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Abstract. Modeling glacial landform evolution is more challenging than modeling fluvial landform evolution. While several

numerical models of large-scale fluvial erosion are available, there are only a few models of glacial erosion, and their ap-

plication over long time spans requires a high numerical effort. In this paper, a simple formulation of glacial erosion which

is similar to the fluvial stream-power model is presented. The model reproduces the occurrence of overdeepenings, hanging

valleys, and steps at confluences at least qualitatively. Beyond this, it allows for a seamless coupling to fluvial erosion and5

sediment transport. The recently published direct numerical scheme for fluvial erosion and sediment transport can be applied

to the entire domain, where the numerical effort is only moderately higher than for a purely fluvial system. Simulations over

several million years on lattices of several million nodes can be performed on standard PCs. An open-source implementation

is freely available as a part of the landform evolution model OpenLEM.

1 Introduction10

Glaciers have played a major part in shaping several orogens on Earth. In contrast to fluvial erosion, however, glacial erosion

has not been extensively considered in modeling large-scale landform evolution. The greater prevalence of rivers and their

relevance for life and society almost everywhere on Earth may be the main reason for this imbalance. River dynamics have

been studied quantitatively for more than a century not only scientifically, but also in numerous engineering projects. As

pointed out by Harbor (1989), glacier dynamics have also been studied quantitatively since the end of the 19th century, but15

received little attention. Nowadays, glacier dynamics are still more difficult to observe than fluvial dynamics, and there are

larger uncertainties about the relevance of the involved processes on glacial landform evolution (e.g., Alley et al., 2019).

As a consequence, the respective models are not only mathematically and numerically more complex than models of fluvial

landform evolution, but also less well constrained.

Models of large-scale fluvial landform evolution (for an overview, see, e.g., Willgoose, 2005; Wobus et al., 2006) are typ-20

ically based on a simple expression for the erosion rate which dates back to studies of longitudinal river profiles by Hack

(1957) and was introduced in numerical landform evolution modeling by Howard (1994). This relation is often referred to as

the stream-power law or as the stream-power incision model and considers the erosion rate E as a function of the upstream
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catchment size A and the channel slope S in the form

E =KAmSn. (1)25

All dependencies of E except for A and S are subsumed in the lumped parameter K, called erodibility. This also includes the

geometry of the river’s cross section, so that rivers can be considered as linear elements. The values of the exponents m and n

are believed to be more or less universal. Equation (1) is occasionally written in the form

E =K
(
AθS

)n
(2)

with the concavity index θ = m
n . In contrast to the absolute values of m and n, θ can be determined from the shape of longitu-30

dinal river profiles if the erosion rate is uniform along the river. Thus, the value of θ is well-constrained. Most modeling studies

either use the value θ = 0.5 originally found by Hack (1957) or a slightly lower reference value θ = 0.45 (e.g., Whipple et al.,

2013; Lague, 2014).

While the stream-power incision model is limited to scenarios where all material that is detached from the river bed is

immediately excavated, some extensions towards sediment transport were developed. Recently, a generic formulation35

E

Kd
+

Q

KtA
=AmSn, (3)

called shared stream-power model, was presented (Hergarten, 2020), where Q is the sediment flux (volume per time). This

model contains two parameters beyond the exponents m and n, where Kd describes the erodibility in absence of transported

sediment (Q= 0) and Kt the ability to transport sediment at zero erosion rate (E = 0). Since the physical units and the

interpretation in the context of Hack’s findings of Kd and Kt are identical, both can be considered as erodibilities, although Kt40

is rather a transport coefficient.

Both the stream-power incision model and the shared stream-power model (as well as the mathematically equivalent model

of Davy and Lague, 2009) can be implemented very efficiently in landform evolution models using fully implicit schemes

(Hergarten and Neugebauer, 2001; Braun and Willett, 2013; Yuan et al., 2019; Hergarten, 2020). Here the maximum time

increment is not limited by the numerical stability, but only by changes in the flow pattern. Beyond this, the numerical effort45

per time step increases only linearly with the size of the grid for the schemes mentioned above, which allows for simulations

on large grids over long time spans.

A comparable representation of glacial erosion where the erosion rate can be directly computed from properties of the

topography is not yet available. Contemporary models involve at least the thickness of the ice layer and its velocity at each

point of the topography. The shallow-ice approximation (Fowler and Larson, 1978; Hutter, 1980; Cuffey and Paterson, 2010)50

is widely used in this context. The flow follows the direction of the steepest descent of the ice surface, and the depth-averaged

horizontal velocity is decomposed into a sliding velocity vs and a depth-averaged deformation velocity vd. The latter can be

obtained directly by combining Glen’s flow law with the shallow-ice approximation, which yields a power-law dependence on

on the thickness h of the ice layer and on the slope S of the ice surface,

vd ∼ hψ+1Sψ, (4)55
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where ψ is the exponent of Glen’s flow law (typically ψ ≈ 3, e.g., Cuffey and Paterson, 2010). In contrast, developing a similar

relation for the sliding velocity vs relies on further assumptions. The simple relation proposed by Budd et al. (1979) involves

the shear stress and the effective normal stress at the bed, which is in general lower than the static pressure of the ice column

due to the pressure of the meltwater. The simplest models assume that the water pressure is proportional to the static pressure

of the ice column, i.e, to the thickness h (e.g., Harbor et al., 1988; Braun et al., 1999; Deal and Prasicek, 2021). Then the60

sliding velocity follows a relation that is very similar to Eq. (4),

vs ∼ hψ−1Sψ (5)

(e.g., Deal and Prasicek, 2021).

The erosion rate is usually assumed to depend on the sliding velocity also by a power-law relation

E ∼ vls, (6)65

where the linear version (l = 1) originally suggested by Hallet (1979) is still widely used. It should be noted that this relation

involves a large uncertainty not only in itself, but also since it inherits the uncertainty from the sliding velocity.

The product of ice thickness and total velocity, h(vs +vd), defines the ice flux per unit width. Inserting this property into the

mass balance of the glacier yields a differential equation for the thickness h. If the topography of the ice surface (H+h, where

H is the topography of the bedrock) is considered as the variable, it is a diffusion equation with a high and strongly variable70

diffusivity. This property makes its numerical treatment challenging and allows only for small time increments.

While some fundamental studies focusing on modeling the evolution of longitudinal and transversal valley profiles (Oer-

lemans, 1984; Harbor et al., 1988; Harbor, 1992) even date back to the 1980s, the model ICE-CASCADE provided the first

implementation of this concept in a large-scale landform evolution model (Braun et al., 1999). While this model has been ap-

plied in several studies, the iSOSIA (integrated Second-Order Shallow Ice Approximation) model introduced by Egholm et al.75

(2011) is a step towards a more realistic description of ice flow without solving the full three-dimensional equations of flow.

As a major point, it also takes into account longitudinal and transverse stresses, which impedes strong local gradients in ice

velocity and the incision into the bedrock along thin lines. This problem had to be fixed in ICE-CASCADE by a more heuristic

approach based on the curvature of the topography. Both models were extended by models of meltwater dynamics (Herman

et al., 2011; Egholm et al., 2012), which helps to constrain the sliding velocity as discussed above. However, both models still80

require small time increments and are computationally expensive.

2 A stream-power law for glacial erosion

The model presented in this section is in its spirit very similar to the sliding ice incision model (SIIM) proposed recently

by Deal and Prasicek (2021). The main difference is that Deal and Prasicek (2021) developed an approximation for the total

velocity vs +vd over the typical range of ice thickness of alpine glaciers that can be treated analytically, while the limit of zero85

thickness is the starting point here. Although this approach is clearly less accurate, it will turn out to be useful when combined

with fluvial erosion. The extension towards finite ice thickness will be the subject of Sect. 6.
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According to Eqs. (4) and (5), the ratio of vd and vs is proportional to h2. Thus, the relative contribution of deformation to

the total flux converges to zero in the limit of a thin layer, provided that the ice is not frozen to the bedrock. So let us assume

for the moment that the entire ice flux is dominated by sliding. If we consider a rectangular cross section of a width w, the total90

ice flux (volume per time, not per unit width) is

qi = whvs. (7)

The thickness h can be eliminated by combining Eqs. (5) and (7), which yields

vs ∼
( qi

w

)ψ−1
ψ

S. (8)

Then the erosion rate (Eq. 6) is95

E ∼
(( qi

w

)ψ−1
ψ

S

)l
. (9)

In order to obtain an expression similar to the fluvial stream-power law (Eq. 1 or 2), we need an estimate of the width w. In

the 1D model of Prasicek et al. (2020) with a dendritic glacier network, the width was expressed in terms of the upstream flow

length. This approach was justified by results of Bahr (1997) who found a power-law relationship

w ∼ Lξ (10)100

with ξ = 0.6, where w is the mean width and L the total length of the glacier. Prasicek et al. (2020) obtained the same

relationship with a slightly lower exponent of ξ = 0.58 from an analysis of 52,000 glacier polygons. Equation (10) cannot be

transferred directly to the width at any point and the upstream flow length at this point. However, if we assume that it holds for

each point in terms of actual width and upstream flow length, it is also valid for the mean width and the total flow length. So

the proposition of Prasicek et al. (2020) that the scaling within individual glaciers also follows Eq. (10) is at least not at odds105

with the observations of Bahr (1997), though it cannot be concluded solely on these. In absence of any model that is better

supported by data, Eq. (10) is used.

Prasicek et al. (2020) also found that glaciers follow the fundamental relationship

L∼Aη (11)

originally proposed by Hack (1957) for rivers, although with a slightly lower exponent η. While Hack (1957) found η = 0.6 and110

a later, more comprehensive study of Rigon et al. (1996) η = 0.56, Prasicek et al. (2020) obtained η = 0.52 from the drainage

pattern of a previously glaciated region, suggesting that glacier patterns are more straight than rivers. Combining Eqs. (10) and

(11) yields

w ∼Aα, (12)

where α= ηξ ≈ 0.30 with the values suggested by Prasicek et al. (2020).115
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If the rate of ice production was constant over the entire upstream catchment, qi would be proportional to A, and thus

w ∼ qαi . (13)

As argued by Deal and Prasicek (2021), it is plausible to assume that variations in width along a glacier depend on the ice flux

instead of the upstream catchment size. Here we should keep in mind that Eq. (12) cannot be derived directly from available

data, but is not in conflict with those. This property is not affected when replacing Eq. (12) by Eq. (13) if we assume that the120

rate of ice production follows a similar function along the glacier for all glaciers. So Eq. (13) does not rely on a constant rate

of ice production, but the main reason for using it in the following is still the absence of any model that is better supported by

data.

Using Eq. (13), the erosion rate (Eq. 9) turns into

E ∼
(
q
θg
i S
)l

(14)125

with

θg = (1−α) ψ− 1

ψ
. (15)

Equation (14) has the same shape as Eq. (2), where l takes the role of n. So Eq. (14) can be interpreted as a stream-power law

for glacial erosion.

The glacial concavity index θg is about 0.47 for ψ = 3, which is strikingly close to the widely used values θ = 0.45 or130

θ = 0.5 for fluvial erosion. In contrast, Deal and Prasicek (2021) obtained a considerably lower glacial concavity index θg =
1
3

(for α= 0.25, θg = 0.31 for α= 0.3). So the approach of Deal and Prasicek (2021) predicts a weaker increase of the erosion

rate with increasing ice flux than the approach proposed here, owing to the different treatment of sliding and deformation. The

approximation proposed by Deal and Prasicek (2021) takes into account an increasing ice flux results in a decreasing relative

contribution of sliding to the total velocity. This reduces the increase in erosion rate with ice flux. In contrast, the approach135

presented here is limited to the sliding-dominated regime and thus obviously weaker. In turn, θg is so close to typical values

of θ for rivers that we can assume θg = θ. This considerably facilitates the formulation, the numerical implementation, and the

interpretation of erodibilities. However, we have to think how to include the effect of deformation later (Sect. 6).

While Eq. (14) is already very similar to the fluvial model (Eq. 2), the main difference is that the latter is written in terms of

catchment size instead of flux for historical reasons. Since erosion rates rather depend on discharges than on catchment sizes,140

the erodibility K is a lumped parameter that already includes precipitation implicitly. If we assume that a given erodibility

K refers to a uniform reference precipitation p0, the long-term mean discharge from a catchment of size A is q = p0A. Then

Eq. (2) written in terms of q instead of A should also be applicable to non-uniform precipitation. However, we would either

have to carry p0 through all equations or to redefine the erodibility in the form Kp−m0 .

In order to avoid this inconvenience, a new terminology is introduced. Let us define145

Aeq =
q

p0
(16)
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and denote the result the catchment-size equivalent of the discharge. It describes the catchment size that is needed to generate

the discharge q at the uniform reference precipitation p0. While it may not be intuitive to measure discharge in terms of area,

the advantage is that all relations for erosion remain valid for non-uniform precipitation. For a uniform precipitation p= p0,

Aeq =A, whileAeq differs from the geometric catchment sizeA else. Since all subsequent relations (except for the χ transform,150

Eq. 29) are based on discharges instead of catchment sizes, the subscript is omitted in the following, so the symbol A refers to

catchment-size equivalents.

The ice flux qi can also be measured as a catchment-size equivalent according to

Ai =
qi

p0
. (17)

In principle, any reference precipitation p0 can be used here. In a coupled model of glacial and fluvial erosion, however, p0 must155

be the same for both components since the catchment-size equivalent is nothing but an alternative physical unit for measuring

fluxes. Using the catchment-size equivalent of the ice flux, Eq. (14) can be written in the same form as Eq. (2),

E =Kg
(
Aθi S

)l
. (18)

As mentioned above, both exponents l and n are not well-constrained. However, values of 1 or 2 are often used in both cases.

So it is convenient to assume l = n. The glacial stream-power law can then be written in the same form as Eq. (1),160

E =KgA
m
i S

n. (19)

where the exponents m and n are the same as for fluvial erosion. Then the erodibilities Kg and K have the same meaning

and the same physical unit. As an example, Kg =K would mean that a glacier at a given ice flux and a given slope of the ice

surface has the same erosion rate as a river at the same discharge and the same channel slope.

3 Implementation in a landform evolution model165

While the glacial stream-power model developed in the previous section is similar to the fluvial model, two specific aspects

have to be taken into account in a numerical implementation in a landform evolution model. First, the slope S refers to the ice

surface and not to the bedrock. This is in principle also true for the fluvial model (with the water level), but there the difference

can be neglected at large scales. In turn, at least some characteristic features of glacial erosion such as overdeepenings require

a difference between the slopes of the ice surface and the bedrock. Since introducing the ice surface as an additional variable170

would cost most of the model’s simplicity, the implementation developed in this section still uses the approximation of small

thickness from the previous section and assumes that both slopes are the same. The extension towards finite thickness will be

discussed in Sect. 6.

Second, rivers and glaciers are considered as linear elements. While the width of individual rivers has a minor effect on

fluvial landforms, U-shaped valleys as the perhaps most characteristic glacial feature cannot arise if erosion acts along a thin175

line. So the finite width of glaciers must be taken into account, although Eq. (19) refers to a line. Since Eq. (19) involves the
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total ice flux through the entire cross section area and not the flux per unit width, a glacier should be described by a single

cardinal flow line (like a river) instead of a parallel flow pattern, but its erosion must act over a wider domain. So let us start

from a dendritic flow pattern on a discrete lattice as typically used in large-scale fluvial landform evolution models. Each cell

of the grid has a unique flow direction towards the neighbor with the steepest descent, and the respective slope defines the180

channel slope S.

Let us assume steady-state conditions for the fluxes of water and ice, although this is, strictly speaking, not justified for the

ice if the climate changes rapidly. The total fluxA (water and ice) and the ice fluxAi (both measured in terms of catchment-size

equivalent) are then given by the steady-state balance equations

A = s
p

p0
+
∑

donors

A, (20)185

Ai = s
pi

p0
+
∑

donors

Ai, (21)

where p is the total precipitation, pi is the part of p that is converted into ice, and s is the pixel area of the considered grid cell.

The sum extends over all neighbors that deliver their discharge to the considered site, called donors in the following.

This concept is widely used in modeling fluvial erosion. However, the spatial scales are different here. At least small rivers are

usually narrower than the mesh width of the lattice. As this may cause problems for detachment-limited erosion in combination190

with hillslope processes, approaches taking into account that rivers cover only a part of the pixels of the grid were developed

(Howard, 1994; Perron et al., 2008; Pelletier, 2010). Glaciers are, however, often wider than typical mesh widths of some tens

to hundreds of meters. Thus, glacial erosion acts over an area around the cardinal flow path, called swath in the following. The

scaling arguments developed in the previous section suggest that the width of the swath is a function of the ice flux according

to Eq. (13). This concept is in principle the same as following the cardinal flow path with a pen of a variable width w.195

Since Eq. (19) only describes the erosion rate at the cardinal flow path, an assumption must be made for the other points of

the swath. At this stage, it is not possible to recover a physically justified representation of the across-valley variation in erosion

from the simplifications already made. The goal must be to achieve that all points of the swath follow the erosion dictated by

the cardinal flow line, taking into account that glacial valleys are typically U-shaped.

Transferring a suitable property directly from the cardinal flow line to the entire swath is the simplest idea. Erosion rate,200

surface height, and ice flux are candidates here. Figure 1 illustrates these versions, starting from a V-shaped valley. Assuming

that all points across the swath share the same erosion rate comes closest to the spirit of the model, but is unable to change the

shape of a valley. So V-shaped fluvial valleys would just incise more rapidly if Kg >K.

Extending the surface elevation to all points across the swath can be seen as the opposite limiting case, where V-shaped

valleys would immediately turn into U-shaped valleys with a flat floor. This may be questionable with regard to estimates in205

the order of magnitude of 100,000 years for the conversion to a U-shaped valley (Harbor et al., 1988). More important here, this

approach converts the dendritic flow pattern towards the cardinal flow line into a parallel flow pattern over long times. However,

parallel flow does not contribute to the flux at the cardinal flow path and thus reduces the erosion rate artificially since the glacial

stream-power law (Eq. 19) refers to the total ice flux and not to the flux per unit width. Moreover, serious problems would occur
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H

Same erosion rate
Same height
Same ice flux

Figure 1. Different concepts of extending erosion from the cardinal flow path to a wider swath in order to transform a V-shaped valley (black

line) into a U-shaped valley. Lower lines (from blue to yellow) describe increasing time. Not to scale.

if sediment transport is taken into account (Sect. 5), since a huge amount of material would be transported towards the cardinal210

flow line instantaneously.

The third version – transferring the ice flux Ai to the swath and use this extended ice flux in the erosion law (Eq. 19) –

works quite well. The key point is the the erosion rate at each point still depends on the local slope, so that the shape of the

valley can adjust. Since the extended ice flux is typically much larger than the original flux, the valley floor becomes quite flat

through time. As illustrated in Fig. 1, however, the flanks of a V-shaped valley are not flattened continuously, but rather pushed215

outwards by a new, quite flat flat valley floor spreading from the cardinal flow path. This behavior is probably not completely

realistic, but in turn, this concept is technically simple since it uses the original erosion model, where only the ice fluxes have

to be modified.

The algorithm used for swath profiles across a given baseline based on the minimum distance (Hergarten et al., 2014) could

be used for drawing the swath and for assigning a reference point on the cardinal flow line to each point of the swath. In this220

study, however, a slightly different approach based on catchments is suggested.

Let c0 be a point on the cardinal flow path, and ci for i≥ 1 the upstream points on the cardinal flow path, defined by the

condition that ci+1 is the biggest donor of ci. Let u be any donor of c0, which is not on the cardinal flow path (u 6= c1). The

point u is added to the swath and assigned to c0 if the distance between u and ci is not greater than wi
2 for any i≥ 0, where

wi is the width according to Eq. (13) applied to the ice flux of the point ci. After selecting the donors of c0 that satisfy this225

condition, the same procedure is applied to all donors of these points. The procedure continues until no more donors that satisfy

the condition are found.

However, there is no straightforward definition of cardinal flow lines on an absolute scale since dendritic flow patterns may

cover a wide range of scales. Therefore, the procedure described above is applied to all points c0 with a nonzero ice flux.

Finally, the largest value of Ai (resulting from different starting points c0) is taken for each point.230

An example of the obtained swaths and the respective fluxes is shown in Fig. 2. The topography used here is a fluvial

equilibrium topography with K = 1, m= 0.5, and n= 1 under uniform uplift U = 1 on a grid of 5000× 5000 nodes. This
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Figure 2. Illustration of the fluxes in the swath around the cardinal flow path. The domain corresponds to the small, white square in Fig. 3.
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Figure 3. Fluvial equilibrium topography under uniform uplift (Hergarten, 2020, Fig. 1a). The small, white square depicts the domain of

Fig. 2, and the black square the domain of Figs. 10 and 12. The blue and red lines show the three biggest rivers. The violet line refers to the

profile shown in Fig. 5.

topography is shown in Fig. 3. It was already used by Hergarten (2020, Fig. 1a), where the only difference is a shift of the

periodic eastern and western boundaries in such a way that the three biggest rivers do not cross the boundaries.

The parameter values defined above refer to nondimensional coordinates. The choice m= 0.5 and n= 1 is very convenient235

in this context since the horizontal length scale, the vertical length scale, and the time scale are independent then. The erodibility
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has a unit of inverse time and directly defines the time scale. If we, e.g., assume a fluvial erodibility of K = 2.5 Myr−1 (Robl

et al., 2017), a unit of nondimensional time corresponds to 400,000 yr. The vertical length scale can be defined arbitrarily. If

we define one vertical unit as 250 m, the maximum nondimensional surface height of about 16 corresponds to 4000 m. The

uplift rate U = 1 (one vertical unit per time unit) is equivalent to 0.625 mm Myr−1 then. The horizontal length scale can even240

be chosen arbitrarily without any interference with the parameter values.

Numerical experiments revealed that the approach described above is still not able to suppress parallel flow completely. If

the ice flux is extended to the swath, the slope of the quite flat valley floor finally approaches the channel slope of the cardinal

flow line. While is this not relevant if only a cross section is considered as in Fig. 1, the channel slope will prevail at least at

some locations in the swath in general. In order to support the dendritic flow pattern towards the cardinal flow line sufficiently,245

the across-valley slope should be greater than the channel slope of the cardinal flow line. This can be achieved by reducing the

extended ice flux. As a simple approach, an effective ice flux obtained from a weighted geometric mean value

Ai,eff =AεA1−ε
i (22)

can be used in the glacial stream-power law, where Ai is the extended ice flux and A the (non-extended) total flux. The

parameter ε defines the weighting of the two fluxes. Larger values of ε provide a better suppression of parallel flow patterns,250

but in turn make glacial valleys more V-shaped. In all numerical simulations performed during the preparation of this paper,

ε= 0.25 turned out to be a safe choice. Since A typically decreases with increasing distance from the central flow line, this

approach introduces some parabolic shape of the valley flow, which is not unrealistic. However, it should be kept in mind that

this concept just enforces the swath to follow the erosion dictated by the cardinal flow line with a not completely unrealistic

valley shape, but is still far off from predicting the evolution of valley shapes on a theoretically solid basis.255

As a first example, Fig. 4 shows a steady-state glacial topography for Kg = 1. It was assumed that the entire precipitation

is converted into ice (pi = p= p0). The factor of proportionality in Eq. (13) was set to unity (in units of the grid spacing), so

w =A0.3
i . The term steady state is seen in a loose sense here. After simulating a time span of 25 time units starting from the

fluvial equilibrium topography, both the maximum and the mean surface height show no systematic trend any more, although

they still oscillate due to local reorganization of the drainage pattern. Obtaining a steady state in the strict sense would, if260

possible at all, require a much longer time period, but this is not relevant for this study.

As expected, a strong downstream increase in valley width is the main difference towards the fluvial equilibrium topography.

Due to the U-shape of the big valleys, the parts of the tributaries that are captured by the swath are almost flat, which is

equivalent to lowering their base level compared to the fluvial topography. As a consequence, the surface heights of high

regions decrease, although the same erodibility as for fluvial erosion was assumed.265

Both the occurrence of wide, U-shaped valleys and the reduced elevation are also visible in the topographic profiles shown

in Fig. 5. Beyond these, the slight V-shape of the valley floors arising from Eq. (22) is also visible. If we assume a typical

grid spacing of 50 m, the largest valley is about 6 km wide. The height difference across the largest valley is about 0.08,

corresponding to about 20 m if one vertical length unit is equivalent to 250 m (see Sect. 3). So the across-valley slope of
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Figure 4. Glacial equilibrium topography under uniform uplift with the entire precipitation converted into ice. The red line refers to the

profile shown in Fig. 4.

this valley is about 0.3 %. Smaller valleys, however, have a stronger residual V-shape. The valleys around x1 = 1000 and270

x1 = 1500, e.g., have across-valley slopes between 2 % and 6 %.

4 Fluvio-glacial systems

The ratio of pi and p typically decreases with decreasing altitude. The equilibrium line altitude (ELA) defines the height

where pi = 0. Below the ELA, melting dominates, so pi is negative. Somewhere below the ELA, melting even compensates the

contribution of tributaries, resulting in a downstream decrease in Ai.275

A simple, linear model for the part of the total precipitation that is converted into ice,

pi = pmin

(
H −He

Hf−He
,1

)
, (23)

is used in this study, where He is the ELA and Hf is the altitude where the entire precipitation is converted into ice. The surface

height H cannot be included easily in the fully implicit scheme for erosion, so it is evaluated at the beginning of the time

step. This will, however, not strongly affect the stability of the implicit scheme and is a minor restriction of the maximum time280

increment compared to treating the flow directions in an explicit manner (Hergarten, 2020).

Figure 6 shows an example of the total flux and the ice flux of the three largest rivers from Fig. 3 for He = 8 and Hf = 10,

corresponding to 2000 m and 2500 m, respectively, using the vertical scale defined above. Practically,Ai is still not much lower

than A at the ELA. The point of maximum ice flux is found below the ELA due to the ice flux of tributaries. At this point,
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Figure 5. Topographic profiles along the lines depicted in Figs. 3 and 4.

A is already more then three times greater than Ai for the considered flow paths. This means that the discharge of water is285

considerably higher than the ice flux for a major part of the flow path.

Assuming that all sites with Ai > 0 are eroded glacially, while fluvial erosion only affects ice-free sites, is the simplest

concept of a coupled model. It was used in the context of steady-state topographies by Prasicek et al. (2020). Figure 7 shows

a topography obtained for He = 8 and Hf = 10, where the glacial erodibility, Kg = 2, is twice the fluvial erodibility (K = 1).

This choice has no specific relevance here. The ratio of 2 is just convenient for recognizing steady-state longitudinal profiles290

visually. While the initial state (fluvial equilibrium) and the simulated time span (t= 25) are the same as in the example with

full glaciation (Fig. 4), the topography is still far off from a steady state here.

Profiles along the three largest flow paths marked in Fig. 7 are depicted in Fig. 8 (lower solid lines). All profiles show a quite

steep increase at the glacier terminus, which may even be a sharp front. It occurs because the ice flux approaches zero close

to the glacier terminus. In this situation, a nonzero erosion rate can only be achieved if the decreasing ice flux is compensated295

by an increasing slope. This effect is amplified by the zero-thickness approximation that is still used at this stage, where the

slope S is the same for the bedrock and for the ice surface. However, it is neither the result of this approximation alone nor an

inherent property of the stream-power approach since it also occurred the steady-state topographies obtained by Prasicek et al.

(2020, Figs. 5 and 7) using the shallow-ice approximation with finite thickness.

Regardless of the question whether this behavior is realistic, including subglacial fluvial erosion would change this behavior.300

So offering an option for taking into account subglacial fluvial processes is not a disadvantage. Sediment transport by meltwater

was included in the iSOSIA model quite soon (Egholm et al., 2012). While Beaud et al. (2016) developed a more elaborate
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Figure 7. Topography at t= 25 for He = 8, Hf = 10, Kg = 2, and K = 1.

model for the incision by meltwater within narrow channels, erosion by subglacial fluvial processes is still one of the most

challenging and controversial topics in the field of glacial erosion (e.g., Alley et al., 2019).
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Figure 8. Longitudinal profiles of the largest flow paths in the fluvio-glacial topographies shown in Fig. 7 (solid lines) and Fig. 9 (dashed

lines). The lower set of lines refers to the original along-stream coordinate x, while the upper set of lines depicts the χ-transformed profiles.

Both start from the boundary of the domain.

As a simple approach, it is proposed here to describe subglacial fluvial processes by the same equations as fluvial processes305

in rivers. This approach is clearly limited by not taking into account the water pressure explicitly. In fact, the apparent absence

of any better model that can compete with the simplicity of the stream-power model is the only justification of this approach.

The respective form of Eq. (1) reads

E =Kf (A−Ai)
m
Sn, (24)

where A−Ai is the the catchment-size equivalent of the meltwater flux. The respective erodibility Kf cannot be constrained310

easily since it obviously depends the topology and the cross-sectional geometry of the meltwater channels and on which fraction

of the total meltwater flux reaches the valley floor. As discussed, e.g., by Egholm et al. (2012), this fraction may also depend

on the thickness of the ice layer. While the flux A−Ai could be multiplied by the respective factor, it would also be possible

to include it in the erodibility as a lumped parameter.

Adding the glacial erosion rate (Eq. 19) and the subglacial fluvial erosion rate (Eq. 24) yields315

E =KgA
m
i S

n+Kf (A−Ai)
m
Sn. (25)

This expression can be written conveniently in the form of Eq. (1) or Eq. (19),

E =KeffA
mSn, (26)
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Figure 9. Topography obtained under the same conditions as in Fig. 7, but assuming that erosion by meltwater follows the same relation as

fluvial erosion with the same erodibility.

with the effective erodibility

Keff = γmKg +(1− γ)mKf, (27)320

where

γ =
Ai

A
(28)

is the relative contribution of ice to the total flux.

In the following examples, the same erodibility Kf is assumed for rivers and for subglacial fluvial processes, so Kf =K.

This should, however, not be seen as an attempt to provide a realistic estimate, which would go beyond the scope of this325

study. Figure 9 shows a fluvio-glacial equilibrium topography obtained under the same conditions as the previous example, but

including subglacial fluvial erosion. While the topography is qualitatively similar to that shown in Fig. 7, the upper regions are

lower here. This is recognized more clearly in the longitudinal profiles (Fig. 8).

The χ transform introduced by Perron and Royden (2013) provides a simple way to analyze longitudinal river profiles

quantitatively. It transforms the upstream coordinate x to a new coordinate330

χ=

∫
A(x)−θdx. (29)

The χ transform eliminates the inherent concavity of river profiles arising from the upstream decrease in catchment size.

Equilibrium profiles under spatially uniform conditions turn into straight lines with a slope of
(
U
K

) 1
n . In our example (K = 1,

U = 1), it is even the diagonal line H = χ.
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The upper lines in Fig. 8 depict the χ-transformed profiles. Assuming Kf =K and Kg >K guarantees Keff ≥K every-335

where. As a consequence, the respective profiles are never above the fluvial equilibrium line H = χ, in contrast to those

without subglacial fluvial erosion. The transition from the fluvial regime to the fully glaciated domain, characterized by a

straight line with a slope of 1
2 (according to Kg = 2), is smooth. This would not necessarily be the case for Kf <K, where the

profile may be steeper than the fluvial equilibrium profile close to the glacier terminus.

5 Sediment transport340

The shared stream-power model (Eq. 3) provides a simple formulation for the entire range between the detachment-limited and

transport-limited end-members of fluvial erosion. In principle, it just describes how sediment transport reduces the ability to

erode the bedrock in such a way that equilibrium river profiles remain consistent with the findings of Hack (1957). While this

is a rather generic concept, the mathematically equivalent model of Davy and Lague (2009) explicitly refers to the settling of

particles.345

While the model ICE-CASCADE assumes that transported sediment has no effect on glacial erosion (so detachment-limited

erosion), the more comprehensive model iSOSIA assumes that a thick layer of sediments protects the bed against erosion. Since

glacial sediments are transported at the velocity of the ice in this model, a large sediment flux results in a thick layer and thus

reduces the rate of erosion. Although this is an oversimplified view on the interaction between glacial erosion and sediment

transport in the iSOSIA model, it illustrates that it is not very far away from the shared stream-power model in its spirit.350

Contemporary models of bedrock incision or sediment transport by subglacial fluvial processes (Beaud et al., 2016; Delaney

et al., 2019) combine models for the flow in channels with erosion laws based on shear stress. This is not fundamentally

different from physically based models of erosion and sediment transport in rivers, apart from the more complex distribution

of pressure that drives the flow.

Anyway, these considerations show that extending both the ice and the meltwater component of the model in such a way that355

sediment transport reduces the ability to erode the bedrock could be useful. Writing the shared stream-power model (Eq. 3) as

the presumably simplest generic model in this context individually for the ice and the meltwater components yields

Eg

Kd,g
+

Qg

Kt,gAi
= Ami S

n, (30)

Ef

Kd,f
+

Qf

Kt,f (A−Ai)
= (A−Ai)

m
Sn. (31)

The additional indices g and f refer to the glacial and subglacial fluvial (meltwater) component, respectively. So there are four360

erodibilities now, referring to glacial and fluvial incision and transport, respectively.

At this point, we should be aware that this step adds new capabilities to the model, but also moves it further away from well-

constrained relations. However, assuming Kt,g→∞ or Kt,f→∞ recovers the detachment-limited version for the respective

component. So we do not lose anything by proceeding to the shared stream-power model.

Since the flow of meltwater should be confined to narrow channels, the best approach would be to consider the two sediment365

fluxes Qg and Qf as separate variables without any mixing. The numerical scheme proposed by Hergarten (2020) could in
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principle be extended accordingly. However, this would require additional theoretical and numerical effort. Beyond this, the

two sediment fluxes merge anyway, e.g., if material is deposited by the glacier due to decreasing transport capacity when

approaching the glacier terminus and eroded again by the meltwater stream. Therefore, a simpler approach using a single

sediment flux is suggested. According to Eqs. (30) and (31), the total erosion rate E = Eg +Ef follows the relation370

E+
Kd,gQg

Kt,gγA
+

Kd,fQf

Kt,f(1− γ)A
=Kd,effA

mSn, (32)

where the definition of the effective erodibility for incision,

Kd,eff = γmKd,g +(1− γ)mKd,f, (33)

is the same as in Eq. (27). If the total sediment flux Q=Qg +Qf is given, the fraction of the stream power spent for sediment

transport depends on how Q is distributed. Let us assume an optimized distribution in the sense that this fraction is minimized.375

It is easily recognized that this is the case if either the glacier or the meltwater carries the entire load, and thus

E+min

(
Kd,g

Kt,gγ
,

Kd,f

Kt,f(1− γ)

)
Q

A
=Kd,effA

mSn. (34)

This equation can be written in the same form as the original shared stream-power model (Eq. 3),

E

Kd,eff
+

Q

Kt,effA
=AmSn, (35)

with380

Kt,eff =Kd,eff max

(
γ
Kt,g

Kd,g
,(1− γ)Kt,f

Kd,f

)
. (36)

Figures 10 and 11 provide a numerical example. Since sediment transport is more interesting in transient states than in a steady

state, a declining ELA was chosen here. The ELA starts from He = 16 (slightly higher than the maximum surface height of the

fluvial equilibrium topography) and decreases at a rate of 4 (four times faster than the uplift), so that an ELA of He = 8 (and

Hf = 10) is reached at t= 2.385

The fluvial erodibilities are set to Kd,f = 2.6 and Kt,f = 1.625 for rivers and meltwater. Their ratio is Kd,f
Kt,f

= 1.6. This ratio is

the sediment deposition coefficient in the notation of Davy and Lague (2009), where a recent analysis of steady-state topogra-

phies suggested 1.6 as a realistic value for n= 1 (Guerit et al., 2019, data supplement). Furthermore, these values satisfy the

relation

1

Kd,f
+

1

Kt,f
=

1

Kf
(37)390

with Kf = 1, which ensures that the fluvial equilibrium topography computed for the detachment-limited model is also in

equilibrium here (Hergarten, 2020). For glacial erosion, it is assumed that bedrock incision is not more efficient as flu-

vial bedrock incision (Kd,g =Kd,f = 2.6), while the glacier transports sediment 10 times more efficiently than water (Kt,g =

10Kt,f = 16.25).
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Figure 10. Change in surface height compared to the initial fluvial topography (black square in Fig. 3) obtained from the shared stream-power

model at the time when the ELA reaches He = 8.
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Figure 11. Longitudinal profiles of the largest flow paths, which are basically the same as in the fluvial topography in map view (Fig. 3). The

lower set of lines refers to the original longitudinal coordinate x, while the upper set of lines depicts the χ-transformed profiles.
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Since the overall topography does not change fundamentally over the limited time span considered here, Fig. 10 shows the395

difference in height compared to the initial fluvial topography for a part of the domain. As expected, the strongest erosion

occurs where V-shaped valleys turn into U-shaped valleys and at the fully glaciated high ranges. However, the most interesting

effect is an increase in height along the original river, which concerns the U-shaped glacial valleys as well as rivers below the

glaciers. In the glacial valleys, it arises from the rapid transformation towards a U-shape, which produces large amounts of

sediment. In the non-glaciated part, it arises from the sediment flux from the glaciers, which is higher than that of the former400

rivers. It should, however, be noted than none of the changes in surface height describes a net deposition of sediments, but only

reduced erosion. Since the total uplift is 2 (U = 1, t= 2), the maximum increase in elevation shown in Fig. 10 is less than half

of the uplift, so that the minimum erosion is still more than half of the uplift.

These effects, which would not occur in the detachment-limited version, are also visible in the longitudinal profiles (Fig. 11).

First, the fluvial parts of the profiles have become steeper compared to the initial fluvial topography due to the high sediment405

flux from the glaciated part. As the erosion rate in the glacial part is higher than in equilibrium, the glacier brings more sediment

than the upstream part of the river brought under fluvial conditions. This increased sediment flux reduces the ability to erode

the bedrock according to Eq. (3), and the fluvial erosion cannot follow the uplift any more.

The glaciated parts of the profiles are less steep than the initial fluvial profiles, but still steeper than it would be expected in

equilibrium. Their slope in the χ plot is about 0.8, while Eq. (37) predicts an equilibrium slope of 1
Kd,g

+ 1
Kt,g

= 0.45 with the410

glacial erodibilities assumed here. So the glaciated part is even steeper than the fluvial part if both are considered in relation

to their equilibrium slope. The reason for the increased steepness is basically the same as for the fluvial part. Converting a V-

shaped valley into a U-shaped valley goes along with a high erosion rate and thus yields a high amount of sediment. Although

the efficiency of the glacier in transporting sediment was assumed to be ten times higher than for the rivers, the large amount

of sediments limits the ability of the glacier to erode the bedrock during the conversion of the valley shape.415

6 Finite ice thickness

The approach developed in Sect. 2 considers the limit of zero ice thickness. The finite thickness, however, has a strong influence

on glacial landform evolution. Overdeepened valleys would be neither possible in the stream-power model proposed here nor

in the original shallow-ice approximation in the limit of zero thickness. Beyond this, the ice surface defines a base level for the

tributaries and may thus play an important part in the formation of hanging valleys.420

A first estimate of the thickness h can be obtained by combining Eqs. (7) and (8) in the form

qi ∼ wh
( qi

w

)ψ−1
ψ

S, (38)

and thus

h∼
( qi

w

) 1
ψ

S−1. (39)

In combination with Eq. (13), this yields425

h∼ q
1−α
ψ

i S−1. (40)

19



Solving Eq. (40) numerically using an explicit scheme is not a big problem if the nodes are treated in upstream order. If the

height of the bedrock surface, the ice flux, and the ice thickness of the downstream neighbor are known, the ice thickness of

the respective node is obtained by solving a quadratic equation.

However, this concept still poses some challenges, in particular in combination with the consideration of the swath along430

the cardinal flow line. Therefore, a simple parameterization of h by the ice flux alone without taking into account the slope

is proposed here. While this concept is in its spirit consistent with the parameterization of the width by the ice flux alone, it

should be emphasized that it leaves room for further development of better approaches.

For a straight profile (S = const), the exponent in Eq. (40) is about 0.23 for α= 0.3 and ψ = 3. On the other hand, the sliding

velocity is constant if the erosion rate is constant along the profile, and then Eqs. (7) and (13) immediately yield h∼ q1−αi . So435

the exponent is about 0.7 for a uniform erosion rate.

However, Eq. (40) still relies on the approximation of small thickness in the sense that the total ice flux is dominated by

sliding. Adopting the approximation introduced by Deal and Prasicek (2021) would indeed be an advantage at this point since

it captures sliding and deformation over the typical thickness range of alpine glaciers. However, the limit of small thickness

was preferred in Sect. 2 since it is consistent with using the same concavity index for fluvial and glacial processes, which440

considerably simplifies the formulation and the implementation. As discussed in Sect. 2, neglecting deformation increasingly

underestimates the ice flux at large thickness. So the increase of thickness with ice flux is described well by Eq. (40) only for

small thickness, while the increase becomes weaker for large thickness.

Taking this into account, a parameterization of the thickness by the ice flux alone should rather be in the lower range between

the two extremes 0.23 and 0.7 for the exponent found above. The simplest approach is assuming that the exponent is equal to α445

(here about 0.3), which means that glaciers have a constant thickness-to-width ratio. So let us assume h∼ w in the following,

although the model itself is still open for improved scaling relations.

Three effects of the finite thickness can be included in the model. First, the ice surfaceH+h can be taken into account in the

glacial mass balance (Eqs. 21 and 23), as it is usually done in glacial models. Since already H has to be taken at the beginning

of the time step in Eq. (23), h is treated the same way without affecting the stability of the scheme strongly.450

The most important effect of a finite ice thickness is that the channel slope S should refer to the ice surface H +h instead

of the bedrock surface H as assumed in the previous examples. With the parameterization h∼ w, the implicit scheme for the

erosion part can be maintained with the slope of the ice surface. Technically, this can be easily implemented by adding h to H

before performing the erosion step and subtracting it afterwards. Here the scheme for drawing the swath around the cardinal

flow path described in Sect. 3 is particularly useful. It ensures that all points of the swath draining to a given point on the455

cardinal flow path, except for those located upstream on the cardinal path, have the same extended ice flux and thus also the

same ice thickness. So the finite ice thickness has only a strong effect within the swath close to the glacier terminus and at

confluences where the ice flux changes abruptly. In turn, it sets a higher base level for tributaries at the boundary of the swath,

which facilitates the formation of steep walls and hanging valleys. However, local depressions in the ice surface may occur at

the boundary of the swath or along the cardinal flow path. These would cause a sediment flux opposite to the direction of the460

ice flux. In order to avoid this, local depressions in the ice surface should be filled.
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Figure 12. Change in surface height compared to the initial fluvial topography (black square in Fig. 3) obtained from the shared stream-power

model with a thickness-to-width ratio of 0.05 at the time when the ELA reaches He = 8.

Figures 12 and 13 illustrate the effect of these two extensions on the example considered in Sect. 5. All parameters are the

same, except that the thickness-to-width ratio is 0.05 in nondimensional coordinates. Using the previously suggested length

scales of 50 m horizontally and 250 m vertically, the ratio would be 0.25 in reality.

While the slopes along the cardinal flow path are similar to the scenario with zero ice thickness, the glaciers become wider465

and advance further downstream here. This difference is related to taking into account the ice surface instead of the bedrock

surface in Eq. (23), which defines the part of the precipitation that is converted into ice. This part has increased, which results

in a higher ice flux and thus in an advancing of the glaciers.

The upper parts of the glaciated valleys feature smooth segments, which are interrupted by distinct steps. These steps occur

at major confluences. Due to the abrupt increase in ice flux at confluences, the ice thickness also increases abruptly. Over470

long times, however, erosion will smoothen the ice surface, so that the step is transferred from the ice surface to the bedrock

topography.

The overdeepening of the valley floor in the lower part of the glacier can be recognized well in the χ-transformed profiles.

The longitudinal shape of the bedrock surface looks quite irregular, with several short segments of strong overdeepening. This

localized overdeepening occurs if the glacier advances very slowly or the glacier terminus even stays at the same point for475

some time. The mechanism in the model is the same as for the confluences. Erosion attempts to flatten the steep front, and the

gradient of the ice surface is transferred to the bedrock surface. In contrast to the steps at confluences, there is no persistent

strong variation in ice flux here. So these local overdeepenings are transient structures which are slowly erased by erosion and

filling when the glacier advances further.
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Figure 13. Longitudinal profiles of the largest flow paths in the topography shown in Fig. 12. The filled areas depict the ice layer. The lower

set of lines refers to the original longitudinal coordinate x, while the upper set of lines depicts the χ-transformed profiles.

The third point where the model could be improved by the finite ice thickness is the separation of the total flow velocity into480

a deformation velocity vd and a sliding velocity vs. While the ice flux (Eq. 7) depends on the sum of both velocities, the erosion

rate (Eq. 6) depends only on vs. As discussed in the beginning of Sect. 2, the ratio of the two velocities is proportional to h2.

In the 1-D model of Prasicek et al. (2018), this relation was used for eliminating vd from the equations. Equation (7) then turns

into

qi = whvs
(
1+βh2

)
, (41)485

with a parameter β depending on the rheology of the ice (for details, see Prasicek et al., 2018). The thickness h cannot be

eliminated easily then. If we, however, assume that the last term in Eq. (41) is only a small correction, we can insert the

estimate of h developed in this section there. Then all subsequent relations remain the same, but where the catchment-size

equivalent Ai of the ice flux is replaced by

Ai

1+βh2
=

Ai

1+ ξA2α
i

(42)490

with another parameter ξ. So the influence of the ice flux on erosion and sediment transport decreases if deformation becomes

relevant. While Eq. (42) could easily be implemented, it introduces an additional parameter and will presumably not yield

fundamentally different results. This extension is therefore not considered further in this study.
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7 Numerical performance

The concepts developed in the previous sections were implemented in the open-source landform evolution model OpenLEM. A495

fully implicit scheme for the fluvial shared stream-power model was already available in OpenLEM before (Hergarten, 2020).

The behavior concerning the time increment δt is basically the same as for the fluvial version. Practically, the accuracy is

not limited by the accuracy of the implicit scheme itself, but by changes in the flow pattern, which are treated in an explicit

way. While the flow directions are the only explicit component in the fluvial version, the glacial mass balance, i.e., the terms

H and h in Eq. (23), is also treated in an explicit way in the fluvio-glacial version. This may introduce an additional limitation500

of the maximum time increment if the climatic conditions change rapidly.

The time-dependent simulations with the declining ELA and the finite ice thickness (Sect. 6) were performed with δt= 10−2,

δt= 10−3, and δt= 10−4. On a visual level (Figs. 12 and 13), the results were almost indistinguishable for δt= 10−3 and

δt= 10−4, while a small difference was observed for δt= 10−2. However, the difference is rather a small shift on the time

axis than a principal difference in the shape of the glaciers and the resulting landforms. So δt= 10−3 should be a safe choice,505

while larger values should also be possible if required, e.g., in long-term simulations. If we, e.g., assume a fluvial erodibility

of K = 2.5 Myr−1 (Robl et al., 2017), a unit of nondimensional time corresponds to 400,000 yr. So time increments of some

hundred years appear to be safe, while some thousand years will also yield reasonable results.

However, the fluvio-glacial model requires a higher numerical effort per time step than the purely fluvial version. On the

5000×5000 grid, an increase in CPU time by a factor of about 1.7 was found for the fluvio-glacial shared stream-power model510

compared to the respective fluvial version even if the ice flux is zero everywhere. This factor increases to about 2.7 if the

topography is completely glaciated. This factor, however, depends on the width of the glaciers. An increase of the factor of

proportionality in Eq. (12) will result in an increasing numerical effort. In principle, the factors may also increase slightly for

larger grids than the 5000× 5000 nodes considered here since the width of the largest glaciers may also increase then. In turn,

the implementation in OpenLEM used here is still in a preliminary state and leaves room for further optimization.515

So the increase in numerical effort compared to the purely fluvial model is moderate, and simulations even over several

million years are possible on standard PCs.

8 Strengths and weaknesses

The simplicity and the numerical efficiency are the most important strengths of the model proposed here. It allows for simulat-

ing combined fluvial and glacial landform evolution of entire mountain ranges over millions of years. This property also makes520

the model well-suited for considering multiple climatic and tectonic scenarios. While the recent study of Liebl et al. (2021)

was limited by computing capacities, topographic signatures could be investigated in future for much larger domains with a

higher spatial variability and over longer time spans where the effect of tectonics becomes relevant.

In turn, it must be admitted that the model is not a comprehensive model of glacial landform evolution. I was designed for

valley glaciers from the beginning, and even the U-shape of typical glacial valleys was introduced explicitly. So the model525

cannot predict under which conditions U-shaped valleys occur or how flat the bottom of such a valley is. The model will even

23



fail completely, e.g., for piedmont glaciers. Here the glacier would keep its width after leaving the valley and would finally

incise an overdeepened U-valley into the plain. Similarly, a plateau glacier would dissect the plateau into a network of U-shaped

valleys.

The restriction to valley glaciers is closely related to the parameterization of the glacier width by the ice flux. This approx-530

imation decouples the valley shape from the longitudinal profile. Starting glaciation in a very steep fluvial topography, we

should expect higher flow velocities and thus narrower glaciers than in a moderate topography. This effect is not captured by

the parameterization of the glacier width, which also holds for the models of Prasicek et al. (2020) and Deal and Prasicek

(2021). However, including the slope of the ice surface in the parameterization of the glacier width (and thickness) would cost

much of the model’s simplicity.535

Accepting the parameterization of the glacier width, the stream-power law for bedrock incision by glaciers (Eq. 19) can in

principle be derived from widely used relations. However, the subsequent steps rather leave solid ground. The idea of sharing

the stream-power term Ami S
n between bedrock incision and sediment transport is just adopted from the respective concept for

fluvial erosion. Also, adopting the respective fluvial relations for incision and sediment transport by meltwater is only justified

by some similarity in the processes. So the relations going beyond glacial bedrock incision are rather based on intuition than540

on real-world data or on established relations.

The parameters of the model are strongly lumped and do not refer directly to the physical properties of the ice and the

bedrock. All Ks occurring in the model have basically the same meaning and describe the ability of rivers, ice or meltwater

to erode the bedrock or to transport sediment. So the model is not able to predict, e.g., under which conditions glacial erosion

is more efficient than fluvial erosion or how efficient subglacial fluvial processes are. These properties are prescribed by545

the parameter values. In turn, this rather phenomenological definition of the parameters may even by an advantage when

investigating, e.g., how efficient glacial erosion must be compared to fluvial erosion in order to generate a buzzsaw-like erosion

above the ELA, or how efficient subglacial fluvial erosion must be in order to have a considerable effect at large scales.

9 Conclusions

This study proposes a stream-power law for glacial erosion, which is in its spirit similar to the relation introduced recently550

by Deal and Prasicek (2021). While their model captures the contribution of deformation to the ice flux better, the approach

proposed here has the advantage that the same concavity index may be assumed for fluvial and for glacial erosion. This

property allows for a seamless combination with fluvial erosion, where fluvio-glacial erosion can also be included conveniently.

Sediment transport can also be taken into account with the help of the shared stream-power model recently presented by

Hergarten (2020).555

Regarding the implementation in a large-scale landform evolution model, the main difference towards fluvial erosion is that

glaciers are usually wider than the grid spacing in contrast to rivers. Including the finite width of glaciers is the main challenge

in the implementation.

24



While the first model formulation assumes an infinitely thin ice layer, a finite thickness can also be included, where further

approximations are necessary. With this extension, overdeepenings, hanging valleys, and steps at confluences can be simulated560

in an at least qualitatively reasonable way.

The implementation in the open-source landform evolution model OpenLEM uses the fully implicit scheme for erosion

and sediment transport proposed by Hergarten (2020) in the context of fluvial landform evolution. This scheme allows for

arbitrary time increments in principle, where changes in the flow pattern practically define an upper limit. The numerical effort

is moderately higher than for the purely fluvial version and should be some orders of magnitude lower than for models based on565

the shallow-ice equations such as ICE-CASCADE and iSOSIA. Simulations even over several million years can be performed

on standard PCs.

As a main limitation, the model presented here requires empirical relations for the width and the thickness of glaciers as

a function of their ice flux. In contrast, models that implement the shallow-ice approximation directly are able to adjust the

geometry of the cross section according to the initial geometry of the valley, its slope, and the parameters of the ice flux. A570

detailed benchmarking against the iSOSIA model as a reference with regard to the efficiency and to the question how well the

stream-power-based model captures glacial erosion will be subject of a subsequent study.

Code and data availability. The open-source landform evolution model OpenLEM including the extensions presented here is freely available

at http://hergarten.at/openlem. An additional package that contains all codes and simulated data is available at http://hergarten.at/openlem/esurf-

2021-1.zip (preliminary location during the review phase). The author is happy to assist interested readers in reproducing the results and575

performing subsequent research.
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