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Abstract. We examine a theoretical formulation of the probabilistic physics of rarefied particle motions and
deposition on rough hillslope surfaces using measurements of particle travel distances obtained from laboratory
and field-based experiments, supplemented with high-speed imaging and audio recordings that highlight effects
of particle-surface collisions. The formulation, presented in a companion paper (Furbish et al., 2021a), is based
on a description of the kinetic energy balance of a cohort of particles treated as a rarefied granular gas, and a de-
scription of particle deposition that depends on the energy state of the particles. Both laboratory and field-based
measurements are consistent with a generalized Pareto distribution of travel distances and predicted variations
in behavior associated with the balance between gravitational heating due to conversion of potential to kinetic
energy and frictional cooling due to particle-surface collisions. For a given particle size and shape these be-
haviors vary from a bounded distribution representing rapid thermal collapse with small slopes or large surface
roughness, to an exponential distribution representing approximately isothermal conditions, to a heavy-tailed
distribution representing net heating of particles with large slopes. The transition to a heavy-tailed distribution
likely involves an increasing conversion of translational to rotational kinetic energy leading to larger travel dis-
tances with decreasing effectiveness of collisional friction. This energy conversion is strongly influenced by
particle shape, although the analysis points to the need for further clarity concerning how particle size and shape
in concert with surface roughness influence the extraction of particle energy and the likelihood of deposition.

1 Introduction

As described in our first companion paper (Furbish et al.,
2021a), we are focused on rarefied motions of particles
which, once entrained, travel downslope over the land sur-
face. This notably includes the dry ravel of particles down5

rough hillslopes following disturbances (Roering and Gerber,
2005; Doane, 2018; Doane et al., 2019; Roth et al., 2020) or
upon their release from obstacles (e.g., vegetation) follow-
ing failure of the obstacles (Lamb et al., 2011, 2013; DiBiase
and Lamb, 2013; DiBiase et al., 2017; Doane et al., 2018,10

2019), and the motions of rock fall material over the rough
surfaces of talus and scree slopes (Gerber and Scheidegger,
1974; Kirkby and Statham, 1975; Statham, 1976; Tesson et
al., 2020). By “rarefied motions” we are referring to the situ-
ation in which moving particles may frequently interact with15

the surface, but rarely interact with each other. Thus, rarefied
particle motions are distinct from granular flows. Although
this idea is most applicable to processes such as rock fall
and the subsequent motions of the rock material over talus
or scree slopes, our description of the motions of individual20

particles nonetheless may be entirely relevant to conditions
that are not strictly rarefied (e.g., ravel involving many parti-
cles), but where during the collective motions of many parti-
cles the effects of particle-surface interactions dominate over
effects of particle-particle interactions in determining the be-25

havior of the particles — akin to granular shear flows at high
Knudsen number (Kumaran, 2005, 2006). We note that lab-
oratory experiments (Kirkby and Statham, 1975; Gabet and
Mendoza, 2012) and field-based experiments (DiBiase et al.,
2017; Roth et al., 2020) designed to mimic particle motions30
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and travel distances on hillslopes effectively focus on rarefied
conditions.

The formulation of rarefied particle motions presented in
the first companion paper (Furbish et al., 2021a) is based on
a description of the kinetic energy balance of a cohort of par- 35

ticles treated as a rarefied granular gas, and a description of
particle deposition that depends on the energy state of the
particles. The particle energy balance involves gravitational
heating with conversion of potential to kinetic energy, fric-
tional cooling associated with particle-surface collisions, and 40

an apparent heating associated with preferential deposition
of low energy particles. Deposition probabilistically occurs
with frictional cooling in relation to the distribution of par-
ticle energy states as this distribution varies downslope. The
Kirkby number Ki — the ratio of gravitational heating to 45

frictional cooling — sets the basic deposition behavior and
the form of the probability distribution fr(r) of particle travel
distances r. For isothermal conditions where frictional cool-
ing matches gravitational heating plus the apparent heating
due to deposition, the distribution fr(r) is exponential. With 50

non-isothermal conditions and small Ki this distribution is
bounded and represents rapid thermal collapse. With increas-
ing Ki the distribution fr(r) takes the form of a heavy-tailed
Pareto distribution. It may possess a finite mean and finite
variance with moderate Ki , or the mean and variance may be 55

undefined with large Ki .
The purpose of this second companion paper is to present

an analysis of several data sets concerning particle motions
on rough surfaces, as viewed through the lens of the theory
presented in the first companion paper (Furbish et al., 2021a). 60

In Section 2 we summarize the context for our work pro-
vided by recent probabilistic descriptions of the flux and the
Exner equation (Furbish and Haff, 2010; Furbish and Roer-
ing, 2013), and then step through essential elements of the
mechanical basis of the theory leading to the generalized 65

Pareto distribution of particle travel distances. In Section 3
we compare the formulation with the laboratory measure-
ments of particle travel distances on rough surfaces reported
by Gabet and Mendoza (2012) and Kirkby and Statham
(1975). We also report new laboratory experiments designed5

to clarify how the size and shape of particles influence their
motions and disentrainment based on high-speed imaging. In
Section 4 we compare the formulation with the field-based
measurements of travel distances reported by DiBiase et al.
(2017) and Roth et al. (2020).10

Particle travel distances from both the laboratory and field-
based experiments are consistent with the generalized Pareto
distribution and provide compelling evidence for the full
range of predicted behaviors, from rapid thermal collapse to
approximately isothermal conditions to net heating of par-15

ticles. Nonetheless, the analysis points to the need for fur-
ther clarity concerning how particle size and shape in con-
cert with surface roughness influence the extraction of parti-
cle energy and the likelihood of deposition. In the third com-
panion paper (Furbish et al., 2021b) we show that the gen-20

eralized Pareto distribution in this problem is a maximum
entropy distribution (Jaynes, 1957a, 1957b) constrained by
a fixed energetic “cost” — the total cumulative energy ex-
tracted by collisional friction per unit kinetic energy avail-
able during particle motions. That is, among all possible ac-25

cessible microstates — the many different ways to arrange a
great number of particles into distance states where each ar-
rangement satisfies the same fixed total energetic cost — the
generalized Pareto distribution represents the most probable
arrangement. In the fourth companion paper (Furbish et al.,30

2021c) we step back and examine the philosophical under-
pinning of the statistical mechanics framework for describing
sediment particle motions and transport.

2 Key elements of theoretical formulation

2.1 Probabilistic description of disentrainment35

The problem of describing rarefied particle motions on hill-
slopes is motivated by the entrainment forms of the flux and
the Exner equation. Namely, let fr(r;x) denote the proba-
bility density function of the travel distances r of particles
whose motions start at x, and let Rr(r;x) denote the associ-40

ated exceedance probability function. Assuming motions are
only in the positive x direction and noting that x′ = x−r, the
flux q(x) may be written as

q(x) =

x∫
−∞

Es(x
′)Rr(x−x′;x′)dx′ , (1)

where Es(x) denotes the volumetric entrainment rate at po-45

sition x. In turn, letting ζ(x,t) denote the local land-surface
elevation, the entrainment form of the Exner equation is

cb
∂ζ(x,t)

∂t
=−Es(x) +

x∫
−∞

Es(x
′)fr(x−x′;x′) dx′ , (2)

where cb = 1−φs is the volumetric concentration of the sur-
face with porosity φs. The central elements of Eq. (1) and 50

Eq. (2) are the probability density function fr(r;x) and the
associated exceedance probability function Rr(r;x). These
are related to the disentrainment rate function defined as

Pr(r;x) =
fr(r;x)

Rr(r;x)
, (3)

which, when multiplied by dr, is interpreted as the probabil- 55

ity that a particle will become disentrained within the small
interval r to r+ dr, given that it “survived” travel to the dis-
tance r. The disentrainment rate, Eq, (3), connects the de-
scriptions of the flux and its divergence, Eq. (1) and Eq. (2),
to the physics of particle motions and disentrainment. 60

For completeness we note that the formulation above in-
volving continuous functions can be recast into a discrete
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form that is useful for considering situations in which con-
ditions influencing particle motions, for example the surface
slope and roughness texture, change in the downslope direc- 65

tion. Let k = 1,2,3, ... denote a set of discrete intervals of
length dr. Let pk denote the probability that a particle, hav-
ing not been disentrained before the kth interval, then be-
comes disentrained within this interval. The probability mass
function of particle positions is then 70

fk(k) = pk

k−1∏
i=1

(1− pi) . (4)

The probability pk, like its continuous counterpart Pr(r;x),
connects the descriptions of the flux and its divergence to the
physics of particle motions and disentrainment. This discrete
formulation opens the possibility of describing effects of 75

varying disentrainment rates in response to changing downs-
lope conditions in a manner intrinsic to particle-based treat-
ments of transport (Tucker and Bradley, 2010), but not read-
ily incorporated in probabilistic descriptions. That is, if sur-
face conditions change in the downslope direction, for ex- 80

ample, giving net cooling followed by heating or vice versa,
then particles whose travel distances are large enough “see”
this change and their behavior concomitantly changes.

As summarized next, the analysis presented in Furbish et
al. (2021a) describes the mechanical basis for the disentrain- 85

ment rates Pr(r;x) and pk, and the associated probability
distributions fr(r;x) and fk(k). This involves a considera-
tion of the kinetic energy balance of rarefied particle motions
and how this balance determines the deposition of particles
in relation to their energy state. 90

2.2 Energy and mass balances

Consider a rough, inclined surface with uniform slope an-
gle θ (Figure 1). At this juncture we simplify the notation

Figure 1. Definition diagram of surface inclined at angle θ and con-
trol volume with edge length dx through which particles move. Fig-
ure reproduced from companion paper (Furbish et al., 2021a).

and consider the motions of particles entrained at a single
position x= 0. Now the particle travel distance r→ x and5

the probability density function fr(r;x)→ fx(x). Consider
a control volume with edge length dx parallel to the mean
particle motion. Over a period of time a great number of par-
ticles enters the left face of the control volume. Some of these

particles move entirely through the volume, exiting its right10

face, and some come to rest within the control volume. Many,
but not necessarily all, of the particles interact with the sur-
face one or more times in moving through the volume or in
being deposited within it. We now imagine collecting this
great number of particles and treat them as a cohort, inde-15

pendent of time (Furbish et al., 2021a, Appendix B). That is,
letN(x) denote the number of particles that enter the control
volume, and letN(x+dx) denote the number that leaves the
volume. The number of particles deposited within the control
volume is dN =N(x+dx)−N(x). The objective is then to20

determine the rate of particle deposition, dN/dx, based on
the energy state of the cohort of particles.

In particular, let Ep = (m/2)u2 denote the translational
kinetic energy of a particle with mass m and downslope ve-
locity u. Letting angle brackets denote an ensemble average25

of a great number N of particles, then we denote the arith-
metic average energy as Ea = 〈Ep〉 and the harmonic aver-
age energy as Eh = 1/〈1/Ep〉. The total energy E =NEa.
The formulation presented in the first companion paper (Fur-
bish et al., 2021a) then leads to four equations with four un-30

knowns involving energy and mass.
Namely, conservation of the total energy of the particle

cohort is given by

dE(x)

dx
=Nmg sinθ−Nmgµcosθ− 1

α
Nmgµcosθ . (5)

The first term on the right side of Eq. (5) represents gravi-35

tational heating with the uniform conversion of potential to
kinetic energy, the second term on the right side represents
frictional cooling due to particle-surface collisions, and the
last term on the right side represents a loss of energy associ-
ated with particle deposition. The friction factor µ is 40

µ=
〈βx〉

4tanφ
, (6)

where 〈βx〉 is the expected proportion of translational energy
extracted during a particle-surface collision, and φ is the ex-
pected reflection angle of particles following collision. The
factor α modulates the particle deposition length scale Lc, 45

which represents an e-folding distance over which deposi-
tion occurs. This length scale is given by

Lc =
αEh

mgµcosθ
, (7)

and is a function α= f(Ki) of the dimensionless Kirkby
number Ki defined by 50

Ki =
mg sinθ

mgµcosθ
=
S

µ
, (8)

which represents the ratio of gravitational heating to fric-
tional cooling.

Conservation of particle mass is given by

dN(x)

dx
=− 1

αEh
Nmgµcosθ =−N

Lc
, (9) 55
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which illustrates that deposition is proportional to frictional
cooling depending on the particle energy stateEh, modulated
by the factor α.

The ensemble averaged energy satisfies the expression,

dEa(x)

dx
=mg sinθ−mgµcosθ 60

+
1

α
mgµcosθ

(
Ea

Eh
− 1

)
, (10)

where the arithmetic and harmonic averages are related as

Ea

Eh
= γ ≥ 1 . (11)

As with the total energy described by Eq. (5), the first term 65

on the right side of Eq. (10) represents gravitational heating
and the second term on the right side represents frictional
cooling. Because the inequality in Eq. (11) must be satisfied,
the last term in Eq. (10) represents an apparent heating due to
particle deposition whose effect is to cull lower energy parti- 70

cles, thereby selecting higher energy particles for continued
downslope motion. Brilliantov et al. (2018) describe an anal-
ogous behavior of granular gases due to particle aggregation.

2.3 Generalized Pareto distribution of particle travel
distances

Simultaneous solution of Eq. (5), Eq. (9) and Eq. (10) using
Eq. (11) leads to the disentrainment rate function,

Px(x) =
1

Ax+B
. (12)5

In turn the probability density function fx(x) of travel dis-
tances x for particles starting at x= 0 is

fx(x) =
B1/A

(Ax+B)1+1/A
, (13)

and the exceedance probability function is

Rx(x) =

{
B1/A

(Ax+B)1/A
A 6= 0

e−x/B A= 0 .
(14)10

The shape and scale parameters A and B are

A=
α

γ

[
S

µ
− 1 +

1

α
(γ− 1)

]
and (15)

B =
α

γ

Ea0

mgµcosθ
. (16)

The mean of the distribution is15

µx =
B

1−A
A< 1 . (17)

With reference to the presentation in the first companion
paper (Furbish et al., 2021a) and for the purpose of present-
ing results below, let Ea0 denote the initial average parti-
cle energy at x= 0 and let N0 denote the initial number of20

particles at x= 0. In turn we define a characteristic cooling
distance X = Ea0/mgµcosθ. For plotting purposes, and to
highlight the role of the Kirkby number, we now define the
following dimensionless quantities denoted by circumflexes:

x=Xx̂, N =N0N̂ , E =N0Ea0Ê ,25

Ea = Ea0Êa and Eh = Ea0Êh . (18)

With these definitions in place, Eq. (5), Eq. (9), Eq. (10) and
Eq. (11) are rewritten as

dÊ(x̂)

dx̂
=

[
Ki −

(
1 +

1

α

)]
N̂ , (19)30

dN̂(x̂)

dx̂
=− N̂

αÊh

, (20)

dÊa(x̂)

dx̂
= Ki − 1 +

1

α

(
Êa

Êh

− 1

)
and (21)

35

Êa

Êh

= γ ≥ 1 . (22)

The expressions involving energy, Eq. (19) and Eq. (21), re-
veal that the Kirkby number Ki has a key role in the energy
balance and therefore particle deposition. In addition we can
define a transitional Kirkby number, 40

Ki∗ = 1− 1

α
(γ− 1) . (23)

If Ki <Ki∗ then net cooling occurs, and if Ki >Ki∗ then
net heating occurs. The condition Ki = Ki∗ implies isother-
mal conditions such that dÊa/dx̂= 0.

The dimensionless disentrainment rate is 45

Px̂(x̂) =
1

ax̂+ b
. (24)

The dimensionless probability density function of travel dis-
tances is

fx̂(x̂) =
b1/a

(ax̂+ b)1+1/a
, (25)

and the exceedance probability function is 50

Rx̂(x̂) =

{
b1/a

(ax̂+b)1/a
a 6= 0

e−x̂/b a= 0 .
(26)
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The shape and scale parameters a and b are

a=A and b=
α

γ
Êa0 . (27)

The distribution fx̂(x̂) defined by Eq. (25) is a general-
ized Pareto distribution with position parameter equal to zero 55

(Pickands, 1975; Hosking and Wallis, 1987). To summarize
with reference to Figure 2, for a < 0 this distribution decays
more rapidly than an exponential distribution and is bounded
at the position x̂= b/|a|. For a= 0 it becomes an exponen-
tial distribution. For 0< a < 1/2 the distribution fx̂(x̂) de- 60

cays more slowly than an exponential distribution, but it pos-
sesses a finite mean and a finite variance. For 1/2≤ a < 1 the
distribution possesses a finite mean but its variance is unde-
fined. For a≥ 1 the mean and variance of fx̂(x̂) are both un-
defined, even though this distribution properly integrates to 65

unity. For a > 0 the tail of fx̂(x̂) decays as a power function,
namely, fx̂(x̂)∼ x̂−(1+1/a). The exceedance probability de-
cays as Rx̂(x̂)∼ x̂−1/a. These results are summarized in Ta-
ble 1. If the shape and scale parameters a and b are redefined
as aL = 1/a and bL = b/a= baL, then Eq. (25) becomes 70

fx̂(x̂) =
aLb

aL

L

(x̂+ bL)1+aL
aL, bL > 0 , (28)

which is a Lomax distribution with mean

µx̂ =
bL

aL− 1
aL > 1 . (29)

With a < 0 the bounded form of fx̂(x̂) (Figure 2) repre-
sents rapid thermal collapse with net frictional cooling. For
a= 0 the exponential form of this distribution represents5

isothermal conditions where frictional cooling is matched by
gravitational heating and the apparent heating due to deposi-
tion. For a > 0 the heavy-tailed form of fx̂(x̂) represents net
gravitational heating.

For reference to data fitting presented below, a binomial10

expansion of Eq. (13) gives

fx(x) =
1

B

[
1− A

B

(
1 +

1

A

)
x− ...

]
. (30)

The expansion of an exponential distribution with mean µx

is

fx(x) =
1

µx

(
1− x

µx
+ ...

)
. (31)15

These two expansions indicate that unless the travel distance
data span a significant proportion of the x domain, then at
lowest order the fit of the generalized Pareto distribution
looks like an exponential distribution with mean B. This
result also is obtained from the disentrainment rate func- 20

tion, Eq. (12), in which for small x this function becomes
Px ≈ 1/B ≈ 1/µx. Moreover, if the travel distance data sam-
ple over a majority of the probability contained in the distri-
bution, and if the tail of the distribution is not “too” heavy,

then B is an approximation of the mean (where A< 1 such 25

that the mean exists).
Also note that in fitting the data to the generalized Pareto

distribution, Eq. (13), we use the dimensional form of the ex-
ceedance probability, Eq. (14). Specifically, we estimate val-
ues of the exceedance probability asRx(x) = 1−rx/(N+1), 30

where rx is the ascending rank of each datum. We then visu-
ally fit Eq. (14) to these estimated values to obtain values of
the parameters A and B. This involves iteratively examining
the data and theoretical lines in arithmetic, semi-log and log-
log plots, noting that semi-log plots generally highlight devi-
ations in the tails whereas log-log plots highlight deviations
near the origin. We mostly pay attention to the main body of
data in the semi-log plots, avoiding over-fitting of the outer
part of the tails given the inherent variability of estimates of5

the exceedance probability associated with the tails, notably
with small sample sizes (Appendix A). We also examine the
data using quartile-quartile (QQ) plots to ensure that these
are consistent with the generalized Pareto distribution. Here
we note that our objective is to demonstrate that the data are10

consistent with the several forms of the generalized Pareto
distribution, where in semi-log space the exceedance plots
either: 1) have negative concavity (representing rapid ther-
mal collapse); 2) are approximately straight (representing
isothermal conditions); or 3) have positive concavity (rep-15

resenting net heating). We are aimed at reasonable estimates
of the shape and scale parameters in order to achieve this ob-
jective, but we do not need refined estimates of these quan-
tities. For reasons that are fully explained in Appendix A,
we therefore use estimates of A and B obtained from visual20

fitting, avoiding known limitations of quantitative estimates
(e.g., maximum likelihood estimates) associated with small
sample sizes, particularly in the presence of censorship. As-
suming a value of γ (see description below), we then have
two equations, Eq. (15) and Eq. (16), with two unknowns,25

µ and α. Thus, the fitting of A and B provides estimates of
µ and α for subsequent consideration. In particular, we first
estimate µ as

µ= S− Ea0(A− 1 + 1/γ)

Bmg cosθ
, (32)

and then obtain α as30

α=
Bγmgµcosθ

Ea0
. (33)

In turn the Kirkby number Ki is calculated from Eq. (8).

2.4 Elements of collisional friction

The quantities µ and α defined in relation to Eq. (6) and Eq.
(7) merit further description. We start by noting that the for-35

mulation summarized in the preceding section is based on the
assumption that a change in translational kinetic energy ∆Ep

associated with a particle-surface collision can be expressed
as ∆Ep =−βxEp so that βx =−∆Ep/Ep is the proportion
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Figure 2. Plot of dimensionless probability density fx̂(x̂) versus dimensionless travel distance x̂ for scale parameter b= 1 and different
values of the shape parameter a for (a) a < 0 and (b) a≥ 0 with associated exceedance probability plots (insets). Figure reproduced from
companion paper (Furbish et al., 2021a). Compare with Figure 1 in Hosking and Wallis (1987).

Table 1. Behavior of the generalized Pareto distribution associated with the shape parameter a and Kirkby number Ki as illustrated in Figure
2.

Behavior Range of a Range of Ki Mean µx̂ Variance σ2
x̂

Bounded1, increasing with x̂ a <−1 Ki < 1− (2γ− 1)/α b/(1− a) b2/(1− a)2(1− 2a)
Uniform a=−1 Ki = 1− (2γ− 1)/α b/2 b2/12
Bounded1,2, decreasing with x̂ −1< a < 0 Ki <Ki∗ = 1− (γ− 1)/α b/(1− a) b2/(1− a)2(1− 2a)
Exponential a= 0 Ki =Ki∗ = 1− (γ− 1)/α b b2

Finite mean and variance 0< a < 1/2 Ki∗ <Ki <Ki∗ + γ/2α b/(1− a) b2/(1− a)2(1− 2a)
Finite mean, undefined variance 1/2≤ a < 1 Ki∗ + γ/2α≤Ki < 1+1/α b/(1− a) —
Undefined mean and variance a≥ 1 Ki ≥ 1+1/α — —

1Truncation occurs at dimensionless distance x̂ = b/|a|.
2Triangular with a =−1/2.

of the energy extracted during the collision. Both ∆Ep and40

βx are random variables. As described in Appendix E of the
first companion paper (Furbish et al., 2021a), in general we
may write the energy balance of a particle as

∆Ep =−∆Er − fc− fy . (34)

Here, a positive change in rotational energy ∆Er is seen45

as an extraction of translational energy. This loss of trans-
lational energy with the onset of rotation may be relatively
large if a collision involves stick following initial sliding due
to a large normal impulse, and such a loss also may occur due
to the imposed torque of friction during a collision that does 50

not necessarily involve stick. The term fc in Eq. (34) repre-
sents losses associated with particle and surface deformation
as well as work performed against friction during collision
impulses (thence converted to heat and sound). But this term
also includes losses associated with deformation of the sur- 55

face at a scale larger than that of an idealized particle-surface
impulse contact, namely, due to momentum exchanges asso-

ciated with the sputtering of loose surface particles during
collision. (The videos published as supplementary material
to DiBiase et al. (2017) nicely illustrate this sputtering as 60

well as the onset of rotational motion.) The term fy in Eq.
(34) represents the energy loss associated with glancing col-
lisions that produce transverse translational motions and ro-
tation oriented differently than any incident rotation. In some
cases the change in energy ∆Ep can be expressed directly 65

in terms of the energy state Ep (Appendix E in Furbish et
al., 2021a). However, the complexity of particle-surface col-
lisions on natural hillslopes precludes explicitly demonstrat-
ing such a relation for all possible scenarios. Nonetheless,
it is entirely defensible to assume that energy losses can be 70

related to the energy stateEp if the elements involved are for-
mally viewed as random variables. Then, the simple relation
∆Ep =−βxEp is to be viewed as an hypothesis to be tested
against data.

This hypothesis formally enters the formulation via Eq. 75

(6). Namely, from this relation we may write µ∼ 〈βx〉, high-
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lighting that µ is associated with the cooling rate. In turn,
particle collision mechanics (Appendix E in Furbish et al.,
2021a) suggest, for example, that µ∼ 〈βx〉 ∼M(θ), where
M(θ) involves the coefficients associated with tangential and 80

normal impulses contributing to energy losses during colli-
sions, and depends on the slope angle θ in that the expected
surface normal impact velocity varies with this angle. (In an
idealized particle-surface collision these coefficients include
the normal coefficient of restitution and a coefficient describ- 85

ing the ratio of tangential to normal impulses during the col-
lision (e.g., Brach, 1991; Brach and Dunn, 1992, 1995)).
Moreover,M(θ) is independent of particle size. These points
are examined below in relation to experimental data.

In turn, Furbish et al. (2021a) suggest that the quantity α 90

is related to the Kirkby number Ki as

α=
α0

1−µ1Ki
, (35)

where α0 denotes the value of α associated with a flat surface
(Ki = 0) and µ1 is a factor of order unity. Substitution into
Eq. (7) gives 95

Lc =
α0Ea

mgµcosθ−mgµ1 sinθ
. (36)

Viewed in this manner, α represents a direct effect of heating
described by mgµ1 sinθ, namely, to decrease the likelihood
of deposition by decreasing the proportion of particles that
cool to sufficiently low energies for deposition to occur —
which translates to suppressing the disentrainment rate and
increasing the length scale of deposition Lc relative to the
cooling length scale lc = Eh/mgµcosθ. In this view, µ goes5

with the cooling rate (not the deposition rate). But we also
may write Eq. (36) as

Lc =
α0Eh

mg cosθµ(1−µ1Ki)
(37)

Viewed in this manner, we may define an apparent friction
factor as µ0 = µ(1−µ1Ki) associated with deposition. Here10

again, µ is associated with the cooling rate but is then mod-
ulated by heating. We suggest below that for the same parti-
cle size, α increases with increasing Ki , very likely due to a
combination of increased heating and increased partitioning
of translational energy to rotational motion — both decreas-15

ing the likelihood of stopping and not represented in just the
factor µ. We also suggest that for the same slope and surface
roughness, α increases with increasing particle size, decreas-
ing the likelihood of frictional loss with increasing rotational
energy.20

3 Laboratory measurements

3.1 Gabet and Mendoza (2012)

3.1.1 Experiments

The experiments reported by Gabet and Mendoza (2012)
involved launching spherical, sub-angular one-cm particles25

with initial velocity u0 = 0.7 m s−1 onto an inclined sur-
face with fixed roughness elements embedded within con-
crete (see Figure 2 therein). The experiments stepped through
slope angles of θ = 0 degrees to θ = 30 degrees in incre-
ments of three degrees. The travel distances of 100 parti-30

cles were measured for each slope angle. All 100 particles
stopped within the 3 m flume for angles 0 to 15 degrees. For
angles 18, 21, 24 and 27 degrees, 92, 58, 26 and 4 particles
stopped, respectively. No particles stopped on the 30 degree
slope.35

Because the same particle is launched each time with
the same initial velocity u0, the initial arithmetic and har-
monic averages of the particle energy are the same, that is,
Ea0/Eh0 = γ0 ≈ 1. Over some unknown distance the par-
ticle motions experience randomization via collisions such40

that Ea/Eh = γ > 1. With reference to Eq. (9) where Eh =
Ea/γ, this means that because γ is initially one and then
increases, the expected disentrainment rate likely increases
initially over a short distance. Indeed, in preliminary plots
(not shown) of the exceedance probability Rx(x) versus x,45

an inflection occurs in some of the data close to x= 0, which
we suspect represents a delay in the onset of deposition of
the lowest energy particles. In fitting the data to the ex-
ceedance probability Rx(x) we assume that Ea/Eh = γ > 1
(and fixed) over the entirety of the travel distances. For this 50

reason we truncate distances shorter than the inflection posi-
tion then recalculate the travel distances and the exceedance
probabilities, while avoiding large truncation given the lim-
ited data size. We cannot know for certain the appropriate
truncation position, so this point should be kept in mind. 55

Note, however, that the formulation does not care where mo-
tions start, so this truncation is just a resetting of the star-
ing position (x= 0) with fewer data, assuming γ remains
approximately fixed beyond the adjusted starting position.
These points are examine further in Appendix B with ref- 60

erence to experiments described in Section 3.3.
We choose γ = 1.5 in this and subsequent analyses of

travel distance data. Note first that this choice has no influ-
ence on the estimates of the parameters A and B. However,
it does influence the estimated values of µ and α via Eq. (32) 65

and Eq. (33). The assumption that γ is fixed may be incorrect.
However, to rigorously constrain γ would require solving the
Fokker-Planck equation describing the evolving number den-
sity nEp

(Ep,x) of particle energy states Ep as described in
Section 3.3.2 of the first companion paper (Furbish et al., 70

2021a); this is beyond the scope of our objective of demon-
strating the basic behavior of the particle energy balance. The
effect of fixed γ = 1.5 on estimates of µ and α is systematic
throughout the analyses, but whether this choice is correct
remains an open question. 75

3.1.2 Results

The data are reasonably well fit by the theoretical curves,
where we plot the data twice (Figure 3 and Figure 4) in order
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Figure 3. Plot of exceedance probability Rx(x) versus travel distance x for experiments described by Gabet and Mendoza (2012) where (a)
A< 0 and (b) A≥ 1. In (a), slope angles are 0◦ (top open), 3◦ (light gray), 6◦ (bottom open) and 9◦ (black); in (b), slope angles are 12◦

(bottom black), 15◦ (bottom light gray), 18◦ (open), 21◦ (top black) and 24◦ (top light gray).

Figure 4. Plot of logarithm of exceedance probability Rx(x) versus travel distance x for experiments described by Gabet and Mendoza
(2012) where (a) A< 0 and (b) A≥ 0, together with fitted distributions (lines). In (a), slope angles are 0◦ (top open), 3◦ (light gray), 6◦

(bottom open) and 9◦ (black); in (b), slope angles are 12◦ (bottom black), 15◦ (bottom light gray), 18◦ (open), 21◦ (top black) and 24◦ (top
light gray).

to highlight several points. Estimated parametric values are
provided in Table 2, where estimates of the variability in µ,α, 80

Ki and Ki∗ are based on a Monte Carlo analysis as described
in Appendix C.

For data involving an estimated shape parameter A< 0
(Figure 3a, Figure 4a), the relatively rapid decrease in the
exceedance probability Rx(x) with little indication of an 85

asymptotic approach to Rx(x) = 0 strongly suggests that the
data represent bounded forms of the distribution fx(x) (Fig-
ure 3a). Nonetheless, one might on empirical grounds reason-
ably fit the data to, say, an exponential distribution (although
quartile-quartile plots, not shown, would advise against this). 90

However, the negative concavity of the fits are unambiguous
in Figure 4a, strongly reinforcing the point that the data rep-
resent bounded forms of the distribution. This result is con-
sistent with the idea of rapid thermal collapse for data involv-
ing θ ≤ 9 degrees and Ki ≤ 0.73. Note that Ki <Ki∗ in all 95

cases. For unknown reasons (and not attributable to trunca-
tion) the average particle motion on the flat surface is larger
than the next three slope angles (3, 6 and 9 degrees). This
may simply reflect the stochasticity of the disentrainment
process at these small angles. Also note that several data sets 100

share “kinks” in their estimated exceedance probabilities at
similar distances, for example, around 0.8 m and 1.3 m. This
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Table 2. Fitted and estimated values of the parameters for the data shown in Figure 3 and Figure 4 with coefficients of variation in parentheses.

Slope
(deg) A B (m) Ki Ki∗ µ α µa

x (m) µb
x (m)

0 -0.48 0.42 0.00 (—)c 0.59 (0.042) 0.05 (0.12) 1.22 (0.061) 0.28 0.29
3 -0.55 0.32 0.43 (0.070) 0.78 (0.017) 0.12 (0.073) 2.33 (0.056) 0.21 0.21
6 -0.36 0.30 0.64 (0.044) 0.83 (0.016) 0.16 (0.046) 2.89 (0.073) 0.22 0.22
9 -0.65 0.43 0.73 (0.036) 0.91 (0.0082) 0.22 (0.035) 5.53 (0.080) 0.26 0.27
12 0.03 0.31 0.89 (0.012) 0.88 (0.014) 0.23 (0.013) 4.26 (0.10) 0.31 0.29
15 0.02 0.39 0.93 (0.0078) 0.92 (0.0084) 0.29 (0.0079) 6.53 (0.098) 0.40 0.40
18 0.09 0.99 0.98 (—) 0.97 (—) 0.33 (—) 18.7 (0.10) 1.09 0.85
21 0.70 2.6 1.01 (—) 0.99 (—) 0.38 (—) 56.1 (0.10) 8.77 1.06
24 3.6 4.7 1.04 (0.0069) 1.00 (—) 0.43 (0.0067) 110 (0.11) — 0.98

aEstimated from parameters A and B.
bEstimated from data, recognizing that these do not incorporate distances of particles that moved beyond measurement distance of 3 m.
cNotation (−) means undefined or coefficient of variation is less than 0.01.

could be due to chance, or it may reflect a persistent effect
of the structure of the surface roughness, specifically the oc-
currence of relatively large roughness elements. Roth et al.
(2020) note this behavior in their field-based measurements
of particle travel distances on vegetated hillslopes (Section5

4.2), where vegetation acts as roughness elements.
For data involving an estimated shape factor A≥ 0 (Fig-

ure 3b, Figure 4b), the first two sets (12 and 15 degrees) are
approximately exponential with Ki ≈Ki∗. This is reflected
in the close correspondence between the values of the scale10

parameter B and the estimated average travel distances µx

(Table 2). The data show a clear asymptotic appearance of
the exceedance probability Rx(x) (Figure 3b) with essen-
tially straight line fits in Figure 4b. This result is consistent
with the idea that these two experiments involved approxi- 15

mately isothermal conditions. For larger shape factor A, the
fitted lines decrease in an exponential-like manner in Fig-
ure 3b and they appear as essentially straight lines over the
domain of measured travel distances in Figure 4b. The fits
therefore cannot be used to distinguish between an exponen- 20

tial distribution and a generalized Pareto distribution. Note,
however, that regardless of the distribution, whereas the data
for 18 degrees span about 90% of the probability of the dis-
tribution, the data for 21 degrees sample only about 50% of
the probability contained in the distribution, and the data for
24 degrees sample only about 15% of the probability. This
directly points to the difficulty of working with tail-censored
data, especially if the underlying distribution is heavy-tailed
(Appendix A). That is, at large Ki the experimental flume5

is sampling only a fraction of the distribution, representing
just the shortest travel distances associated with the specific
surface-roughness conditions. Nonetheless, the mechanical
basis of the distribution combined with its consistency with
data for A< 0 reinforces the merit of the hypothesis of a10

heavy-tailed behavior for A> 0.
Further note that for all cases less than 24 degrees the esti-

mated values of A and B suggest that the distributions have
finite moments. These moments are undefined (A> 1) for

the case of 24 degrees. Also recall that only four particles15

stopped on the flume at a slope angle of 27 degrees, and no
particles stopped at an angle of 30 degrees. These points are
consistent with the idea that gravitational heating is systemat-
ically increasing relative to frictional cooling with increasing
Kirkby number. Using the largest estimated value of µ (Table20

2), the values of the Kirkby number would be Ki = 1.2 and
Ki = 1.3 for the slope angles of 27 and 30 degrees, respec-
tively.

Here is an interesting sidebar. Following Samson et al.
(1999) we plot the reciprocal, 1/µx, of the average travel25

distance µx versus slope angle θ (Figure 5). For spheres

Figure 5. Plot of reciprocal of average travel distance 1/µx versus
slope angle θ calculated from Eq. (17) using estimated values of
A and B (open circles) and calculated directly from data (black
circles).

rolling bumpety-bump down an inclined surface roughened
with a quasi-random monolayer of small particles, Samson
et al. (1999) show a linear decline in 1/µx with increasing
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slope angle (see their Figure 3) associated with trapping (de-30

position) related to collisional friction. This reciprocal then
smoothly transitions to values close to zero with further in-
crease in slope angle representing continuing motions with-
out significant trapping. The plot in Figure 5 also reinforces
the idea that if one assumes an exponential distribution to35

calculate average travel distances, the values will be similar
to those associated with the generalized Pareto distribution
for small to moderate Kirkby numbers, but then deviate sig-
nificantly with increasing heaviness of the distribution tail.

3.2 Kirkby and Statham (1975) 40

3.2.1 Experiments

The experiments reported by Kirkby and Statham (1975) in-
volved dropping particles onto an inclined surface with fixed
roughness composed of particles of different sizes, thus giv-
ing different ratios of particle to roughness size. For differ- 45

ent slopes, the particles were dropped from different initial
heights h at the crest of the surface, and travel distances
were measured. Here we focus on average travel distances re-
ported in their Figure 1 involving a slope angle of 35 degrees
and three dropped particle sizes with minor-to-intermediate 50

axis ratios of 0.40, 0.53 and 0.77. Kirkby and Statham (1975)
report that the distributions of travel distances are exponen-
tial, but do not present the travel distance data. Here we
briefly examine the effect of the initial energy state deter-
mined by the drop height h.5

For A and B defined by Eq. (15) and Eq. (16) we may
write the average travel distance as

µx =
B∗

1−A
ε2h, (38)

where B∗ = (α/γ)sin2 θ/µcosθ or B =B∗ε2h. The form
of Eq. (38) requires a straight line fit between the average10

distance µx and the drop height h, but it does not provide a
unique fit. We must ensure that the estimated shape parame-
ter A< 1 to yield a finite average; otherwise the comparison
is not meaningful. Based on the results described in the pre-
vious section we assume that the Kirkby number is close to15

unity, and for the given slope angle we choose a friction fac-
tor of µ= 0.7. Whereas the coefficient of restitution εmay be
relatively large for natural rock material, this coefficient typi-
cally decreases significantly on average for irregular particles
due to the high probability that collisions are not collinear20

with particle centers of mass (see next section). For illustra-
tion we choose ε= 0.5. As before we fix γ and then vary α
to estimate A and B∗.

3.2.2 Results

The data are well fit by Eq. (38) (Figure 6). Estimated para-25

metric values are provided in Table 3.
We emphasize that other choices of the quantities ε, µ

and α would provide equally good fits, given that Eq. (38)

Figure 6. Plot of average travel distance µx versus drop height h
based on data in Figure 1 of Kirkby and Statham (1975) for three
different particle sizes. Note that we are assuming the largest size is
21.5 mm rather than the reported value of 0.215 mm.

Table 3. Fitted values of the parameters for the data shown in Figure
6.

Particle
size (cm) A B∗ Ki µ α

1.26 0.33 1.3 1.0 0.7 3.5
1.34 0.33 2.1 1.0 0.7 5.5
2.15 0.31 7.2 1.0 0.7 19

does not provide a unique solution for A and B∗. With this
in mind, the estimated values of A suggest that the data are 30

consistent with a heavy-tailed form of the generalized Pareto
distribution with finite mean and finite variance. The dropped
particles experience different rates of frictional cooling, man-
ifest in the increasing value of α with increasing particle size
(Table 3); and the data are consistent with the idea that the 35

average travel distance is directly proportional to the initial
energy state determined by the drop height h.

3.3 Vanderbilt data

3.3.1 Experiments

We conducted two sets of experiments. The first set was 40

aimed at demonstrating the basis for treating the proportion
of energy extraction, βx, as a random variable. To do this we
focused on the analogous quantity βz , which is the propor-
tion of energy extraction associated with particle collision
on a horizontal surface following vertical free fall. This al- 45

lowed us to show, and calculate, the partitioning of transla-
tional energy into deformational friction and rotational en-
ergy during collisions. We used particles of varying size and
angularity. The experiments involved dropping the particles
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onto a smooth rigid surface of slate, and onto a rough sur- 50

face. The rough surface, made of concrete, had a granular
roughness smaller than the particles (Figure 7). We recorded

Figure 7. Image of rounded (left), small (center) and angular (right)
test particles on the concrete surface with granular roughness tex-
ture.

particle motions using a Lightning RDT monochrome cam-
era (DRS Technologies) operating at 800 frames per second.
The camera was mounted on a tripod, and oriented parallel
to the horizontal surface. The image resolution was 1,280 ×
640 pixels.5

In the second set of experiments we launched particles
of varying size and angularity onto the rough surface, then
measured their travel distances for several slope angles. The
slopes were S = 0, 0.09, 0.15, 0.18, 0.25 and 0.28. The
launching device consisted of a pendulum catapult (Figure 8)10

configured so that particles were delivered to the rough sur-
face with negligible rotational motion and with a prescribed
surface-parallel velocity. We used two sizes (D ≈ 1 cm and
D ≈ 0.5 cm) of irregular, rounded particles and one size
(D ≈ 1 cm) of angular particles. We recorded motions of15

particles launched from the catapult onto the rough surface
with high-speed imaging at a resolution of 640× 640 pixels.
In addition we made audio recordings of particle-surface in-
teractions during their downslope motions. Audio recordings
were made and processed using the GarageBand application20

on a 6th generation Apple iPad.

3.3.2 Results

As a point of reference, the vertical rebounds of ordinary
spherical glass marbles following their impacts on the hard
slate reveal no surprises. These collinear collisions give a 25

normal coefficient of restitution of ε= 0.81±0.017 yielding
βz = (1− ε2) = 0.34± 0.028 (m= 0.014 Kg, N = 5), and
ε= 0.81± 0.018 yielding βz = 0.35± 0.030 (m= 0.0033
Kg, N = 5). The variation in ε is likely attributable to small
differences in the marble-surface deformation mechanics 30

during collision. Rebounds from the rigid granular surface

Figure 8. Image of pendulum catapult. A particle is placed on the
low friction (glossy cardboard) cradle at the base of the pendulum
arms (∼ 20 cm); using a wand the arms and particle are pushed back
to a preset position as one would a toddler on a playground swing
(albeit not with a wand), then released; the arms are arrested by the
front bar, whence the momentum of the particle launches it onto the
surface. The cradle is about 2 mm above the rough surface. A stone
is placed in the base of the catapult for stability.

give ε= 0.26±0.59 yielding βz = 0.93±0.031 (m= 0.014
Kg, N = 10), and ε= 0.41± 0.038 yielding βz = 0.83±
0.032 (m= 0.030 Kg, N = 10). Although the collisions are
collinear, the granular texture of the surface leads to some 35

variation in the reflection angles. The smaller values of ε rel-
ative to the slate surface indicate that, although the concrete
surface is rigid, its granular texture gives more dissipative
collisions, likely involving deformation of micro-asperities.
This effect evidently is more pronounced with the larger mar- 40

bles.
In contrast, the rebounds of natural particles from the

hard slate reveal how noncollinear collisions strongly influ-
ence the rebound angle and normal rebound height. If εz
denotes the effective normal coefficient of restitution, then 45

βz = 1− ε2z is the proportion of the normal (vertical) com-
ponent of kinetic energy extracted, analogous to βx. That is,
βz =−∆Ep/Ep. This proportion involves a mechanical loss
due to particle and surface deformation during the collision,
with conversion of energy to heat and sound. But a signifi- 50

cant part can go into transverse components of translational
energy and rotational energy. Thus, this is a simple demon-
stration of the idea that βz (and βx) must be treated as a ran-
dom variable rather than a fixed quantity as in the case of
the normal coefficient of restitution ε associated with spher- 55
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ical particles in a granular gas, although recent efforts have
treated this quantity as a random variable (Gunklemann et
al., 2014; Serero et al., 2015).

To illustrate this we write a normalized form of βz as
β∗z = (βz −βmin

z )/(1−βmin
z ), where βmin

z = 1− ε2 is the 60

minimum value associated with a collinear collision. Al-
though we cannot offer a theoretical basis for the distribution
of β∗z , we nonetheless on empirical grounds fit β∗z to the beta
distribution because of its versatile bounded form over [0,1],
then transform the fitted distribution back to the original val- 65

ues of βz . For comparison we fit a Gaussian distribution to
the values βz measured for the spheres.

For the hard slate surface, spheres show a small variance
about the mean value. Probability is then redistributed toward
βz = 1 with increasing particle angularity (Figure 9). For the

Figure 9. Plot of (a) cumulative distributions of energy extrac-
tion quantity βz for glass spheres fit to a Gaussian distribution and
rounded and angular particles fit to a beta distribution, and (b) as-
sociated probability density functions of fitted distributions. Colli-
sions are on hard slate.

70

rough surface, spheres show a larger variance, and there is

a stronger redistribution of probability toward βz = 1 with
increasing angularity (Figure 10). We cannot directly map

Figure 10. Plot of (a) cumulative distributions of the energy ex-
traction quantity βz for glass spheres fit to a Gaussian distribution
and rounded and angular particles fit to a beta distribution, and (b)
associated probability density functions of fitted distributions. Col-
lisions are on rough surface.

this result to an interpretation of βx because of differences
in the geometrical conditions of collisions. Nonetheless, as 75

described below, the effect of angularity appears in measure-
ments of travel distances as an increasing likelihood of dis-
entrainment with increasing angularity.

For the rough experimental surface, βz is on average larger
than for the hard slate surface. The particle-surface impact is5

unlike that of an idealized rigid surface, and more like that
of a quasi-rigid (deformable) granular material. Nonethe-
less, despite the small effective coefficient of restitution, non-
collinear collisions yield significant conversion of energy to
transverse motions and rotation. The particles do not simply10

“die” on impact.
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For each particle-surface combination, the largest rebound
heights provide an estimate of the (ordinary) normal coeffi-
cient of restitution ε. These heights are associated with ap-
proximately collinear collisions as confirmed by the high-15

speed imaging. We can therefore estimate the partitioning
of energy between the frictional loss fc (deformation, heat
and sound) and reflectional transverse motion and rotation
Ec (Appendix D). Results indicate that on average less than
half of the initial energy is dissipated by friction on the hard 20

surface, and slightly less goes to transverse motion and rota-
tion (Table 4). About 20-30% of the initial energy is recov-
ered in vertical motion. In contrast, on average much of the
initial energy is dissipated by friction on the rough surface,
and only about 10% or so goes to transverse motion and ro- 25

tation. About 5% of the initial energy is recovered in vertical
motion. These results are consistent with those reported by
Williams and Furbish (2021) involving a larger data set.

High-speed imaging of particle motions launched by the
catapult onto the rough surface provides estimates of initial 30

surface-parallel particle velocities u0 (Table 5). The imag-
ing reveals that the free-flight distances before first collisions
increase with increasing surface slope. The particles then ex-
perience complex collisions with the surface that randomize
their motions, including the onset of rotation.

For all surface slopes, the large rounded particles system-
atically travel farther than the large angular particles, and the5

small particles typically travel distances similar to those of
the large angular particles (Figure 11). The data are reason-
ably fit by the theoretical curves, notably at small and large
Ki . At intermediate Ki , several cases involve a systematic
deviation from the curves. Estimated parametric values are10

provided in Table 6, where estimates of the variability in µ,
α, Ki and Ki∗ are based on a Monte Carlo analysis as de-
scribed in Appendix C. As with the data of Gabet and Men-
doza (2012), we displace the starting position (x= 0) to the
first inflections in the raw exceedance probability plots, then15

recalculate distances and exceedance probabilities. A spe-
cific example is provided in Appendix B.

Note that, for reference below, two value of µ, α, Ki and
Ki∗ are provided. The first value is based on the measured
launch velocity u0 (Table 5). The second value is based on20

a reduced velocity. Namely, we do not know the average en-
ergy state of the particles at the truncation position used in the
fitting ofA andB, although it most likely is smaller than that
associated with the launch velocity. To provide a sense of the
uncertainty in the calculated values we thus assume that the25

particle energy is reduced by half of its initial launch energy,
although this is less likely with increasing surface slope and
gravitational heating. At small slopes S this adjustment has a
larger effect on µ than on α. At large slopes this adjustment
has a larger effect on α. 30

For the lower slopes (S = 0 to S = 0.15), all particles ex-
perience rapid thermal collapse (A< 0). However, between
S = 0.15 and S = 0.18, the rounded particles appear to tran-
sition to a heavy-tailed behavior. By S = 0.25, no rounded

particles stop on the surface; gravitational heating far ex- 35

ceeds frictional cooling. At this slope the angular and small
particles exhibit heavy-tailed behavior with net heating. At
S = 0.28, only angular particles stopped on the surface with
net heating, and these are strongly censored (126 of 210 par-
ticles stopped). 40

For a given slope, values of the friction factor µ for the an-
gular and small particles are systematically larger than val-
ues for the rounded particles. This result is consistent with
the expectation that angular particles on average experience
a greater energy loss during collisions than rounded particles, 45

and that larger rounded particles are less likely than are small
particles (both rounded and angular) to be influenced by the
surface roughness texture during collisions. Whereas values
of the factor α generally increase with slope S (and Kirkby
number Ki ), no pronounced differences between particle size 50

or shape appear.
Video and audio recordings (Supplementary Ma-

terials, Vanderbilt University Institutional Repository,
https://ir.vanderbilt.edu/handle/1803/9742) provide clear
evidence in support of the results above. In particular the 55

files “Rounded_colinear.avi” and “Angular_colinear.avi”
show examples of colinear collisions on the hard slate,
with negligible rotation following collision and maximum
vertical rebound. These examples are used in estimating the
coefficient of restitution ε for the particle-slate collisions. 60

The angular particle collision is a low probability event
(dubbed the “pogo stick” by M. Schmeeckle) in that the
point of impact involves a particle corner that becomes
aligned directly beneath the center of mass at the instant of
impact. 65

One of the more compelling results appearing in several
of the videos is when the translational kinetic energy of a
particle at first impact is converted to translational kinetic
energy involving transverse motion and rotational kinetic en-
ergy, then during a second or third collision, rotational energy 70

is converted back to vertical motion thence to gravitational
potential energy. The likelihood of this occurring increases
with particle angularity, where noncollinear collisions are
the rule rather than exception, and pointy particle corners
lead to unusual collision configurations. The file “Angu-
lar_all_rotational.avi” shows a particularly strong conversion
of translational to rotational motion with the initial collision
on hard slate. The file “Angular_rotational_to_vertical.avi” 5

shows conversion of rotational to vertical motion with the
second collision. The file “Semiangular_rotational_die.avi”
shows rapid cessation of motion following conversion of ro-
tational to vertical motion.

The geometry of a noncollinear collision following the
vertical drop of an angular particle is different from that of a
particle at relatively small incident angle. Nonetheless, the5

strong conversion of translational to rotational motion as-
sociated with the former is analogous to the behavior of a
particle that experiences stick during a small incident angle
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Table 4. Average energy partitioning as a proportion of initial energy Ep0 =mgh for estimated coefficient of restitution ε.

Surface Particle shape ε fc Ec Recovered
hard slate rounded 0.80 0.36 0.34 0.30

angular 0.75 0.44 0.35 0.21
rough concrete rounded 0.42 0.82 0.13 0.05

angular 0.37 0.86 0.10 0.04

Table 5. Slope-parallel launch velocities u0 measured from high-
speed imaging.

Particles Slope u0 (m s−1) N

angular 0.00 0.58 ± 0.036 10
0.09 0.79 ± 0.053 5
0.15 0.86 ± 0.041 5
0.18 0.84 ± 0.084 4
0.25 1.00 ± 0.028 4
0.28 0.98 ± 0.036 5

rounded 0.00 0.60 ± 0.060 10
0.09 0.80 ± 0.021 5
0.15 0.86 ± 0.050 5
0.18 0.88 ± 0.027 5

small 0.00 0.55 ± 0.15 10
0.09 0.77 ± 0.038 5
0.15 0.89 ± 0.038 5
0.18 0.91 ± 0.011 5
0.25 0.97 ± 0.013 5

collision with conversion of translational to rotational energy
(Appendix E in Furbish et al., 2021a).10

The files “Angular_18%slope.avi” and “Angu-
lar_28%slope.avi” show examples of angular particles
launched from the catapult onto the rough surface. Although
the surfaces in these videos appear flat because of camera
alignment, the slopes are S = 0.18 (10.2 degrees) and15

S = 0.28 (15.6 degrees), so gravitational heating starts
immediately. The particles are launched with negligible
initial rotation and the motions start to become randomized,
including the onset of rotation, following free flight and
initial surface collisions. Rather than decelerating, gravi-20

tational heating maintains velocities similar to the launch
velocities. Indeed, the particle on S = 0.18 seems likely to
stop, but then continues with heating. For contrast the file
“Rounded_0slope.avi” shows an example of a rounded par-
ticle that rapidly decelerates then “dies” when launched onto 25

the flat rough surface (S = 0). The increase in free-flight
distances (before initial collisions) with increasing slope are
apparent in the three videos.

Audio recordings of particle-surface interactions during
their downslope motions reveal the distinctive clickety-click 30

sounds of collisions (“Bouncing.m4a”), which are markedly
different from the sounds emitted by particles that are either
gently or forcefully made to slide on the rough surface (“Slid-
ing.m4a”). These clickety-click sounds occur with high fre-
quency, particularly when particles are in a tumbling (nom- 35

inally “rolling”) mode, giving way to decreasing frequency
when particles undergo runaway bouncing motions. In con-
trast, sliding motions emit continuous scraping sounds. The
key result of these recordings is to audibly reinforce the idea
that motions involve collisional friction rather than a sliding 40

Coulomb-like behavior, except in association with the brief
collision impulses as described in collision mechanics theory
(Brach, 1991; Stronge, 2000).

Further analyses of these detailed particle motions in rela-
tion to downslope and cross-slope motions are to be reported5

elsewhere.

4 Field measurements

4.1 DiBiase et al. (2017)

4.1.1 Experiments

The field-based experiments reported by DiBiase et al.10

(2017) involved launching three different sizes of particles
down a natural hillslope surface. The particle size classes in-
cluded diametersD = 2−3 cm,D = 4−6 cm andD = 9−12
cm, involving 58, 93 and 43 particles, respectively. Of these,
53, 61 and 14 particles stopped within a 14 m measure-15

ment distance with approximately uniform steepness of 38
degrees. The distributions of travel distance systematically
varied with the different particle sizes. Further details of the
experiments, including measurements of surface roughness,
are provided by DiBiase et al. (2017).20

As with the data of Gabet and Mendoza (2012), we again
fit the parameters A and B, then calculate values of µ and α
assuming a value of γ. We also displace the starting position
(x= 0) to the first inflections in the raw exceedance proba-
bility plots for the smaller two particle sizes, then recalculate25

distances and exceedance probabilities.

4.1.2 Results

The data are reasonably well fit by the theoretical curves
(Figure 12). Estimated parametric values are provided in Ta-
ble 7, where estimates of the variability in µ, α, Ki and Ki∗30

are based on a Monte Carlo analysis as described in Ap-
pendix C.

For all particle diameters the Kirkby number Ki ≈ 1, and
the fits are insensitive to the value of γ. Moreover, estimated
values of the friction factor µ are similar; these do not show a35

systematic change with particle size. The estimated values of
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Figure 11. Plots of exceedance probability versus travel distance for the Vanderbilt experiments over six values of slope S showing angular
(open circles), rounded (black circles) and small (gray circles) particles together with fitted distributions (lines).

A suggest that the smallest particles represent a distribution
with finite mean but undefined variance (1/2≤A< 1). The
larger two particle sizes represent conditions with an unde-
fined mean and undefined variance (A≥ 1).40

In contrast to the ambiguity of an exponential versus a
Pareto fit to the data of Gabet and Mendoza (2012) forA≥ 0
(Figure 4b), the concavity in the semi-log exceedance prob-
ability plot (Figure 12) for the smaller two particle sizes is
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Table 6. Fitted and estimated values of the parameters for the data shown in Figure 11 with coefficients of variation in parentheses.

Particles Slope S A B (m) Ki Ki∗ µ α µa
x (m) µb

x (m)
Angular 0 -0.54 0.033 0.00 (—)c 0.62 (0.026) 0.46 (0.15) 1.31 (0.043) 0.021 0.022

0.00 (—) 0.62 (0.026) 0.23 (0.19) 1.31 (0.043)
0.09 -0.39 0.075 0.23 (0.15) 0.64 (0.028) 0.40 (0.12) 1.40 (0.069) 0.054 0.063

0.37 (0.14) 0.71 (0.034) 0.24 (0.14) 1.72 (0.15)
0.15 -0.36 0.12 0.40 (0.075) 0.71 (0.021) 0.37 (0.076) 1.73 (0.054) 0.088 0.093

0.58 (0.067) 0.79 (0.024) 0.26 (0.069) 2.44 (0.094)
0.18 -0.56 0.22 0.55 (0.098) 0.83 (0.024) 0.33 (0.10) 2.96 (0.13) 0.14 0.15

0.71 (0.085) 0.89 (0.025) 0.25 (0.088) 4.59 (0.26)
0.25 0.30 0.35 0.98 (0.012) 0.80 (0.021) 0.26 (0.012) 2.55 (0.086) 0.50 0.40

0.99 (0.0062) 0.90 (0.011) 0.25 (0.0060) 5.04 (0.11)
0.28 0.77 1.18 1.07 (0.012) 0.95 (0.0064) 0.26 (0.012) 9.29 (0.11) 5.13 0.58

1.03 (0.0062) 0.97 (—) 0.27 (0.0063) 19.2 (0.13)
Rounded 0 -0.51 0.049 0.00 (—) 0.60 (0.028) 0.32 (0.22) 1.27 (0.042) 0.033 0.034

0.00 (—) 0.60 (0.028) 0.16 (0.30) 1.27 (0.042)
0.09 -0.24 0.119 0.36 (0.058) 0.63 (0.021) 0.25 (0.059) 1.35 (0.036) 0.096 0.101

0.53 (0.049) 0.73 (0.021) 0.12 (0.049) 1.84 (0.056)
0.15 0.10 0.19 0.76 (0.033) 0.66 (0.053) 0.20 (0.033) 1.47 (0.11) 0.21 0.21

0.86 (0.024) 0.81 (0.037) 0.17 (0.025) 2.59 (0.16)
0.18 0.020 0.28 0.80 (0.018) 0.79 (0.020) 0.22 (0.019) 2.35 (0.073) 0.29 0.30

0.89 (0.012) 0.88 (0.013) 0.20 (0.013) 4.24 (0.10)
Small 0 -0.49 0.035 0.00 (—) 0.60 (0.030) 0.36 (0.57) 1.24 (0.044) 0.24 0.27

0.00 (—) 0.60 (0.030) 0.18 (0.82) 1.24 (0.043)
0.09 -0.51 0.098 0.26 (0.095) 0.71 (0.018) 0.35 (0.096) 1.70 (0.044) 0.065 0.072

0.41 (0.095) 0.77 (0.021) 0.22 (0.096) 2.14 (0.071)
0.15 -0.35 0.12 0.39 (0.071) 0.70 (0.021) 0.38 (0.072) 1.69 (0.049) 0.089 0.097

0.56 (0.064) 0.79 (0.022) 0.27 (0.065) 2.35 (0.083)
0.18 -0.51 0.24 0.54 (0.039) 0.82 (0.0098) 0.33 (0.039) 2.77 (0.044) 0.16 0.17

0.70 (0.026) 0.88 (0.0075) 0.26 (0.027) 4.28 (0.056)
0.25 0.30 0.41 0.98 (0.010) 0.84 (0.014) 0.25 (0.010) 3.16 (0.075) 0.59 0.43

0.99 (0.0051) 0.92 (0.0069) 0.25 (0.0051) 6.26 (0.078)
aEstimated from parameters A and B.
bEstimated from data, recognizing that these do not incorporate distances of particles that moved beyond measurement distance of 1.9 m.
cNotation (−) means undefined or coefficient of variation is less than 0.01.

Table 7. Fitted and estimated values of the parameters for the data shown in Figure 12 with coefficients of variation in parentheses.

Particle
size (m) A B (m) Ki Ki∗ µ α µa

x (m) µb
x (m)

0.025 0.81 2.4 1.04 (0.013) 0.97 (—)c 0.76 (0.012) 16.4 (0.14) 12.6 3.32
0.05 1.7 5.1 1.01 (0.015) 1.00 (—) 0.78 (0.013) 227 (0.013) — 4.04
0.10 5.0 8.8 1.00 (0.049) 1.00 (—) 0.79 (0.034) 3160 (—) — 3.74

aEstimated from parameters A and B.
bEstimated from data, recognizing that these do not incorporate distances of particles that moved beyond measurement distance of 14 m.
cNotation (−) means coefficient of variation is less than 0.01.

readily apparent and consistent with a Pareto distribution.45

Certainly one could fit a straight line to these data, but the fit
would degrade (as revealed, although not shown, by quartile-
quartile plots). Nonetheless, we must be cautious. Inasmuch
as the theoretical distribution is the correct choice, then the
data represent only a fraction of the total probability. For the50

smallest particles about 15% of the tail is not sampled. For
the intermediate particles about 35% is not sampled; and for
the largest particles about 70% of the tail is not sampled.
This reinforces the difficulty of working with tail-censored

data with relatively small sample sizes. Note also that for the 55

smallest particle size the average travel distance µx calcu-
lated from the data is similar to the estimated parameter B
but is significantly smaller than the average estimated from
the values ofA andB (Table 7). This occurs because the data
“see” probability distributed in a manner that is not dissimilar 60

from that expected for an exponential distribution, whereas
the values of A and B incorporate information contained in
the tail of the Pareto distribution.
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Figure 12. Plot of exceedance probability versus travel distance
for experiments described by DiBiase et al. (2017) showing small
(black circles), medium (gray circles) and large (open circles) par-
ticles together with fitted distributions (lines).

Based on reported particle velocities, values of the initial
average kinetic energies Ea0 of the three particle sizes are 65

1.0×10−5 J, 1.1×10−4 J and 8.5×10−4 J. Estimated values
of the average kinetic energies Ea measured over the total
travel distances are 8.0×10−6 J, 1.1×10−4 J and 2.2×10−3

J. The change in average energies ∆Ea are −2.5× 10−6 J,
0.0×100 J and 1.4×10−3 J. These changes are qualitatively 70

consistent with net cooling, isothermal conditions and net
heating, although in all three cases the estimated paramet-
ric values suggest net heating (Ki ≥Ki∗). Using the largest
value of the friction factor µ (Table 7), the Kirkby number
of the 40 degree surface immediately downslope from the 75

measurement site is Ki ≈ 1.1. The transition Kirkby number
Ki∗ = 1. If particles on average experienced net heating on
the upper 38 degree surface, then this result is consistent with
the reported observation that particles reaching the steeper
slope continued to the base of the hillslope without stopping. 80

4.2 Roth et al. (2020)

4.2.1 Experiments

The field-based experiments reported by Roth et al. (2020)
involved dropping three different sizes of particles on eight
natural hillslope surfaces in the Oregon Coast Range. Five5

of the hillslopes were covered with natural vegetation (desig-
nated by V), and included slope angles of zero, 14, 20, 24 and
39 degrees. Three of the hillslopes had recently been burned
(designated by B) and included slope angles of 17, 20 and
28 degrees. Particle size classes involved average diameters10

of 1.7, 4.5 and 7.3 cm. These were dropped from a height of
h≈ 0.2 m onto each hillslope surface. The distributions of

travel distances systematically varied with slope angle, parti-
cle size and surface roughness conditions.

The surfaces of the vegetated hillslopes had a layer of duff,15

woody debris and banana slugs beneath small plants (e.g.,
ferns) and trees. The surfaces of the burned hillslopes had lit-
tle vegetal cover and were markedly smoother than the vege-
tated sites. Further details of the experiments, including mea-
surements of surface roughness, are provided by Roth et al.20

(2020). Banana slugs, whose locomotive energetic costs are
constrained by the shear-thinning rheology of their mucus
(Lauga and Hosoi, 2006), appear as slow moving Dirac func-
tions in the power spectra of surface elevation. None were
injured during the experiments.25

As above, we fit the parameters A and B, then calculate
values of µ and α assuming a value of γ. We also displace
the starting position (x= 0) to the first inflection in the raw
exceedance probability plots, then recalculate distances and
exceedance probabilities. This displacement is applied only30

for cases involving relatively small travel distances (typically
the smallest particles), and is only about one or two particle
diameters. For travel distances involving tens of m, we fo-
cus the fitting on the central part of the data, deemphasizing
the fit for small values and for the extreme tails. In addition,35

changes in surface slope occur on all sites, and we restrict
the data fitting to positions upslope of these changes. These
changes occur at: 2.7 m (V14), 3.5 m (V20), 11 m (V24),
16.6 m (V39), 34 m (B17), 31 m (B20) and 33 m (B28). For
site V0, 20 travel distances were measured for each particle40

size class. Initial examination indicated that the distributions
of travel distances were similar, so we pooled these data. By
dropping (rather than launching) the particles, initial energies
are less certain than those in the experiments reported above.
We calculate the impact velocities, assume a coefficient of 45

restitution, then use the average downslope reflection veloc-
ities. We note that uncertainty in the initial energies affects
the estimates of the quantities µ and α but does not influence
the values of the parameters A and B obtained from the data
fitting. 50

4.2.2 Results

The data for the V sites are reasonably well fit by the theoret-
ical curves (Figure 13). In these two examples as well as in
cases not plotted, the estimated parameter A systematically
increases with particle size (Table 8), and reflects a transi- 55

tion from rapid thermal collapse (A< 0) to approximately
isothermal conditions (A≈ 0) or net heating (A> 0). Inter-
estingly, travel distances on the steep V24 slope are systemat-
ically larger than on V14. Yet evidently the surface roughness
on V24 leads to approximately isothermal conditions for the 60

larger particles, whereas the roughness on V14 leads to net
particle heating. The data for the B sites (Figure 14) simi-
larly show that the estimated parameter A systematically in-
creases with particle size (Table 8), transitioning from rapid
thermal collapse to net heating. Note that the fitted shape and 65
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Figure 13. Plot of logarithm of exceedance probabilityRx(x) versus travel distance x for experiments described by Roth et al. (2020). These
examples are for sites V14 (a) and V24 (b) showing data for small (black circles), medium (gray circles) and large (open circles) particle
sizes, together with fitted distributions (lines).

Table 8. Fitted and estimated values of the parameters for the data reported by Roth et al. (2020) as shown in Figure 13 and Figure 14 with
coefficients of variation in parentheses.

Slope Particle
Site (deg) size (m) A B (m) Ki Ki∗ µ α µa

x (m) µb
x (m)

V 0 all -0.41 0.087 0.00 (—)c — — — 0.06 0.06
14 0.017 -0.41 0.165 0.95 (0.0061) 0.98 (—) 0.26 (0.0062) 21.6 (0.095) 0.12 0.13
14 0.045 0.45 0.23 1.01 (—) 0.98 (—) 0.25 (—) 28.3 (0.10) 0.42 0.33
14 0.073 1.1 0.13 1.08 (0.014) 0.97 (—) 0.23 (0.014) 15.0 (0.11) — 0.34
20 0.017 -0.23 0.72 0.99 (—) 0.99 (—) 0.37 (—) 64.0 (0.097) 0.59 0.61
20 0.045 -0.30 1.8 1.00 (—) 1.00 (—) 0.37 (—) 159 (0.086) 1.38 1.34
20 0.073 0.20 1.0 0.99 (—) 0.99 (—) 0.36 (—) 87.9 (0.10) 1.25 1.25
24 0.017 -0.06 0.60 1.00 (—) 1.00 (—) 0.45 (—) 44.8 (0.097) 0.57 0.58
24 0.045 -0.01 2.3 1.00 (—) 1.00 (—) 0.45 (—) 170 (0.099) 2.28 2.38
24 0.073 0.01 3.4 1.00 (—) 1.00 (—) 0.45 (—) 251 (0.10) 3.43 3.35
39 0.045 -0.12 0.30 0.95 (—) 0.97 (—) 0.85 (—) 15.0 (0.093) 0.27 0.30
39 0.017 -0.38 3.7 0.99 (—) 1.00 (—) 0.81 (—) 177 (0.098) 2.68 2.68
39 0.073 0.70 4.8 1.00 (—) 1.00 (—) 0.81 (—) 228 (0.10) 16.0 5.25

B 17 0.017 -0.39 0.27 0.96 (—) 0.98 (—) 0.32 (—) 28.8 (0.095) 0.19 0.20
17 0.045 -0.03 0.49 0.99 (—) 0.99 (—) 0.31 (—) 50.8 (0.10) 0.48 0.83
17 0.073 0.67 0.39 1.01 (—) 0.99 (—) 0.30 (—) 39.5 (0.10) 1.18 1.41
20 0.017 0.10 0.18 0.98 (—) 0.97 (—) 0.37 (—) 16.1 (0.099) 0.20 0.22
20 0.045 1.30 0.90 1.02 (—) 0.99 (—) 0.36 (—) 77.5 (0.099) — 4.01
20 0.073 1.68 0.64 1.04 (0.0060) 0.99 (—) 0.35 (0.0060) 54.1 (0.10) — 2.97

aEstimated from parameters A and B.
bEstimated from data, recognizing that these do not incorporate distances of particles that moved beyond positions of noted slope changes.
cNotation (−) means undefined or coefficient of variation is less than 0.01.

scale parametric, A and B (Table 8), are consistent in sign
and approximate magnitude with those presented by Roth et
al. (2020) for the same data set. This paper also presents ex-
ceedance probability plots for all 21 experiments (excluding
the zero slope case). Also note that estimates of the variabil- 70

ity in µ, α, Ki and Ki∗ are based on a Monte Carlo analysis
as described in Appendix C.

The steepest burned site, B28, offers a further interesting
perspective on particle motions. On this steep and relatively
smooth hillslope, exceedance probabilities associated with 75

all three particle sizes cannot be fit with reasonable fidelity by
individual curves. Rather, the data suggest a mingling of two
particle behaviors — rapid cooling for many particles, and
runaway heating for a second group leading to a pronounced
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Figure 14. Plot of logarithm of exceedance probabilityRx(x) versus travel distance x for experiments described by Roth et al. (2020). These
examples are for sites B17 (a) and B20 (b) showing data for small (black circles), medium (gray circles) and large (open circles) particle
sizes, together with fitted distributions (lines).

heavy tail (Figure 15) — in effect giving a mixed distribution.

Figure 15. Plot of exceedance probability versus travel distance
for experiment B28M described by Roth et al. (2020) showing data
(circles) fit to mixed distribution (black line) composed of sum
of two distributions (gray lines) weighted by proportions p1 and
p2 = 1− p1. Note effect of increased frictional cooling after slope
inflection at ∼ 33 m; data at x= 50 m are censored, but included
for reference. Plots for B28S and B28L (Table 9) are similar in ap-
pearance.

80

Namely, let x1 and x2 denote the travel distances of the two
groups, and let p1 denote the proportion represented by first
group such that p2 = 1− p1 is the proportion of the second
group. The simplest form of a mixed distribution is

fx(x) = p1fx1
(x1) + (1− p1)fx2

(x2) (39) 85

and the cumulative distribution is

Fx(x) = p1

x∫
0

fx1
(x′1)dx′1 + (1− p1)

x∫
0

fx2
(x′2)dx′2 (40)

where primes denotes variables of integration. As above, the
exceedance probability is Rx(x) = 1−Fx(x).

For the three particle sizes, exceedance probabilities are 5

well matched by the weighted sum of a nearly exponential
distribution (A1 ≈ 0) reflecting isothermal conditions and a
heavy-tailed distribution (A2 > 0) reflecting net heating (Ta-
ble 9). Note, however, that the parametric values A1, B1,
A2 and B2 cannot be combined to estimate associated fac- 10

tors such as µ and α. Although in these three experiments
(B28) the particles in each size group are nominally simi-
lar, we nonetheless suspect that the steep slope and relatively
smooth surface give conditions that “filter” the particles into
two subsets. One subset consists of particles whose motions
are strongly randomized and become disentrained over short 5

distances. The other subset consists of particles whose mo-
tions by chance quickly transition to rotation and travel much
longer distances over the smooth surface. This filtering likely
includes effects of the dropping of non-spherical particles.
Namely, particles that are by chance initially dropped onto 10

their relatively flat faces are less likely to transition to rota-
tion and thus are more likely to travel short distances. We
also suspect the existence of a similarly nonuniform behav-
ior in the Vanderbilt data, manifest as systematic variations
in several of the exceedance probability plots (Figure 11). 15

Using the same data set, Roth et al. (2020) directly cal-
culate the disentrainment rate function Px(x) using finite-
differencing of the empirical cumulative distribution and
exceedance probability functions. Although noisy, the data
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Table 9. Fitted and estimated values of the parameters for the data shown in Figure 15.

Site Slope (degrees) Particle size (m) A1 B1 (m) A2 B2 (m) p1
Burned 28 0.017 0.001 0.50 0.70 2.0 0.85

28 0.045 0.30 0.90 8.2 8.0 0.38
28 0.017 0.01 0.50 2.9 110 0.34

clearly illustrate the forms of Px(x) representing rapid ther- 20

mal collapse (A< 0), approximately isothermal conditions
(A≈ 0) and net heating (A> 0). Of particular note is the re-
sult that the roughness of natural vegetation exerts a strong
cooling effect, and that the spatial structure of roughness el-
ements together with local changes in surface slope can con- 25

tribute to noticeable variations in travel distances about those
expected for nominally uniform conditions.

5 Analysis

We emphasize at the outset a key point in comparing travel
distances measured in experiments (laboratory or field) with5

theoretical distributions. By definition a sample of measured
values drawn from a distribution possesses a finite sample
mean and variance, regardless of the form of the underlying
distribution. If the underlying distribution possesses a finite
mean and variance (e.g., an exponential distribution), then10

the calculated sample average and variance are unbiased es-
timates of the underlying parametric values. If the mean or
variance of the underlying distribution is undefined (e.g., the
generalized Pareto distribution for A≥ 1/2), then the calcu-
lated sample average and variance have no meaningful rela-15

tion to the underlying (undefined) moments. We can never
know this, although it might be suggested, for example, by
the absence of convergence of estimated moments with in-
creasing sample size or from multiple samples. The best we
can do is to infer the veracity of the form of the distribution20

from descriptive statistics (e.g., exceedance probability plots,
quartile-quartile plots), but this generally requires large data
sets to support the tails of heavy-tailed distributions. In some
of the comparisons above, there is the real possibility that
calculated averages are just numbers associated with a dis-25

tribution whose mean is undefined, such that the calculated
values do not meaningfully characterize a property (e.g., ab-
sence of central tendencies) of the underlying distribution.

In contrast, estimates of the parameters A and B are less
sensitive to this uncertainty when these values are used to30

calculate moments (if they exist) — but only if the selected
form of the distribution is the correct choice. The mechan-
ical basis of the generalized Pareto distribution lends confi-
dence, but does not guarantee, that it is the correct choice.
Moreover, uncertainty in the estimated values of A and B35

increases when a decreasing proportion of the tail of the dis-
tribution is sampled. Indeed, one can never know the form of
the censored tail (Balio et al., 2019).

With these points in mind, we suggest that the fits pre-
sented above are consistent with the idea that each of the40

data sets represents a specific case of the generalized Pareto
distribution. To further illustrate this idea we calculate the
following quantities:

R∗ =RA
x and x∗ =

A

B
x+ 1 . (41)

Based on Eq. (14), values of the modified exceedance prob-45

ability R∗ and the dimensionless travel distance x∗ should
collapse to a single straight line in a log-log plot with slope
of −1 (Figure 16). Note that these plots magnify the devia-
tions in the tails of the distribution. Also note that these fits
suggest that all data, if plotted together, would collapse to50

the same line spanning more than three orders of magnitude
of the dimensionless travel distance x∗. This does not prove,
but nonetheless supports, the idea that the generalized Pareto
distribution correctly describes the energetics of the behavior
of rarefied particle motions for a variety of slope and surface 55

roughness conditions.
The bounded form of the generalized Pareto distribution

(A< 0) must not be viewed as involving a “hard” bound-
ary. Because of the stochasticity of motions associated with
varying sizes and shapes, some particles by chance “leak” 60

beyond the position x=B/|A|. This aspect of the formula-
tion is necessarily simplified. What is clear, nonetheless, is
the rapid thermal collapse reflected by the (approximately)
bounded form of the distribution in the laboratory measure-
ments of Gabet and Mendoza (2012) (Figure 3, Figure 4) and 65

the measurements at Vanderbilt (Figure 11), and the field-
based measurements of Roth et al. (2020) (Figure 13, Figure
14).

From an empirical point of view the data are consistent
with the generalized Pareto distribution, and reflect the pre- 70

dicted variation in behavior from rapid thermal collapse to
approximately isothermal conditions to net heating of par-
ticles. Nonetheless we proceed by asking whether the esti-
mated values of the quantities µ and α make physical sense,
while recognizing that these quantities do not readily map 75

to established formulations of friction, and represent a com-
plexity that cannot be encapsulated in idealized collision me-
chanics (Appendix E in Furbish et al., 2021a).

The laboratory measurements with zero slope merit par-
ticular attention. The Kirkby number Ki is known and zero. 80

The effect of heating, and thus the influence of heating on
α, is removed. Focusing on the length scale Lc given by
Eq. (37), motions are mass independent and the initial ve-



Furbish et al.: Rarefied particle motions: 2. Analysis 21

Figure 16. Plot of modified exceedance probability R∗ versus dimensionless travel distance x∗ and line with log-log slope of −1 for (a)
experiments described by Gabet and Mendoza (2012) (gray circles) and experiments described by DiBiase et al. (2017) (open circles), (b)
Vanderbilt experiments, and (c) experiments described by Roth et al. (2020) for V sites (gray circles) and B sites (open circles). Data for
A< 0 fall to left of x∗ = 1 with values in the tails represented by smaller values of x∗. Data for A> 0 fall to the right of x∗ = 1 with values
in the tails represented by larger values of x∗. Total data numbers are (a) N = 813, (b) N = 2980 and (c) N = 1878.

locity is approximately fixed. Assuming fixed γ and compar-
ing the angular and rounded particles in the Vanderbilt data 85

(Table 6), the effect of particle angularity evidently appears
as a difference in µ, consistent with µ∼ 〈βx〉 and the mea-
surements indicating that angular particles on average extract
more translational energy during collisions than rounded par-
ticles (Figure 9, Figure 10). This also is consistent with the 90

measurements of Gabet and Mendoza (2012) for a flat sur-
face in that all values of µ in the Vanderbilt data are larger
than the value of µ for a spherical particle in the Gabet and
Mendoza data. We suspect that the small particles “feel” the
roughness texture more than the larger rounded and angu- 95

lar particles; and because the small particles are a mixture of
rounded and angular shapes, the value of µ is similar to the
angular particles. These differences in the values of µ persist

with larger slopes, where the values of µ for rounded parti-
cles remains less than the other values (although we must be 100

cautious to not overinterpret these differences given the un-
certainty of the calculations). At zero slope the values of α
are similar across particle shape and size. No similar system-
atic variation in α with particle size and shape is apparent,
although rounded particles appear to be more readily heated 105

with increasing slope.
The field-based measurements of DiBiase et al. (2017, Ta-

ble 7) and Roth et al. (2020, Table 8) suggest that the friction
factor µ is insensitive to particle size for the same slope and
roughness conditions, and these data together with the labo-
ratory measurements of Gabet and Mendoza (2012, Table 8)5

and the Vanderbilt data suggest that µ systematically varies
with surface slope S (Figure 17). Note that the Vanderbilt
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Figure 17. Plot of friction factor µ versus slope S for laboratory ex-
periments described by Gabet and Mendoza (2012) (black circles)
and Vanderbilt data (open squares), and field-based experiments of
DiBiase et al. (2017) (gray circles) and Roth et al. (2020) for V sites
(open circles) and B sites (open triangles) together with 1:1 line.

data in this figure are based on the reduced velocity calcula-
tions (Table 6). For completeness this figure is reproduced in
Appendix E using the initial launch velocities u0 (Table 5).10

Values of µ for Ki < 1 systematically fall above the 1:1
line (Figure 17), then converge to this line as Ki → 1. Us-
ing Eq. (32) to estimate µ, evidently near S = 0 the second
term on the right side of this equation dominates and gives
positive µ with negative A for the smallest four slope angles15

in the data of Gabet and Mendoza (2012, Table 2) and the
Vanderbilt data (Table 6). The magnitude of this term then
decreases (for A> 0) with increasing S such that µ∼ S as
Ki → 1 according to Eq. (8). Note that Eq. (32) does not
provide a physical explanation of the factor µ; it is just an 20

estimate of µ based on the parameters A and B.
As summarized in Section 2.4, scaling suggests that the

factor µ∼M(θ) is independent of particle size (Furbish et
al., 2021a). This consistency with the experimental data re-
inforces the idea that the elements of µ∼M(θ), despite the 25

complexity of the collisions involved, are akin to results from
idealized collision mechanics, namely, that these elements
are determined by the coefficients associated with tangential
and normal impulses, where particle size is not involved for
a given slope and surface roughness. Recall that the expected 30

dependency µ∼M(θ) on the slope angle θ arises because
the expected surface normal impact velocity varies with this
angle (Appendix E in Furbish et al., 2021a). However, this
probably is insufficient to explain the relation in Figure 17.
Unfortunately, we cannot further unfold the physical basis of5

µ in relation to particle-surface interactions beyond observ-
ing that the values of A and B return estimates of µ that are
consistent with the expectation of its slope dependency, inde-

pendent of particle size. On empirical grounds, as Ki → 1 the
factor µ→ S reflects an approximate balance between heat-10

ing and cooling with respect to translational energy. That is,
the rate of extraction of translational energy (partitioned to
all other forms) increases to match the rate of heating. Pre-
sumably this balance is exceeded (Ki � 1) with slopes that
are so steep that cooling is insufficient for deposition to occur15

— as in several of the experiments described above.
Turning to the quantity α, we plot the estimated values of

this factor based on Eq. (33) versus the Kirkby number Ki
(Figure 18) together with the function in Eq. (35). Note that

Figure 18. Plot of factor α versus Kirkby number Ki for experi-
ments described by Gabet and Mendoza (2012) (black circles), Van-
derbilt data (open squares), DiBiase et al. (2017) (gray circles) and
Roth et al. (2020) for V sites (open circles) and B sites (open trian-
gles) together with function α= α0/(1−µ1Ki) with α0 = 1 and
µ1 = 0.98 (line). Only data for A< 1 are included.

the Vanderbilt data in this figure are based on the reduced ve-20

locity calculations (Table 6). For completeness this figure is
reproduced in Appendix E using the initial launch velocities
u0 (Table 5).

The data from Gabet and Mendoza (2012) support the idea
that α systematically increases with Ki and becomes un-25

bounded near Ki ∼ 1. The Vanderbilt data similarly support
this idea. The data for all three particle sizes from DiBiase
et al (2017) involve Ki ≈ 1 and thus only reinforce the un-
bounded behavior of α. Similarly, the data from Roth et al.
(2020) support this behavior. Note that values with large Ki30

and A≥ 1 are not meaningful, as the underlying deposition
length scales Lc are undefined. Also note that because the
Kirkby number Ki and the factor µ are specified in the fits
of the data from Kirkby and Statham (1975, Figure 6) rather
than being estimated from A and B∗, we do not plot these 35

values in Figure 18.
Recall that α reflects a direct effect of heating, namely, to

decrease the likelihood of deposition by decreasing the pro-
portion of particles that cool to sufficiently low energies for
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deposition to occur. This translates to suppressing the disen- 40

trainment rate and increasing the deposition length scale Lc,
rewritten here as

Lc =
αEa

γmgµcosθ
=

α0Ea

γmgµcosθ(1−µ1Ki)
(42)

WithEa = (m/2)〈u2p〉, the effect of particle massm does not
explicitly appear. This means that any effect of particle size 45

must appear in α or µ, or both. Similarly, any effect of parti-
cle angularity must appear in one or both of these quantities.
The results above, with particular reference to the flat rough
surface in the Vanderbilt experiments, suggest that effects of
angularity appear in µ, whereas the data sets together suggest 50

that effects of particle size primarily appear in α. We empha-
size that the functional relation ofα to Ki given by Eq. (35) is
not definitive. Other functional forms are possible, although
the basic form of Eq. (35) seems to be reasonably consistent
with the data (Figure 18). Although not explicit in the for- 55

mulation, we suspect that the effect of heating includes an
increasing partitioning of energy into rotational motion that
is amplified for larger particles for a given slope and rough-
ness, giving a decreasing likelihood of stopping as reflected
in increasing α. Further disentangling the effects of α and µ
must a await clearer mechanical basis for these quantities.

To reinforce the idea of a mixed distribution, consider the
example of angular and rounded particles from the Vander-
bilt experiments for S = 0 (Figure 11a). When pooled these5

data can be approximately fitted (not shown) to a generalized
Pareto distribution. However, the data are well fit using the
mixed distribution defined by Eq. (39) (Figure 19). Note that

Figure 19. Plot of exceedance probability versus travel distance for
VU experiment with S = 0 showing data (circles) fit to mixed dis-
tribution (M) composed of sum of distributions of angular particles
(A) and rounded particles (R) depicted in Figure 11.

this mixture of generalized Pareto distributions is not a gener-
alized Pareto distribution. The distribution of travel distances10

of a mixture of particle sizes and shapes therefore must be de-
scribed empirically or formed as a weighted mixture of distri-
butions characterizing the behavior of the individual particle
size and shape groups involved.

6 Discussion and conclusions15

The laboratory and field-based measurements of particle
travel distances presented above provide clear evidence that
these distances are well described by a generalized Pareto
distribution, where the form of the distribution reflects vari-
ations in particle behavior associated with the balance be-20

tween gravitational heating and frictional cooling by particle-
surface collisions. These behaviors vary from a bounded dis-
tribution associated with rapid thermal collapse to an ex-
ponential distribution representing approximately isothermal
conditions to a heavy-tailed distribution associated with net25

heating of particles. Here we reiterate a point made in the first
companion paper (Furbish et al., 2021a). Namely, we do not
choose the generalized Pareto distribution in the empirical
manner of selecting a distribution based on goodness-of-fit
criteria applied to data sets. Rather, this distribution is dic-30

tated by the probabilistic physics of the problem, and is based
on a description of the kinetic energy balance of a cohort of
particles treated as a rarefied granular gas, and a description
of particle deposition that depends on the energy state of the
particles. 35

The experiments involving high-speed imaging of parti-
cle motions reinforce what we intuitively already understand.
Relative to a spherical particle, a rounded non-spherical par-
ticle is more likely to experience a noncollinear collision
that converts the translational energy of free fall into trans- 40

verse motion and rotational energy; and an angular particle
is more likely than is a rounded particle to experience such
conversions. The effect of this behavior is a systematic in-
crease in the proportion βz with increasing angularity. More-
over, following the first free fall collision, an angular parti- 45

cle is more likely than is a rounded particle to experience a
noncollinear collision that extracts either rotational or trans-
lational energy, or both. Translating this to surface-parallel
motions, a tumbling angular particle is more likely than is a
rounded tumbling particle to experience a noncollinear colli- 50

sion that extracts either translational energy or rotational en-
ergy, or both. Although we did not directly measure changes
in surface-parallel energy associated with collisions, we can
infer that the proportion βx likely systematically increases
with increasing particle angularity as reflected in systemati- 55

cally shorter travel distances of angular particles relative to
those of rounded particles (Figure 11) on a surface with only
a granular roughness texture. These experiments also illus-
trate the value of treating βx as a random variable. Although
this quantity is related to the normal coefficient of restitu- 60

tion ε as used in granular gas theory, the complexity and
richness of collisions and associated conversions of energy
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among modes necessitates a probabilistic description in this
problem.

The essence of rapid thermal collapse (A< 0) involves the 65

situation in which gravitational heating is absent or is insuf-
ficient to replace frictional cooling, particularly with angular
particles and small particles. That is, a small tumbling par-
ticle is more likely than is a large tumbling particle to “see”
the bumps and divots of the roughness texture at its scale, and 70

to experience collisions that arrest its motion. Indeed, this
is the basic lesson of experiments involving spheres rolling
bumpety-bump over monolayer roughness elements (Dippel
et al., 1997; Samson et al., 1998, 1999), the experiments of
Kirkby and Statham (1975) involving particles moving down 75

surfaces with different granular roughness, and the experi-
ments of Roth et al. (2020) involving the different rough-
nesses of vegetated and burned hillslopes. With increasing
gravitational heating the transition to a heavy-tailed distribu-
tion of travel distances likely involves an increasing conver- 80

sion of translational to rotational kinetic energy leading to
larger travel distances with decreasing effectiveness of colli-
sional friction. In this regard the analysis points to the need
for further clarity concerning how particle size and shape in
concert with surface roughness influence the extraction of 85

particle energy and the likelihood of deposition.
Although not essential to the fitting of particle travel dis-

tances to the generalized Pareto distribution, it nonetheless
is desirable to have a clearer mechanical interpretation of the
quantities µ and α and their relation to the Kirkby number Ki
in terms of particle properties and surface-roughness condi-5

tions, and the modes of particle motions. Here we note that
the Pareto distribution with positive shape parameter A can
be obtained as a mixture of exponential distributions whose
rate parameters are distributed as a gamma distribution (Ap-
pendix F). This result suggests an interesting physical in-10

terpretation of the Pareto distribution of particle travel dis-
tances, and it also may indicate a strategy for clarifying how
particle size and shape in concert with surface roughness in-
fluence the extraction of particle energy and the likelihood of
deposition, inasmuch as the scale parameter B is equivalent15

to the reciprocal of the expected disentrainment rate, E(Px).
For example, Roth et al. (2020) show that B systematically
varies with particle size and surface slope based on the data
described in Section 4.2.

We suggest that, in designing and conducting particle20

launching experiments, we have a propensity to select pretty
particles, and rounded (if not spherical) particles are pretty.
This is not a bad thing. But it skews our view of particle mo-
tions toward the behavior of rounded particles. The exper-
iments clearly demonstrate that particle angularity matters25

in the disentrainment process, specifically the likelihood of
converting translational to rotational energy and the decreas-
ing extraction of energy by collisional friction (Williams and
Furbish, 2021).

Here in essence are the shortcomings of the formulation30

and its application to the experimental data sets of particle

travel distances. We do not understand the transient (proba-
bilistic) physics soon after launch from the catapult as parti-
cle motions become randomized with the onset of particle-
surface collisions, so there is uncertainty in choosing the35

truncation distance and the associated particle energy state.
Similarly, little is known about the distribution fEp

(Ep) of
particle energy statesEp and how this distribution might vary
in the downslope direction. Thus, the assumption that the ra-
tio γ of the arithmetic and harmonic means of the particle en-40

ergies remains fixed may be incorrect. This is a parsimonious
choice to close the formulation analytically. The friction fac-
tor µ is tentative. Namely, its essential element, the expected
proportion of energy extraction 〈βx〉, is consistent with the
experimental results as reflected in the behavior of rounded45

versus angular particles, but the mechanical reasons for its
asymptotic behavior, µ→ S as Ki → 1 (Figure 17), remain
unclear. Similarly the factor α is tentative. We need a clearer
understanding of the elements that lead to increasing α and
the associated lengthening of the deposition length scale Lc,50

notably in relation to particle size. Many of the individual
fits between the data and the generalized Pareto distribution
in the exceedance probability plots are reasonably close; but
some exhibit systematic deviations about the fitted distribu-
tion. As is usual in this situation, it is difficult to fully assess55

whether such misfits are related to stochasticity associated
with small sample sizes (Appendix A) or to inadequacy of
the experimental design or to underlying flaws in the formu-
lation leading to the generalized Pareto distribution. Likely
all of these are involved. Despite the conceptual simplicity 60

of particles moving bumpety-bump down a rough inclined
surface, this is a hard problem.

We reemphasize that the work reported here is aimed at a
probabilistic description of expected particle travel distances.
This is a part of a larger effort to understand and inform the 65

essence of the ingredients of nonlocal formulations of trans-
port. We are not suggesting that the results presented here
can be immediately cast as a nonlocal formulation of trans-
port. But in order to progress beyond current formulations,
the probabilistic physics of particle motions merits closer ex- 70

amination. For example, this level of understanding provides
the basis for justifying a Taylor expansion of the convolution
(Furbish and Haff, 2010) to form a local Fokker-Planck-like
description of transport assuming an exponential-like distri-
bution of travel distances — with clarity regarding the limi- 75

tations of this description. Furthermore, we have focused on
the energetics of particles in motion. But this is one of two
ingredients of nonlocal formulations. The other involves the
probabilistic physics and energetics of particle entrainment
— a particularly difficult ingredient to constrain because of 80

the difficulty of observing the entrainment process and be-
cause we do not yet know how to properly simulate this pro-
cess. For this we must rely on theory and measurements of
tracer particles in ways that have yet to be designed.

We end with a philosophical point. We enjoy eating our 85

favorite tortilla chips, and mostly we enjoy them with a well
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prepared dip, for example, spicy guacamole. But let us be
honest. The experience then is no longer about the chips,
it’s about the dip. The chips are just the guacamole delivery
system. (Yumm.) Similarly, these companion papers nomi- 90

nally concern particle motions on inclined rough surfaces.
But these particles are just the delivery system. The dip con-
sists of the coherent statistical mechanics framework for de-
scribing the particle motions, and a demonstration that such
a framework, albeit with rough edges, is possible. This repre- 95

sents a solid basis for subsequent efforts aimed at replication,
falsification and refinement or replacement, and possibly for
fresh ideas concerning particle motions more generally.

Code and data availability. Emmanuel Gabet provided the data
described in Section 3.1. The data described in Section 4.1 100

and Section 4.2 are available from Dibiase et al. (2017) and
Roth et al. (2020). The data described in Section 3.3, in-
cluding video and audio files, and The MATLAB/GNU Oc-
tave code described in Appendix A are archived and readily
accessible via the Vanderbilt University Institutional Repository 105

(https://ir.vanderbilt.edu/handle/1803/9742).

Appendix A: Parameter estimation

Here we demonstrate the basis for using visual fits of the
exceedance probability plots to illustrate the behavior of the
generalized Pareto distribution, and we provide context for
interpreting these fits. We work with the dimensionless form5

of the distribution for comparison with Figure 2, and pursue
a straightforward Monte Carlo analysis.

First, let x̂u denote a random number drawn from a uni-
form distribution with support [0,1] and cumulative distribu-
tion function Fx̂u(x̂u) = x̂u. In turn, the cumulative distribu-10

tion function of the generalized Pareto distribution is

Fx̂(x̂) = 1− b1/a

(ax̂+ b)1/a
. (A1)

Equating Fx̂u
(x̂u) and Eq. (A1) leads to

x̂=
b

a

[
1

(1− x̂u)a
− 1

]
, (A2)

which provides an algorithm for generating values of x̂15

drawn from the generalized Pareto distribution with shape
and scale parameters a and b, starting with values of x̂u se-
lected by a uniform random number generator.

Second, among the methods for estimating the values of a
and b are the method of moments and the maximum likeli-20

hood estimation (MLE) method. Both are unsuitable for cen-
sored data, and the method of moments is unsuitable when ei-
ther the first or second moment is undefined. Nonetheless, for
the purpose of this appendix we focus on the MLE method,
noting that an MLE is the same as a Bayesian estimate as-25

suming a uniform (maximum entropy) prior distribution of

the parametric values. The MLE method is a popular, stan-
dard choice for estimating parametric values of distributions,
notably heavy-tailed distributions, because of its asymptotic
properties of consistency and efficiency. (However, see the30

delightful review by Cam (1990) regarding maximum likeli-
hood estimates, in particular his nine principles on p. 165.)
The shape and scale parameters a and b are not orthogonal.
The MLE of a is ã= 1/ãL where

ãL =
N∑N

i=1 ln(1 + x̂i/b̃L)
, (A3)35

and the MLE estimate of b is b̃= b̃L/ãL where b̃L is obtained
from an iterative solution of

N

b̃L
∑N

i=1 x̂i/(b̃
2
L + b̃Lx̂i)

− N∑N
i=1 ln(1 + x̂i/b̃L)

− 1 = 0 . (A4)40

These are biased estimates (Giles et al., 2013), but they
nonetheless provide useful information concerning param-
eter estimation. This bias increases with decreasing sample
size and with increasing censorship of the distribution tail.
Moreover, the MLE may not converge near a= 0 nor if the 45

sample has a coefficient of variation less than one. For ref-
erence below, whereas the Lomax distribution requires that
aL > 0, the MLE given by Eq. (A3) may be negative, and
therefore provides an estimate of a < 0 for the generalized
Pareto distribution if b is known. Note also that in the limit 50

of a→ 0 the Pareto distribution is replaced with the expo-
nential distribution with mean µx̂ = b. The MLE of the mean
µx̂ of an exponential distribution is just the sample average,

b̃=
1

N

N∑
i=1

x̂i , (A5)

which is an unbiased estimate. 55

Now consider a sample size of N = 100, consistent
with the data sets of Gabet and Mendoza (2012) and
Roth et al. (2020). We draw 10,000 samples then cal-
culate and plot exceedance probabilities for varying val-
ues of the shape parameter a, holding the scale parame- 60

ter b fixed for convenience. We also calculate the MLE
of a using Eq. (A3) for each sample. The MATLAB/GNU
Octave code for doing this is available in Supplementary
Materials (Vanderbilt University Institutional Repository,
https://ir.vanderbilt.edu/handle/1803/9742), and includes an 65

animation of the results.
Plots of estimated exceedance probabilities Rx̂(x̂) for all

samples provide a visual sense of the variability in these
probabilities associated with the inherent randomness in
drawing samples of x̂ from the known distribution (Figure 70

A1). The animation mentioned above shows the outcome of
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Figure A1. Plots of exceedance probability Rx̂(x̂) versus dimensionless travel distance x̂ for different values of the shape parameter a
assuming scale parameter b= 1. Each plot shows 1,000 samples, each of size n= 100, together with theoretical exceedance probability
function (line).

successive draws, and nicely illustrates that many draws, by
chance, bear little resemblance to the theoretically expected
exceedance probability function as well as, in particular, the
squirrelly behavior of values in the tails. (We hope that the 75

animation drives home the point to avoid over-fitting and
over-interpreting data in the tail of a heavy-tailed distribution
with small sample size N .) Here are key items to consider.
First, the variability in calculated exceedance probabilities
increases with a, that is, with increasing heaviness of the dis- 80

tribution tail. This is not surprising, as a finite sample size
represents a decreasing proportion of the total probability in
the distribution as a increases. Second, the variability in the
MLE of a increases with increasing a (Figure A2), reflecting
the first point above. Aside from the bias of these estimates, 85

the difference between estimates of a and the true value can
be large, although proportional differences are similar across
values of a. For example, with a=−0.5, about 32% of the
estimated values exceed a difference of ±10% from the true

value; with a= 0, about 32% exceed a difference of ±10% 90

about the true value of b= 1; and with a= 1, about 31% of
the estimated values exceed a ±10% difference. Third, the
variability in the exceedance probability plots and the MLEs
decreases — that is, these values converge to the true values
— only when N approaches 10,000 or more (Figure A3). 95

Fourth, with increasing censorship of the data, the MLEs
based on the uncensored values become strongly biased (Fig-
ure A4). Moreover, this simple demonstration of the inherent
variability in estimates of a does not involve the collinear
effects and added variability associated with simultaneously5

estimating b. Fifth, despite the variability in the exceedance
probability plots, the sign of the concavity of the plots for
large positive or negative a is clear. However, near isother-
mal conditions (a= 0), individual samples could appear to
represent net particle heating when in actuality conditions of10

net cooling exist, and vice versa. Note that in the example
of a→ 0 (Figure A1, Figure A2), we calculate sample ex-
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Figure A2. Histograms of maximum likelihood estimates of shape parameter a assuming scale parameter b= 1, and maximum likelihood
estimate of scale parameter b for a= 0. Each histogram is based on 10,000 samples.

ceedance probabilities and b̃ for the exponential distribution.
According to the central limit theorem, values of b̃ are ap-
proximately normally distributed with variance ∼ σ2

x̂/N .15

Here is an important sidebar. In the presence of an exact
theory that predicts the values of a and b, one can appeal to,
for example, the central limit theorem or a Monte Carlo anal-
ysis (as above) or MLE methods or bootstrapping to assign
so-called confidence estimates associated with these known 20

values of a and b. These specifically give information regard-
ing the likelihood that a sample of size N will yield values
of a and b that differ from the true values. In contrast, in
the absence of an exact theory and a priori knowledge of
the true values of a and b, one can construct similar confi- 25

dence estimates based on values of a and b estimated from a
single sample. These specifically give information regarding
the likelihood that a second sample of size N will yield val-
ues of a and b that differ from those estimated from the first

sample. But no method — besides making N →∞ (Cam, 30

1990) — can provide information regarding how close the
first set of estimated values (or the second set) is to the true
unknown values. Alas, the literature is awash with confidence
estimates, based on a single sample, incorrectly interpreted
as measures of likelihood of containing the unknown values 35

(Amrhein et al., 2019).
We therefore reemphasize our objective. At this stage of

our work we are aimed at reasonable estimates of the shape
and scale parameters in order to demonstrate the existence
of the behaviors — rapid thermal collapse, isothermal condi-
tions, and net heating of particles — represented by the gen-5

eralized Pareto distribution. Refined values of these param-
eters are not needed until we possess a clearer understand-
ing of the mechanics of deposition. Semi-log plots highlight
deviations in the tails, and provide a clear sense of the con-
cavity that discriminates between cooling and heating. Log-10
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Figure A3. Plots of exceedance probability Rx̂(x̂) versus dimensionless travel distance x̂ for shape parameter a= 0.5 assuming scale
parameter b= 1, showing convergence to theoretical exceedance probability function (lines) with increasing sample size N . Examples
involve (a) 100 samples each of size N = 1,000 and (b) 20 samples each of size N = 10,000.

Figure A4. Histograms of maximum likelihood estimates of shape
parameter a= 1 assuming scale parameter b= 1 with censorship at
x̂= 50 based on 10,000 samples. The bias increases as the censor-
ship distance decreases. Compare with Figure A2.

log plots highlight deviations near the origin, and provide
a sense of the log-linear decay of the tails for heavy-tailed
conditions. The variability in the tails of the distribution as
outlined above emphasizes the importance of avoiding over-
fitting of the tails in visual fitting (or in any other method of15

fitting).
For comparison with our fits, we return to dimensional

quantities and compute the MLE values of A and B (Ta-
ble A1). The MLE is implemented in the “flomax” algorithm
in the Renewal Method for Extreme Values Extrapolation li- 20

brary of the R Project for Statistical Computing; it is imple-
mented in the “gpfit” algorithm of the MATLAB program-

ming language; or it can be coded directly from Eq. (A3)
and Eq. (A4). With reference to Table A1, the MLE algo-
rithm converges in all cases using the MATLAB “gpfit” al- 25

gorithm (but not the R “flomax” algorithm). However, it re-
turns poor (sometimes nonsensical) estimates for A.−1/2
or near A≈ 0. The MLE degrades with increasing A and in-
creasing censorship. Also note that the MLE estimates do
not necessarily improve the fits (Figure A5), likely due to the

Figure A5. Example of fit (gray line) based on MLE values of A
andB versus visual fit (black line). This example coincides with the
smallest particle size reported by DiBiase et al. (2017) (Table 7).

30

relatively small sample sizes and the likelihood that the data
represent samples that are strongly censored, that is, where a
significant proportion of the distribution is contained in that
part of the tail that is not sampled.
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Table A1. Fitted and estimated values of the parameters for the data reported by Gabet and Mendoza (2012), the Vanderbilt experiments,
DiBiase et al. (2017) and Roth et al. (2020).

Slope Particle
Site (deg) size (m) A1 B1 (m) A2 B2 (m)
Gabet and Mendoza (2012) 0 0.01 -0.48 0.42 -0.24 0.35

3 0.01 -0.55 0.32 -0.54* 0.31*
6 0.01 -0.36 0.30 -0.32 0.28
9 0.01 -0.65 0.43 -0.43 0.37

12 0.01 0.03 0.31 -0.26 0.35
15 0.01 0.02 0.39 -0.20 0.46
18 0.01 0.09 0.99 -0.48 1.27
21 0.01 0.70 2.6 -1.02* 2.36*
24 0.01 3.6 4.7 -0.71* 1.76*

Vanderbilt 0 A3 -0.54 0.033 -0.27* 0.027*
0 R -0.51 0.049 -0.52* 0.051*
0 S -0.49 0.035 -0.51* 0.039*

5.1 A -0.39 0.075 -0.40 0.085
5.1 R -0.24 0.119 -0.32 0.13
5.1 S -0.51 0.098 -0.50 0.10
8.5 A -0.36 0.12 -0.35 0.12
8.5 R 0.10 0.19 -0.13 0.24
8.5 S -0.35 0.12 -0.38 0.13

10.2 A -0.56 0.22 -0.34 0.20
10.2 R 0.020 0.28 -0.10 0.33
10.2 S -0.51 0.24 -0.45* 0.23*
14.0 A 0.30 0.35 -0.20 0.48
14.0 S 0.30 0.41 -0.20 0.51
15.6 A 0.77 1.18 -0.65* 0.99*

DiBiase et al. (2017) 38 0.025 0.81 2.4 0.159 2.82
38 0.05 1.7 5.1 -0.41* 5.9*
38 0.10 5.0 8.8 -1.19* 9.5*

Roth et al. (2020) V 0 all -0.41 0.087 -0.64* 0.16*
14 0.017 -0.41 0.165 -0.18 0.14
14 0.045 0.45 0.23 0.32 0.23
14 0.073 1.1 0.13 5.82 0.00017
20 0.017 -0.23 0.72 -0.20 0.73
20 0.045 -0.30 1.8 -0.93* 3.0*
20 0.073 0.20 1.0 -1.11* 3.4*
24 0.017 -0.06 0.60 -0.17 0.68
24 0.045 -0.01 2.3 -0.16 2.7
24 0.073 0.01 3.4 -0.22 4.1
39 0.045 -0.12 0.30 -0.056 0.32
39 0.017 -0.38 3.7 -0.17 3.2
39 0.073 0.70 4.8 -1.12* 18.7*

Roth et al. (2020) B 17 0.017 -0.39 0.27 -0.39 0.27
17 0.045 -0.03 0.49 0.36 0.45
17 0.073 0.67 0.39 0.59 0.47
20 0.017 0.10 0.18 0.18 0.17
20 0.045 1.30 0.90 1.19 0.89
20 0.073 1.68 0.64 1.04 0.71

1Estimated visually; values reproduced from Table 00.
2Estimated from MLE algorithm; asterisk denotes problematic estimate due to A .−0.5, A→ 0 or censored data.
3A = large angular, R = large rounded, S = small.

One alternatively can choose, say, a nonlinear least-
squares fitting algorithm that weights various parts of data
differently, emphasizing or deemphasizing values near the5

origin or in the tails. We suggest, however, that this is just
a rule-based version of visual fitting. We also note that visual
fitting is not directly influenced by censorship, although the
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form of the censored tail can never be known (Ballio et al.,
2019). Bringing more sophisticated techniques to bear (e.g.,10

Hosking and Wallis, 1987; Castillo and Hadi, 1997; Cramer
and Schmiedt, 2011; Giles et al., 2013, 2016; Pak and Mah-
moudi, 2018) to refine estimates of A and B is premature.
There is a need to collect larger data sets, avoiding censor-
ship if possible, and only then aim at refined estimates of 15

the parametric values as their theoretical basis is improved.
Moreover, any real data set is not immune from the possibil-
ity, by chance, of representing a misfit from the underlying
distribution and yielding parametric estimates that markedly
differ from this underlying distribution — just as with the nu- 20

merical examples above. But no formal quantitative analysis
can reveal or fix this misfit.

We end with a cautionary note: Parametric values of a
heavy-tailed distribution estimated from a data set with N <
1000 (and possible with N < 10,000), if presented as being
precise, merit a healthy skepticism, particularly if the tail of
the distribution is censored. Korup et al. (2012) address a
related point in demonstrating how the exponents in power
functions involved in scaling relations may be particularly 5

sensitive to the presence or absence of extreme values in the
data sets used to estimate the exponents. To quote the sixth
of nine delightful principles offered by Cam (1990), “Never
trust an estimate which is thrown out of whack if you sup-
press a single observation.” Stumpf and Porter (2012) sug-
gest that more generally statistically fitted power laws have5

little more than anecdotal value in the absence of a theoreti-
cal basis.

Appendix B: Particle launching conditions

Consider as an example the initial exceedance probability
plot for the angular particles on a flat surface (Figure B1a),10

which shows a clear inflection at about 5 cm. In this example,
high-speed imaging of particles launched from the catapult
reveal that the particles consistently travel ∼ 2 cm horizon-
tally before their first collisions with the surface, as expected
from calculations using Newton’s second law for measured15

initial velocities. (Free-flight distances increase with increas-
ing surface slope.) These initial flights involve negligible ro-
tational motion. The particles then experience widely vary-
ing changes in their motions over the next 2–3 cm following
the first collisions, often with the onset of rotational motion.20

In the text we suggest that the inflection in the exceedance
probability plot reflects the uniformity of the launch veloci-
ties followed by a finite distance over which randomization
of the motions occurs. This is consistent with the idea that
the factor γ ∼ 1 before randomization occurs, giving an ini-25

tial disentrainment rate that is smaller than after randomiza-
tion. However, we note that the inflection also may involve
other effects.

For these reasons we truncate the plots at the inflection
position, then recalculate exceedance probabilities with re-30

duced N (Figure B1b). In this example the truncation dis-
tance is a significant proportion of the total travel distances.
However, this truncation distance is less important when ef-
fects of initial (near-launch) conditions occur over a distance
that is small relative to total travel distances. Unfolding the35

details of the physics of particle motions over short distances
is for a later time.

Appendix C: Uncertainty in calculated quantities

Of interest is how uncertainty in the estimates of the shape
and scale parameters, A and B, propagates to uncertainty in40

the calculated values of µ, α, Ki and Ki∗. Because A and
B are obtained by visual fitting, for illustration we conser-
vatively assume that the standard deviations of these values
associated with a great number of samples of similar size N
vary as A/

√
N and B/

√
N based on Monte Carlo simula-45

tions as described in Appendix A. This effectively assumes
the coefficient of variation formed by the sampling standard
deviation is ∼ 1/

√
N . This provides the basis for gaining a

sense of the relative magnitude of the variability in the calcu-
lations of µ, α, Ki and Ki∗. For the Vanderbilt data (Section50

3.3) we also incorporate the uncertainty in the launch veloc-
ities u0 provided in Table 5.

We perform a straightforward Mont Carlo analysis. As-
suming values of A, B and u0 are approximately Gaussian,
we successively solve Eq. (32), Eq. (33), Eq. (8) and Eq. (23) 55

10,000 times, then calculate the associated coefficients of
variation of µ, α, Ki and Ki∗. BecauseA andB are obtained
by visual fitting (as opposed to being based on MLE values)
where the number of censored data are included in calcula-
tions of exceedance probabilities, we include censored data 60

in setting N .
We emphasize that these calculations provide a sense of

the variability only associated with that of A and B as this
cascades through the successive calculations of µ, α, Ki and
Ki∗. For example, based on Eq. (32) the variability in µ re- 65

flects that in both A and B. Based on Eq. (33), the variability
in α reflects that in B and the variability in µ previously cal-
culated. Also note that, starting with Eq. (32), as the slope S
increases the relative contribution of this fixed term to calcu-
lated values of µ increases. These calculations do not repre- 70

sent the natural variability in µ, α, Ki and Ki∗ if these quan-
tities somehow could be measured directly, independently of
A and B.

In general, calculated coefficients of variation decrease
with increasing surface slope. Coefficients of variation are 75

on the order of 10% or more for smaller slopes in the experi-
ments reported by Gabet and Mendoza (2012) and in the Van-
derbilt experiments. Coefficients of variation generally are on
the order of 1% or smaller in the field-based experiments of
DeBiase et al. (2017) and Roth et al. (2020) involving steep 80

slopes.
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Figure B1. Plot of exceedance probability Rx(x) versus travel distance x for the example of angular particles on a flat surface showing (a)
initial data set and (b) truncated data set with fitted distribution (line).

Appendix D: Particle energy balance

Let Ep0 =mgh= (1/2)mw2
0 denote the initial impact en-

ergy of a particle with mass m falling from height h onto
a horizontal surface, where w0 is the vertical impact veloc- 85

ity. Then let w1 and u1 denote the vertical and horizontal re-
bound velocity components. Assuming negligible rotational
energy during the initial free fall, the energy balance may be
written as

Ep0 = fc +
1

2
mu21 +

1

2
mw2

1 +
1

2
Iω2 , (D1) 90

where fc is the frictional loss due to particle-surface defor-
mation, I is the moment of inertia and ω is the angular ve-
locity. If we set the initial and final vertical positions of the
rebounding motion at z(0) = z(T ) = 0, then from Newton’s
second law, 95

w1 =
g

2
T , (D2)

where T is the travel time to the second collision. We as-
sume as an approximation that fc = (1− ε2)Ep0, where ε is
the normal coefficient of restitution. This effectively assumes
that the energy loss due to particle-surface deformation is the
same as that of a collinear collision. Now Eq. (D1) becomes

ε2Ep0 =
1

8
mg2T 2 +

1

2
mu21 +

1

2
Iω2 . (D3)

We can experimentally determine ε,Ep0 and T for individual
particles. However, we generally cannot determine u1 from5

side imaging (except by chance with motion transverse to
the camera). We also cannot readily determine I for irregu-
lar particles, nor ω from side imaging. Solving Eq. (D3) for
the last two terms then represents the conversion Ec of trans-
lational kinetic energy just prior to impact into translational10

energy associated with surface parallel motion and rotational
energy. That is,

Ec = ε2Ep0−
1

8
mg2T 2 . (D4)

Appendix E: Effect of launch velocity

For completeness, here we show plots of the friction factor µ15

versus the slope S and the factor α versus the Kirkby number
Ki using the initial launch velocity u0 rather than a reduced
velocity in the calculations as presented in Figure 17 and Fig-
ure 18.

Values of µ, notable at smaller slopes S (Figure E1), are

Figure E1. Plot of friction factor µ versus slope S for data shown
in Figure 17 using the initial launch velocity u0 in the calculations.

20

noticeably larger than those calculated in Figure 17. The val-
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ues appear to converge to the 1:1 line with increasing slope
as Ki → 1, as in Figure 17.

Values of α and associated Kirkby numbers tend to be
smaller (Figure E2) than those calculated in Figure 18. How-

Figure E2. Plot of factor α versus Kirkby number Ki for data
shown in Figure 18 using the initial launch velocity u0 in the calcu-
lations.

25

ever, the overall variation between α and Ki is similar.

Appendix F: The Pareto distribution as a mixture of
exponential distributions

It is well known that a Pareto distribution with positive shape
parameter can be obtained as a mixture of exponential dis- 30

tributions whose rate parameters are distributed as a gamma
distribution. This result suggests an interesting physical in-
terpretation of the Pareto distribution of particle travel dis-
tances, and it also may indicate a strategy for clarifying how
particle size and shape in concert with surface roughness in- 35

fluence the extraction of particle energy and the likelihood of
deposition. For completeness we therefore offer the follow-
ing.

Recall that for an exponential distribution of travel dis-
tances x the fixed disentrainment rate is Px = 1/µx. We then
write the conditional distribution as

fx|Px
(x|Px) = Pxe

−Pxx . (F1)

We may now treat the rate Px as a random variable that is5

distributed as a gamma distribution, namely,

fPx
(Px;Ag,Bg) =

B
Ag
g

Γ(Ag)
PAg−1
x e−BgPx , (F2)

with shape parameter Ag and scale parameter Bg . The un-
conditional distribution of travel distances x is then obtained

as a gamma weighting of the conditional exponential distri-10

bution, namely,

fx(x) =

∞∫
0

fx|Px
(x|Px)fPx

(Px;Ag,Bg)dPx . (F3)

Substituting Eq. (F1) and Eq. (F2) into Eq. (F3) and evaluat-
ing the integral then leads to

fx(x) =
AgB

Ag
g

(x+Bg)1+Ag
. (F4)15

This is a Lomax distribution (compare with Eq. (28))
with shape parameter Ag = 1/A and scale parameter Bg =
B/A=BAg .

The expected value µPx =Ag/Bg = 1/B and the vari-
ance is σ2

Px
=Ag/B

2
g =A/B2. This immediately implies20

that an experimental estimate of B provides an estimate of
the expected disentrainment rate E(Px) = µPx

; and an esti-
mate of A together with B provides an estimate of the vari-
ance of Px.

Because Px is a random variable, and because the expo- 25

nential distribution, Eq. (F1), implies isothermal conditions,
we now use Eq. (16) to write

Px =
γmgµcosθ

αEa0
(F5)

which is the reciprocal of the deposition length Lc with spec-
ified average energy Ea0. For a given particle mass m, slope 30

angle θ and energyEa0
, the quantities γ, µ and α are random

variables. That is, we may envision an ensemble of combi-
nations of these quantities, each of which yields isothermal
conditions. In turn, envision a great number (cohort) of parti-
cles. Then fPx(Px;α,β)dPx is the probability that particles 35

possess the value Px. These particles are deposited exponen-
tially with mean µx = 1/Px. When combined with all other
exponential distributions with varying means (i.e., different
combinations of γ, µ and α), the collective effect is a Pareto
distribution. Each subset of particles with rate Px behaves 40

isothermally, but collectively the downslope energy variation
of the entire cohort involves net heating.

As an example, for a value ofA= 0.01 representing nearly
isothermal conditions, the gamma distribution of Px is cen-
tered about the value of 1/B (Figure E1a) and approaches a 45

Dirac function in the limit of A→ 0 as the variance σ2
Px

=
A/B2→ 0. This represents the exponential limit of a Pareto
(or Lomax) distribution. As A increases, the distribution of
the disentrainment rate Px becomes increasingly skewed to-
ward Px = 0, which collectively gives a heavy-tailed Pareto 50

distribution. In turn, the distribution of the reciprocal µx =
1/Px is given by the inverse gamma distribution (Figure
E1b). Again, in the limit of A→ 0 the mean travel distances
µx of the mixture of exponential distributions converge to
the mean value of the Pareto distribution, namely, B. With 55
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Figure F1. Plot of (a) probability density fPx(Px;Ag,Bg) of dis-
entrainment rate Px and (b) probability density of mean travel dis-
tance µx = 1/Px for A= 0.01,0.5,0.95 (Ag = 100,2,1.05) with
B = 1.

increasing A the mixture of mean values is distributed about
the mean, notably incorporating increasingly larger values of
µx.

Inasmuch as the quantities γ, µ and α can be related to
measurable quantities — for example, particle size, particle 60

shape and surface roughness — then Eq. (F5) suggests the
possibility of formulating a multiplicative relation between
these properties and the shape parameter B = 1/E(Px). An
initial effort to this effect is reported by Roth et al. (2020).
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