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Abstract. We describe the probabilistic physics of rarefied particle motions and deposition on rough hillslope
surfaces. The particle energy balance involves gravitational heating with conversion of potential to kinetic energy,
frictional cooling associated with particle-surface collisions, and an apparent heating associated with preferential
deposition of low energy particles. Deposition probabilistically occurs with frictional cooling in relation to the
distribution of particle energy states whose spatial evolution is described by a Fokker-Planck equation. The
Kirkby number Ki — defined as the ratio of gravitational heating to frictional cooling — sets the basic deposition
behavior and the form of the probability distribution fr(r) of particle travel distances r, a generalized Pareto
distribution. The shape and scale parameters of the distribution are well-defined mechanically. For isothermal
conditions where frictional cooling matches gravitational heating plus the apparent heating due to deposition, the
distribution fr(r) is exponential. With non-isothermal conditions and small Ki this distribution is bounded and
represents rapid thermal collapse. With increasing Ki the distribution fr(r) becomes heavy-tailed and represents
net particle heating. It may possess a finite mean and finite variance, or the mean and variance may be undefined
with sufficiently large Ki . The formulation provides key elements of the entrainment forms of the particle flux
and the Exner equation, and it clarifies the mechanisms of particle-size sorting on large talus and scree slopes.
Namely, with conversion of translational to rotational kinetic energy, large spinning particles are less likely to be
stopped by collisional friction than are small or angular particles for the same surface roughness.

1 Introduction

Sediment transport on steepland hillslopes involves a great
range of scales of particle motions. These vary from rela-
tively small motions that collectively produce the slow en
masse motion of disturbance driven creep (Culling, 1963;5

Roering et al., 1999, 2002; Gabet, 2000; Anderson, 2002;
Gabet et al., 2003; Furbish, 2003; Roering, 2004; Furbish et
al., 2009b, 2018a) in concert with athermal granular creep
(Houssais and Jerolmack, 2017; BenDror and Goren, 2018;
Ferdowsi et al., 2018; Deshpande et al., 2020) to the long-10

distance and relatively fast en masse motions of landsliding
and the rarefied motions associated with rockfall and ravel
(Kirkby and Statham, 1975; Statham, 1976; Dorren, 2003;
Gabet, 2003; Roering and Gerber, 2005; Luckman, 2013;

Tesson et al., 2020). Particularly in relation to long-distance15

motions, there is a growing interest in non-continuum for-
mulations of sediment transport on hillslopes that are aimed
at accommodating nonlocal transport, where the particle flux
at a hillslope position x depends on upslope conditions that
influence the entrainment and motions of particles reach-20

ing x. These formulations include explicit particle-based de-
scriptions (Tucker and Bradley, 2010) and probabilistic de-
scriptions (Foufoula-Georgiou et al., 2009; Furbish and Haff,
2010; Furbish and Roering, 2013; Doane, 2018; Doane et
al., 2018, 2019) of sediment motions. Importantly, these de-25

scriptions do not hinge on satisfying a continuum-like be-
havior as assumed in most previous treatments of transport
on hillslopes. Nonetheless, to date these particle-based and
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probabilistic descriptions of transport are mostly kinematic
in form, lacking a formal mechanical underpinning.30

Herein we focus on rarefied motions of particles which,
once entrained, travel downslope over the land surface. This
notably includes the dry ravel of particles down hillslopes
following disturbances (Roering and Gerber, 2005; Doane,
2018; Doane et al., 2019; Roth et al., 2020) or upon their re- 35

lease from obstacles (e.g., vegetation) following failure of the
obstacles (Lamb et al., 2011, 2013; DiBiase and Lamb, 2013;
DiBiase et al., 2017; Doane et al., 2018, 2019), and the mo-
tions of rock fall material over the surfaces of talus and scree
slopes (Gerber and Scheidegger, 1974; Kirkby and Statham, 40

1975; Statham, 1976; Dorren 2003; Luckman, 2013) (Fig-
ure 1). By “rarefied motions” we are referring to the situa-

Figure 1. Image of talus slope at the base of cliffs of the Bandelier
Tuff showing downslope sorting of particle sizes, with the largest
particles preferentially accumulating near the base of the slope. The
largest boulders in the foreground are about 1 m in diameter. As de-
scribed in the text, we suspect that with conversion of translational
to rotational kinetic energy, large spinning particles are less likely
to be stopped by collisional friction than are small or angular parti-
cles for the same surface roughness, thus contributing to the sorting
in this image. Image location is at the confluence of the Rito de los
Frijoles river canyon with the Rio Grande River canyon on the east-
ern boundary of the Bandelier National Monument, New Mexico,
USA.

tion in which moving particles may frequently interact with

the surface, but rarely interact with each other. Thus, rarefied
particle motions are decidedly distinct from granular flows. 45

Indeed, processes such as rock fall and the subsequent mo-
tions of the rock material over talus or scree slopes represent
the archetypal case of rarefied particle motions. Nonetheless,
the ideas outlined below pertaining to the motions of individ-
ual particles may be entirely relevant to conditions that are 50

not strictly rarefied, but where during the collective motions
of many particles (e.g., during ravel) the effects of particle-
surface interactions dominate over effects of particle-particle
interactions in determining the behavior of the particles —
akin to granular shear flows at high Knudsen number (Risso 55

and Cordero, 2002; Kumaran, 2005, 2006). To be clear, the
Knudsen number Kn is conventionally defined as the ratio of
the mean free path between particle-particle collisions and
a characteristic length, for example, a system dimension, a
gradient length scale, or a numerical resolution scale; also 60

see Section 2 in Furbish et al. (2018b). (For an ordinary gas,
the onset of rarefied conditions occurs when Kn & 0.01.) We
note that laboratory experiments (Kirkby and Statham, 1975;
Gabet and Mendoza, 2012; Furbish et al., 2021a) and field-
based experiments (DiBiase et al., 2017; Roth et al., 2020)
designed to mimic particle motions and travel distances on
hillslopes effectively focus on rarefied conditions. Indeed,5

these conditions represent one of the most fundamental of
Earth surface processes imaginable — how individual sedi-
ment particles that are not transported by a fluid move down
a rough inclined surface.

The purpose of this paper is to provide a probabilistic de-10

scription of the physics of rarefied particle motions and dis-
entrainment. This involves threading together elements of
statistical mechanics, concepts from granular gas theory, par-
ticle collision mechanics, and probability distribution the-
ory. To motivate the formalism we start in Section 2 with15

a probabilistic definition of the particle disentrainment rate
and show its relation to the entrainment forms of the flux and
the Exner equation, following previous presentations (Fur-
bish and Haff, 2010; Furbish and Roering, 2013). This high-
lights how the disentrainment rate determines the probability 20

distribution of travel distances, and thus connects descrip-
tions of the flux and mass conservation with the physics of
particle motions. In Section 3 we formulate disentrainment
in terms of particle energetics, where the particles are treated
as a rarefied granular gas. Ensemble averaged motions are 25

described in terms of a balance between gravitational heat-
ing and frictional cooling, wherein the latter leads to deposi-
tion. We neglect entrainment. (Our choice of terminology is
based on that of granular physics as outlined in Appendix A.)
The analysis in Section 4 illustrates the effects of collisional 30

friction in determining the basic form of the distribution of
travel distances, a generalized Pareto distribution. Depend-
ing on the balance between heating and cooling, this distri-
bution transitions from a bounded form representing rapid
thermal collapse to a heavy-tailed form representing net par- 35

ticle heating. In Section 5 we compare the formulation with
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previous descriptions of disentrainment, showing both simi-
larities and dissimilarities with these descriptions. These in-
clude the formulation of Kirkby and Statham (1975), which
involves a particle energy balance assuming a Coulomb-like 40

friction behavior, and the formulation of Gabet and Men-
doza (2012), which starts with a particle momentum balance
involving gravity, Coulomb friction and collisional friction.
We then consider elements of the probabilistic formulation
presented by Furbish and Haff (2010), Furbish and Roering 45

(2013) and Doane et al. (2018), which assumes a fixed disen-
trainment rate determined by the local surface slope for given
surface roughness.

We emphasize that this initial phase of our work on rar-
efied particle motions is aimed at clarifying how particle dis- 50

entrainment works. With this in place we will be positioned
to consider effects of rarefied transport over time scales span-
ning many transport events, including ensemble-averaged
particle fluxes and changes in land-surface elevation as de-
scribed by formulations of nonlocal transport. As a step in 55

this effort we show in the second companion paper (Furbish
et al., 2021a) that the theory in this first paper is entirely con-
sistent with data from laboratory and field-based experiments
involving measurements of particle travel distances on rough
surfaces. These include data reported by Kirkby and Statham 60

(1975), Gabet and Mendoza (2012), DiBiase et al. (2017) and
Roth et al. (2020), and new travel distance data from labora-
tory experiments supplemented with high-speed imaging and
audio recordings that highlight effects of particle-surface col-
lisions. Outstanding questions concern how particle size and 65

shape in concert with surface roughness influence the extrac-
tion of particle energy and the likelihood of deposition.

In the third companion paper (Furbish et al., 2021b) we
show that the generalized Pareto distribution in this problem
is a maximum entropy distribution (Jaynes, 1957a, 1957b) 70

constrained by a fixed energetic “cost” — the total cumula-
tive energy extracted by collisional friction per unit kinetic
energy available during particle motions. That is, among all
possible accessible microstates — the many different ways
to arrange a great number of particles into distance states5

where each arrangement satisfies the same fixed total ener-
getic cost — the generalized Pareto distribution represents
the most probable arrangement. Because this idea applies
equally to the accessible microstates associated with net
cooling, isothermal conditions and net heating, the fixed en-10

ergetic cost provides a unifying interpretation for these dis-
tinctive behaviors, including the abrupt transition in the form
of the generalized Pareto distribution in crossing isothermal
conditions. The analysis therefore represents a novel general-
ization of an energy-based constraint in using the maximum15

entropy method to infer non-exponential distributions of par-
ticle motions.

In the fourth companion paper (Furbish et al., 2021c)
we step back and examine the philosophical underpinning
of the statistical mechanics framework for describing sedi-20

ment particle motions and transport. Specifically, the anal-

yses presented in the first three companion papers provide
an ideal case study for highlighting three key elements of
this framework: the merits of probabilistic versus determinis-
tic descriptions of sediment motions; the implications of rar-25

efied versus continuum transport conditions; and the conse-
quences of increasing uncertainty in descriptions of sediment
motions and transport that accompany increasing length and
time scales. We use the analyses to illustrate the mecha-
nistic yet probabilistic nature of the approach, highlighting30

the idea that the endeavor is not simply about adopting the-
ory or methods of statistical mechanics “off the shelf,” but
rather involves appealing to the style of thinking of statis-
tical mechanics while tailoring the analysis to the process
and scale of interest. Under rarefied transport conditions, de-35

scriptions of the particle flux and its divergence pertain to
ensemble conditions involving a distribution of possible out-
comes, each realization being compatible with the control-
ling factors. When these factors change over time, individual
outcomes reflect a legacy of earlier conditions that depends40

on the rate of change in the controlling factors relative to
the intermittency of particle motions. The implication is that
landform configurations and associated particle fluxes reflect
an inherent variability (“weather”) that is just as important as
the expected (“climate”) conditions in characterizing system45

behavior.

2 Disentrainment rate

2.1 Continuous form

Following the presentations of Furbish and Haff (2010) and
Furbish and Roering (2013), let fr(r;x) denote the proba-50

bility density function of particle travel distances r whose
motions begin at position x. By definition the cumulative dis-
tribution function is

Fr(r;x) =

r∫
0

fr(r
′;x)dr′ , (1)

where the prime denotes a variable of integration. In turn, 55

the exceedance probability, also referred to as the survival
function, is

Rr(r;x) = 1−Fr(r;x) =

∞∫
r

fr(r
′;x)dr′ . (2)

With these definitions in place we now define the spatial dis-
entrainment rate as 60

Pr(r;x) =
fr(r;x)

1−Fr(r;x)
=
fr(r;x)

Rr(r;x)
, (3)

which is a conditional probability per unit distance. Namely,
upon multiplying both sides of Eq. (3) by dr, then
Pr(r;x)dr = fr(r;x)dr/Rr(r;x) is interpreted as the prob-
ability that a particle will become disentrained within the 65
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small interval r to r+ dr, given that it “survived” travel to
the distance r. The disentrainment rate Pr(r;x) also may be
interpreted as an inhomogeneous Poisson rate (Feller, 1949).
Now, using the fact that fr(r;x) =−dRr(r;x)/dr, one may
deduce from Eq. (3) that the probability density fr(r;x) is 70

given by

fr(r;x) = Pr(r;x)e−
∫ r
0
Pr(r

′;x)dr′ . (4)

Thus, according to Eq. (4), the disentrainment rate Pr(r;x)
completely determines the probability density fr(r;x) of
travel distances r. 75

Assuming particle motions occur only in the positive x di-
rection, the entrainment form of the volumetric particle flux
is

q(x) =

x∫
−∞

Es(x
′)Rr(x−x′;x′)dx′ , (5)

whereEs(x) denotes the volumetric entrainment rate at posi- 80

tion x. In turn, letting ζ(x,t) denote the local land-surface el-
evation, the entrainment form of the Exner equation is (Tsu-
jimoto, 1978; Nakagawa and Tsujiomoto, 1980)

cb
∂ζ(x,t)

∂t
=−Es(x) +

x∫
−∞

Es(x
′)fr(x−x′;x′)dx′ , (6)

where cb = 1−φs is the particle volumetric concentration 85

of the surface with porosity φs. These probabilistic formu-
lations of the flux and the Exner equation have three lovely
properties. They are mass conserving, they are nonlocal in
form, and they are scale independent in that no length con-
straints are imposed on the density fr(r;x) (Furbish and 90

Haff, 2010; Furbish and Roering, 2013). They illustrate that
the probability density fr(r;x) of particle travel distances
r and its related survival function Rr(r;x) form the center-
piece of describing mass conservation and the particle flux.
In turn, the significance of the disentrainment rate Pr(r;x)5

becomes clear. This rate connects Eq. (5) and Eq. (6) to the
physics of particle motions on a hillslope. That is, this rate,
together with the entrainment rate Es(x), represent the ele-
ments in the formulation that can be elucidated by physics.

To date, previous formulations of the disentrainment rate10

Pr(r;x) have envisioned a friction dominated behavior in
which the land-surface slope S(x) = |∂ζ(x)/∂x| has a pri-
mary role (Furbish and Haff, 2010; Furbish and Roering,
2013; Doane, 2018; Doane et al., 2018a; Section 5.3). The
disentrainment rate is specified as a function of the land-15

surface slope at the position of entrainment, with the idea
that the slope changes over a distance much larger than the
average particle travel distance. That is, Pr(r;x) is assumed
to be fixed and determined locally by the slope S(x) at po-
sition x such that the distribution of travel distances of par-20

ticles entrained at x is exponential with mean µr[S(x)]. As

the land-surface slope S varies with increasing downslope
distance x, the mean µr[S(x)] changes. The disentrainment
rate is qualitatively consistent with limiting cases, namely,
it yields a fixed small average travel distance at zero slope,25

and it approaches zero in the limit of a steep critical slope
beyond which disentrainment does not occur. However, the
mechanical elements of the disentrainment rate Pr(r; ) are
otherwise not explicitly specified. We also note that Kirkby
and Statham (1975) first pointed out the relation between30

the distribution of travel distances and the disentrainment
rate function. These authors defined a posteriori the disen-
trainment rate from an assumed exponential distribution of
travel distances whose mean value is expressed in terms of a
Coulomb-like description of particle friction (Section 5.1).35

2.2 Discrete form

It is valuable to recast the ideas of disentrainment above in
discrete form. The motivation is this. Instead of trying to
formulate a continuous disentrainment rate function that is
generally applicable to the entirety of a hillslope, we instead40

break it into discrete spatial intervals, where certain physics
may be more or less important in some intervals than in oth-
ers. This gets us closer to the physical ingredients of disen-
trainment that are occurring at different locations on a hills-
lope, where the mechanical behavior at a location transitions45

to another behavior in the downslope direction. We may then
combine the intervals together as a whole.

Let k = 1,2,3, ... denote a set of discrete intervals of
length dr. Let p denote the probability that a particle is dis-
entrained within the first interval (k = 1). If N denotes a50

great number of particles, then the number of particles n(1)
disentrained within the first interval is n(1) =Np. Because
q = 1− p is the probability that a particle is not disentrained
within the first interval, then the number of particles moving
beyond the first interval is Nq =N(1− p). That is, this is 55

the number of particles that “survived” without being dis-
entrained within the first interval. In turn, of the number
of particles that survived, the number that is disentrained
within the second interval is n(2) =N(1− p)p. More gen-
erally, n(k) =N(1− p)k−1p. Dividing this by N then gives 60

the probability mass function

fk(k) = (1− p)k−1p= qk−1p, (7)

which defines the well-known geometric distribution with
mean µk = 1/p. Note that the probability p is taken here as
being fixed. That is, in this formulation, the probability that 65

a particle survives the kth interval is (1− p)k−1, so the dis-
entrainment probability is constant, namely, Pk(k) = p.

The geometric distribution, Eq. (7), is the discrete counter-
part of the exponential distribution. Here we relate the two.
The cumulative distribution function of Eq. (7) is Fk(k) = 70

1−(1−p)k. We may thus write Fr(r = kdr) = Fk(k) = 1−
qk. The quantity qk is a memoryless geometric series, and be-
cause q ≤ 1 we may write q = e−dr/µr , where µr is a charac-
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teristic distance. In turn, then, Fr(r) = 1−(e−dr/µr )k = 1−
e−r/µr . Finally, fr(r) = dFr(r)/dr = (1/µr)e

−r/µr , where 75

it becomes clear that µr is the mean of the exponential dis-
tribution, analogous to µk for the discrete counterpart. Also
note that the disentrainment rate Pr(r) = 1/µr is fixed. Be-
low we show that the exponential and geometrical distri-
butions represent isothermal conditions, where gravitational 80

heating of particles is balanced by frictional cooling.
In contrast, suppose that the probability of disentrainment

p varies from one interval k to another. Here we general-
ize the ideas above. Let pk denote the probability that a par-
ticle, having not been disentrained before the kth interval, 85

then becomes disentrained within this interval. Similar to
the formulation above, the number of particles n(1) within
the first interval is n(1) =Np1 and the number moving be-
yond the first interval is N(1− p1). In turn the number of
particles disentrained within the second interval is n(2) = 90

N(1− p1)p2, the number disentrained within the third inter-
val is N(1− p1)(1− p2)p3, and so on. In general, n(k) =
N(1−p1)(1−p2)(1−p3)...(1−pk−1)pk. Dividing this ex-
pression by N then gives

fk(k) = pk

k−1∏
i=1

(1− pi) . (8) 95

Note that if pk = p is fixed, then Eq. (8) reduces to Eq. (7).
This generalization has a lovely property. Namely, by def-

inition it conserves probability, and it therefore is mass con-
serving. That is, the sum of fk(k) over all possible k is equal
to unity, regardless of how pk might vary with k. As alluded 100

to above, the physics of each pk may be treated differently if
desired. Moreover, like its continuous counterpart presented
above, this discrete formulation of mass conservation is non-
local and scale independent.

2.3 Brief preview

Our next objective is to illustrate the mechanical elements
of disentrainment, which we then use to elaborate the con-
tinuous and discrete cases described in the preceding sec-
tions. The main ingredients of the theoretical analysis involve5

the particle mass balance and the particle kinetic energy bal-
ance. Let N denote a great number of particles whose mo-
tions started at position x= 0 such that the particle travel
distance r→ x. We then show that the particle mass bal-
ance is given by dN(x)/dx∼−N/Ea, where Ea is the en-10

semble averaged kinetic energy of moving particles. In turn
we show that for a uniform slope angle and surface rough-
ness the average energy varies as Ea ∼Ax+B, where A
and B are the shape and scale parameters of the general-
ized Pareto distribution. These parameters are related to par-15

ticle and surface conditions (e.g., particle size and shape,
surface slope and roughness) and the initial particle energy
state at x= 0. We then show that the disentrainment rate
Px(x) =−(1/N)dN/dx= 1/(Ax+B), which, using Eq.

(4), leads to the generalized Pareto distribution. WhenA< 0,20

this distribution is bounded; when A> 0, it is heavy-tailed;
and when A= 0 such that Px = 1/B is a fixed value, the
distribution reduces to an exponential form. Deposition is an
inhomogeneous Poisson process for A 6= 0 and it is homoge-
neous for A= 0. We also illustrate the discrete counterpart25

to these results, as outlined in Section 2.2, including the sit-
uation of nonuniform surface conditions.

3 Mechanical interpretation of disentrainment

3.1 Conservation of mass

Consider a rough, inclined surface with uniform slope an-30

gle θ (Figure 2). At this juncture we simplify the notation

Figure 2. Definition diagram of surface inclined at angle θ and con-
trol volume with edge length dx through which particles move.

and consider the motions of particles entrained at a single
position x= 0. Now the particle travel distance r→ x and
the probability density function fr(r;x)→ fx(x). Consider
a control volume with edge length dx parallel to the mean35

particle motion. Over a period of time a great number of par-
ticles enters the left face of the control volume. Some of these
particles move entirely through the volume, exiting its right
face, and some come to rest within the control volume. Many,
but not necessarily all, of the particles interact with the sur- 40

face one or more times in moving through the volume or in
being disentrained within it.

We now imagine collecting this great number of parti-
cles and treating them as a cohort, independent of time (Ap-
pendix B). That is, let N(x) denote the number of parti- 45

cles that enter the control volume, and let N(x+ dx) de-
note the number that leaves the volume. We may imagine
for the purpose of visualizing the problem that the N(x) par-
ticles enter the control volume at the same time, but this ac-
tually is not essential. Similarly, we may imagine that the 50

N(x+dx) particles exit the control volume at approximately
the same time, but again, this reference to time only is a
means to envision particle motions (Appendix B). The num-
ber of particles disentrained within the control volume then
is dN =N(x+ dx)−N(x). 55

If N(0) denotes the great number of particles whose mo-
tions started at position x= 0, then the exceedance prob-
ability Rx(x) (analogous to Rr(r;x) above) is Rx(x) =
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N(x)/N(0). Then dN =−N(0)fx(x)dx and the spatial
disentrainment rate Px(x) (analogous to Pr(r) above) is 60

Px(x) =− 1

N(x)

dN(x)

dx
. (9)

Our objective is to determine the derivative dN(x)/dx in re-
lation to particle energy, as this derivative represents disen-
trainment. Here we summarize the essence of this problem
before turning to a description of conservation of energy. 65

Let Ep = (m/2)u2 denote the translational kinetic energy
of a particle with massm and downslope velocity u. Here we
are assuming that the total translational energy is dominated
by downslope motion. Let fEp(Ep,x) denote the probability
density function of particle energies Ep as these vary with 70

position x. For a great number N of particles the number
density is nEp

(Ep,x) =NfEp
(Ep,x). Let p(Ep,x) denote

the probability that a particle at energy state Ep will become
disentrained within the small interval x to x+ dx. Because
NfEp

(Ep,x)dEp is the number of particles within the small 75

interval Ep to Ep + dEp, then Np(Ep,x)fEp
(Ep,x)dEp is

the number of particles in this energy interval that becomes
disentrained. The total number of particles that becomes dis-
entrained within the interval x to x+ dx is then

dN(x) =−N(x)

∞∫
0

p(Ep,x)fEp(Ep,x)dEp . (10) 80

Letting angle brackets denote an ensemble average, then
according to the Law of the Unconscious Statistician, Eq.
(10) is simply dN(x) =−N(x)〈p(Ep,x)〉. Below we in-
troduce the expected number of particle-surface collisions
per unit distance nx = 1/λ, where λ is the expected travel 85

distance between successive collisions. We then show that
dN(x)/dx=−N(x)nx〈p(Ep,x)〉. Thus, the essence of the
problem is to determine the averaged probability 〈p(Ep,x)〉
as this depends on particle energy Ep. This in turn requires
specifying the particle energy as this varies with position x.

3.2 Particle energy

Our focus on conservation of particle energy versus mo-
mentum is aimed at defensible simplicity. Namely, particle5

motions down a rough hillslope surface involve numerous
details that control momentum exchanges during particle-
surface interactions. As a scalar quantity, energy forces us
to blur our eyes appropriately, focusing on the essence of
these complex interactions rather than attempting to describe10

details of momentum exchanges that ultimately cannot be
constrained given the stochastic nature of the phenomenon.
As an example, below we introduce the random variable βx
to represent the proportion of downslope kinetic energy ex-
tracted during a particle-surface collision. This quantity blurs15

over many details (e.g., differences between collisions dur-
ing rolling, tumbling and bouncing motions, rotational ver-

sus translational motion, and the roles of normal and tangen-
tial coefficients of restitution), yet βx is entirely meaningful
when treated as a random variable. (In Appendix E we pro-20

vide a description of how the energy-centric quantity βx is
related to momentum exchanges during collisions, and in the
companion paper we illustrate the elements of βx using high-
speed imaging.) In contrast, when describing the collisional
behavior of an ideal granular gas, one can at lowest order ap-25

peal to a single coefficient of restitution because of the rela-
tive simplicity of the particles and their collisions (e.g., Haff,
1983; Jenkins and Savage, 1983). This simplicity is not pos-
sible here. The focus on energy thus offers tractable and de-
fensible simplicity amidst the messiness of natural hillslopes.30

We start our formulation with a general statement concern-
ing conservation of the kinetic energy of a system of parti-
cles. Because of its familiarity in relation to studies of gran-
ular gas systems, we initially consider changes with respect
to time, then return to changes with respect to space as in the35

preceding section. Namely, let Ep denote the kinetic energy
of a particle, and let 〈Ep〉 denote the expected energy state,
where angle brackets represent an ensemble average over a
great number N of moving particles. The total energy of the
system is E =N〈Ep〉. Neglecting transport of energy over40

space, the rate of change in the total energy of the system
with respect to time is then

dE

dt
=N

d〈Ep〉
dt

+ 〈Ep〉
dN

dt
. (11)

The first term on the right side of Eq. (11) represents the rate
of change in the average energy state of N moving parti-45

cles, and thus describes either a net heating (d〈Ep〉/dt > 0)
or cooling (d〈Ep〉/dt < 0) of the system, depending on the
relative contribution of the sources of each. The second term
on the right side represents the rate of change in the num-
ber of moving particles with average energy state 〈Ep〉, and50

thus describes the rate of change in the total energy due to
either the addition or loss of moving particles. For a closed
system, this represents either a net sublimation (dN/dt > 0)
or net deposition (dN/dt < 0) of particles, depending on the
relative contribution of each. 55

The first term on the right side of Eq. (11) has been studied
extensively for granular gas systems, specifically in relation
to the “homogeneous cooling state” of a closed system as
described by Haff’s cooling law (Haff, 1983; Brilliantov and
Pöschel, 2004; Dominguez and Zenit, 2007; Volfson et al., 60

2007; Brilliantov et al., 2018; Yu et al., 2020). In what fol-
lows, we start with similar concepts of particle energy; but
the formulation is designed to be independent of time and fo-
cused on changes in energy and particle disentrainment over
space. 65

Reconsider a control volume with edge length dx parallel
to the mean motion of particles over a rough, inclined surface
(Figure 2). Analogous to Eq. (11) we write

dE

dx
=N

d〈Ep〉
dx

+ 〈Ep〉
dN

dx
, (12)
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where now the angle brackets formally denote a Gibbs en- 70

semble average over a cohort of particles (Appendix B). As
described below, the first term on the right side of Eq. (12)
represents the spatial rate of change in energy due to the sum
of gravitational heating and frictional cooling. The second
term on the right side represents the rate of change in energy 75

due to deposition, that is, disentrainment. In this problem, we
assume that sublimation (entrainment) does not occur over
x > 0. Eq. (12) provides a basic starting point. However, it
is not particularly useful in this form. If in fact the probabil-
ity of deposition varies with energy state, then in general the 80

derivative dN/dx contributes to the derivative d〈Ep〉/dx, as
removal of energy by deposition affects the average energy of
the remaining particles. We note that Brilliantov et al. (2018)
demonstrate an analogous effect, as described below, associ-
ated with aggregation of particles in a granular gas. We there- 85

fore must be careful in formulating a statement of conserva-
tion of particle energy, as deposition preferentially involves
particles at low energy states.

3.3 Conservation of energy

3.3.1 Total energy 90

Focusing just on slope parallel motions, let Ep = (m/2)u2

denote the translational kinetic energy of a particle with mass
m and downslope velocity u. Then let fEp

(Ep,x) denote the
probability density function of particle energies Ep as these
vary with downslope position x (Appendix B). For a great 95

number N of particles the number density is nEp(Ep,x) =
NfEp(Ep,x). The average particle energy is

〈Ep〉=

∞∫
0

EpfEp(Ep,x)dEp

=
1

N

∞∫
0

EpnEp
(Ep,x)dEp . (13)

The total energy E(x) =N〈Ep〉, so

E(x) =

∞∫
0

EpnEp
(Ep,x)dEp . (14)

We now take the derivative of Eq. (14) with respect to x using5

Leibniz’s rule to give

dE(x)

dx
=

∞∫
0

Ep
∂nEp

(Ep,x)

∂x
dEp . (15)

The derivative within the integral of Eq. (15) satisfies a
Fokker-Planck equation (see next section and Appendix C),
the solution of which represents the evolution of the distribu-10

tion nEp
(Ep,x) of particle energy states Ep with distance x.

In particular this derivative has three parts. The first part, de-
noted below byKh(Ep,x), is associated with a change in the
density nEp

(Ep,x) due to gravitational heating. The second
part, Kc(Ep,x), is associated with a change in this density15

due to frictional cooling. The third part, Kd(Ep,x), is asso-
ciated with a loss of energy due to deposition (which does not
involve the analogue of release of latent heat; but see below).
We thus write

∂nEp(Ep,x)

∂x
=Kh(Ep,x) +Kc(Ep,x) +Kd(Ep,x) , (16)20

and then rewrite Eq. (15) as

dE(x)

dx
=

∞∫
0

EpKh(Ep,x)dEp

+

∞∫
0

EpKc(Ep,x)dEp

25

+

∞∫
0

EpKd(Ep,x)dEp . (17)

The next task consists of showing the correspondence of
Kh(Ep,x),Kc(Ep,x) andKd(Ep,x) to terms in the Fokker-
Planck equation, then describing the physical elements of
these terms. This is followed by evaluating each of the in-30

tegral quantities in Eq. (17). There are a lot of moving parts
in this formulation, so bear with us.

3.3.2 Fokker-Planck-like equation

The density nEp
(Ep,x) within Eq. (15) and Eq. (16) satisfies

a Fokker-Planck equation (Appendix C), which describes the 35

evolution of this density with increasing distance x. Namely,

∂nEp(Ep,x)

∂x
=− ∂

∂Ep
[k1h(Ep,x)nEp

(Ep,x)]

− ∂

∂Ep
[k1c(Ep,x)nEp

(Ep,x)]

40

+
1

2

∂2

∂E2
p

[k2c(Ep,x)nEp
(Ep,x)]

−Kd(Ep,x) . (18)

The first term on the right side of Eq. (18) represents ad-
vective gravitational heating, where k1h(Ep,x) is a drift 45

speed, the average spatial rate of change in particle energy
over the energy domain due to heating. The second term on
the right side represents advective frictional cooling, where
k1c(Ep,x) is a drift speed, the average spatial rate of change
in particle energy due to cooling. The third term represents 50
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diffusive frictional cooling, where k2c(Ep,x) is a diffusion
coefficient. The last term represents a loss of energy due to
deposition, where for now we have retained the notation from
above. Explicitly, forKh(Ep,x) andKc(Ep,x) we now have

55

Kh(Ep,x) =− ∂

∂Ep
[k1h(Ep,x)nEp

(Ep,x)] (19)

and

Kc(Ep,x) =− ∂

∂Ep
[k1c(Ep,x)nEp

(Ep,x)]

+
1

2

∂2

∂E2
p

[k2c(Ep,x)nEp(Ep,x)] . (20) 60

In the next section we step through gravitational heating, fric-
tional cooling and deposition, in each case unfolding the me-
chanical elements of k1h(Ep,x), k1c(Ep,x), k2c(Ep,x) and
Kd(Ep,x).

Here is a didactic sidebar if the formulation above seems 65

counterintuitive. Notice that Eq. (18) effectively represents
an advection-diffusion equation with two advective terms,
a diffusive term and a sink term. Normally we think of an
advection-diffusion equation as involving space and time,
that is, where the rate at which a quantity changes with re- 70

spect to time at a given position is equal to the sum of an
advective term and a diffusive term involving derivatives of
the quantity with respect to space. Indeed, imagine replac-
ing Ep with x, and x with t, in Eq. (18). The result looks
like a familiar advection-diffusion equation with a sink term 75

(albeit involving two advective terms rather than one). The
basic idea of Eq. (18) is the same. It just describes the rate of
change in nEp with respect to position x (rather than time t)
in relation to advection and diffusion of nEp

occurring over
the energy coordinate Ep (rather than x). A consideration of5

the rate of change with respect to position x as in Eq. (18)
is perhaps unusual, but the idea of advection and diffusion
of a quantity occurring over a domain other than a spatial
coordinate (e.g., a velocity coordinate) is common in statis-
tical physics, of which examples pertaining to sediment mo-10

tions include those presented in Furbish et al. (2012, 2018a,
2018b).

3.3.3 Gravitational heating

We start by noting that the rate at which the potential energy
of a particle is converted to kinetic energy per unit distance x15

is mg sinθ. To be clear, between collisions a particle that is
not in contact with the inclined surface beneath it accelerates
vertically at a rate of −g, independently of the orientation of
the surface. The factor sinθ therefore is a geometrical con-
straint on the magnitude of the potential energy that is ac-20

cessible for net heating when viewed with respect to x. This
means that (Appendix C)

k1h(Ep,x)→ k1h =mg sinθ , (21)

so that Eq. (19) becomes

Kh(Ep,x) =−mg sinθ
∂nEp

(Ep,x)

∂Ep
. (22)25

We now write the first integral in Eq. (17) as

−mg sinθ

∞∫
0

Ep
∂nEp

(Ep,x)

∂Ep
dEp . (23)

Because ∂(EpnEp
)/∂Ep = Ep∂nEp

/∂Ep +nEp
, Eq. (23)

may be written as

mg sinθ

∞∫
0

nEp
(Ep,x)dEp30

−mg sinθ

∞∫
0

∂

∂Ep
[EpnEp

(Ep,x)]dEp . (24)

Assuming nEp
(∞,x)→ 0, the second integral in Eq. (24)

vanishes and the first integral in Eq. (17) becomes

∞∫
0

EpKh(Ep,x)dEp =Nmg sinθ . (25)35

Note that the form of the density nEp
(Ep,x) is immaterial in

this formulation.
If for illustration we assume that no cooling or deposi-

tion occurs, then dE(x)/dx=Nmg sinθ. The solution of
this is E(x) = E(0) +Nmg sinθx, where E(0) denotes the 40

starting energy at x= 0. That is, the total kinetic energy
E(x) increases linearly with downslope distance x. More-
over, for reference below, no particle can be heated to an en-
ergy greater thanEp(0)+mg sinθx, representing a complete
conversion of gravitational to kinetic energy without any loss 45

due to particle-surface collisions. This ensures that the den-
sity nEp

(Ep,x) is bounded with finite mean and variance, a
point that becomes useful below.

3.3.4 Frictional cooling

We start by assuming that a change in the downslope energy 50

of a particle associated with a collision is ∆Ep =−βxEp, so
that βx =−∆Ep/Ep is the proportion of energy extracted
by the collision (Appendix E). This is akin to the dissipation
factor introduced by Quartier et al. (2000). By definition βx
is a random variable. (Note that the negative sign above is 55

by convention. As a random variable we are assuming that
0≤ βx ≤ 1. The sign associated with βx will be clear from
the context in the developments below.) The change ∆Ep
includes frictional loss, any conversion of translational to ro-
tational energy, and any apparent change when downslope 60
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incident motion is reflected to transverse motion during a
glancing particle-surface collision. Note that ∆Ep generally
is a negative quantity. But strictly speaking it could be posi-
tive, albeit with low probability, if transverse incident motion
is reflected to downslope motion during a collision. Because 65

Ep and βx are random variables, ∆Ep is a random variable.
As a point of reference, in granular gas theory where the to-
tal translational energy is considered rather than just the en-
ergy associated with one coordinate direction, the proportion
βx = 1− ε2 where ε is the normal coefficient of restitution 70

(Haff, 1983). Normally ε is treated as a fixed deterministic
quantity, although recent efforts have treated this quantity as
a random variable (Gunklemann et al., 2014; Serero et al.,
2015). Here, in contrast, collision mechanics theory suggests
that the constitution of βx is far more complicated in relation 75

to normal, tangential and rotational impulses during particle-
surface collisions (Appendix E).

Let q = Ep(x+dx)−Ep(x) denote a change in the energy
of a particle over the small distance dx. Then as described
in Appendix C, the drift speed k1c(Ep,x) = dq/dx≈ 80

nxβxEp and the diffusion coefficient k2c = dq2/dx≈
nxβ2

xE
2
p , where the overline denotes an average over parti-

cles at the energy state Ep (rather than an ensemble aver-
age), and nx = 1/λ denotes the expected number of particle-
surface collisions per unit distance where λ is the expected 85

travel distance between collisions. Scaling (Appendix D)
shows that

nx =
1

λ
≈ mg cosθ

4Ep tanφ
, (26)

where φ is the expected reflection angle of a particle with
energyEp following a surface collision. We now assume that

k1c(Ep,x)∼ nxβxEp ≈
mgβx cosθ

4tanφ
, (27)

and that5

k2c(Ep,x)∼ nxβ2
xE

2
p ≈

mgβ2
xEp cosθ

4tanφ
. (28)

Now Eq. (20) becomes

Kc(Ep,x) =
mg cosθ

4tanφ

∂

∂Ep
[βxnEp(Ep,x)]

+
mg cosθ

8tanφ

∂2

∂E2
p

[β2
xEpnEp

(Ep,x)] . (29)10

We now use these results to write the second integral in
Eq. (17) as

mg cosθ

4tanφ

∞∫
0

Ep
∂

∂Ep
[βxnEp

(Ep,x)]dEp

+
mg cosθ

8tanφ

∞∫
0

Ep
∂2

∂E2
p

[β2
xEpnEp

(Ep,x)]dEp . (30)15

Upon applying the product rule to the derivative
∂(EpβxnEp)/∂Ep, the first integral in Eq. (30) may
be written as
∞∫
0

βxnEp
(Ep,x)dEp

20

−
∞∫
0

∂

∂Ep
[EpβxnEp

(Ep,x)]dEp . (31)

Assuming that nEp(∞,x)→ 0, the second integral in Eq.
(31) vanishes and the first integral becomes N〈βx〉, where
the angle brackets now represent an ensemble average.

In turn, upon applying the product rule to the derivative25

∂[Ep∂(β2
xEpnEp

)/∂Ep]/∂Ep, the second integral in Eq.
(30) may be written as

mg cosθ

8tanφ

∞∫
0

∂

∂Ep

(
Ep

∂

∂Ep
[β2
xEpnEp

(Ep,x)]

)
dEp

−mg cosθ

8tanφ

∞∫
0

∂

∂Ep
[β2
xEpnEp

(Ep,x)]dEp . (32)30

Assuming that nEp(∞,x)→ 0 and ∂nEp/∂Ep|Ep→∞→
0, the integrals in Eq. (32) reduce to
(mg cosθ/8tanφ)β2

xEpnEp
(0,x) with β2

xEp = 0 when
evaluated at Ep = 0. Thus, whereas the diffusive term in
Eq. (18) redistributes energy by modifying the density 35

nEp(Ep,x) (see below), it does not contribute to the total
energy balance. The second integral in Eq. (17) is thus
∞∫
0

EpKc(Ep,x)dEp =−Nmg〈βx〉cosθ

4tanφ
. (33)

We return to these results below.

3.3.5 Energy loss with deposition 40

For illustration, suppose initially (unrealistically) that depo-
sition is independent of the particle energy state Ep. This
means that the number of particles disentrained within any
small energy interval Ep to Ep + dEp is a fixed proportion
kd of the particles within this interval. Thus, Kd(Ep,x) = 45

−kdnEp
(Ep,x) and the third integral in Eq. (17) becomes

−kd

∞∫
0

EpnEp,x(Ep,x)dEp =−kdE(x) . (34)
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If we momentarily assume that no heating or cooling occurs,
then dE(x)/dx=−kdE(x). The solution of this is E(x) =
E(0)e−kdx, where E(0) denotes the starting energy at x= 50

0. That is, the total energy E(x) decays exponentially with
downslope position x. In this example, note that the form of
the density nEp(Ep,x) is immaterial. Moreover, as a point
of reference we may momentarily equate the left side of Eq.
(18) with the last term in this equation and write 55

∞∫
0

∂nEp
(Ep,x)

∂x
dEp =−kd

∞∫
0

nEp
(Ep,x)dEp . (35)

This yields (1/N)dN/dx=−kd. With dE(x)/dx=
−kdE(x) =−kdN〈Ep〉, then dE(x)/dx= 〈Ep〉dN/dx.
Thus, comparing this result with Eq. (12), the situation in
which deposition is independent of the particle energy state 60

is consistent with isothermal conditions wherein the average
energy state is unchanging, that is, d〈Ep〉/dx= 0.

More generally, deposition is unlikely to be independent
of the particle energy state, as particles with small energy are
on average more likely to become disentrained than are par- 65

ticles with large energy. Thus, Kd(Ep,x) likely possesses a
more complicated form than in the example above. Whereas
early work on granular gases focused on their behavior in the
absence of deposition, the phenomenon of thermal collapse,
condensation and freezing in a gravitational field now is re- 70

ceiving significant attention (Volfson et al., 2006; Kachuck
and Voth, 2013). We can lean on insight from this work, but
because energy dissipation in a granular gas is dominated by
particle-particle collisions rather than particle-boundary col-
lisions, the rarefied problem considered here is quite differ-
ent. As with approaches used in the study of condensation
and freezing of granular gases, our analysis at this stage is
aimed at lowest order behavior.5

For any position x, we do not know the ensemble dis-
tribution fEp

(Ep,x) of particle energy states Ep with ex-
pected value 〈Ep〉. Because no particle can be heated to an
energy greater than Ep(0) +mg sinθx (representing a com-
plete conversion of gravitational to kinetic energy without10

any loss due to particle-surface collisions), we know only
that 0≤ Ep ≤ Ep(0) +mg sinθx. Most energies likely are
significantly smaller than the upper limit due to collisions.

Collecting results from above, the density nEp
(Ep,x) sat-

isfies a Fokker-Planck-like equation, namely,15

∂nEp(Ep,x)

∂x
=−mg sinθ

∂nEp
(Ep,x)

∂Ep

+
mgβx cosθ

4tanφ

∂nEp(Ep,x)

∂Ep

+
mgβ2

x cosθ

8tanφ

∂2

∂E2
p

[EpnEp
(Ep,x)]20

−Kd(Ep,x) , (36)

where we are assuming for simplicity that βx and β2
x are

fixed. As a reminder, the first term on right side of Eq. (36)
represents gravitational heating, and the second and third25

terms on the right side represent frictional cooling. The term
−Kd(Ep,x), which describes the loss of energy associated
with deposition, is defined below explicitly in terms of a de-
position length scale.

Let nEp0
and Ep0 denote suitable characteristic values of30

the density nEp
and the energy Ep, and let X denote a char-

acteristic length scale. We now define the following dimen-
sionless quantities denoted by circumflexes:

nEp = nEp0 n̂Ep , Ep = Ep0Êp and x=Xx̂. (37)

Upon substituting these quantities into Eq. (36), we may35

identify three characteristic length scales, namely,

X =Xh =
Ep0

mg sinθ
, (38)

X =XcA =
4Ep0 tanφ

mgβx cosθ
=

λ

βx
and (39)

40

X =XcD =
8Ep0 tanφ

mgβ2
x cosθ

=
2λ

β2
x

. (40)

The first of these, Xh, represents the distance required to
heat a particle to the energy state Ep0 in the absence of
frictional cooling. The second, XcA, represents the distance
over which thermal collapse by advective cooling occurs. 45

The third, XcD, represents a distance over which diffusive
cooling occurs.

We now define two dimensionless numbers, the Kirkby
number1,

Ki =
XcA

Xh
=

4tanφS

βx
(41) 50

and a cooling Péclet-like number,

Pec =
XcD

XcA
=

2βx

β2
x

. (42)

The Kirkby number Ki is the ratio of gravitational heating to
advective cooling. The Péclet-like number Pec is the ratio of
advective cooling to diffusive cooling. Choosing XcA as the 55

characteristic length scale and neglecting the deposition term
in Eq. (36), we now rewrite it as

∂n̂Êp
(Êp, x̂)

∂x̂
=−Ki

∂n̂Êp
(Êp, x̂)

∂Êp

1This number is named in honor of Michael J. Kirkby for his pi-
oneering work on hillslope processes, including the topic of particle
motions on scree surfaces.
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+
∂n̂Êp

(Êp, x̂)

∂Êp
+

1

Pec

∂2

∂Ê2
p

[Êpn̂Êp
(Êp, x̂)] . (43) 60

Note that with βx� 1, then Pec� 1 according to Eq. (42),
such that the diffusive term in Eq. (43) becomes insignificant
relative to the advective cooling term.

With reference to Figure 3, imagine a great number of par-

Figure 3. Schematic diagram of downslope changes in the distribu-
tion fEp(Ep,x) of particle energy states Ep (for simplicity a uni-
form distribution) due to: (a) gravitational advective heating in the
absence of cooling; (b) advective frictional cooling in the absence
of heating; and (c) net cooling. Arrows represent displacement oc-
curring over a small downslope interval dx. The triangle represents
an idealized situation in which, with net cooling, the likelihood of
deposition increases with decreasing particle energy Ep, and de-
creases with increasing energy. Note that an effect of deposition
with heating or cooling is to increase the average energy 〈Ep〉 by
culling lower energy particles, thereby selecting higher energy par-
ticles for continued travel with increasing distance.

ticles whose initial energy states at x= 0 are described by the 65

density nEp(Ep,0). With just gravitational heating, this dis-
tribution is advected to higher energy values at a fixed rate
mg sinθ. With just frictional cooling, but in the absence of
diffusion, the distribution is advected to lower energy values
at a fixed rate mgβx cosθ/4tanφ. If gravitational heating is 70

balanced by advective cooling (Ki = 1), the form of the dis-
tribution remains fixed with increasing distance x. With dif-
fusive cooling, advective cooling of the density nEp

(Ep,x)
to lower energy values involves smoothing of this density.
When these effects are combined, whether heating is greater 75

than advective cooling (Ki > 1) or vice versa (Ki < 1), no
value of Ep is larger than Ep(0) +mg sinθx, and most val-
ues are significantly less than this maximum due to the in-
creasing likelihood of particle-surface interactions (cooling)

within increasing x. When the magnitude of the term in Eq. 80

(43) involving Ki is greater than the sum of the magnitudes
of the two cooling terms, then net heating occurs. When the
magnitudes of the cooling terms are larger than the heating
term, then net cooling occurs. For particles reaching rela-
tively small energy states, there is an increasing likelihood of 85

deposition (see below). As a reminder, this description does
not pertain to the energy states of a great number of particles
during an interval of time. Rather, this description pertains to
an ensemble of particles reaching any position x over a long
period of time when treated as a cohort. That is, nEp(Ep,x)5

is the density of particle energies at any x representing the
great number of particles that occupied this position while in
motion at many previous instants in time.

We now offer a simple hypothesis describing the loss of
energy associated with deposition. Recall that XcA is a mea-10

sure of the distance over which particles with energy Ep0
thermally collapse by frictional cooling. We may imagine,
for example, a sudden removal of the source of heating such
that XcA is a measure of the distance of relaxation to a total
loss of energy. For particles with energy Ep, this length scale15

can be expressed more generally as

lc(Ep)∼
4Ep tanφ

mgβx cosθ
, (44)

which becomes unbounded only in the limit of θ→ π/2. Be-
cause thermal collapse involves deposition, we then assume
at lowest order that20

αlc(Ep)
∂nEp(Ep,x)

∂x

∣∣∣∣
d

=−nEp
(Ep,x) , (45)

where the subscript d denotes that the derivative refers to a
change in the density nEp

(Ep,x) just associated with depo-
sition. We emphasize that Eq. (45) pertains to the imagined
situation in which gravitational heating is not involved. This 25

is the same as assuming a spatial Poisson process of depo-
sition, that is, a fixed disentrainment rate keyed to the spe-
cific energy state Ep. In the presence of heating, however,
the length scale of deposition increases relative to lc. That
is, heating suppresses the disentrainment rate. The factor α 30

thus modulates the length scale lc so the product αlc is a net
e-folding length in the presence of heating. As described be-
low, the factor α is assumed to be a function of the Kirkby
number.

Substituting Eq. (45) into Eq. (17) and evaluating the inte- 35

gral then yields

∞∫
0

Ep
∂nEp(Ep,x)

∂x

∣∣∣∣
d

dEp

=−mg cosθ

α4tanφ

∞∫
0

βxnEp
(Ep,x)dEp
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40

=−Nmg〈βx〉cosθ

α4tanφ
, (46)

where we now redefine the Kirkby number as

Ki =
4tanφS

〈βx〉
, (47)

assuming that βx is independent of Ep. Comparing this re-
sult with Eq. (33), the energy loss rate due to deposition is 45

the same as the advective cooling rate, but modulated by the
factor α.

3.4 Conservation of mass revisited

The preceding material provides the basis for the next step,
namely, calculating the disentrainment rate wherein effects 50

of particle deposition on the energy balance are taken into
account. Because nEp(Ep,x)dEp represents the number of
particles within the small energy interval Ep to Ep + dEp,
using Eq. (44) and Eq. (45) the total disentrainment rate is
therefore 55

dN(x)

dx
=

∞∫
0

∂nEp
(Ep,x)

∂x
dEp

=−mg〈βx〉cosθ

α4tanφ

∞∫
0

1

Ep
nEp

(Ep,x)dEp

=−Nmg〈βx〉cosθ

α4tanφ

〈
1

Ep

〉
. (48) 60

Thus, the disentrainment rate is proportional to the cooling
rate, as it should be. Here it is important to note that the ex-
pected value 〈1/Ep〉 6= 1/〈Ep〉. In fact, 〈1/Ep〉 is the recip-
rocal of the harmonic mean (Appendix F). This means that
〈Ep〉〈1/Ep〉 ≥ 1. Only in the limit where nEp

(Ep,x) has5

zero variance does 〈1/Ep〉 → 1/〈Ep〉. To simplify the nota-
tion, hereafter we denote the arithmetic mean as 〈Ep〉= Ea
and the harmonic mean as 1/〈1/Ep〉= Eh. Thus Ea/Eh ≥
1.

As a point of reference we may now define an ensemble10

averaged deposition length as

Lc ∼
α4tanφEh
mg〈βx〉cosθ

=
αEh

mgµcosθ
, (49)

with µ= 〈βx〉/4tanφ. Note that in contrast to the energy
specific length scale lc in Eq. (44) and Eq. (45),Lc in Eq. (49)
is keyed to the harmonic average energy of the ensemble.15

Setting θ = 0 so that cosθ = 1, the length scale Lc is entirely
analogous to the length scale λ0 used by Furbish and Haff
(2010), Furbish and Roering (2013) and Doane et al. (2018)

as the characteristic particle travel distance on a flat surface,
thence modulated with increasing slope S (see also Section20

5.3).
The factor α has a key role in the formulation. As de-

scribed above, this factor modulates the length scale Lc in
the presence of gravitational heating. Note that Eq. (48) is
equivalent to25

Lc
dN

dx
=−N . (50)

For a given value of α the length scale Lc is set by the cool-
ing rate, and this length scale increases with increasing slope
angle θ. But gravitational heating also increases with θ, the
effect of which is to suppress the rate of deposition and in-30

crease Lc. That is, the deposition length scale is not the same
as the cooling length scale. As described below, whereas lc is
a measure of the rate of extraction of translational energy, this
includes its conversion to rotational energy whose effect is to
decrease the likelihood of stopping. On dimensional grounds35

an inspired guess suggests that this effect is a function f(Ki)
of the Kirkby number Ki . For example, suppose that

Lc =
αEh

mgµcosθ
=

α0Eh
mgµcosθ−mgµ1 sinθ

. (51)

where µ1 is a coefficient of order unity. This leads to

α=
α0

1−µ1Ki
, (52)40

where α→ α0 as µ1Ki → 0. Now,

Lc =
α0Eh

mgµcosθ(1−µ1Ki)
. (53)

This example suggests that Lc→∞ as µ1Ki → 1. That is,
µ1Ki → 1 sets an upper limit above which deposition is in-
significant. More generally we may write 45

Lc =
α0f(Ki)Eh
mgµcosθ

, (54)

to indicate the possibility of other dependencies of α on Ki .
Note that we provide evidence for this behavior in the com-
panion paper, including the form of Eq. (52) based on exper-
iments. For notational simplicity in subsequent sections, we 50

use α with the understanding that this implies α= α0f(Ki).
Here is a key sidebar for reference in our descriptions be-

low of related formulations. We emphasize that according to
Eq. (45) and Eq. (48) the deposition rate is proportional to
the advective cooling rate rather than the net cooling rate 55

(the difference between the rates of heating and cooling),
where the rate of heating then modulates the deposition rate,
therein increasing the deposition length scale. Moreover, the
deposition rate explicitly depends on the energy state of the
particles. Consider a thought experiment. Let us imagine a 60
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system consisting of a box containing a finite number of par-
ticles. Suppose that we mechanically add energy to the sys-
tem such that some proportion of the particles becomes a rar-
efied granular gas, and suppose that the gas achieves a non-
equilibrium steady state with a specific average energy state 65

(Appendix G). This means that the rate of (mechanical) heat-
ing is equal to the rate of cooling due to dissipative particle-
box collisions, and sublimation (entrainment) matches de-
position (disentrainment). That is, depending on the energy
state of the particles, deposition occurs even though the dif- 70

ference between the rate of heating and cooling is zero. Now
imagine that when a particle is deposited in our idealized
box, it cannot become re-entrained (which is analogous to
the hillslope system). The rate of heating and cooling of the
remaining gas particles is still the same, yet the deposition 75

process continues for those particles which, by chance, cool
to sufficiently low energies for deposition to occur. Thus, we
are assuming that the deposition rate is proportional to the
cooling rate rather than the net cooling rate, depending on
the energy state of the particles. The effect of heating is to 80

decrease the likelihood of deposition by decreasing the pro-
portion of particles that cool to sufficiently low energies for
deposition to occur — which translates to suppressing the
disentrainment rate and increasing the length scale of depo-
sition. As outlined in Section 5 below, this effect is absent in 85

previous formulations of particle disentrainment.

3.5 Energy and mass balances

We now collect results from above to summarize effects of
the energy and mass balances. With µ= 〈βx〉/4tanφ the to-
tal energy balance is given by 90

dE(x)

dx
=Nmg sinθ

−Nmgµcosθ− 1

α
Nmgµcosθ . (55)

To summarize, the first term on the right side of Eq. (55) is
due to gravitational heating, the second term is due to fric-
tional cooling, and the last term represents a loss of energy
due to deposition. Note that none of these terms explicitly
involves the energy E(x). In turn, conservation of mass is5

given by

dN(x)

dx
=− 1

α
Nmgµcosθ

1

Eh
. (56)

This is coupled with Eq. (55) via the relation between the
total energy E(x), the average energy Ea and the harmonic
average energy Eh (see below), and the explicit appearance10

of N in both of these equations.
At this point we emphasize that the quantity µ=
〈βx〉/4tanφ is not to be interpreted as Coulomb-like dy-
namic friction coefficient. Indeed, the product mgµcosθ in

Eq. (55) and Eq. (56) looks like an ordinary Coulomb friction15

force (e.g., Kirkby and Statham, 1975; Gabet and Mendoza,
2012). Recall, however, that cosθ enters from the geometry
of particle motions, and does not represent the angle needed
to specify the normal component of the weight mg. Simi-
larly, tanφ is an expected reflection angle, not a friction an-20

gle. We elaborate these points below.
To close the circle in reference to our stating point, Eq.

(12), we now combine Eq. (12), Eq. (55) and Eq. (56) to give

dEa(x)

dx
=mg sinθ−mgµcosθ

25

+
mgµcosθ

α

(
Ea
Eh
− 1

)
. (57)

This balance involving the average energy Ea rather than
the total energy E reveals an important behavior associated
with deposition, centered on the parenthetical part of the last
term. Namely, it is straightforward to show (Appendix F) that30

Ea/Eh−1≥ 0. The last term in Eq. (57) therefore represents
an apparent heating associated with deposition. With refer-
ence to Figure 3, a net advective cooling uniformly lowers
all particle energy states, thus lowering the average energy
Ea as well as the total energy E. As this cooling lowers all35

energy states, some particles enter the range where deposi-
tion occurs, and the deposition rate therefore is proportional
to the net advective cooling rate. In the absence of a net ad-
vective cooling, particles with small energy nonetheless are
preferentially disentrained, so the average energy state in-40

creases. When cooling and deposition are combined, the av-
erage energy decreases more slowly than it otherwise would
in the absence of deposition. This effect increases with in-
creasing variance in the distribution of energies (Appendix
F), and it vanishes as the variance goes to zero. The balance45

described by Eq. (57) thus provides a formal description of
what we intuitively know: deposition culls lower energy par-
ticles, thereby selecting higher energy particles for continued
travel with increasing distance. We note that Brilliantov et
al. (2018) demonstrate an analogous unexpected behavior of 50

granular gases, namely, the heating of a granular gas asso-
ciated with particle aggregation with continued loss of total
energy. This occurs when the rate of loss of particles by ag-
gregation exceeds the rate of loss of total energy, such that
by definition the average particle energy increases. 55

The balance described by Eq. (57) also reveals an impor-
tant constraint on particle energies. Namely, if we imagine
the special situation of isothermal conditions (dEa/dx= 0),
then frictional cooling given by the second term on the right
side of Eq. (57) must balance two sources of heating, namely, 60

the first and third terms on the right side. This requires that
either the Kirkby number Ki < 1 or, if Ki = 1, then the dis-
tribution fEp

(Ep,x) of energies Ep must have zero vari-
ance such that Eh = Ea. Because this latter condition is
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highly unlikely, an isothermal condition generally requires 65

that Ki < 1. Conversely, net heating must occur with Ki > 1.
According to Eq. (55) or Eq. (57), for a given slope angle θ

the spatial rate of net cooling (or net heating) of the ensemble
is a fixed quantity in which this slope angle has a dual role.
Namely, an increasing slope decreases the rate of frictional 70

cooling by decreasing the expected occurrence of particle-
surface collisions, and it simultaneously increases the rate of
gravitational heating. With θ = 0, heating vanishes and fric-
tional cooling occurs at a maximum rate of µmg. In turn, as
θ→ π/2, which represents a vertical cliff, frictional cooling 75

vanishes and heating matches that of free-fall motion. This
transition from small to large slopes nicely illustrates what
virtually every undergraduate student learns intuitively from
the sport of boulder rolling (or “trundling” (Forrester, 1931)),
and why this sport is so spectacular and satisfying in steep 80

terrain. Moreover, recall that the Kirkby number Ki = S/µ
is the ratio of gravitational heating to advective cooling. If
these are balanced, Ki = 1 and

S = µ=
〈βx〉

4tanφ
. (58)

Qualitatively, this is the slope at which an undergraduate stu- 85

dent may expect that boulder rolling starts to become partic-
ularly interesting.

The formulation also nicely illustrates that if the heating
and cooling rates are matched, this does not imply an ab-
sence of deposition, as the last terms in Eq. (55) and Eq. 90

(57) may be finite with Ki = 1. Moreover, because this is
a probabilistic phenomenon, some particles are likely to be-
come disentrained even on steep, rough slopes where heating
on average exceeds cooling. Experienced undergraduates in-
deed inform us that some boulders just do not make it all the 95

way to the bottom of the hillslope despite their best efforts to
select conditions satisfying Ki > 1.

4 General behavior

4.1 Effects of energy and mass balances

We now show how the energy and mass balances together
lead to the generalized Pareto distribution of particle travel
distances. To do this we restate Eq. (55), Eq. (56) and Eq.5

(57) in dimensionless form, which clearly reveals the im-
portant role of the Kirkby number Ki. Let Ea0 denote the
initial average particle energy at x= 0 and let N0 denote
the initial number of particles at x= 0. In turn we define a
characteristic cooling distance X = Ea0/mgµcosθ so that10

Ea0 =mgµcosθX . We now define the following dimen-
sionless quantities denoted by circumflexes:

x=Xx̂, N =N0N̂ , E =N0Ea0Ê ,

Ea = Ea0Êa and Eh = Ea0Êh . (59)15

With these definitions we write Eq. (55), Eq. (56) and Eq.
(57) as

dÊ(x̂)

dx̂
=

[
Ki −

(
1 +

1

α

)]
N̂ , (60)

dN̂(x̂)

dx̂
=− N̂

αÊh
and (61)20

dÊa(x̂)

dx̂
= Ki − 1 +

1

α

(
Êa

Êh
− 1

)
. (62)

Because the dimensionless disentrainment rate P̂x̂(x̂) =
−(1/N̂)dN̂/dx̂, notice that Eq. (61) provides the basis for
determining the distribution of travel distances using Eq. (4).25

This requires specifying how Êh varies with x̂ for given val-
ues of α and Ki . At this point, however, we must confront the
fact that we have four unknowns, N̂ , Ê, Êa and Êh, and three
equations, one of which is nonlinear in the ratio Êa/Êh. Here
we add a fourth equation by assuming that this ratio remains30

fixed, namely,

Êa

Êh
= γ . (63)

We do not know the distribution fÊp
(Êp) required to deter-

mine γ (Appendix F). Nonetheless, Eq. (63) essentially as-
sumes that the form of fÊp

(Êp) remains similar with dis-35

tance x̂. This allows us to illustrate key elements of the for-
mulation.

With the assumption of Eq. (63) we note that Eq. (61) be-
comes

dN̂(x̂)

dx̂
=− γN̂

αÊa
, (64)40

and Eq. (62) becomes

dÊa(x̂)

dx̂
= Ki − 1 +

1

α
(γ− 1) . (65)

Focusing initially on Eq. (65), isothermal conditions exist if
dÊa/dx̂= 0. We then rearrange Eq. (62) or Eq. (65) to de-
fine a transition value of the Kirkby number, namely, 45

Ki∗ = 1− 1

α

(
Êa

Êh
− 1

)
= 1− 1

α
(γ− 1) . (66)

If Ki <Ki∗ then cooling occurs (dÊa/dx̂ < 0); and if
Ki >Ki∗ then heating occurs (dÊa/dx̂ > 0). Recall that
Êa/Êh = γ ≥ 1 (Appendix F) so that γ− 1≥ 0. If the vari-
ance of energy states Ep is zero then Êa/Êh = γ = 1 giv- 50

ing Ki∗ = 1. Thus, in this case cooling occurs with Ki < 1
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and heating occurs with Ki > 1. The ratio Êa/Êh = γ gen-
erally increases with the variance ofEp, thus decreasing Ki∗.
That is, as this variance increases, the transition between
cooling and heating occurs at a smaller value of the Kirkby 55

number. This represents a stronger culling (deposition) of
lower energy particles. The largest possible transition value
is Ki∗ = 1.

We now start with an idealized example that illustrates key
elements of the formulation, including the coupling between 60

Eq. (60), Eq. (61) and Eq. (62). Assume that the Kirkby
number Ki is fixed, and assume isothermal conditions. Thus
dÊa/dx̂= 0 with Êa = Êa0 so that Eq. (62) leads to

Êh =
Êa0

1 +α(1−Ki)
. (67)

With Êa/Êh = Êa0/Êh = γ, then γ = 1 +α(1−Ki). The 65

disentrainment rate P̂x̂(x̂) =−(1/N̂)dN̂/dx̂. Thus, accord-
ing to Eq. (61) and Eq. (67),

P̂x̂(x̂) =
1 +α(1−Ki)

αÊa0
=

γ

αÊa0
. (68)

In turn, using Eq. (4) this yields an exponential distribution
of travel distances with mean 70

µx̂ =
αÊa0

1 +α(1−Ki)
=
αÊa0
γ

, (69)

so that

N̂(x̂) =
1

µx̂
e−x̂/µx̂ . (70)

Note that an increasing value of γ in Eq. (69) represents an
increasing proportion of lower energy particles available for 75

deposition relative to this availability with γ→ 1, the effect
of which is to decrease the mean travel distance.

The total energy Ê also declines exponentially with x̂.
Namely, substituting Eq. (70) into Eq. (60) leads to

Ê(x̂) = 1− 1

α
[1 +α(1−Ki)](1− e−x̂/µx̂) 80

= 1− γ

α
(1− e−x̂/µx̂) . (71)

This example of isothermal conditions illustrates that with
Êa = Êa0, then according to Eq. (69) the average travel dis-
tance µx̂ is directly proportional to the initial average energy.5

However, isothermal conditions are unlikely, because accord-
ing to Eq. (66), such a condition requires a specific value of
Ki for the ratio Êa/Êh = γ. We now consider the more gen-
eral case involving either net cooling or net heating.

As above we assume that the ratio Êa/Êh = γ is fixed, al-10

though the averages Êa and Êh otherwise are unconstrained.
Net cooling or net heating is not prescribed; either condition

is allowed. Using Eq. (60) and Eq. (61) the disentrainment
rate is (Appendix H)

P̂x̂(x̂) =
1

ax̂+ b
, (72)15

where

a=
α

γ

(
Ki − 1 +

γ

α
− 1

α

)
=
α

γ
(Ki −Ki∗) and

b=
αÊa0
γ

. (73)

Note that as a→ 0 the disentrainment rate goes to a fixed20

value equal to 1/b= γ/αÊa0, and the distribution fx̂(x̂) of
travel distances x̂ goes to an exponential distribution with
mean µx̂ = b= αÊa0/γ. A value of a > 0 (Ki >Ki∗) im-
plies decreasing disentrainment with increasing x. A value
of a < 0 (Ki <Ki∗) implies increasing disentrainment.25

More generally, the distribution of travel distances is a
generalized Pareto distribution with position parameter equal
to zero (Appendix H), namely,

fx̂(x̂) =
b1/a

(ax̂+ b)1+1/a
, (74)

where now a ∈ < is interpreted as a shape parameter and b >30

0 is a scale parameter (Pickands, 1975; Hosking and Wallis,
1987). The cumulative distribution is

F̂x̂(x̂) =

{
1− b1/a

(ax̂+b)1/a
a 6= 0

1− e−x̂/b a= 0 ,
(75)

and the exceedance probability is

R̂x̂(x̂) =

{
b1/a

(ax̂+b)1/a
a 6= 0

e−x̂/b a= 0 .
(76)35

For a < 1 the mean is

µx̂ =
b

1− a
=

αÊa0
1 +α−αKi

, (77)

which is independent of the ratio γ = Êa/Êh. This is the
same as Eq. (69) for isothermal conditions, although the de-
nominator in Eq. (77) generally is not equal to γ. In turn, Eq. 40

(77) requires that

Ki < 1 +
1

α
, (78)

which provides the upper limit of Ki for which the mean µx̂
is defined. Because α > 0, this limit may be greater than one.
For a < 1/2 the variance is 45

σ2
x̂ =

b2

(1− a)2(1− 2a)
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=
α2Ê2

a0

(1 +α−αKi)2(2/γ+ 2α/γ− 1− 2αKi/γ)
. (79)

Unlike the mean, the variance depends on γ = Êa/Êh. In
turn, for a≥ 1 such that 50

Ki ≥ 1 +
1

α
, (80)

the mean of fx̂(x̂) is undefined. Moreover, for a≥ 1/2 the
variance is undefined. These results reflect the heavy-tailed
behavior of the generalized Pareto distribution.

As a point of reference in the second companion paper 55

(Furbish et al., 2021a), the generalized Pareto distribution
defined by Eq. (74) also may be considered a generalized
Lomax distribution. This distribution can be rewritten as an
ordinary Lomax distribution (Appendix H). Namely, if we
define the shape parameter aL = 1/a and the scale parame- 60

ter bL = b/a, then Eq. (74) becomes

fx̂(x̂) =
aLb

aL
L

(x̂+ bL)1+aL
aL, bL > 0 , (81)

which is a Lomax distribution with mean

µx̂ =
bL

aL− 1
aL > 1 . (82)

For aL > 0 (a > 0) the forms and behaviors of Eq. (74) and 65

Eq. (81) are identical. Notice, however, that if a < 0 then
aL = 1/a < 0 and bL = b/a < 0 for positive b. This means
that we cannot use the form of the Lomax distribution given
by Eq. (81) to examine conditions involving a < 0. Yet these
conditions are mechanically meaningful, so we proceed us- 70

ing the generalized Pareto distribution given by Eq. (74). To
be clear, the ordinary Pareto distribution that is normally re-
ferred to in the literature is a special case of the generalized
Pareto distribution. In turn the Lomax distribution is a special
case of the Pareto distribution (and therefore of the general- 75

ized Pareto) with position parameter equal to zero.
With reference to Figure 4, for a < 0 the distribution fx̂(x̂)

is bounded at a value of x̂= b/|a| with a mean given by
Eq. (77). This represents a condition of rapid thermal col-
lapse. Specifically, when a <−1 this distribution monoton-
ically increases and becomes asymptotically unbounded at
x̂= b/|a|. In the limit of a→−1 it becomes a uniform dis-
tribution. When a=−1/2 this distribution is triangular. For5

−1/2< a < 0 this distribution decays more rapidly than an
exponential distribution and is bounded at the position x̂=
b/|a|. For a= 0, fx̂(x̂) becomes an exponential distribution,
representing an isothermal condition as described above. For
a > 0 the distribution fx̂(x̂) is heavy-tailed. This represents10

a condition of net heating. Specifically, for 0< a < 1/2 this
distribution decays more slowly than an exponential distri-
bution, but it possesses a finite mean and a finite variance.

For 1/2≤ a < 1 the distribution possesses a finite mean but
its variance is undefined. For a≥ 1 the mean and variance15

of fx̂(x̂) are both undefined, even though this distribution
properly integrates to unity. For a > 0 the tail of fx̂(x̂) de-
cays as a power function, namely, fx̂(x̂)∼ x̂−(1+1/a). The
exceedance probability decays as Rx̂(x̂)∼ x̂−1/a. These re-
sults are summarized in Table 1. We provide evidence of all20

three behaviors — rapid thermal collapse, isothermal con-
ditions, and net heating — in our second companion paper
(Furbish et al., 2021a).

The formulation above assumes uniform surface condi-
tions, specifically, uniform slope angle and roughness tex-25

ture. We show below (Section 6) how it may be adapted to
varying downslope conditions. We also note that the distri-
bution fx̂(x̂) given by Eq. (74) can be incorporated into a
mixed distribution. Indeed, a mixed distribution is the nat-
ural choice for describing the travel distances of a mixture30

of particle sizes, each involving a different frictional cooling
behavior for a given surface roughness (Roth et al., 2020).

4.2 Elements of the average travel distance

The average travel distance given by Eq. (77) for Ki <
1 + 1/α contains all of the elements that influence parti- 35

cle motions except the quantity γ. Thus, whereas the aver-
age by itself does not reveal the source of variations in the
form of distribution of travel distances, Eq. (74), the aver-
age nonetheless provides a focal point. Here we rewrite this
average in its dimensional form, then step through the signif- 40

icance of its elements. Namely, with Ea0 = (1/2)m〈u20〉 and
Ki = S/µ= (1/µ)mg sinθ/mg cosθ,

µx =
Ea0

mgµcosθ

α

1 +α−αKi

=
Ea0

(1 + 1/α)mgµcosθ−mg sinθ
. (83) 45

For an ensemble of particles whose motions start at x= 0,
the average travel distance µx increases directly with the av-
erage starting energy Ea0 ∝ 〈u20〉. This is entirely akin to the
formulation by Kirkby and Statham (1975) (see below), and
it highlights the significance of the initial particle energy con- 50

ditions at x= 0 in setting their travel distances. The archety-
pal example involves rock fall from cliffs followed by their
motions over talus and scree slope surfaces (Figure 1), where
fall heights and initial rebounds set the initial average downs-
lope energy. This also is a key element in experiments where 55

initial energies are set by the choice of drop height (Kirkby
ana Statham, 1975) or launch speed (Gabet and Mendoza,
2012; DiBiase et al., 2017). This aspect of the formulation
also points to the significance of energetics associated with
the entrainment rate Es(x) in Eq. (5) and Eq. (6) at hillslope 60

positions that are not necessarily as well-defined as, say, the
base of a cliff (see Section 6).
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Figure 4. Plot of probability density fx̂(x̂) versus travel distance x̂ for scale parameter b= 1 and different values of the shape parameter a
for (a) a < 0 and (b) a≥ 0 with associated exceedance probability plots (insets). Compare with Figure 1 in Hosking and Wallis (1987).

Table 1. Behavior of the generalized Pareto distribution associated with the shape parameter a and Kirkby number Ki as illustrated in Figure
4.

Behavior Range of a Range of Ki Mean µx̂ Variance σ2
x̂

Bounded1, increasing with x̂ a <−1 Ki < 1− (2γ− 1)/α b/(1− a) b2/(1− a)2(1− 2a)
Uniform a=−1 Ki = 1− (2γ− 1)/α b/2 b2/12
Bounded1,2, decreasing with x̂ −1< a < 0 Ki <Ki∗ = 1− (γ− 1)/α b/(1− a) b2/(1− a)2(1− 2a)
Exponential a= 0 Ki =Ki∗ = 1− (γ− 1)/α b b2

Finite mean and variance 0< a < 1/2 Ki∗ <Ki <Ki∗ + γ/2α b/(1− a) b2/(1− a)2(1− 2a)
Finite mean, undefined variance 1/2≤ a < 1 Ki∗ + γ/2α≤Ki < 1+1/α b/(1− a) —
Undefined mean and variance a≥ 1 Ki ≥ 1+1/α — —

1Truncation occurs at dimensionless distance x̂= b/|a|.
2Triangular with a=−1/2

The average travel distance µx is inversely proportional to
the rate of frictional cooling represented by mgµcosθ. Here
we reemphasize that despite its form, this expression does
not represent a Coulomb-like friction. Rather, this expres-
sion enters the formulation via the characteristic length λ in
setting the expected number of collisions per unit distance,
nx. As described below, the surface-normal component of5

the particle weight does not set collisional friction; this is
set by dynamic forces during collisions. Moreover, the ap-
pearance of the Kirkby number Ki in the denominator of Eq.
(83) indicates that as Ki increases, the denominator becomes
smaller (subject to the conditions that Ki < 1 + 1/α), so the10

average travel distance increases. We also note that, except
for purely bouncing motions, it is incorrect to interpret the
length λ strictly as a saltation-like distance. This is a scaling
approximation (Appendix D) to show that nx must involve
the average energy (∝ 〈u2〉) and the geometrical factor cosθ15

at lowest order.
Notice that Eq. (83) indicates that withEa0 = (1/2)m〈u20〉

the average travel distance µx is independent of the particle
mass m. Viewed in isolation, this suggests that large parti-
cles should on average travel no farther than small particles.20

However, this is inconsistent with what is observed in labora-
tory and field-based experiments (Kirkby and Statham, 1975;
DiBiase et al., 2017; Roth et al., 2020) and with downslope
size sorting on natural talus and scree slopes (Statham, 1976).
We examine this topic in the second companion paper (Fur-25

bish et al., 2021a); here we offer a synopsis, which centers
on the interpretation and significance of the quantities µ and
α.

Recall that the formulation is based on the assumption
that a change in translational kinetic energy ∆Ep associ-30

ated with a particle-surface collision can be expressed as
∆Ep =−βxEp so that βx =−∆Ep/Ep is the proportion of
the energy extracted during the collision. Both ∆Ep and βx
are random variables. As described in Appendix E, in general
we may write the energy balance of a particle as35

∆Ep =−∆Er − fc− fy . (84)

Here, a positive change in rotational energy ∆Er is seen
as an extraction of translational energy. This loss of trans-
lational energy with the onset of rotation may be relatively
large if a collision involves stick following initial sliding due 40

to a large normal impulse, and such a loss also may occur due
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to the imposed torque of friction during a collision that does
not necessarily involve stick. The term fc in Eq. (84) repre-
sents losses associated with particle and surface deformation
as well as work performed against friction during collision 45

impulses (thence converted to heat, sound, etc.). But this term
also includes losses associated with deformation of the sur-
face at a scale larger than that of an idealized particle-surface
impulse contact, namely, due to momentum exchanges as-
sociated with the sputtering of loose surface particles dur- 50

ing collision. (The videos published as supplementary ma-
terial to DiBiase et al. (2017) nicely illustrate this sputter-
ing as well as the onset of rotational motion.) The term fy
in Eq. (84) represents the energy loss associated with glanc-
ing collisions that produce transverse translational motions 55

and rotation oriented differently than any incident rotation.
In some cases the change in energy ∆Ep can be expressed
directly in terms of the energy state Ep (Appendix E). How-
ever, the complexity of particle-surface collisions on natural
hillslopes precludes explicitly demonstrating such a relation 60

for all possible scenarios. Nonetheless, it is entirely defensi-
ble to assume that energy losses can be related to the energy
state Ep if the elements involved are formally viewed as ran-
dom variables. Then, the simple relation ∆Ep =−βxEp is
to be viewed as an hypothesis to be tested against data. 65

This hypothesis formally enters the formulation via the
right side of Eq. (58). Namely, from this relation we may
write µ∼ 〈βx〉, highlighting that µ is associated with the
cooling rate. In turn, particle collision mechanics (Appendix
E) suggest, for example, that µ∼ 〈βx〉 ∼M(θ), whereM(θ) 70

involves the coefficients associated with tangential and nor-
mal impulses contributing to energy losses during collisions,
and depends on the slope angle θ in that the expected surface
normal impact velocity varies with this angle. (In an ideal-
ized particle-surface collision these coefficients include the 75

normal coefficient of restitution and a coefficient describing
the ratio of tangential to normal impulses during the collision
(e.g., Brach, 1991; Brach and Dunn, 1992, 1995)). Moreover,
M(θ) is independent of particle size.

In turn, focusing on the definition of the deposition length
scale Lc, Eq. (51), α may be viewed as representing a direct
effect of heating described by mg sinθ, namely, to decrease
the likelihood of deposition by decreasing the proportion of
particles that cool to sufficiently low energies for deposition5

to occur — which translates to suppressing the disentrain-
ment rate and increasing the length scale of depositionLc rel-
ative to the cooling length scale lc = Eh/mgµcosθ. Specifi-
cally, heating decreases the spatial rate of the Poisson deposi-
tion process below that which would occur in the absence of10

heating. In this view, µ goes with the cooling rate (not the de-
position rate). But we also may write Eq. (51) as in Eq. (53).
Viewed in this manner, we may define an apparent friction
factor as µ0 = µ(1−µ1Ki) associated with deposition. Here
again, µ is associated with the cooling rate but is then modu-15

lated by heating. We suggest in the second companion paper
(Furbish et al. 2021a) that for the same particle size, α in-

creases with increasing Ki , very likely due to a combination
of increased heating and increased partitioning of transla-
tional energy to rotational motion (Dorren, 2003; Luckman,20

2013) — both decreasing the likelihood of stopping and not
represented in just the factor µ. We also suggest that for the
same slope and surface roughness, α increases with increas-
ing particle size, decreasing the likelihood of frictional loss
with increasing rotation.25

Turning to the factor γ (which does not appear in Eq. (83)),
recall that an increasing value (γ > 1) reflects an increasing
availability of low energy particles for deposition. Here is
what we know. On the one hand, γ cannot be close to unity
with randomization of motions by collisional friction, or if30

the initial downslope energies Ep0 are not a fixed value. That
is, if the distribution of energies fEp(Ep,0) has finite vari-
ance, then γ > 1. On the other hand, γ cannot be very large,
or deposition would dominate over small distances without
long motions that are observed — unless the Kirkby number35

Ki is unrealistically large. It is possible to qualitatively ex-
plore possible values of γ based on assuming different forms
of the distribution of energies (and we have done this), but in
the absence of knowing the specific form of the distribution,
this exercise is not particularly meaningful. In the compan-40

ion paper we show that fits of experimental travel distances
to the theoretical distribution fx(x) are relatively insensitive
to the specific value of γ selected.

5 Related formulations

Here we briefly examine three related formulations of parti-45

cle disentrainment, focusing on the mechanical basis of this
work for comparison with the formulation above. (We ex-
amine associated experiments in the companion paper.) We
start with the formulations of Kirkby and Statham (1975) and
Gabet and Mendoza (2012). These begin with descriptions50

of particle motions over time rather than space, centered on
consideration of a combination of momentum and energy.
We then consider elements of the probabilistic formulation
presented by Furbish and Haff (2010), Furbish and Roering
(2013) and Doane et al. (2018). 55

5.1 Kirkby-Statham formulation

In their study of particle motions on scree surfaces, Kirkby
and Statham (1975) start with a statement of conservation of
energy for a particle falling from height h at x= 0 onto a
rough surface inclined at an angle θ. Namely, if w0 =

√
2gh 60

is the vertical impact velocity, then it is assumed that the ini-
tial downslope velocity on average is u0 = w0 sinθ. (This ac-
tually should be u0 = εw0 sinθ with the normal coefficient of
restitution ε.) The initial downslope particle energy therefore
is (1/2)mu20 = ε2mghsin2 θ = Ep0. In turn, because work 65

is W = Fxl, where Fx is the downslope force and l is a
displacement, then for a fixed force Fx the displacement is
l =W/Fx. Assuming that W must be equal to the initial ki-
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netic energy Ep0 (that is, this initial energy is dissipated over
the distance l), then l = Ep0/Fx. Assuming a Coulomb-like 70

friction behavior, Fx =mg sinθ−µdmg cosθ, where µd is a
dynamic friction coefficient. Upon asserting that the length l
represents the expected travel distance µx,

µx =− Ep0
mg sinθ−µdmg cosθ

=− ε2hsin2 θ

sinθ−µd cosθ
, (85)

where it is assumed that |µd cosθ| ≥ sinθ. As described be- 75

low, this is equivalent to assuming that particle energy de-
creases linearly with distance.

This formulation correctly describes the motion of an indi-
vidual particle that experiences a fixed Coulomb-like friction
force, but it cannot represent the rarefied behavior of an en- 80

semble of particles. Nonetheless, it shares elements of the
preceding formulation. Namely, in comparing Eq. (85) with
Eq. (83), let us momentarily set aside the fact that Ep0 can-
not represent Ea0 except in the limit of zero variance of ini-
tial energy states (γ = 1), and that the friction factor µ in Eq. 85

(83) and the dynamic friction coefficient µd in Eq. (85) have
different interpretations. These two descriptions of the aver-
age travel distance µx then converge in the limit of α→∞.
Inasmuch as Eq. (52) correctly describes the behavior of α,
this limit coincides with Ki → 1. 90

More generally, Eq. (85) implies that the deposition rate is
independent of the extant energy state of particles. If Eq. (85)
denotes the average of a distribution of travel distances with
fixed disentrainment rate, then this fixed rate Px = 1/µx. In
dimensionless form this is 95

Px̂ =
1−Ki

Êp0
. (86)

That is, Eq.(86) cannot allow for the possibility of variations
in the cooling rate or heating rate that give spatial variations
in the disentrainment rate, as in Eq. (72). The resulting distri-
bution fx(x) of travel distances therefore is exponential for 100

all Ki < 1.
Interestingly, the formulation of Kirkby and Statham

(1975) is equivalent to (Appendix I)

dEp
dx

=mg sinθ−mgµd cosθ . (87)

This is like Eq. (57), but lacks the heating effect of depo-
sition. Like Eq. (85), Eq. (87) implies that deposition is in-5

dependent of the extant energy state; and when Ki = 1 the
energy Ep remains fixed as x→∞ (again noting that Ep0
cannot represent Ea0 except in the limit of zero variance of
initial energy states).

Dorren (2003) provides a review of efforts to elaborate10

the Kirky-Statham description of particle motions in relation
to hazard assessment. These mostly appeal to a Coulomb-
like frictional behavior and are focused on predicting rockfall
runout distances.

5.2 Gabet-Mendoza formulation15

In support of their experimental work involving particle
motions on a rough, inclined surface, Gabet and Mendoza
(2012) appeal to ideas from Quartier et al. (2000) and Sam-
son et al. (1998) and assume that particle acceleration is de-
scribed as a linear combination of the gravitational force, a20

Coulomb-like friction and collisional friction, namely,

du(t)

dt
= g sinθ−µdg cosθ−κuψ . (88)

As written, the dimensions of the coefficient κ depend on
the value of the exponent ψ, which is thought to vary be-
tween one and two based on experiments. The principal sig-25

nificance of this formulation is that it points to the role of col-
lisional friction — which Quartier et al. (2000) demonstrate
is the principle source of energy dissipation in their experi-
ments — and thus represents an important step beyond the
Coulomb-like model of Kirkby and Statham (1975). How-30

ever, because there is confusion in the literature regarding
the form and interpretation of Eq. (88), we summarize the
basis of this formulation in Appendix J. The essence is this:
The Coulomb term and the collisional term as written are not
additive for an individual particle. The collisional term is a35

stochastic quantity and applies to an averaged behavior, not
to the instantaneous behavior of an individual particle. If this
term is involved, the velocity u must be considered a time-
averaged or ensemble-averaged velocity, or Eq. (88) must be
recast as a Langevin-like equation. Parts of this formulation40

are appropriate for describing the behavior of particles that
roll bumpety-bump over a surface roughened with a mono-
layer of particles, but for the reasons described above and
in Appendix J the deterministic, continuous form of this for-
mulation is not well matched to the mechanics involved in45

rarefied motions over the roughness of natural hillslopes.
In both formulations above the idea of a Coulomb-like

friction with a dynamic friction coefficient is mechanically
unsound (Appendix J). For particles that tumble, bounce and
skitter down a rough surface, the static normal weight of 50

a particle, mg cosθ, does not set the particle-surface fric-
tion. Rather, dynamic forces during collision impulses mat-
ter (Brach, 1991; Stronge, 2000). This includes the dynamic
Coulomb-like friction force associated with conversion of
translational to rotational kinetic energy during collisions 55

(Appendix E). Formulating a dynamic friction coefficient
would require ensemble averaging of the ratio of tangential
to normal momentum exchanges, both of which are random
variables. A Coulomb-like friction is appropriate for solid
body and dense granular motions, but not for the rarefied 60

conditions described here.

5.3 Furbish-Haff-Roering-Doane formulation

The probabilistic formulation presented by Furbish and Haff
(2010), Furbish and Roering (2013) and Doane et al. (2018)
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assumes that travel distances are described by an exponen- 65

tial distribution whose mean µx is a function of the local
slope S. Namely, the mean increases with S and becomes
unbounded as S approaches a critical value Sc. This formu-
lation is equivalent to setting the mean µx ∼ Lc. Here we
consider the behavior of Lc over small S then as S→ Sc. 70

Starting with Eq. (49) we write

Lc ∼
αEh

mgµcosθ
=
αEh
mgµ

√
1 +S2 . (89)

If α is described by Eq. (52), and neglecting the factor µ1 for
simplicity, then this is

Lc ∼=
α0Eh
mgµ

√
1 +S2

1−Ki
=
α0Eh
mgµ

√
1 +S2

1−S/µ
. (90) 75

A binomial expansion of Eq. (89) gives

Lc ∼
αEh
mgµ

(
1 +

S2

2
+ ...

)
, (91)

and Eq. (90) gives

Lc ∼
α0Eh
mgµ

(
1 +

S2

2
+ ...

)(
1 +

S

µ
+ ...

)
80

=
α0Eh
mgµ

(
1 +

S

µ
+
S2

2
+ ...

)
. (92)

From Furbish and Haff (2010),

Lc ∼ λ0
(
Sc +S

Sc−S

)
= λ0

(
1 +

2S

Sc
+
S2

S2
c

+ ...

)
. (93)

If we interpret the length scale λ0 ∼ αEh/mgµ, then for
small to modest slopes S, Eq. (91) and Eq. (93) differ in 85

their linear versus quadratic forms at lowest order. If λ∼
α0Eh/mgµ, then the behavior of Eq. (92) and Eq. (93) are
the same if Sc = 2µ. More generally, Eq. (92) and Eq. (93)
display the same behavior with increasing S. Namely, if the
critical slope is interpreted as Sc ∼ µ, the length scale Lc
in both cases increases approximately linearly over much of
the domain of S then asymptotically becomes unbounded as
S→ Sc.5

Note that the formulation involving Eq. (93) is limited to
an exponential form of the distribution of travel distances
(Furbish and Haff, 2010; Furbish and Roering, 2013; Doane
et al., 2018). It does not mimic the different forms of fx(x)
illustrated in Figure 4, and it lacks a mechanical underpin-10

ning as presented in previous sections.

6 Varying disentrainment rate

The formulations above envision particle motions starting at
position x= 0 such that the distribution of travel distances

is expressed as fx(x). This is particularly convenient when15

considering laboratory and field experiments in which parti-
cles are released on a sloping surface from the same starting
position, as examined in the companion paper. Here we re-
turn to our starting point concerning calculations of the par-
ticle flux and use of the entrainment form of the Exner equa-20

tion as summarized in Section 2. Recall that in this frame
of reference the particle travel distance is denoted by r and
the starting position may involve any position x. Then, with
reference to Eq. (4), Eq. (5) and Eq. (6), the disentrain-
ment rate is Pr(r;x), the distribution of travel distances r25

is fr(r;x) and the exceedance probability (survival function)
is Rr(r;x) = 1−Fr(r;x). In turn, for particles starting at x,
the mean travel distance is µr(x).

To use the results of Section 2.1 in specifying the ex-
ceedance probability Rr(r;x) and the probability density30

fr(r;x) in the entrainment forms of the flux and the Exner
equation, Eq. (5) and Eq. (6), requires a key assumption.
Namely, one must assume that the factors controlling the
disentrainment rate on a hillslope change sufficiently slowly
over x such that these factors defined at any position x cor-35

rectly determine the conditions for the downslope motions
of particles starting at x (Furbish and Roering, 2013; Doane
et al., 2018). This is equivalent to assuming that during its
downslope motion a particle “sees” conditions similar to
those at its starting position. However, in actuality particles40

may see new conditions during their motions that change
their behavior relative to what was “predicted” by the condi-
tions at their starting positions. Let λS denote a characteristic
distance over which conditions persist. For example, focus-
ing on the Kirky number Ki ,45

λS ∼
Ki

∂Ki/∂x
. (94)

Thus, a rapid change in Ki over position x implies that λS
is small, and if Ki changes slowly then λS is large. Uniform
conditions imply that λS →∞. We may then assume that if
µx� λS , conditions change sufficiently slowly that use of50

the continuous forms of Rr(r;x) and fr(r;x) with Eq. (5)
and Eq. (6) provides a reasonable approximation of collective
particle behavior.

This strategy might be acceptable for an exponential-like
distribution with finite moments, but it is problematic if par- 55

ticle travel distances r involve a heavy-tailed distribution or
if conditions transition along x between net cooling and net
heating, or vice versa. Herein resides the merit of the discrete
form of the disentrainment rate and the distribution of travel
distribution as summarized in Section 2.2. Recall that this 60

formulation is aimed at describing the ingredients of disen-
trainment that are occurring at different locations on a hills-
lope, where the mechanical behavior at a location transitions
to another behavior in the downslope direction. In this formu-
lation we let pk denote the probability that a particle, having 65

not been disentrained before the kth interval, then becomes
disentrained within this interval.
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Let dr denote a finite (rather than infinitesimal) interval.
Then the kth interval begins at r and ends at r+ dr. Letting
Nk =N(r) denote the number of particles reaching the kth 70

interval, then based on Eq. (56) the probability that a particle
will be disentrained within this interval is

pk =− 1

Nk
dN =

γ

α
mgµcosθ

1

Ea
dr (95)

This will be recognized as the setup for a simple finite-
difference scheme, to be coupled with a similar finite- 75

difference expression for the average energy state Ea.
Namely, in dimensionless form, for particles starting at posi-
tion x̂,

N̂(r̂+ dr̂; x̂)≈ N̂(r̂; x̂)− γ

α

N̂(r̂; x̂)

Êa(r̂; x̂)
dr̂ and (96)

80

Êa(r̂+ dr̂; x̂)≈ Êa(r̂; x̂) +

(
Ki − 1 +

γ

α
− 1

α

)
(r̂; x̂)dr̂

= Êa(r̂; x̂) + [Ki(r̂; x̂)−Ki∗(r̂; x̂)]dr̂ , (97)

where both the Kirky number Ki and the elements of the
transition value of the Kirkby number Ki∗ = 1−γ/α+ 1/α 85

may vary from one interval to the next as conditions vary in
the downslope direction. The proportion of N̂(0; x̂) particles
starting from position x̂ is then recovered from

fk(k; x̂)≈− 1

N̂(0; x̂)
[N̂(r̂+ dr̂; x̂)− N̂(r̂; x̂)]

90

=− 1

N̂(0; x̂)
[N̂(k+ 1; x̂)− N̂(k; x̂)] . (98)

We note that, although different in form and implementation,
this description is similar to the particle-based scheme of
Tucker and Bradley (2010) in which particle behavior adjusts
to newly encountered conditions during downslope motion. 95

Consider for illustration a situation in which the Kirkby
numbers Ki and Ki∗ systematically vary with position x̂, rel-
ative to uniform conditions (Figure 5). This may be due, for
example, to variations in steepness or in the friction µ with
increasing travel distance. Also recall that Ki <Ki∗ implies5

cooling whereas Ki >Ki∗ implies heating.
In these examples we let α vary with the Kirkby number

Ki according to Eq. (52) in anticipation of results presented
in the companion paper. A decreasing rate of cooling associ-
ated with, for example, steepening in the downslope direction10

generally increases the heaviness of the tail of the distribu-
tion relative to the tail associated with a fixed rate of cooling
(Figure 6). We present evidence in the companion paper that
this occurs in the field-based experiments reported by DiBi-
ase et al. (2017). Specifically, particles were launched down15

a rough hillslope surface, and then their travel distances were

Figure 5. Cartoon of hillslope surfaces with downslope variations
in steepness leading to concomitant variations in heating, cooling
and deposition; this is in contrast to a planar slope with uniform µ
that produces either net heating or net cooling, or isothermal condi-
tions.

Figure 6. Plot of exceedance probability Rx̂(x̂) versus dimension-
less travel distance x̂ showing conditions with fixed net cooling
(solid line) and conditions that start with the same cooling rate but
then involve a decreasing rate with increasing distance x̂ (circles).
In this example the Kirkby number starts at Ki = 0.70 at x̂= 0 and
increases to Ki = 0.96 at x̂= 10.

measured over a 14 m interval. Particles reaching the steeper
slope below the measurement interval continued to the base
of the hillslope without stopping. In turn, an increasing rate
of cooling (e.g., with decreasing slope in the downslope di-20

rection) generally lightens the tail, and may lead to truncation
of the distribution if the rate increases rapidly enough. More-
over, a condition involving initial heating followed by cool-
ing (e.g., with a concave hillslope surface) can lead to a dis-
tribution with a finite mode (Figure 7). These examples rep-25

resent situations where particle travel distances cannot nec-
essarily be approximated by a distribution whose paramet-
ric values are set by the hillslope conditions at the position
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Figure 7. Probability mass function fk(k; x̂) of discrete travel dis-
tances k associated with initial net heating over small k followed by
net cooling with increasing k, leading to a finite mode. In this ex-
ample the Kirkby number starts at Ki = 0.90 at kdr̂ = x̂= 0 and
decreases to Ki = 0.57 at kdr̂ = x̂= 10.

where particle motions start. We defer further examination
of this behavior, including use of the convolutions in Eq. (5)30

and Eq. (6), for a later time.

7 Discussion and conclusions

Our formulation of rarefied particle motions is based on a de-
scription of the energy balance of a cohort of particles treated
as a rarefied granular gas, and a description of particle depo- 35

sition that depends on the energy state of the particles. The
formulation leads to a generalized Pareto distribution of par-
ticle travel distances, Eq. (74). This distribution represents
three well-defined behaviors in which the Kirkby number Ki
— the ratio of graviational heating to frictional cooling — 40

has a principal role. Conditions with relatively small Ki lead
to rapid thermal collapse such that the distribution of travel
distances is bounded. For intermediate values of Ki the rate
of gravitational heating may be matched by the rate of fric-
tional cooling, giving approximately isothermal conditions
and an exponential distribution of travel distances. Condi-5

tions with large Ki and net heating lead to a heavy-tailed
distribution of travel distances. We provide compelling ev-
idence of all three behaviors in our companion paper (Fur-
bish et al., 2021a). Here we emphasize that we do not choose
the generalized Pareto distribution in the empirical manner of10

selecting a distribution based on goodness-of-fit criteria ap-
plied to data sets. Rather, this distribution is dictated by the
physics of the problem, just as, for example, the Boltzmann
distribution (an exponential distribution) emerges in classi-
cal statistical mechanics from consideration of the accessible15

energy microstates of a gas system. We elaborate this point
in the third companion paper (Furbish et al., 2021b).

Two of the most important elements of the formulation are
the deposition length scales lc(Ep) and Lc(Eh), the former
being keyed to the specific particle energy state Ep and the20

latter being keyed to the harmonic average energy Eh of the
particle cohort. Indeed, these lengths provide the essential
connection between particle deposition and the energy bal-
ance of the particle cohort. We assume that lc is set by the
advective cooling length scale in the Fokker-Planck equation,25

that is, Eq. (44). This is a natural choice in that deposition
must go with cooling. The energy specific deposition rate in
the absence of heating is then specified as if deposition pro-
ceeds as a spatial Poisson process. We emphasize that this
represents a maximum (information) entropy choice in the30

sense that it is faithful to what we think we know, namely,
the connection between deposition and cooling, as well as to
what we do not know (Jaynes, 1957a, 1957b), namely, any
detailed physics that would produce a different rate (for ex-
ample, involving a nonlinear dependence on energy state) but35

which cannot be specified or constrained with available in-
formation. This description then leads to the interesting re-
sult, Eq. (46), that the loss of total energy due to deposition
appears to be independent of the energy state. In particular,
the loss of large energy states occurs at a relatively slow rate40

whereas the loss of small energy states occurs at a relatively
fast rate. In effect the rate of loss of energy per energy inter-
val is fixed across energy states. The result is that the energy
Ep cancels with substitution of Eq. (45) into the integral in
Eq. (46) such that the total loss becomes independent of the45

energy state. That is, the loss of total energy goes simply with
the loss of particles (and the energy they possess).

In turn, the total deposition rate is energy dependent. This
rate, defined by the length scale Lc, is obtained by integrat-
ing the number density of particles over all possible energy50

states as in Eq. (48). Because lc is keyed to the energy state
Ep, but the integral in Eq. (48) does not involve this energy
in the numerator, the result involves the reciprocal of the har-
monic average energy Eh. In general, the harmonic average
diverges from the arithmetic averageEa with increasing vari-55

ance of the distribution of energy states. With Ea/Ea = γ,
the resulting ratio γ/Ea in Eq. (56) (with dimensionless form
given by Eq. (61) or Eq. (64)) reflects an increasing propor-
tion of lower energy particles available for deposition, rel-
ative to this availability with γ→ 1. This effect is directly 60

apparent in the expression of the mean travel distance, Eq.
(69), associated with isothermal conditions.

Note that the formulation does not involve specifying a
threshold energy for deposition. Such an idea is mechanically
irrelevant. Whereas low energy particles are on average more 65

likely to become disentrained than are high energy particles,
a set of particles with precisely the same low energy will
for probabilistic reasons not be disentrained simultaneously.
Each particle experiences a unique set of conditions that dis-
entrain it; and because of this uniqueness of conditions a par- 70

ticle with energy below an arbitrarily assigned threshold can
with finite probability be gravitationally reheated to a higher
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energy state. For given particle and surface roughness condi-
tions, the formulation treats this aspect of disentrainment as
a probabilistic process. In effect, this aspect is incorporated 75

into the deposition lengths lc and Lc as these are related to
the distribution of particle energy states and the probabilisti-
cally expected extraction of energy during collisions.

Frictional cooling is formulated in terms of extraction
of translational kinetic energy associated with particle- 80

surface collisions. This involves the random variable βx =
−∆Ep/Ep whose energy specific average βx is the expected
proportion of energy extracted from particles with energy
Ep. In detail the change in energy ∆Ep may be partitioned
between a frictional loss, any conversion of translational 85

to rotational energy, and any apparent loss associated with
downslope incident motion reflected to transverse motion
during a glancing collision. Our treatment of the dissipa-
tion quantity βx as a random variable does not distinguish
the details involved in collisions. Yet these details may be 90

important in terms of effects of different particle sizes and
shapes, specifically the likelihood that the partitioning of en-
ergy losses differs between sizes or shapes. Herein the fac-
tor α modulating the length scale in Eq. (51) has a dualistic
role. As incorporated in Eq. (51), this quantity represents the 95

effect of heating, namely, to decrease the likelihood of de-
position by decreasing the proportion of particles that cool
to sufficiently low energies for deposition to occur — which
translates to suppressing the disentrainment rate and increas-
ing the length scale of deposition Lc. As incorporated in Eq. 100

(53), this quantity modulates the frictional cooling described
by µ∝ 〈βx〉 to give an apparent decrease in friction associ-
ated with deposition.

Whereas particles that are small relative to the surface
roughness texture are on average more likely to experience 105

near collinear collisions with surface bumps and be “cap-
tured” within divots and pockets, particles that are large rel-
ative to the roughness texture are less likely to experience
direct collisions with, or strong deflections by, smaller sur-
face bumps. In addition, large particles are more likely to 110

experience conversion of their translational energy into rota-
tional energy with less loss during collisions. In particular,
large spherical particles are more likely to roll or spin with
increased heating, and large spinning particles are less likely
than are smaller particles to be frictionally cooled. These5

points are reflected in the laboratory experiments of Samson
et al. (1998, 1999) (Appendix J), the laboratory experiments
of Kirkby and Statham (1975) and the field experiments of
DiBiase et al. (2017) and Roth et al. (2020) (see the second
companion paper (Furbish et al., 2021a)). This also implies10

that for a given slope angle and surface roughness, some par-
ticle sizes may experience net cooling while some sizes ex-
perience net heating (Roth et al., 2020), likely contributing
to the size sorting observed on many talus and scree slopes
(Kirkby and Statham, 1975; Statham, 1976; Luckman, 2013).15

We suspect the noticeable sorting in Figure 1 is due to these
effects.

The formulation readily accommodates the idea of a mixed
distribution composed of different distributions associated
with different particle sizes or mechanical behaviors. This20

amounts to forming a sum of distributions, each weighted in
proportion to the size classes involved in transport. As with
individual sizes, the formulation assumes rarefied conditions
— that particles of different sizes do not interact during their
downslope motions, or that such interactions negligibly in-25

fluence the particle energy balance relative to particle-surface
interactions. We provide an example in the second compan-
ion paper (Furbish et al., 2021a).

With rockfall and subsequent particle motions over talus
and scree surfaces, the initial energy state Ea0 can be ap-30

proximated in terms of the fall height (Kirkby and Statham,
1975). But this is a special situation in which the initial en-
ergy can be reasonably constrained. More generally, and with
reference to the entrainment forms of the flux and the Exner
equation, Eq. (5) and Eq. (6), we are concerned with entrain-35

ment of particles from many if not all positions on a hills-
lope in relation to disturbances. This points to the idea that
entrainment, if followed by long distance motions, requires
sufficient initial heating to keep particles moving downslope.
This in turn echoes the conclusion of Doane et al. (2018a),40

that correctly specifying the entrainment rate is a key part of
implementing formulations of nonlocal transport and mass
conservation. Because of the significance of sediment capac-
itors (e.g., vegetation) in trapping and storing sediment on
hillslopes (Lamb et al., 2013; Doane, 2018a), there is merit45

in clarifying the initial energetics of particles upon their re-
lease (i.e., entrainment) from storage. There also is a need
to examine re-entrainment and transport associated with par-
ticle collisions, analogous to work on particle splash during
aeolian transport and the energetics of collective entrainment50

(Ancey et al., 2008) by collisions during bed load transport
(Lee and Jerolmack, 2018).

That the energy and mass balances are expressed in the
form of coupled differential equations opens the possibil-
ity of describing effects of varying disentrainment rates in55

response to changing downslope conditions in a manner in-
trinsic to particle-based treatments of transport (Tucker and
Bradley, 2010), but not readily incorporated in previous prob-
abilistic descriptions. Namely, if surface conditions change
in the downslope direction, for example, giving net cooling 60

followed by heating or vice versa (Figure 5), then particles
whose travel distances are large enough “see” this change
and their behavior concomitantly changes. In this case the
coupled equations of energy and mass in principle can be
solved to accommodate these changing conditions. Interest- 65

ingly, as differential (or finite difference) equations these
have a local form, yet they intrinsically represent nonlocal
behavior in that information concerning the energy state Ea
and the mass N is cumulatively handed from one position
to the next downslope. In turn, the forms of Rr(r;x′) and 70

fr(r;x
′) associated with any position x′ in the expressions
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of the flux and its divergence, Eq. (5) and Eq. (6), must be
based on information downslope from this position.

In this regard, here we offer further perspective on what
is meant by local versus nonlocal transport on hillslopes. A 75

transition of travel distances involving a distribution with a
light tail to one with a heavy tail, as embodied in the gen-
eralized Pareto distribution, does not distinguish local from
nonlocal transport. As fully explained in Furbish and Roer-
ing (2013) and in Furbish et al. (2016), the convolutions in 80

Eq. (5) and Eq. (6) represent nonlocal transport regardless of
the form of the probability density function fr(r;x) and its
associated exceedance probability function Rr(r;x). These
scale independent expressions are just specialized forms of
the Master equation used in probabilistic descriptions of 85

particle motions over a remarkable range of scales (Ein-
stein, 1905; von Smoluchowski, 1906; Chandrasekhar, 1943
Risken, 1984). Nonlocal transport is a physical thing, and
refers to the idea that attributes of particle motions used in
defining the rheology, the flux or its divergence at a position 90

x depend on conditions “far” from this position (e.g., Boc-
quet et al., 2009; Brantov and Bychenkov, 2013; Henann and
Kamrin, 2013). In contrast, local transport is a mathematical
thing, not a physical thing, and refers to the idea that un-
der certain circumstances the convolution form of the Master 95

equation can be approximated such that the flux or its diver-
gence has the form of a local mathematical expression — for
example, a Fokker-Planck equation — whose terms involve
conditions associated with the local position x. As alluded
to above, a local expression can be formulated when the dis- 100

tribution fr(r;x) has finite moments and is peaked near the
origin (r = 0). A heavy-tailed behavior means that this is not
justified. Rather, the full convolution or a fractional deriva-
tive approximation of it must be used (Schumer et al., 2009).
Because of the generality and scale independence embodied 105

in the Master equation and the convolutions in Eq. (5) and
Eq. (6), the use of “nonlocal” as a qualifier of “transport” in
reference to hillslopes actually is redundant (Doane, 2018).
Its use is merely a reminder that the flux or its divergence at
a position x depends on things happening upslope. 110

The entrainment rate Es(x), the exceedance probabil-
ity function R(r;x) and the distribution of travel distances
fr(r;x) within the integrals in Eq. (5) and Eq. (6) are treated
as continuous functions. However, this does not imply a con-
tinuum behavior. Like the Fokker-Planck equation, which de-5

scribes the evolution of the probability density function of a
random variable that may or may not satisfy the continuum
hypothesis (see Appendix A in Furbish et al., 2018b), the
continuous forms of Eq. (5) and Eq. (6) represent a proba-
bilistic description of expected behavior, not necessarily the10

behavior of any one realization (system). In practical terms,
imagine a rockfall event from a cliff face involving an in-
dividual particle or a relatively small number of particles
whose subsequent downslope motions then start at position
x= 0 at the base of the cliff. Inasmuch as the generalized15

Pareto distribution fx(x) provides the correct description of

the expected behavior of the particles from the rockfall event,
then these particles may be viewed as a (small) sample drawn
from this distribution. The outcome of each realization (sam-
ple) is almost certainly different from all other realizations.20

Over a period of time the pooled outcomes (travel distances)
of many events converge to the smooth representations given
by fx(x) and Rx(x) — as if Gabet and Mendoza (2012),
DiBiase et al. (2017) and Roth et al. (2020) had performed
a gazillion additional rock-launching experiments (see sec-25

ond companion paper, Furbish et al. (2021a)) then pooled
the outcomes of these experiments. Implications of this idea
are examined further in Furbish and Haff (2010), Furbish and
Roering (2013) and Furbish et al. (2016, 2017, 2018b), and
again in the fourth companion paper (Furbish et al., 2021c).30

The formulation may have interesting implications for ex-
amining Martian landforms. For example, the appearance of
the acceleration g in Eq. (51), Eq. (56) and Eq. (83) imme-
diately suggests the possibility that particle travel distances
are on average significantly longer on Mars than on Earth for35

otherwise similar particle sizes and surface-roughness condi-
tions; and we are confident in suggesting that future Martians
likely will have far more fun than Earthlings in the sport of
boulder rolling, notably on the crater rim of Olympus Mons.
Nonetheless, we leave it to folks more familiar with Mars40

than we are to examine this. A key element of doing this is to
either assume that the friction factor µ is similar to what oc-
curs on Earth (which may be entirely reasonable) or further
unfold the elements of this factor. We comment on this idea
again in the second companion paper (Furbish et al., 2021a).45

We meanwhile note that a similar question arises in relation
to the role of g in setting the friction of granular slopes on
Mars. Atwood-Stone and McEwen (2013) address this ques-
tion by examining dune slip-face angles on Mars, and sug-
gest that the similarity of these angles with those observed50

on Earth weakens any argument for different granular behav-
ior associated with g — consistent with independent assess-
ments (Moore et al., 1987; Tesson et al., 2020) and the idea
that this angle is set by the static granular force-chain net-
work (Cates et al., 1998; Furbish et al., 2008).55

Appendix A: Choice of terminology

The study of granular materials is concerned with the behav-
ior of the phases of these materials and associated phase tran-
sitions (Jaeger et al., 1996; Baldassarri et al., 2005; Daniels
and Behringer, 2006; Forterre and Pouliquen, 2008; Jerol- 60

mack and Daniels, 2019). These phases and transitions share
attributes with ordinary materials — solids, liquids and gases
— although granular materials often exhibit behavior that is
much different than ordinary materials. Nonetheless, it has
become customary in the study of granular materials to adopt 65

terminology similar to that used to describe ordinary materi-
als.
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The ideas of heating and cooling of a granular material
are straightforward, to mean a change in the granular tem-
perature of the material, specifically the average translational 70

kinetic energy of the particles (but see van Zon and MacKin-
tosh (2004) and Baldassarri et al. (2005)). However, granu-
lar materials do not possess an internal energy in the sense
that we attribute to the particles of an ordinary liquid or
gas. This means that heating of a granular material requires 75

a mechanical input of energy, whereas cooling is associ-
ated with dissipative (non-conservative) collisions of parti-
cles with each other and with boundaries. In the problem at
hand, gravitational heating occurs as particles move downs-
lope, and their gravitational potential energy is converted to 80

kinetic energy. Frictional cooling is associated with dissipa-
tive particle-surface interactions (e.g., collisions).

The ideas of melting and freezing of a granular mate-
rial (Daniels and Behringer, 2006) pertain to the transition
between a solid-like phase and a hydrodynamic (fluid-like) 85

phase. However, in the problem at hand, we are concerned
with rarefied particle conditions in which disentrainment
from the rarefied state to the solid-like state or vice versa does
not involve an intermediate hydrodynamic phase (e.g., Haff,
1983; Jenkins and Savage, 1983; Jaeger et al., 1996). Entrain- 90

ment is akin to sublimation, and disentrainment is akin to
deposition (or desublimation). Phase transitions involving an
intermediate hydrodynamic phase (evaporation/condensation
and melting/freezing) are represented in Earth-surface pro-
cesses, for example, by melting (entrainment) and freezing 95

(disentrainment) at the base of a granular flow, dry or wet.
We recommend the papers by Forterre and Pouliquen (2008),
Frey and Church (2011), Houssais et al. (2015) and Jerol-
mack and Daniels (2019) for perspectives on this emerging
topic, notably in relation to transport by shear flows. 100

Appendix B: Particle cohort

In order to clarify the idea of a cohort of particles associated
with a control volume with edge length dx (Figure 2), here
we offer a straightforward thought experiment. As a point
of reference, the study of granular gases typically involves 105

consideration of the behavior of an individual system com-
posed of many particles that are mechanically heated, where
energy dissipation is associated with particle-particle colli-
sions. In contrast, our problem involves an unusual situation
in that we must start by considering a system composed of
one particle, where energy dissipation occurs with particle-
surface collisions, and then in turn consider the behavior of5

an ensemble of such systems.
Imagine a box containing one particle. We mechanically

shake the box and the particle is heated. At any instant the
particle has kinetic energy Ep. Each time the particle col-
lides with the floor of the box it is re-heated, and each time it10

collides with a wall of the box energy is extracted. Eventually
the particle by chance has sufficiently low energy that when

it next encounters a wall it becomes irreversibly deposited
(disentrained) onto the wall. Then the box has no moving
particle.15

Like Gibbs (1902), we now imagine a great number N of
nominally identical but independent single-particle systems,
where each particle in each system (box) behaves according
to the same laws of physics, each undergoing heating and
collisional cooling, and occasionally being deposited (Fig-20

ure B1). We now choose one instant in time and examine the

Figure B1. Schematic diagram of surface inclined at angle θ and
control volume with edge length dx through which particles move,
with Gibbs-like ensemble of single-particle systems leading to def-
inition of the cohort of N(x) particles starting at the left face of the
control volume.

state of each particle. Some particles previously have been
deposited, so at this instant N refers to those systems whose
particles are in motion. At this instant each particle has ki-
netic energy Ep, and we may define the ensemble probabil-25

ity density fEp
(Ep) of energy states Ep. As a consequence

we also may at this instant define the ensemble averaged ki-
netic energy 〈Ep〉 and the total energy E =N〈Ep〉. (Alter-
natively, we could imagine all N particles in a single box at
one instant, but with the caveat that we must imagine them 30

as not interacting with each other, only with the floor and
walls of the box.) We now choose a successive instant in
time, namely, t+ dt. During dt the number N has decreased
with deposition of some particles, the distribution fEp(Ep)
has changed, and the average energy 〈Ep〉 and the total en- 35

ergy E have changed.
More generally we can chooseN different instants in time

t, one instant for each box, and examine the state of each
particle. Then, upon collecting the particles as a cohort in-
dependently of the selected times, like above we observe an 40

ensemble distribution of energy states with specific average
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energy 〈Ep〉 and total energy E. At this point we relax the
idea of a box, and simply view particle-wall collisions more
generally as particle-surface collisions during motions paral-
lel to x; and instead of heating the particles via particle-floor 45

collisions we imagine this to occur continuously by gravita-
tional heating. We then let theN selected instants in time co-
incide with those instants that each of the particles is located
at a specified position x. That is, these are the N(x) particles
located at the left face of the interval x to x+dx (Figure B1). 50

We may then examine how the number N(x) and the ensem-
ble distribution fEp(Ep,x) and its moments change over the
interval x to x+dx as this particle cohort moves downslope.
Note that each member of the cohort not deposited within this
interval may arrive at position x+ dx at a different instant in 55

time. This is unimportant, however, as we are interested only
in how the energy states of the particles vary with position
x. Similarly, upon choosing any subsequent downslope po-
sition x, we must recognize that the N(x) particles reaching
this position do so at entirely different instants in time. Here 60

is a final note: In this problem a particle ensemble average is
identical to a Gibbs ensemble average.

Consider, then, both similarities and differences between
conditions in a “normal” non-equilibrium granular gas and
the rarefied conditions of particle motions on hillslopes. As 65

a reminder, the rarefied conditions that we describe do not
involve particle-particle collisions, only particle-surface col-
lisions. The Knudsen number in any realization is effectively
infinite. As described in the text, the distribution nEp(Ep,x)
of energy states Ep of the particle cohort (ensemble) varies 70

with position x. Because the moments of this distribution are
assumed to be defined, we could in fact also define the dis-
tribution of downslope velocities, thence the mean velocity
and fluctuations about the mean. That is, we could formally
define a granular temperature (Goldhirsch, 2008) and then 75

associate this temperature with an internal granular energy
content at any position x. However, the granular temperature
thus defined for the rarefied problem is not physically rele-
vant to this problem, and a granular internal energy does not
physically exist. Indeed, granular energy is neither advected 80

nor diffused in the sense of a normal granular gas system, for
example, a granular flow. Moreover, quantities such as the
granular density and pressure do not exist. In short, there are
no “internal” gas dynamics whatsoever, as the rarefied condi-
tions do not represent a particle system that evolves dynami-
cally over time and space, as with a granular gas in a box or in
a conduit or over an inclined surface, each of which involves
dissipative particle-particle collisions during the gas evolu-
tion. Yet the description of the spatial evolution of the distri-5

bution of the energy states of the particle ensemble remains
entirely relevant. Indeed, the rarefied case examined herein
represents a highly unusual granular gas. To our knowledge
this particular granular gas problem has not been examined
before. The closest direct analogue seems to be that reported10

by Almazán et al. (2017), who, building from the work of
Volfson et al. (2006), show that the formalism used in de-

scribing the cooling and thermal collapse of a granular gas
is akin to the formalism used in describing the dissipative
energetics of a single nonelastic ball bouncing on a smooth15

horizontal surface (without energy input from vibration or
gravitational heating).

Whereas the dynamics of an ordinary granular gas are cen-
tered on dissipative particle-particle collisions, in our prob-
lem the dynamics are centered on dissipative particle-surface20

collisions. This dynamic is fundamentally a boundary re-
lated phenomenon, not an internal one. In a standard gran-
ular gas, energy dissipation occurs during particle-particle
collisions. But note that, whereas a dissipative collision be-
tween two particles generally leads to an overall loss of ki-25

netic energy, the kinetic energy of one of the two particles
may actually increase. In contrast, in our problem involving
only particle-surface collisions, essentially all collisions in-
volve extraction (dissipation) of the particle kinetic energy
defined with respect to downslope motion. Thus, all colli-30

sions are “cooling” in the sense of reducing particle kinetic
energy. Similarly, gravity provides a uniform “heating” in the
sense of increasing kinetic energy. Thus, we appeal to the
ideas of cooling and heating without reference to fluctuating
motions (and granular temperature), where cooling simply35

refers to the idea that kinetic energy is extracted from the
particle cohort via collisional friction and heating refers to
the idea that kinetic energy is added to the cohort via conver-
sion of gravitational potential energy into kinetic form. The
idea of thermal collapse then is entirely satisfactory (e.g.,40

Volfson et al., 2006). We further reemphasize that our for-
mulation involves the evolution of nEp

(Ep,x) with respect
to space, whereas standard granular gas theory typically in-
volves hydrodynamic-like descriptions of quantities such as
the granular density, temperature, pressure and velocity that45

evolve with respect to time (in an Eulerian manner), where
it is assumed that local continuum-like definitions of these
quantities exist (e.g., Goldhirsch, 2008) — conditions that
are not relevant in the rarefied problem that we examine.

Appendix C: The Fokker-Planck-like equation50

Let q = Ep(x+ dx)−Ep(x) denote a change in the energy
of a particle over the small distance dx, and let fq(q;Ep,x)
denote the probability density function of the changes q asso-
ciated with the energy state Ep and position x. If nEp(Ep,x)
denotes the number density of particle energies Ep, then ac- 55

cording to the Master equation,

nEp
(Ep,x+ dx) =

∞∫
0

fq(q;Ep− q,x)nEp
(Ep− q,x)dq . (C1)

Assuming the density fq(q;Ep,x) is peaked near q = 0 with 60

finite first and second moments, we may expand the inte-
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grand in Eq. (C1) as a Taylor series to second order, sub-
tract nEp

(Ep,x) from both sides, then divide by dx and take
the limit as dx→ 0 to obtain a Fokker-Planck-like equation,
namely, 65

∂nEp
(Ep,x)

∂x
=− ∂

∂Ep
[k1(Ep,x)nEp(Ep,x)]

+
1

2

∂2

∂E2
p

[k2c(Ep,x)nEp
(Ep,x)] . (C2)

Here, k1(Ep,x) is a drift speed and k2c(Ep,x) is a diffusion
coefficient defined by 70

k1(Ep,x) = lim
dx→0

1

dx

∞∫
−∞

qfq(q;Ep,x)dq (C3)

and

k2c(Ep,x) = lim
dx→0

1

dx

∞∫
−∞

q2fq(q;Ep,x)dEp . (C4)

The drift speed k1(Ep,x) has two parts, one associated
with gravitational heating and one associated with frictional 75

cooling. Starting with gravitational heating, let h(x) denote
the height of a particle within the gravitational field at po-
sition x. If Ep(x) denotes the particle kinetic energy equal
in magnitude to the potential energy mgh(x) at height h(x),
thenEp(x+dx) =mgh(x+dx) is the magnitude of the par- 80

ticle kinetic energy at the height h(x+dx), assuming a com-
plete conversion of gravitational to kinetic energy without
loss. Thus,

q =mg[h(x+ dx)−h(x)] . (C5)

This indicates that q in Eq. (C3) is independent of the energy 85

stateEp and therefore may be removed from the integral. We
thus write Eq. (C3) as

k1h =mg lim
dx→0

h(x+ dx)−h(x)

dx

∞∫
−∞

fq(q;Ep,x)dq

=mg
dh

dx
=mg sinθ . (C6)

This is the steady rate of gravitational heating.
The part of k1(Ep,x) associated with frictional cooling is

obtained as follows. With particle-surface collisions we may5

assume that q is proportional to the expected value of ∆Ep.
In turn we let nx = 1/λ denote the expected number of col-
lisions per unit distance, where λ is the expected travel dis-
tance between collisions. This leads to

k1c(Ep,x) =
dq

dx
≈ nx∆Ep = nxβxEp , (C7)10

where the overline denotes an average over particles at the
energy state Ep (rather than a global average).

Because gravitational heating is a fixed quantity accord-
ing to Eq. (C6), heating does not involve diffusion. In turn,
the diffusion coefficient k2c(Ep,x) associated with frictional15

cooling is given by

k2c(Ep,x) =
dq2

dx
≈ nx(∆Ep)2 = nxβ2

xE
2
p . (C8)

Note that whereas k1h is a fixed quantity, k1c and k2c must
be viewed as statistically expected quantities.

Appendix D: Expected travel distance between20

collisions

Momentarily let v = 〈u2〉1/2, and then let v0 denote the
surface-parallel velocity of a particle rebounding with reflec-
tion angle φmeasured from the surface (Figure D1). We then

Figure D1. Definition diagram for determining travel distance λ.

know that25

U0 = v0
cos(φ− θ)

cosφ
and W0 = v0

sin(φ− θ)
cosφ

, (D1)

where U0 denotes the horizontal velocity andW0 denotes the
vertical velocity. For a vertical change in elevation Z over
a horizontal distance X associated with the surface-parallel
distance λ, we know that Z =−SX =−SU0t0, where t0 is30

the travel time. For a rebounding particle starting at position
z0 = 0 we may deduce from Newton’s second law that

Z =−SU0t0 =−1

2
gt20 +W0t0 , (D2)

which gives

t0 =
2W0

g
+

2SU0

g
. (D3) 35

With λ=X/cosθ = U0t0/cosθ, we then combine Eq. (D1),
Eq. (D2) and Eq. (D3) to obtain

λ=
2v20 sin(φ− θ)cos(φ− θ)

g cos2φcosθ
+

2Sv20 cos2(φ− θ)
g cos2φcosθ

. (D4)

Upon expanding sin(φ− θ) and cos(φ− θ) using differ-
ence formulae, algebra and trigonometric identities eventu- 40

ally lead to

λ=
2v20 cosθ

g
tanφ(1 + tanφtanθ
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+tan2 θ+ tanφtan3 θ) (D5)

For θ = 0, this reduces to λ= 2v20 tanφ/g. If for small slopes 45

tanφ∼ tanθ and for large slopes tanφ� tanθ, then at
leading order,

λ≈ 2v20 cosθ

g
tanφ(1 + tan2 θ) =

2v20 tanφ

g cosθ
(D6)

For the purpose of scaling, we now assume that v20 ∼ 〈u2〉
and write 50

λ≈ 2〈u2〉tanφ

g cosθ
(D7)

which gives Eq. (26) in the text. The soft matter trajectory
analysis of Tajima and Fujisawa (2020) includes viscous air
resistance, which we neglect.

Appendix E: Energy extraction during collisions 55

Here we provide a qualitative description of the basis for
assuming that a change in the downslope energy of a par-
ticle associated with a collision can be expressed as ∆Ep =
−βxEp wherein both βx and ∆Ep must be treated as ran-
dom variables. We start by noting that the topic of particle 60

collision mechanics is well developed for idealized particle-
particle collisions and particle-surface collisions involving
spherical particles, as well as peculiarities of non-collinear
collisions associated with irregular particles. Relevant ele-
ments are covered in Brach (1984, 1989, 1991), Stronge 65

(1990, 2000), Brach and Dunn (1992, 1995) and Ismail and
Stronge (2008). Although we cannot directly apply details of
this work given the complexity of particle motions on natural
rough hillslopes, this work nonetheless offers a clear guide in
the interpretation of the relation ∆Ep =−βxEp, notably in 70

relation to experimental results presented in the second com-
panion paper (Furbish et al., 2021a).

With reference to Figure E1, consider an idealized colli-

Figure E1. Definition diagram for idealized collision of a spherical
particle with a rigid planar surface.

sion of a spherical particle with a rigid planar surface with
slope angle θ. Let u, w and ω respectively denote the surface

parallel velocity, the surface normal velocity and the angu-
lar velocity of the particle with mass m and radius r =D/2,5

and let the subscripts 1 and 2 denote incident and reflection
values. With appropriate modification of the coordinate and
sign convention used by Brach (1991), the momentum com-
ponents associated with impulses can be expressed as (Brach,
1991; Brach and Dunn, 1995; Brach, 1998)10

w2 =−εw1 , (E1)

u2 = u1 +µc(1 + ε)w1 + gτ(sinθ−µc cosθ) and (E2)

ω2 = ω1 +
5

2

µc
r

[(1 + ε)w1− gτ cosθ] , (E3)15

where w1 < 0, ε is the normal coefficient of restitution at-
tributed to Newton, µc is the ratio of tangential to normal
impulses during the collision, and τ is the impulse dura-
tion. Note that µc generally is not a coefficient of friction,
although it may be equal to a coefficient of friction in special20

cases, for example, with sliding throughout the entire dura-
tion of the collision (Brach, 1991; Brach and Dunn, 1992).
Also note that µc = 0 if u1 = 0.

The second term on the right side of Eq. (E2) represents
the effect of tangential friction on the velocity u, increasing25

with the magnitude of the normal impulse associated with the
velocity w1. This term may be considered the dynamic con-
tribution to friction during τ . The term gτ sinθ represents
the downslope contribution to the impulse associated with
the weight of the particle, and the term gτµc cosθ represents30

an enhancement of friction associated with this weight. The
impulse duration τ may be on the order of milliseconds for
a hard particle impacting a hard surface. It may be longer
for a hard particle impacting a relatively soft surface (Brach,
1991). If the magnitude of w1 is sufficiently large and τ is35

sufficiently short, the gravitational terms in Eq. (E2) and Eq.
(E3) may be neglected. The second term on the right side of
Eq. (E3) represents the effect of tangential friction in con-
tributing to rotational motion, that is, the conversion of trans-
lational energy to rotational energy. 40

Collisions involving small incident angles begin with slid-
ing during the impulse duration τ . If with a sufficient nor-
mal dynamic force this initial sliding gives way to stick
prior to separation, then for a sphere with moment of iner-
tia I = (2/5)mr2, the velocity u2 = rω2 at separation. This 45

leads to

u2 =
u1 + gτ sinθ

1 + 2/5
, (E4)

which represents the outcome of a conversion of translational
to rotational motion with stick. Whereas the resultant veloc-
ity u2 can be determined in this situation, the effect of sliding 50

on u2 cannot be analytically constrained. Nonetheless, Eq.
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(E3) indicates that collisions induce a conversion of transla-
tional to rotational motion in that tangential friction during
an impulse exerts a torque on the particle, thereby extracting
translational kinetic energy that is in addition to work per- 55

formed during particle deformation and by friction. We also
note that low-angle collisions likely dominate in the problem
at hand.

In order to recast the problem in terms of kinetic energy,
we start by squaring Eq. (E1), Eq. (E2) and Eq. (E3) to give 60

w2
2 = ε2w2

1 , (E5)

u22 = u21 + 2µc(1 + ε)u1w1 +u2c(1 + ε)2w2
1

+2gτ(sinθ−µc cosθ)u1 65

+2µc(1 + ε)gτ(sinθ−µc cosθ)w1

+g2τ2(sinθ−µc cosθ) and (E6)
70

ω2
2 = ω2

1 + 5
µc
r

(1 + ε)ω1w1 +
25

4

µ2
c

r2
(1 + ε)2w2

1

−5
µc
r
gτ cosθω1−

25

2

µ2
c

r2
gτ cosθw1

+
25

4

µ2
c

r2
g2τ2 cos2 θ . (E7) 75

In addition we square Eq. (E4) to give

u22 =
25

49
u21 +

50

49
gτ sinθu1 +

25

49
g2τ2 sin2 θ . (E8)

We may immediately neglect terms involving τ2, and for suf-
ficiently large w1 and small τ we may neglect terms involv-
ing τ . 80

The next task involves scaling the normal velocity w1 in
terms of the tangential velocity u1 in relation to particle mo-
tions down an inclined surface. Hereafter we focus on lowest
order effects. With reference to the analysis presented in Ap-
pendix D, let W0 denote the vertical reflection velocity of a
particle following a collision. Assuming downslope motion,
then for any finite horizontal reflection velocity U0 and re-
flection angle φ, the magnitude of the vertical velocity at the5

next collision is given by

1

2
mW 2

1 =
1

2
mW 2

0 −mgZ , (E9)

where Z ≤ 0 is the vertical distance between the collisions.
That is,

W1 =−
√
W 2

0 − 2gZ . (E10)10

From Appendix D,W0 = v0 sin(φ−θ)/cosφ, Z =− 1
2gt

2
0+

W0t0 and t0 = 2W0/g+ 2SW0/g, where v0 is the surface

parallel velocity associated with W0, t0 is the travel time and
S = tanθ. Using these relations with Eq. (E10) we obtain

W1 =− v0
cosφ

[
sin2(φ− θ) + 4S2 cos2(φ− θ)15

+4S cos(φ− θ)sin(φ− θ)
]1/2

. (E11)

Expanding the trigonometric functions in Eq. (E11) as Taylor
series and retaining the lowest order term in φ we obtain

w1 =W1 cosθ ≈−cosθ sinθ

cosφ
v0 . (E12)20

In effect the magnitude of w1 is set by the gain in the mag-
nitude of the vertical velocity associated with conversion of
gravitational potential energy to translational energy with fi-
nite slope. This strengthens the normal impulse of the par-
ticle, but only up to a slope (nominally 45 degrees) beyond25

which the surface normal component of the vertical velocity
begins to decrease.

As in Appendix D we now scale u1 ∼ v0. Using Eq. (E12),
at lowest order Eq. (E6) becomes

u22 ≈ u21−
2µc(1 + ε)cosθ sinθ

cosφ
u21 . (E13)30

Subtracting u21 from both sides of Eq. (E13) and multiplying
by m/2,

1

2
m(u22−u21)≈−2µc(1 + ε)cosθ sinθ

cosφ

1

2
mu21 . (E14)

Omitting subscripts, this is

∆Ep ≈−
2µc(1 + ε)cosθ sinθ

cosφ
Ep . (E15)35

Comparing this result with the assumption ∆Ep =−βxEp,
we may conclude that

βx ∼
2µc(1 + ε)cosθ sinθ

cosφ
. (E16)

Note that Eq. (E15) and Eq. (E16) pertain to a highly ide-
alized collision. In fact, the quantities µc, ε and φ are each 40

random variables. Moreover, on an irregular hillslope sur-
face the angle θ also is a random variable when viewed at
the particle-surface collision scale. Nonetheless, for the pur-
pose of scaling we may view this angle as a locally averaged
value, and we now take the ensemble average of Eq. (E16) to 45

give

〈βx〉 ∼
〈

2µc(1 + ε)

cosφ

〉
cosθ sinθ . (E17)

In turn, with µ= 〈βx〉/4tanφ we may write

µ∼M(θ) , (E18)
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with 50

M(θ) =

〈
2µc(1 + ε)

4sinφ

〉
cosθ sinθ . (E19)

At lowest order, cosθ sinθ ∼ θ. We therefore may expect µ
to systematically vary with the slope angle θ. Also note that
µ is independent of particle size. We examine both of these
points in the second companion paper (Furbish et al., 2021a). 55

Subtracting u21 from both sides of Eq. (8), multiplying by
m/2 and retaining the lowest order term,

1

2
m(u22−u21)≈−

(
1− 25

49

)
1

2
mu21 . (E20)

This is

∆Ep ≈−0.5Ep . (E21) 60

This result indicates that the onset of rotation with stick pro-
duces a large change in the slope-parallel kinetic energy. In
this case, βx ≈ 0.5. Again notice that this result is indepen-
dent of particle size. Nonetheless, the numerical factors in
Eq. (4), Eq. (8) and Eq. (E20) are set by the moment of iner- 65

tia of the particle, which means that these factors vary with
irregular particles. Also note that Eq. (E21) does not imply
that half of the translational energy Ep is converted entirely
to rotational energy. Rather, half is converted to rotational en-
ergy and lost to work performed by friction prior to stick and 70

by particle/surface deformation, thence dissipated as heat, vi-
brations and sound.

More generally, with low incident angle motions, slip is
more likely. Focusing on the first three terms on the right
side of Eq. (E7) and using Eq. (E12) with v0 ∼ u1, 75

ω2
2 = ω2

1 − 5
µc
r

(1 + ε)
cosθ sinθ

cosφ
ω1w1

+
25

4

µ2
c

r2
(1 + ε)

cos2 θ sin2 θ

cos2φ
u21 . (E22)

Subtracting ω2
1 from both sides of Eq. (E22) and multiplying

by I/2 = (1/5)mr2,

1

2
I(ω2

2 −ω2
1) =−mµcr(1 + ε)

cosθ sinθ

cosφ
ω1u1

+
5

2
µ2
c(1 + ε)

cos2 θ sin2 θ

cos2φ

1

2
mu21 , (E23)5

which is

∆Er =
5

2
µ2
c(1 + ε)

cos2 θ sin2 θ

cos2φ
Ep

+
√

10µc(1 + ε)
cosθ sinθ

cosφ

√
Er
√
Ep . (E24)

This result suggests that in the absence of initial rotation10

(Er = 0), a change in rotational energy is directly related
to the translational energy Ep, where the proportion βx now
represents the leading factors in the first term on the right side
of Eq. (E24). With extant rotational motion, a weaker conver-
sion of translational to rotational energy occurs according to15

the second term on the right side. Both cases are slope depen-
dent due to the connection between w1 and u1 ∼ v0 implied
by Eq. (E12).

Focusing on downslope motions, in general we may write
the energy balance of a particle as20

∆Ep =−∆Er − fc− fy . (E25)

Here, a positive change in rotational energy ∆Er is seen as
an extraction of translational energy. Then, for example, this
loss is given explicitly by Eq. (E20) in the specific case of
stick with the onset of rotation. An approximation of this25

loss is given by Eq. (24) for a frictional collision that does
not necessarily involve stick. The term fc in Eq. (E25) rep-
resents losses associated with particle and surface deforma-
tion as well as work performed against friction during colli-
sion impulses (converted to heat, sound, etc.). This is repre-30

sented, for example, by Eq. (15). But this term also includes
losses associated with deformation of the surface at a scale
larger than that of an idealized particle-surface impulse con-
tact, namely, due to momentum exchanges associated with
the sputtering of loose surface particles during collision. (The35

videos published as supplementary material to DiBiase et al.
(2017) nicely illustrate this sputtering as well as the onset
of rotational motion.) The term fy in Eq. (E25) represents
energy losses not described in the preceding idealized for-
mulation, namely, changes in downslope translational energy40

associated with glancing collisions that produce transverse
translational motions and rotational motions oriented differ-
ently than that considered above (Figure E1). In some cases,
as described above, the change in energy ∆Ep can be ex-
pressed directly in terms of the energy state Ep. However,45

the complexity of particle-surface collisions on natural hill-
slopes precludes explicitly demonstrating such a relation for
all possible scenarios. Nonetheless, the examples above sug-
gest that it is entirely defensible to assume that energy losses
can be related to the energy state Ep if the elements involved 50

are formally viewed as random variables. Specifically, with
the effect of slope angle θ on the impact velocity w1 and its
relation to u1 ∼ v0 via Eq. (E12), we can be confident that
the loss ∆Ep is functionally related to the energy state Ep.
The simple relation ∆Ep =−βxEp thus is to be viewed as 55

an hypothesis to be tested against data, as elaborated in the
second companion paper (Furbish et al., 2021a).

Appendix F: Product of averages

Let Epi denote a discrete value of the particle energy. Our
objective is to show that the product 〈Epi〉〈1/Epi〉 ≥ 1. We 60
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start by writing this inequality as(
1

N

N∑
i=1

Epi

)(
1

N

N∑
i=1

1

Epi

)
≥ 1 . (F1)

This means that

1

N

N∑
i=1

Epi ≥
N∑N
i=1

1
Epi

. (F2)

Whereas the left side of Eq. (F2) is the arithmetic average 65

Ea, the right side is the harmonic average Eh. Thus,

Ea
Eh
≥ 1 . (F3)

Because the arithmetic average of a set of positive numbers
is always greater than or equal to the harmonic average of
this set, this inequality is indeed satisfied. These averages are 70

equal only if all values of the set are equal, that is, the vari-
ance of the set is zero.

We do not know the form of the underlying distribution
fEp

(Ep,x). For physical reasons, however, it cannot be a
distribution that supports Ep→ 0, as this coincides with par- 75

ticles at rest. For example, fEp(Ep,x) cannot be an expo-
nential or Weibull distribution with support Ep ∈ [0,∞). In
contrast, the lognormal and gamma distributions with sup-
port Ep ∈ (0,∞) are admissible, and the Pareto distribution
with support Ep ∈ [Epm,∞) is admissible. 80

As a point of reference, for a density fEp(Ep) with fi-
nite expected value 〈Ep〉, the density fy(y) of the recip-
rocal y = 1/Ep may not have defined moments. This oc-
curs, for example, if fEp

(Ep) is exponential with support
Ep ∈ [0,∞). Interestingly, if with x= ln(Ep) the density 85

fx(x) is lognormal with mean µ, then with y = 1/x the den-
sity fy(y) also is lognormal with mean −µ.

For a density fy(y) of y = 1/Ep with undefined mean, the
average 〈y〉 calculated from a sample nonetheless is finite, as
the probability of sampling precisely a value Ep = 0 is iden-
tically zero. Moreover, as the variance of Ep becomes small
for finite mean 〈Ep〉, the product 〈Ep〉〈y〉= 〈Ep〉〈1/Ep〉 →
1, as in the discrete case above.

Appendix G: Deposition rate5

Our description of the deposition rate for a granular gas
in a box has both similarities and dissimilarities with the
processes of deposition (de-sublimation) and condensation.
Here we briefly outline key points.

In a closed system involving two phases (solid/gas or10

solid/liquid) at thermodynamic equilibrium, the rates of de-
position and sublimation (or condensation and evaporation)
are equal. That is, the rate at which molecules move from the
solid phase to the gas phase (or from the liquid phase to the
gas phase) is balanced by the rate at which molecules move15

from the gas phase to the solid phase (or from the gas phase
to the liquid phase). These rates, in each direction, depend
only on the thermal state of the system. Because the system
has specified internal energy involving conservative particle-
particle collisions, we do not need to appeal to the idea of20

heating and cooling (although this could be occurring). For a
granular gas involving dissipative collisions, however, a non-
equilibrium steady state is achieved only if it is continuously
mechanically heated, and the rate of heating is matched by
the rate of cooling due to the collisions. (Note that we refer25

to a non-equilibrium steady state condition rather than ther-
mal equilibrium, as unlike an ordinary gas, a granular gas can
exhibit strong spatial correlations in the particle number den-
sity (see Brilliantov and Pöschel (2004, 2005) and Brilliantov
et al. (2018) and references therein; and van Zon and MacK-30

intosh, (2004)). However, this distinction is unimportant in
relation to the behavior of particle motions on a hillslope en-
visioned as a rarefied granular gas.) Like an ordinary solid-
gas system, the rate of sublimation (entrainment) is matched
by the rate of deposition (disentrainment), and the total par-35

ticle energy and the average particle energy are fixed. More-
over, like an ordinary solid-gas system, the deposition rate
depends on the physics of disentrainment in relation to its
thermal state, not on the difference between the heating and
cooling rates (which is zero at steady state). Heating modu-40

lates the deposition rate as described in the text.

Appendix H: Generalized Pareto distribution

Solving Eq. (65) gives

Êa(x̂) =

[
Ki − 1 +

1

α
(γ− 1)

]
x̂+ Êa0 . (H1)

Using Eq. (64) the disentrainment rate is then45

P̂x̂(x̂) =
1

(α/γ)(Ki + γ/α− 1/α− 1)x̂+αÊa0/γ
, (H2)

which we write as

P̂x̂(x̂) =
1

ax̂+ b
. (H3)

Making use of Eq. (4) we then obtain the distribution of travel
distances, namely, 50

fx̂(x̂) =
b1/a

(ax̂+ b)1+1/a
. (H4)

This is a generalized Pareto distribution with location param-
eter equal to zero.

To show how the generalized Pareto distribution is related
to the ordinary Lomax distribution, we start by rewriting Eq. 55

(H4) as

fx̂(x̂) =
b1/a

a1+1/a(x̂+ b/a)1+1/a
. (H5)
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This is

fx̂(x̂) =
(1/a)(b/a)1/a

(x̂+ b/a)1+1/a
. (H6)

We now define the shape parameter aL = 1/a and the scale 60

parameter bL = b/a. This gives a Lomax ditribution, namely,

fx̂(x̂) =
aLb

aL
L

(x̂+ bL)1+aL
. (H7)

Thus, for a > 0 the behavior of the generalized distribution,
Eq. (H4), is the same as that of a Lomax distribution. The 65

mean is

µx̂ =
bL

aL− 1
aL > 1 . (H8)

We work with the generalized Pareto distribution in the form
of Eq. (H4) because of the clear connection between its pa-
rameters and the disentrainment rate function, Eq. (H3), and 70

because the condition a < 0 is physically meaningful.

Appendix I: Kirkby-Statham formulation

The formulation of Kirkby and Statham (1975) assumes that
initial particle kinetic energy is dissipated in work performed
by a fixed Coulomb-like friction to give an average travel 75

distance. This idea can be formulated in terms of momen-
tum and energy, then recast in terms of the rate of change
in energy with respect to position x for comparison with the
formulation presented in the main text.

In appealing to a Coulomb-like friction behavior, Kirkby 80

and Statham (1975) start with Fx =mg sinθ−µdmg cosθ.
With particle velocity u we write this as

du(t)

dt
= g sinθ−µdg cosθ . (I1)

Note that u(t) must be envisioned as representing an ideal-
ized “average” velocity of a group of particles viewed over
time. This gives

u(t) = (g sinθ−µdg cosθ)t+u0 . (I2)

For a total travel time T ,5

up(T ) = 0 = (g sinθ−µdg cosθ)T +u0 , (I3)

so that

T =− u0
g sinθ−µdg cosθ

. (I4)

In turn we rewrite Eq. (I2) as

dx(t)

dt
= (g sinθ−µdg cosθ)t+u0 , (I5)10

so that

x(t) =
1

2
(g sinθ−µdg cosθ)t2 +u0t . (I6)

The total travel distance X is thus

x(T ) =X =− u20
g sinθ−µdg cosθ

. (I7)

Using the initial squared velocity u20 = ε2ghsin2 θ,15

X =− ε2hsin2 θ

sinθ−µd cosθ
. (I8)

This is the result that Kirkby and Statham (1975) offer as
representing the average travel distance.

We now turn to kinetic energy. LetA= g sinθ−µdg cosθ.
Multiplying Eq. (I1) by mu then leads to20

d

dt

(m
2
u2
)

=
dEp
dt

=mAu. (I9)

With u=At+u0 from Eq. (I3),

dEp
dt

=mA2t+mAu0 . (I10)

This leads to

Ep(t) =
1

2
mA2t2 +mAu0t+Ep0 . (I11)25

We now solve Eq. (I6) for t in terms of x to give

t=
1

2A

(
−2u0 +

√
4u20 + 8Ax

)
. (I12)

Substituting this into Eq. (I11) and doing algebra then yields
Ep(x) =mAx+E0. The derivative of this result with respect
to x is30

dEp(x)

dx
=mg sinθ−µdmg cosθ . (I13)

This result is like Eq. (57), but absent the effect of deposition
and the associated apparent heating, as it strictly applies to
the motion of an individual particle or a group of particles
acting like a rigid body. It does not describe an ensemble35

averaged motion.

Appendix J: Gabet-Mendoza formulation

Gabet and Mendoza (2012) appeal to ideas from Samson et
al. (1998) and Quartier et al. (2000) and suggest that the mo-
tion of an individual particle can be described as 40

du(t)

dt
= g sinθ−µdg cosθ−κuψ . (J1)

However, whereas the derivative term on the left side of Eq.
(J1) and the first two terms on the right side pertain to the in-
stantaneous motion of an individual sliding particle or group
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of particles acting like a rigid body, the third term on the right 45

side, representing collisional friction, actually is relevant to
time-averaged or ensemble-averaged behavior rather than the
instantaneous behavior of an individual particle (Riguidel et
al., 1994a, 1994b; Samson et al., 1998, 1999). These terms
are not additive as written. The gravity and Coulomb friction 50

terms are like those in the formulation of Kirkby and Statham
(1975). Because there is confusion in the literature regarding
the collisional friction term, here we elaborate its form.

Let nt denote the expected number of particle-surface
interactions (collisions) per unit time as a particle moves 55

downslope, and let βx denote the proportion of momentum
parallel to x that is extracted during an individual collision
involving the particle velocity u. Recognizing that both βx
and u must be treated as random variables, and letting angle
brackets denote an ensemble average, we may now assume 60

that

m
d〈u〉
dt
≈mg sinθ−mnt〈βxu〉 . (J2)

The first term on the right side of Eq. (J2) represents the uni-
form gravitational force, and the second term on the right
side represents a frictional force due to particle-surface col- 65

lisions (compare with Eq. (2) in Riguidel et al., 1994). As
a reminder, this term is entirely analogous to the dissipation
term that Haff (1983) introduced (formulated in terms of en-
ergy rather than momentum), leading to Haff’s cooling law
(Brilliantov and Pöschel, 2004; Yu et al., 2020). The pro- 70

portion of momentum extracted, βx, involves an appropriate
coefficient of restitution depending on the geometrical de-
tails of the collision. We may now assume that nt ∼ 〈u〉/l,
where l denotes a characteristic length scale representing the
expected distance between collisions. This leads to 75

d〈u〉
dt
≈ g sinθ− 1

l
〈βxu〉〈u〉 , (J3)

which is close to the form of Eq. (J1) with ψ = 2 (neglecting
the Coulomb friction term), but not quite.

We now focus on uniform, steady conditions such that 〈u〉
is unchanging with position or time, consistent with various 80

experiments (Riguidel et al., 1994; Samson et al., 1998). This
leads to

〈βxu〉〈u〉 ≈ lg sinθ . (J4)

We now write βx = 〈βx〉+β′x and u= 〈u〉+u′, where primes
denote deviations about the expected values. Substituting
these expressions into Eq. (J4) and taking expected values
then leads to

〈βx〉〈u〉2 + 〈β′xu′〉〈u〉 ≈ lg sinθ . (J5)5

The product 〈βx〉〈u〉2 has the appearance of a nominal, non-
linear viscous term. Samson et al. (1998) suggest that this
represents a Bagnold-like friction based on analogy with the

scaling provided by Bagnold (1954), preceding the critical
assessment of Bagnold’s experimental work presented by10

Hunt et al. (2002). The term 〈β′xu′〉〈u〉, neglected at the out-
set by Riguidel et al. (1994), looks like a linear viscous term,
where the “viscosity” is given by the covariance 〈β′xu′〉.

Noting that Eq. (J5) is quadratic, we can solve for the ve-
locity 〈u〉 and determine that at lowest order15

〈u〉 ≈
(
lg sinθ

〈βx〉

)1/2

, (J6)

so long as (〈β′xu′〉/〈βx〉)2 < 4lg sinθ/〈βx〉. If this inequality
is satisfied, then Eq. (J3) becomes

d〈u〉
dt
≈ g sinθ− 1

l
〈βx〉〈u〉2 , (J7)

giving ψ = 2. Note that the squared average velocity in Eq.20

(J7) does not imply that collisional friction is scaled with ki-
netic energy rather than momentum. This result occurs be-
cause nt is initially scaled with 〈u〉 and l. Quartier et al.
(2000) present an analogous formulation; see their Eq. (4)
and explanation of the squared velocity term. Dippel et al.25

(1997) also discuss this point.
In relation to their experiments involving particles of ra-

dius R moving down an inclined surface roughened with a
quasi-random monolayer of particles with radius rm, Rigu-
idel et al. (1994) and Samson et al. (1998) propose the hy-30

pothesis that 〈u〉 ∼ sinθ. This derives from a scaling analysis
in which the magnitude of the collisional momentum extrac-
tion (i.e., 〈βx〉) is written as a function of the relative smooth-
nessR/rm. These authors plot measured values of 〈u〉 versus
sinθ and suggest that the linear fit confirms a viscous-like35

behavior. Note, however, that because of the rather limited
experimental range of sinθ (Figure 2 in Riguide et al., 1994;
Figure 2 in Samson et al., 1998; Figure 4 in Samson et al.,
1999), the data are equally well fit by a straight line in a plot
involving

√
sinθ (Figure J1), consistent with the collisional-40

based formulation, Eq. (J7). (Sampson et al. (1999) acknowl-
edge this limitation of the range of sinθ.) In addition, we
can scale the length l as l ∼ rm/cA, where cA = 0.67 is the
areal concentration of the surface-roughness particles. For a
fixed velocity 〈u〉, Eq. (J7) gives l ≈ 〈βx〉〈u〉2/g sinθ. With45

R/rm = 4.7 and a coefficient of restitution of ε≈ 0.8, we
can estimate 〈βx〉 ≈ 0.05. This gives l ≈ 0.5− 0.6 mm over
the range of measured velocities in Figure J1, which is close
to the experimental value of l = rm/cA = 0.8 mm, thereby
reinforcing the collisional basis of Eq. (J7). Thus, a spherical 50

particle that macroscopically rolls over a monolayer rough-
ness is actually going bumpety-bump, colliding with mono-
layer particles during its motion.

Because the relative smoothness R/rm is not entirely ade-
quate in scaling the collisional friction as cA varies (Samson 55

et al., 1998), it remains unclear whether these experimental
conditions involve an apparent viscous-like behavior where
the effective viscosity depends only on roughness geome-
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Figure J1. Plot of ensemble averaged particle velocity 〈u〉 versus√
sinθ involving a steel sphere (R= 2.5 mm) moving over glass

beads (rm = 0.53 mm) giving R/rm = 4.7; data from Samson et
al. (1998).

try (Dippel et al., 1997; Samson et al., 1999) or a squared-
velocity behavior as in Eq. (J7). Dippel et al. (1997) note 60

that there is an apparent cross-over in behavior for very large
and heavy spheres. Effects of the covariance of βx and u in
relation to roughness geometry and the details of motions,
including transverse motions, likely are important. Nonethe-
less, we emphasize that in the formulations of Riguidel et al. 65

(1994) and Samson et al. (1998), a Coulomb friction behav-
ior is not involved.

Returning to Eq. (J1), similarly there is no clear reason
to include a Coulomb-like friction term, as natural irregular
particles mostly do not slide down natural rough surfaces. In 70

addition, if the starting point involves the derivative term on
the left side and the gravitational term on the right side as
written, then the collisional term on the right side should be
a random quantity, thus leading to a stochastic differential
equation — that is, a Langevin-like equation (Riguidel et al., 75

1994) — not an ordinary differential equation. Moreover, the
idea of a dynamic friction coefficient is misapplied in the sit-
uation where rarefied particles tumble, roll and skitter over
the surface. A Coulomb model is appropriate for sustained
contact, and even then a dynamic friction involves collisional 80

friction at the surface asperity scale. Particle-surface contacts
on natural granular surfaces are not smooth at a scale com-
mensurate with a sliding Coulomb model. A rolling coeffi-
cient of friction works for spheres moving over a relatively
smooth surface, not for irregular tumbling particles involving
non-collinear impacts. Moreover, the static normal weight5

of a particle, mg cosθ, does not set the particle-surface fric-
tion. Rather, dynamic forces during collision impulses mat-
ter (Brach, 1991; Stronge, 2000). This includes the dynamic
Coulomb friction force associated with conversion of trans-
lational to rotational kinetic energy during collisions (Ap-10

pendix E). Any resulting dynamic friction coefficient rep-
resents an ensemble averaged ratio of tangential to normal
momentum exchanges, both of which are random variables.
(This point currently is being examined in studies of bed
load and aeolian transport; see for example Pähtz and Du-15

ran (2018).) Finally, the experiments of Quartier et al. (2000)
involved rolling a cylinder over an inclined row of cylin-
ders in an experiment designed to remove the transverse de-
gree of freedom of motion. The Coulomb-like term in their
formulation (see their Eq. (5)) arises from trapping of the20

rolling cylinder between bumps, and is unrelated to sliding
as in a conventional Coulomb model. The condition of a con-
stant roller velocity involving an “equilibrium between grav-
ity driving and dissipation by the shocks” is roughly analo-
gous to isothermal conditions described in the main text, but25

without effects of deposition. The dynamical angle in these
experiments coincides with the situation in which the veloc-
ity of the roller is sufficient to prevent trapping, “assuming a
permanent contact between the roller and the rough plane.”
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