) an example of frame on which these different flowchart steps 

are applied. 
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 Wood probability masks  162 

In the first step, each pixel was analyzed individually and independently. The static probability mask 163 

answers the question “is one pixel likely to belong to a wood-block, given its color and intensity?”. The 164 

algorithm assumes that the wood pixels can be identified by pixel light intensity (𝑖) following a Gaussian 165 

distribution (Fig 3.a). To set the algorithm parameters, pixelwise annotations of wood under all the observed 166 

lighting conditions were used to determine the mean (𝜇) and standard deviation (𝜎) of wood piece pixel 167 

intensity.  Applying this algorithm produces a static probability mask (Fig 3.b). From this figure, it is possible 168 

to identify the sectors where wood presence is likely, which includes the floating wood piece seen in Fig 2.b, 169 

but also includes standing vegetation in the lower part of the image and a shadowed area in the upper left. 170 

The advantage of this approach is that it is computationally very fast. However, misclassification is possible, 171 

particularly when light condition changes. 172 

 173 

Fig 3 Static probability mask, a) Gaussian distribution of light intensity range for a piece of wood, b) employment 

of probability mask on the sample frame. 

The second mask, called the dynamic probability mask, outlines each pixel’s recent history. The corre-174 

sponding question is: “is this pixel likely to represent wood now, given its past and present characteristics?”. 175 

Again, this step is based on what is most common in our database: it is assumed that a wood pixel is darker 176 

than a water pixel. Depending on lighting conditions like shadows cast on water or waves, this is not always 177 

true, i.e., water pixels can be as dark as wood pixels. However, pixels displaying successively water than 178 

wood tend to become immediately and significantly darker, while pixels displaying wood then water tend to 179 

become significantly lighter. Meanwhile, the intensity of pixels that keep on displaying wood tends to be 180 
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rather stable. Thus, we assign wood pixel probability according to an updated version of the function pro-181 

posed by Ali et al. (2011) (Fig 4.a) that takes 4 parameters. This function 𝐻 is an updating function, which 182 

produces a temporal probability mask from the inter-frame pixel value. On a probability map, a pixel value 183 

ranges from -1 (likely not wood) to 1 (likely wood). The temporal mask value for a pixel at location (𝑥, 𝑦) 184 

and at time 𝑡 is 𝑃𝑇(𝑥, 𝑦, 𝑡)= 𝐻(∆𝑡 , 𝐼) + 𝑃𝑇(𝑥, 𝑦, 𝑡 − 1). We apply a threshold to the output of 𝑃𝑇(𝑥, 𝑦, 𝑡) so 185 

that it always stays within the interval [0,1]. The idea is that a pixel that becomes suddenly and significantly 186 

darker is assumed to be likely wood. 𝐻(∆𝑡 , 𝐼) is such that under those conditions, it increases the pixel prob-187 

ability map value (parameters 𝜏 and 𝛽). A pixel that becomes lighter over time is unlikely to correspond to 188 

wood (parameter 𝛼). A pixel which intensity is stable and that was previously assumed to be wood shall still 189 

correspond to wood, while a pixel which intensity is stable and which probability to be wood was low is 190 

unlikely to represent wood now. A small decay factor (𝛿) was introduced in order to prevent divergence (in 191 

particular, it prevents noisy areas from being activated too frequently). 192 

 193 

Fig 4 Dynamic probability mask, a) updating function 𝑯(∆𝒕, 𝑰) adapted from Ali et al. (2011) and b) employment 

of probability mask on the sample frame. 

The final wood probability mask is created using a combination of both the static and dynamic proba-194 

bility masks. Wood objects thus had to have a combination of the correct pixel color and the expected tem-195 

poral behavior of water-wood-water color. The masks were combined assuming that both probabilities are 196 

independent, which allowed us to use the Bayesian probability rule in which the probability masks are simply 197 

multiplied, pixel by pixel, to obtain the final probability value for each pixel of every frame. 198 

 Wood object identification and characterization  199 

From the probability mask it is necessary to group pixels with high wood probabilities into objects and 200 
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then to separate these objects from the background to track them through the image frame. For this purpose, 201 

pixels were classified as high-or low-probability based on a threshold applied to the combined probability 202 

mask. Then, the high-probability pixels were grouped into connected components (that is, small, contiguous 203 

regions on the image) to define the objects. At this stage, a pixel size threshold was applied on the detected 204 

objects so that only the bigger objects were considered to represent woody objects on the water surface (Fig 205 

5.a the big white region at the middle). A number of smaller components were often related to non-wood 206 

objects, for example waves, reflections, or noise from the camera sensor or data compression.  207 

After the size thresholding step, movement direction and velocity were used as filters to distinguish real 208 

objects from false detections. The question here is, “is this object moving through the image frame the way 209 

we would expect floating wood to move?”. To do this, the spatial and temporal behavior of components were 210 

analyzed. First, to deal with partly immersed objects, we agglomerated multiple objects within frames as 211 

components of a single object if the distance separating them was less than a set threshold. Second, we asso-212 

ciated wood objects in successive frames together to determine if the motion of a given object was compatible 213 

with what is expected from driftwood. This can be achieved according to the dimensionless parameter 214 

“𝑃𝑇 ∆𝑇⁄ ”, which provides a general guideline for the distance an object pass between two consecutive frames 215 

(Zhang et al., 2021). Here 𝑃𝑇 (passing time) is the time that one piece of wood passes through the camera 216 

field of view and ∆𝑇 is the time between two consecutive frames and practically it is recommended to use 217 

videos with 𝑃𝑇 ∆𝑇⁄ > 5 in this software. In our case, tracking wood is rather difficult for classical object 218 

tracking approaches in computer vision: the background is very noisy, the acquisition frequency is low and 219 

the objects appearance can be highly variable due to temporarily submerged parts and highly variable 3D 220 

structures. Given these considerations it was necessary to use very basic rules for this step. The rules are 221 

therefore based on loose expectations, in terms of pixel intervals, on the motions of the objects, depending 222 

on the camera location and the river properties.  How many pixels is the object likely to move between image 223 

frames from left to right? How many pixels from top to bottom? How many appearances are required? How 224 

many frames can we miss because of temporary immersions? Using these rules, computational costs re-225 

mained low and the analysis could be run in real-time while also providing good performance. 226 
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 227 

Fig 5 a) Object extraction by (i) combining static and dynamic masks and (ii) applying a threshold to retain only 

high-probability pixels. b) Object tracking as a filter to deal with partly immersed objects and to distinguish be-

tween moving objects from static waves. 

The final step was to characterize each object, which at this point in the process are considered wood 228 

objects. Each appears several times in different frames and a procedure is needed to either pick a single 229 

representative occurrence or use a statistic tool to analyze multiple occurrences to estimate characterization 230 

data. In this step, all images containing the object are transformed from pixel to cartesian coordinates (as will 231 

be described in the next section) and the median length is calculated and used as the most representative state. 232 

This approach also matched the manual annotation procedure where we tended to pick the view where the 233 

object covers the largest area to make measurements. For the current paper, every object as characterized 234 

from the raw image based on its size and its location. It is worth to say detection was only possible during 235 

the daylight. 236 

 Image rectification 237 

Warping images according to a perspective transform results in an important loss of quality. On warped 238 

images, areas of the image farther from the camera provide little detail and are overall very blurry and non-239 

informative. Therefore, given the topology of our images, image rectification was necessary to calculate 240 

wood length, velocity, and volume from the saved pixel-based characterization of each object. To do so, the 241 

fisheye lens distortion was first corrected. A fisheye lens distortion is a characteristic of the lens that produces 242 

visual distortion intended to create a wide panoramic or hemispherical image. This effect was corrected by a 243 

standard Matlab process using the ComputerVisionToolboxTM (Release 2017b). 244 

Ground-based cameras have also an oblique angle of view, which means that pixel to meter 245 
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correspondence is variable and images need to be orthorectified to obtain estimates of object size and velocity 246 

in real terms (Muste et al., 2008). Orthorectification refers to the process by which image distortion is re-247 

moved and the image scale is adjusted to match the actual scale of the water surface. Translating from pixels 248 

to cartesian coordinates required us to assume that our camera follows the pinhole camera model and that the 249 

river can be assimilated to a plane of constant altitude. Under such conditions, it is possible to translate from 250 

pixel coordinates to a metric 2D space thanks to a perspective transform assuming a virtual pinhole camera 251 

on the image and estimating the position of the camera and its principal point (center of the view). An exam-252 

ple of orthorectification on a detected wood piece in a set of continuous frames and pixel coordinates (Fig 253 

6.a) is presented in Fig 6.b in metrics coordinates. The transform matrix is obtained with the help of at least 254 

4 non-colinear points (Fig 6.c blue GCPs (Ground Control Points) acquired with DGPS) from which we 255 

know both the relative 2D metric coordinates for a given water level (Fig 6.b blue points), and their corre-256 

sponding localization within the image(Fig 6.a blue points). To achieve better accuracy, it is advised to ac-257 

quire additional points and to solve the subsequent over-determined system with the help of a Least Square 258 

Regression (LSR). Robust estimators such as RANSAC  (Forsyth and Ponce, 2012) can be useful tools to 259 

prevent acquisition noise. After identifying the virtual camera position, the perspective transform matrix then 260 

becomes parameterized with the water level. Handling the variable water level was performed for each piece 261 

of wood, by measuring the relative height between the camera and the water level at the time of detection 262 

based on information recorded at the gauging station to which the camera was attached. The transformation 263 

matrix on the Ain River at the base flow elevation with the camera as the origin is shown in Fig 6.d.  Straight 264 

lines near the edges of the image appear curved because the fisheye distortion has been corrected on this 265 

image; conversely, a straight line, in reality, is presented without any curvature in the image. 266 
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 267 

Fig 6 Image rectification, process. The non-colinear GCPs localization within the image (a), and the relative 2D 

metric coordinates for a given water level (b). The different solid lines represent the successive detection in a set 

of consecutive frames. (c) 3D view of non-colinear GCPs in metric coordinates. (d) Rectifying transformation 

matrix on the Ain River at low flow level with camera at (0,0,0).  

4. User interface 268 

The software was developed to provide a single environment for the analysis of wood pieces on the 269 

surface of the water from streamside videos.  It consists of four distinct modules: Detection, Annotation, 270 

Training, and Performance. The home screen allows the operator to select any of these modules. From within 271 

a module, a menu bar on the left side of the interface allows operators to switch from one module to another. 272 

In the following sections, the operation of each of these modules are described. 273 
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 Detection module 274 

The detection module is the heart of the software. This module allows, from learned or manually spec-275 

ified parameters, the detecting of floating objects without human intervention (see Fig 7). This module con-276 

tains two main parts: (i) Detection tab, which allows operator to open, analyze and export the results from 277 

one video or a set of videos, and (ii) Configuration tab, which allows operator to load and save the software 278 

configuration by defining the parameters of wood detection (as described in Sect 3), saving and extracting 279 

the results, and displaying the interface.  280 

The detection process works as a video file player. The video file (or a stream url) is loaded, and to let 281 

the software read the video until the end. When required, the reader generates a visual output, showing how 282 

the masks behave by adding color and information to the video content (see Fig 7.a). A small textual display 283 

area shows the frequency of past detections. Meanwhile, the software generates a series of files summarizing 284 

the positive outputs of the detection. They consist in YAML and CSV files, as well as image files to show 285 

the output of different masks, the original frames, etc. A configuration tab is available, and provides many 286 

parameters organized by various categories. The main configuration tab is divided in seven parts. The first 287 

part is dedicated to general configurations such as frame skipped between each computation and defining the 288 

areas within the frame where wood is not expected (e.g., bridge pier or river bank). In the second and third 289 

parts, the parameters of the intensity and temporal masks are listed (see Sect 3.1). The default values are 𝜇 =290 

0.2 and 𝜎 = 0.08 for the intensity mask, and 𝜏 = 0.25 and 𝛽 = 0.45 for the temporal mask. In the fourth 291 

and fifth parts, object tracking and characterization parameters are defined respectively as described in Sect 292 

3.2. Detection time is defined in the sixth part using an optical character recognition technique. Finally, the 293 

parameters of the orthorectification (see Sect 3.3) are defined in the seventh part. The detection software can 294 

be used to process videos in batch (“script” tab), without generating a visual output to save computing re-295 

sources.  296 
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 297 

Fig 7 User interface of (a) detection module and (b) annotation module of automatic detection software. 

 Annotation module 298 

As mentioned in Sec. 2, the detection procedure requires the classification of pixels and objects into 299 

wood and non-wood categories. To train and validate the automatic detection process, a ground-truth or set 300 

of videos with manual annotations are required. Such annotations can be performed using different tech-301 

niques. For example, objects can be identified with the help of a bounding box or selection of endpoints, as 302 

in MacVicar and Piégay(2012); Ghaffarian et al. (2020) and Zhang et al. (2021). It is also possible to sample 303 

wood pixels without specifying instances or objects, or to sample pixels within annotated objects. Finally, 304 

objects and/or pixels can be annotated multiple times in a video sequence to increase the amount and detail 305 

of information in such an annotation database. This annotation process is time-consuming, so a trade-off must 306 

be made regarding the purpose of the annotated database and its required accuracy. Manual annotations are 307 

especially important when it is intended to be used within a training procedure, for which different lighting 308 

conditions, camera parameters, wood properties, and river hydraulics must be balanced. The rationale for 309 

manual annotations in the current study is presented in section 5.1. 310 

Given that the tool is meant to be as flexible as possible, the annotation module was developed to allow 311 

operator to perform annotation in different ways, depending on the purpose of the study. As shown in  Fig 312 

7.b, this module contains three main parts: (i) The column on the far left allows the operator to switch to 313 

another module (detection, learning, or performance), (ii) the central part consists of a video player with a 314 

configuration tab for extracting the data, and (iii) the right part where the tools to generate, create, visualize 315 

and save annotations are located. The tools allow rather quick coarse annotation, similar to what was done 316 

by MacVicar and Piégay (2012) and Boivin et al. (2015), while still allowing the possibility of finer pixel-317 
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scale annotation. The principle of this module is to associate annotations with the frames of a given video. 318 

Annotating a piece of wood is like drawing its shape, directly on a frame of the video, using the drawing 319 

tools provided by the module. It is possible to add a text description to each annotation. Each annotation is 320 

linked to a single frame of the video; however, a frame can contain several annotations. An annotated video, 321 

therefore, consists of a video file, as well as a collection of drawings, possibly with textual descriptions, 322 

associated with frames. It is possible to link annotations from one frame to another to signify that they belong 323 

to the same piece of wood. These data can be used to learn the movement of pieces of wood in the frame. 324 

 Performance module 325 

The performance module allows the operator to set rules to compare automatic and manual wood de-326 

tection results. This section also allows the operator to use a bare, pixel-based annotation or specify an or-327 

thorectification matrix to extract wood-size metrics directly from the output of an automatic detection.  328 

For this module an automatic detection file is first loaded and then the result of this detection is com-329 

pared with a manual annotation for that video, if the latter is available. Comparison results are then saved in 330 

the form of a summary file (*.csv format), allowing the operator to perform statistical analysis of the results 331 

or the performance of the detection algorithm. A manual annotation file can only be loaded if it is associated 332 

with an automatic detection result. 333 

The performance of the detected algorithm can be realized on several levels: 334 

• Object. The idea is to annotate one (or more) occurrences of a single object, and to operate the 335 

comparison at bounding box scale. A detected object may comprehend a whole sequence of occur-336 

rences, on several frames. It is validated when only a single occurrence happens to be related to an 337 

annotation. This is the minimum possible effort required to have an extensive overview of the 338 

object frequency on such an annotations database. This approach can however lead us to misjudge 339 

overall wrongly detected sequences as True Positives (see below), or vice-versa. 340 

• Occurrence. The idea is to annotate, even roughly, every occurrence of every woody object, so that 341 

the comparison can happen between bounding boxes rather than at pixel level. Every occurrence 342 

of any detected object can be validated individually. This option requires substantially more anno-343 

tation work than the object annotation. 344 

• Pixel. This case implies that every pixel of every occurrence of every object is annotated as wood. 345 
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It is very powerful in the event of evaluating the algorithm performances, and eventually refining 346 

its parameters with the help of some machine learning technique. However, it requires an extensive 347 

annotation work. 348 

5. Performance assessment 349 

 Assessment procedure 350 

To assess the performance of the automatic detection algorithm, we used a set of videos from the Ain 351 

River in France that were both comprehensively manually annotated and automatically analyzed. According 352 

to the data annotated by the observer, the performance of the software can be affected by different conditions: 353 

(i) wood piece length, (ii) distance from the camera, (iii, iv) wood X, Y position, (v) flow discharge, (vi) 354 

daylight, and (vii, viii) light and darkness of the frame (see Table 2). If for example software detects a 1 cm 355 

piece at a distance of 100 m from the camera, there is a high probability that this is a false positive detection. 356 

Therefore, knowing the performance of the software in different conditions, it is possible to develop some 357 

rules to enhance the quality of data.  The advantage of this approach is that all eight parameters introduced 358 

here are accessible easily in the detection process. In this section the monitoring details and annotation meth-359 

ods are introduced before the performance of the software is evaluated by comparing the manual annotations 360 

with the automatic detections. 361 

Table 2 Parameters used to assess the performance of the software 

Parameter Rational Metric 

Piece length Larger objects are easier to detect. 

Detecting an object in pixel coordinates. 

Transferring coordinates to metric. 

Calculating length, position, and distance. 

Distance Objects closer to the camera are easier to detect. 

X position Some particular areas of turbulent flow in the field of view 

affect detection (e.g., presence of a bridge pier). Y position 

Discharge 
Flow discharge affects water color, turbulence and the 

amount of wood. 

Recorded water elevation data and calibrated rat-

ing curve at hydrologic station. 

Time Luminosity of the frames varies with time of day. Time of day as indicated on top of each frame. 

Dark roughness Small spots with sharp contrast (either lighter or darker) af-

fect detection. 

% of pixels below an intensity threshold 

Light roughness % of pixels above an intensity threshold 

Ghaffarian et al. (2020), Zhang et al. (2021) show that the wood discharge (m3 per a time interval) can 362 

be measured from flux or frequency of wood objects (pieces number per a time interval).  An object level 363 

detection was thus sufficient for the larger goals of this research at the Ain River, which is to get a complete 364 
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budget of transported wood volume.  365 

A comparison of annotated with automatic object detections gives rise to three options: 366 

• True Positive (𝑇𝑃): an object is correctly detected and is recorded in both the automatic and annotated 367 

database 368 

• False Positive (𝐹𝑃): an object is incorrectly detected and is recorded only in the automatic database. 369 

• False Negative (𝐹𝑁): an object is not detected automatically and is only recorded in the annotated data-370 

base. 371 

Despite overlapping occurrences of wood objects in the two databases, the objects could vary in position 372 

and size between them.  For the current study we set the TP threshold as the case where either at least 50% 373 

of the automatic and annotated bounding box areas were common or at least 90% of an automatic bounding 374 

box area was part of its annotated counterpart. 375 

In addition to the raw counts of 𝑇𝑃𝑠, 𝐹𝑃𝑠, and 𝐹𝑁𝑠, we defined two measures of the performances of 376 

the application, where: 377 

• Recall Rate (𝑅𝑅) is the fraction of wood objects that are automatically detected ( 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)); and 378 

• Precision Rate (𝑃𝑅) is the fraction of detected objects that are wood (𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)). 379 

The higher the 𝑃𝑅 and the 𝑅𝑅 are, the more accurate our application is. However, both rates tend to 380 

interact. For example, it is possible to design an application that displays a very high 𝑅𝑅 (which means that 381 

it doesn’t miss many objects), but suffers from a very low 𝑃𝑅 (it outputs a high amount of inaccurate data), 382 

and vice-versa. Thus, we have to find a balance that is appropriate to each application. 383 

It was well known from previous manual efforts to characterize wood pieces and develop automated 384 

detection tools that it is easier to detect certain wood objects than others.  In general, the ability to detect the 385 

wood objects in the dynamic background of a river in flood was found to vary with the size of the wood 386 

object, its position in the image frame, the flow discharge, the amount and variability of the light, interference 387 

from other moving objects such as spiders, and other weather conditions such as wind and rain. In this section, 388 

we describe and define the metrics that were used to understand the variability of the detection algorithm 389 

performance.  390 
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In general, more light results in better detection. The light condition can be varied by variation of a set 391 

of factors such as weather conditions or amount of sediment which is carried by the river. In any case, the 392 

daylight is a factor that can change the light condition systematically, i.e. low light early in the morning (Fig 393 

8.a), bright light at midday with potential for direct light and shadows (Fig 8.b), and low light again in the 394 

evening, though different from the morning because the hue is more bluish (Fig 8.c).  This effect of the time 395 

of day was quantified simply by noting the time of the image, which was marked on the top of each frame of 396 

the recorded videos. 397 

 398 

Fig 8 Different light conditions during a) morning, b) noon and c) late afternoon, results in different frame rough-

ness’s and different detection performances. c) Wood position can highly affect the quality of detection. Pieces 

that are passing in front of the camera are detected much better than the pieces far from the camera. 

Detection is also strongly affected by the frame ‘roughness’, defined here as the variation in light over 399 

small distances in the frame. The change in light is important for the recognition of wood objects, but light 400 

roughness can also occur when there is a region with relatively light pixels due to something such as reflection 401 

of the surface of the water, and dark roughness can occur when there is a region with relatively dark pixels 402 

due to something such as shadows from the surface water waves. Detecting wood is typically more difficult 403 

around light roughness, which results in false negatives, while the color-map of a darker surface is often close 404 

to that of wood, which results in false positives. Both of these conditions can be seen in Fig 8 which is 405 

highlighted in Fig 8.a.  In general, the frame roughness increases in windy days or when there is an obstacle 406 

in the flow, such as downstream of the bridge pier in the current case. The light roughness was calculated for 407 

the current study by defining a light intensity threshold and calculating the ratio of pixels of higher value 408 

among the frame. The dark roughness is calculated in the same way, but in this case the pixels less than the 409 

threshold were counted. In this work thresholds equal to 0.9 and 0.4 were used for light and dark roughness, 410 

respectively. 411 

The oblique view of the camera means that the distance of the wood piece from the camera is another 412 

important factor in detection (Fig 8.c). The effect of distance on detection interacts with wood length, i.e. 413 
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shorter pieces of wood that are not detectable near the camera may not be detectable toward the far bank due 414 

to the pixel size variation (Ghaffarian et al., 2020). Moreover, if a piece of wood passes through a region 415 

with high roughness (Fig 8.c) or amongst bushes or trees (Fig 8.c right hand side) it is more likely that the 416 

software is unable to detect it. In our case, one day of video record could not be analyzed due to the presence 417 

of a spider that moved around in front of the camera.  418 

Flow discharge is another key variable in wood detection. Increasing flow discharge generally means 419 

that water levels are higher, which brings wood close to the near bank of the river closer to the camera.  This 420 

change can make small pieces of wood more visible, but it also reduces the angle between the camera position 421 

and pixels, which makes wood farther from the camera harder to see.  High flows also tend to increase surface 422 

waves and velocity, which can increase the roughness of the frame and lead to the wood being intermittently 423 

submerged or obscured. More suspended sediment is carried during high flows which can change water sur-424 

face color and increase the opacity of the water.  425 

 Detection performance 426 

Automatic detection software performance was evaluated based on the event based 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 427 

raw numbers and the precision (PR) and recall rates (RR) using the default parameters in the software. On 428 

average, manual annotation resulted in the detection of approximately twice as many wood pieces as the 429 

detection software (Table 3). Measured over all the events, RR = 29%, which indicates that many wood 430 

objects were not detected by the software, while among detected objects about 36% were false detections 431 

(𝑃𝑅 = 64%).  432 

Table 3 Summary of automated and manual detections 

Date 
discharge (𝑚

3
/𝑠) Water level (𝑚) Detection 

time (ℎ𝑟) 

Number Precision 

rate% 

Recall 

rate% 
Qmax Qmin hmax hmin annot. det. 

1/1/2012 718 633 -7.4 -7.8 7 to 17 2282 972 77 33 

2/1/2012 772 674 -7.2 -7.6 7 to 17 802 380 52 24 

4/1/2012 475 423 -8.4 -8.6 7 to 17 140 158 20 22 

6/1/2012 786 763 -7.2 -7.2 7 to 17 712 384 54 29 

7/1/2012 462 430 -8.5 -8.6 7 to 17 117 73 40 25 

15/12/2012 707 533 -7.5 -8.2 9 to 14 1296 503 72 28 

Total 786 423 -7.2 -8.6 55 ℎ𝑟 5349 2470 64 29 

To better understand model performance, we first tested the correlation between the factors identified 433 



22 

in the previous section by calculating each one of the eight parameters for all detections as one vector and 434 

then calculating the correlation between each pair of parameters (Table 4). As shown, the pairs of dark/light 435 

roughness, length/distance and discharge/time were highly correlated ( 𝐶𝑜𝑟𝑟. = 0.59, 0.46, 0.37  respec-436 

tively). For this reason, they were considered together to evaluate the performance of the algorithm within a 437 

given parameter space. The X/Y positions were also considered as a pair despite a relatively low correlation 438 

(0.15) because they represent the position of an object. As a note, the correlation between time and dark 439 

roughness is higher than discharge and time, but we used the discharge/time pair because discharge has a 440 

good correlation only with time.  As recommended by MacVicar and Piégay (2012), wood lengths were 441 

determined on a log base 2 transformation to better compare different classes of floating wood, similar to 442 

what is done for sediment sizes.   443 

Table 4 Correlation between parameters 
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Dark roughness 
 

0.59 -0.02 -0.04 0.04 0.1 0 0.57 

Light roughness 0.59 
 

-0.03 -0.03 0.03 0.09 -0.04 0.29 

Length -0.02 -0.03 
 

0.46 -0.45 -0.35 -0.02 -0.01 

Distance -0.04 -0.03 0.46 
 

-1 -0.16 0.14 -0.05 

X position 0.04 0.03 -0.45 -1 
 

0.15 -0.15 0.05 

Y position 0.1 0.09 -0.35 -0.16 0.15 
 

0 0.07 

Discharge 0 -0.04 -0.02 0.14 -0.15 0 
 

0.37 

Time 0.57 0.29 -0.01 -0.05 0.05 0.07 0.37 
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 444 

Fig 9 Correction matrices: a, b, c) wood lengths as a function of the distance from the camera, d, e, f) detection 

position, g, h, i) flow discharges during the daytime, and j, k, l) light and dark roughness’s. The first column shows 

number of all annotated pieces. Second and third columns show Precision and Recall rates of the software respec-

tively.  
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The presentation of model performance by pairs of correlated parameters clarifies certain strengths and 445 

weaknesses of the software (Fig 9). As expected, the results of Fig 9.b indicate that first, the software is not 446 

so precise for small pieces of wood (less than the order of 1 m), and second there is an obvious link between 447 

wood length and the distance from the camera so that by increasing the distance from the camera, the software 448 

is precise only for larger pieces of wood. Based on Fig 9.e, the software precision is usually better on the 449 

right side of the frame than the left side. This spatial gradient in precision is likely because the software 450 

requires an object to be detected in at least 5 continuous frames for it to be recognized as a piece of wood 451 

(see Sect 3.2 and Fig 5 for more information), which means that most of the true positives are on the right 452 

side of the frame where 5 continuous frames have already established. Also, the presence of the bridge pier 453 

(at X ≅ -30 to -40 m based on  Fig 9.e) in the upstream, produces lots of waves that decreases the precision 454 

of the software. Also, Fig 9.h shows that the software is much more precise during the morning when there 455 

is enough light rather than evening when the sunshine decreases. However, at low flow (𝑄 < 550 𝑚3/𝑠) the 456 

software precision decreases significantly. Finally, based on Fig 9.k, the software does not work well in two 457 

roughness conditions: (i) in a dark smooth flow (light roughness ≅ 0) when there are some dark patches 458 

(shadows) on the surface (dark roughness ≅ 0.3), and (ii) when both roughness increases and there are many 459 

noises in a frame (see Fig 8).   460 

To estimate the fraction of wood pieces that the software did not detect, the recall rate 𝑅𝑅 is calculated 461 

in different conditions and a linear interpolation was applied on 𝑅𝑅 as it is presented in Fig 9, third column. 462 

According to Fig 9.c, 𝑅𝑅 is fully dependent on piece length so that for the lengths at the order of 10 m (𝐿 =463 

𝑂(10)) 𝑅𝑅 is very good. By contrast when 𝐿 = 𝑂(0.1~1) the 𝑅𝑅 is too small. There is a transient region 464 

when 𝐿 = 𝑂(1) which is slightly depends on the distance from the camera. One can say, the wood length is 465 

the most crucial parameter that affects the recall rate independent of the operator annotation. Based on Fig 466 

9.f, the 𝑅𝑅 is much better on the left side of the frame than on the right side. It can be because the operator’s 467 

eye needs some time to detect a piece of wood, so most of the annotations are on the right side of the frame. 468 

Having a small number of detections on the left side of the frame results in the small value of 𝐹𝑁 which 469 

followed by high values of 𝑅𝑅 in this region (𝑅𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁). Therefore, while the position of detec-470 

tion plays a significant role in the recall rate, it is completely dependent on the operator bias. By contrast, 471 

frame roughness, daytime, and flow discharge do not play a significant role in the recall rate (Fig 9. i, l).  472 

 Post-processing 473 

This section is separated into two main parts. First, we show how to improve the precision of the 474 
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software by a posteriori distinction between 𝑇𝑃 and 𝐹𝑃. After removing 𝐹𝑃𝑠 from the detected pieces, in the 475 

second part, we test a process to predict the annotated data that the software missed i.e., false negatives. 476 

5.3.1. Precision improvement 477 

To improve the precision of the automatic wood detection we first ran the software to detect pieces and 478 

extracted the eight key parameters for each piece as described in section 5.1. Having the value of the eight 479 

key parameters (four pairs of parameters in Fig 9) for each piece of wood, we then estimated the total preci-480 

sion of each object, as the average of four precisions from each sub-figure of Fig 9. In the current study the 481 

detected piece was considered to be a true positive if the total precision exceeded 50%. To check the validity 482 

of this process, we used cross-validation by leaving one day out, calculating the precision matrices based on 483 

five other days, and applying the calculated 𝑃𝑅 matrices on the day that was left out. As is seen in Table 5, 484 

this post-processing step increases the precision of the software to 85%, an enhancement of 21%. The degree 485 

to which the precision is improved is dependent on the day left out for cross-validation.  If, for example, the 486 

day left out had similar conditions to the mean, the 𝑃𝑅 matrices were well trained and were able to distinguish 487 

between 𝑇𝑃 and 𝐹𝑃 (e.g., 2nd Jan with 42% enhancement). On the other hand, if we have an event with new 488 

characteristics (e.g., very dark and cloudy weather or at discharges different from what we have in our data-489 

base), the PR matrices were relatively blind and offered little improvement (e.g., 15th Dec with 10% enhance-490 

ment). 491 



26 

Table 5 Precision rate (PR) before and after post-processing 
 1 Jan 2 Jan 4 Jan 6 Jan 7 Jan 15 Dec Total 

R
aw

 d
at

a 

𝑇𝑃 745 196 31 206 29 363 1570 

𝐹𝑃 227 184 127 178 44 140 900 

𝐹𝑁 1537 606 109 506 88 933 3779 

𝑃𝑅% 77 52 20 54 40 72 64 

𝑅𝑅% 33 24 22 29 25 28 29 

P
o

st
-p

ro
c.

 

𝑇𝑃 658 150 30 178 22 315 1353 

𝐹𝑃 64 10 60 39 11 68 252 

𝐹𝑁𝑝𝑝
1 87 46 1 28 7 48 217 

𝑃𝑅%  91 94 33 82 67 82 85 

𝑅𝑅𝑝𝑝
2% 88 77 97 86 76 87 86 

𝑃𝑅 improvement % 14 42 13 28 27 10 21 

1 𝐹𝑁𝑝𝑝denotes the false estimations of the precision matrices which results in missing some 𝑇𝑃. 492 

2 𝑅𝑅𝑝𝑝denotes the recall rate of post processing which corresponds to 𝐹𝑁𝑝𝑝. 493 

One difficulty with the post-processing reclassification of wood piece is that this new step can also 494 

introduce error by classifying real objects as false positives (making them a false negative) or vice-versa.  495 

Using the training data, we were able to quantify this error and categorized them as post-processed false 496 

negatives (𝑭𝑵𝒑𝒑) with an associated recall rate (𝑹𝑹𝒑𝒑).  As shown in Table 5, the precision enhancement 497 

process lost only around 14% of 𝑇𝑃𝑠 (𝑅𝑅𝑝𝑝= 86%). 498 

5.3.2. Estimating missed wood pieces based on the recall rate 499 

The automated software detected 29% of the number of manually annotated wood pieces (Table 5).  In 500 

the previous section, methods were described that enhance the precision of the software by ensuring that 501 

these automatically detected pieces are 𝑇𝑃𝑠. The larger question, however, is how to estimate the missing 502 

pieces.  Based on Fig 9, both PR and RR are much higher for very large objects in most areas of the image 503 

and in most lighting conditions.  However, the smaller pieces were found to be harder to detect, making the 504 

wood length the most important factor governing the recall rate.  Based on this idea, the final step in the post 505 

processing is to estimate smaller wood pieces that were not detected by the software using the length distri-506 

bution extracted by the annotations. 507 

The estimation is based on the concept of a threshold piece length.  Above the threshold, wood pieces 508 

are likely to be accurately counted using the automatic software.  Below the threshold, on the other hand, the 509 
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automatic detection software is likely to deviate from the manual counts. The length distribution obtained 510 

from the manual annotations (𝑇𝑃 + 𝐹𝑁) (Fig 10.a) was assumed to be the most realistic distribution that can 511 

be estimated from the video monitoring technique, and it was therefore used as the benchmark. Also shown 512 

are the raw results of the automatic detection software (𝑇𝑃 + 𝐹𝑃) and the raw results with the false positives 513 

removed (𝑇𝑃). At this stage, the difference between the 𝑇𝑃 and the 𝑇𝑃 + 𝐹𝑁 lines are the false negatives 514 

(𝐹𝑁) that the software has missed. Comparison between the two lines shows that they tend to deviate between 515 

2-3 m.  The correlation coefficient between them was calculated for thresholds varying from 1 cm to 15 m 516 

length and 2.5 m length was defined as the optimum threshold length for recall estimation (Fig 10.b).  517 

In the next step we wanted to estimate the pieces less than 2.5 m that the software missed. During the 518 

automatic detection process, when the software detects a piece of wood, according to Fig 9 (third column), 519 

the 𝑅𝑅 can be calculated for this piece (same protocol as precision enhancement in Sect 5.3.1). Therefore, if 520 

for example the average recall rate for a piece of wood is 50%, there is likely to be another piece in the same 521 

condition (defined by the eight different parameters described in Table 2) that the software could not detect. 522 

To correct for these missed pieces, additional virtual pieces were added to the database. Fig 10.a, shows the 523 

length distribution after adding these virtual pieces to the database (blue line, total of 5841 pieces).  The result 524 

shows a good agreement between this and the operator annotations (green line, total of 6249 pieces), which 525 

results in a relative error of only 6.5% in the total number of wood pieces. 526 

 527 

Fig 10 a) Steps to post-process software automatic detections: (i) raw detections (𝑻𝑷 + 𝑭𝑷 red line), (ii) Only true 

positives using the 𝑷𝑹 improvement process (𝑻𝑷 blue dashed line), and (iii) modeling false negatives (blue line). 

Operator annotation (green dotted line is used as a benchmark). b) The correlation coefficient between operator 

annotation and modeled 𝑻𝑷 to find an optimum threshold length for 𝑹𝑹 improvement. 

On the Ain River by separating videos to 15 min segments, MacVicar and Piégay, (2012) and Zhang et 528 
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al. (2021) proposed the following equation for calculating wood discharge from the wood flux: 529 

𝑄𝑤 = 0.0086𝐹1.24     (1) 530 

where, Qw is the wood discharge (𝑚3/15𝑚𝑖𝑛) and F is the wood flux (piece number/15 min). Using 531 

this equation, the total volume of wood was calculated based on three different conditions: (i) operator anno-532 

tation (𝑇𝑃 + 𝐹𝑁), (ii) raw data of the detection software (𝑇𝑃 + 𝐹𝑃) and (iii) post-processed data of the de-533 

tection software (𝑇𝑃𝑚𝑜𝑑𝑒𝑙𝑒𝑑). Fig 11 shows a comparison of the total volume of wood from the manual an-534 

notations in comparison with the raw and post-processed annotations from the detection software. As shown, 535 

the raw detection results underestimate wood volume by almost one order of magnitude.  After processing, 536 

the results show some scatter but are distributed around the 1:1 slope, which indicates that they follow the 537 

manual annotation results.  There is a slight difference for days with lower fluxes (Jan 4 and 7), where the 538 

post-processing tends to over-estimate wood volumes, but in terms of an overall wood balance the volume 539 

of wood on these days are negligible. In total, 125 𝑚3  wood was annotated by the operator and the software 540 

automatically detected only 46 𝑚3, some of which represent false positives. After post-processing, 142 𝑚3 541 

wood was estimated to have passed in the analyzed videos for a total error of 13.5%.  542 
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 543 

Fig 11 Comparison of the total volume of wood between operator annotation as the benchmark and raw data (red 

circles) and post-processed data (blue triangles), compared with a 1:1 line. 

6. Conclusion 544 

Here, we present new software for the automatic detection of wood pieces on the river surface. After 545 

presenting the corresponding algorithm and the user interface, an example of automatic detection was pre-546 

sented. We annotated 6 days of flood events that were used to first check the performance of the software 547 

and then develop post-processing steps to both remove possibly erroneous data and model data that were 548 

possibly missed by the software. To evaluate the performance of the software, we used precision and recall 549 

rates. The automatic detection software detects around one third of all annotated wood pieces with 64% 550 

precision rate. Then using the operator annotations as the ultimate goal, the post-processing part was applied 551 

to extrapolate data extracted from detection results, aiming to come as close as possible to the annotations. It 552 

is shown that using four pair of key factors: (i) light and dark roughness of the frame, (ii) daytime and flow 553 

discharge, (iii) X, Y coordinates of detection position, and (iv) distance of detection as a function of piece 554 
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length, it is possible to detect false positives and increase the software precision to 86%. Using the concept 555 

of a threshold piece length for detection it is shown that it is then possible to model the missed wood pieces 556 

(false negatives).  In the presented results, the final recall rate results in a relative error of only 6.5% for piece 557 

number and 13.5% for wood volume. It should be noted that the software cannot distinguish between a single 558 

piece of wood or the pieces in a cluster of wood in the congested wood fluxes. 559 

This work shows the feasibility of the detection software to detect wood pieces automatically. Automa-560 

tion will significantly reduce the time and expertise required for manual annotation, making video monitoring 561 

a powerful tool for researchers and river managers to quantify the amount of wood in rivers. Therefore, the 562 

developed algorithm can be used to characterize wood pieces for a large image database at the study site. The 563 

results from the current study were all taken from a single site in which a large database of manual annotations 564 

was available for developing the correction procedures.  In future applications it is unlikely that such a large 565 

database would be available.  In such cases it is recommended to first ensure that the images collected are of 566 

high quality by following the recommendations in (Ghaffarian et al., 2020; Zhang et al., 2021). As data are 567 

collected, the automatic algorithm can be run to identify periods of high wood flux.  Manual review of other 568 

high-water periods is also recommended to assess whether lighting conditions were preventing the detection 569 

of wood.  When suitable flood periods with floating wood are identified, manual annotations should be done 570 

to create the correction matrices. Future applications of this approach at a wide range of sites should lead to 571 

new insights on the variability of wood pieces at the reach and watershed scales in world rivers.  572 

Finally, we think of this work as a first step towards more autonomous systems to detect and quantify 573 

wood in rivers. Applying the post-process steps in real time is a realistic next step, because after we extract 574 

the correction matrices, which is a time-consuming process, the calculation time for PR, RR enhancement is 575 

negligible (less than 0.001s/piece). Moreover, over recent years, automatic visual recognition tasks have pro-576 

gressed very importantly with the advances in machine learning techniques and especially Deep Convolu-577 

tional Neural Networks (DCNNs) that are now able to answer complex problems in real time. However, our 578 

context is very challenging for this class of solution, since wood objects have a highly variable shape, and 579 

they are feature in very noisy environments and a high variety of lighting conditions. Most training techniques 580 

are supervised, meaning that to train an effective DCNN to solve this problem, we would require an extensive 581 

annotated dataset. The solution presented in this work can be used as a first step towards this solution. It can 582 

be used to help human operators to quickly build annotated dataset, by correcting its output rather than an-583 

notating from scratch.  584 
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