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Abstract. The long profile of rivers is widely considered as a recorded of tectonic uplift rate. Knickpoints form in response 

to rate changes and faster rates produce steeper channel segments. However, when the exponent relating fluvial incision to 

river slope, n, is not unity, the links between tectonic rates and channel profile are complicated by channel dynamics that 

consume and form river segments. Here, we explore non-linear cases leading to channel segment consumption and develop a 

Lagrangian analytic model for knickpoint migration. We derive a criterion for knickpoint preservation and merging, and 15 

develop a forward analytic model that resolves knickpoint and long profile evolution before and after knickpoint merging. 

We further propose a linear inverse scheme to infer tectonic history from river profiles when all knickpoints are preserved. 

Our description provides a new framework to explore the links between tectonic uplift rates and river profile evolution when 

n is not unity. 

1 Introduction 20 

Bedrock rivers that incise into tectonically active highlands are sensitive to changes in the tectonic conditions (Whipple and 

Tucker, 1999; Kirby et al., 2003). Upon a change in the rock uplift rate with respect to a base level, the river steepness 

changes (Wobus et al., 2006; Kirby and Whipple, 2001; Whipple and Tucker, 2002), which in turn, changes the local 

incision rate. Particularly, an increase in uplift rate generates steeper slopes that facilitate faster incision, overall promoting 

incision–uplift equilibrium. However, equilibration is not achieved synchronously across the river long profile. Upon a 25 

tectonic change, a knickpoint forms that divides the profile to reaches with different steepness and erosion rates 

(Rosenbloom and Anderson, 1994; Berlin and Anderson, 2007; Oskin and Burbank, 2007). Below the knickpoint, the 

steepness and erosion rate have already been shaped by the new tectonic conditions, while above the knickpoint, river 

steepness and erosion rate correspond to the previous conditions (Niemann et al., 2001; Kirby and Whipple, 2012). The 
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erosion rate gradient across the knickpoint promotes knickpoint migration upstream, gradually changing the proportion of 30 

the channel that is equilibrated to the new tectonic conditions. Therefore, knickpoints are viewed as moving boundaries that 

separate channel reaches recording different portions of the tectonic history (e.g., Pritchard et al., 2009; Whittaker and 

Boulton, 2012). 

Since the links between tectonic history and river shape are mediates by fluvial incision, resolving these links requires a 

fluvial incision theory. The Stream-Power Incision Model (SPIM) is a leading theory that is widely used to describe 35 

detachment-limited vertical incision into channel bedrock, over long-timescales (commonly beyond millennials) and large 

length scales (Howard and Kerby, 1989; Snyder et al., 2000; Lague, 2014; Venditti et al., 2019). The SPIM represents the 

rate of bedrock incision, E (L/T) as a power-law function of channel slope (S=∂z/∂x, L/L) and upstream drainage area (A, L2), 

which is used as a proxy for both discharge and channel width (Howard and Kerby, 1989): 

𝐸(𝑥, 𝑡) =  𝐾𝐴(𝑥)𝑚 [
𝜕𝑧(𝑡,𝑥)

𝜕𝑥
]
𝑛

,                                                                                                                                                      (1) 40 

where x (L) denotes a spatial coordinate along the channel and t (T) is time. The channel erodibility, K (L1-2m/T), primarily 

depends on the bedrock lithology, and the effective rate of precipitation (Whipple and Tucker, 1999; Snyder et al., 2000). 

The positive exponents, m and n, control the sensitivity of incision rate to the drainage area and slope, respectively. 

Assigning equation (1) in a topography conservation equation gives rise to a partial differential equation describing the time-

space evolution of the fluvial channel long profile: 45 

𝜕𝑧(𝑡,𝑥)

𝜕𝑡
= 𝑈(𝑡, 𝑥) − 𝐾𝐴𝑚 [

𝜕𝑧(𝑡,𝑥)

𝜕𝑥
]
𝑛

,                                                                                                                                              (2) 

where U (L/T) is the rate of tectonic uplift. Notably, the formulation of equation (2) represents many simplifications of the 

processes of river bedrock incision. For example, it does not explicitly account for incision thresholds, discharge variability, 

sediment flux incision sensitivity, and dynamic changes in channel width (Lave and Avouac, 2001; Whipple and Tucker, 

2002; Duvall et al., 2004; Lague et al., 2005; Dibiase et al., 2010). However, Gasparini and Brandon (2011) argued that 50 

many of these processes could still be approximated by modifying the exponents, m and n.  

Equation (2) is a non-linear advection equation for the elevation, where U acts as a forcing term. Consequently, equation (2) 

predicts the first-order dynamics of bedrock rivers, whereby knickpoints form in response to tectonic changes and migrate 

upstream. The relative simplicity of equation (2) presents a unique opportunity for an analytic exploring of channel dynamics 

in response to changing tectonic and environmental conditions. Particularly, when the analytic solution is sufficiently simple, 55 

its representation can be used as part of forward models that predict topographic evolution (e.g., Steer, 2021), and inverse 

models that infers the tectonic history from observations river long profiles (Fox et al., 2015; Rudge et al., 2015; Gallen and 

Fernández-Blanco, 2021; Goren et al., 2021). 
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Previous, general analytic exploration of equation (2) (e.g., Luke, 1972; Weissel and Seidl, 1998; Prichard et al., 2009; 

Royden and Perron, 2013) have identified that upon a tectonic change that induces a long-profile steepness change, portions 60 

of the solution, representing the river profile, could form that are not strictly associated with the tectonic change, and, 

portions of the solution that hold tectonic information may be lost. More specifically, when U increases and 𝑛 < 1 or U 

decreases and 𝑛 > 1, ‘stretched zone’ along a river long profile form that are not associated with any particular tectonic 

input (Royden and Perron, 2013). When U increases and 𝑛 > 1 or U decreases and 𝑛 < 1, some portions of the channel 

reach are consumed at knickpoints (Royden and Perron, 2013). Unlike the non-linear cases, when 𝑛 = 1, stretched and 65 

consumed channel reaches do not occur, and there is a 1-to-1 mapping between the tectonic uplift history and the river long 

profile. For this reason, so far, only analytic solutions that assume slope-incision linearity (𝑛 = 1) were applied as part of 

forward (Steer, 2021) and inverse models (for a recent review see, Goren et al., 2021) of tectonically forced fluvial landscape 

evolution.  

However, while some field studies support the linearity assumption (e.g., Wobus et al. 2006, Ferrier et al. 2013; 70 

Schwanghart and Scherler 2020), a growing body of work show that n could be different than unity (Whipple et al., 2000; 

Harkins et al., 2007; Lague, 2014; Harel et al., 2016). Particularly, significant incision thresholds and relatively small 

discharge variability are expected to lead to 𝑛 > 1 (Anthony and Granger, 2007; Ouimet et al., 2009; Dibiase et al., 2011; 

Lague, 2014). The current study addresses this gap by developing a simple analytic description of the evolution of channel 

long profile for the cases where channel reaches may be consumed, namely, U(t) is a staircase decreasing function and 𝑛 < 1, 75 

or U(t) is a staircase increasing function and 𝑛 > 1. The latter scenario is particularly applicable for tectonically active and 

rejuvenated landscapes. Unlike previous analytic explorations (e.g., Luke, 1972; Weissel and Seidl, 1998; Royden and 

Perron, 2013) that solved for the long profile as a whole, the current analysis focuses on knickpoint kinematics in a 

Lagrangian perspective that follows the knickpoint along their migration path. With this approach we develop a criterion for 

knickpoint preservation and merging, a simple and easy implement forward analytic model, and a linear inverse model 80 

constrained by knickpoint preservation. The current study focuses on the analytic derivations and their implications, 

intentionally leaving field applications to future studies. 

2 Theoretical background 

The SPIM model, equation (1) predicts that for channel segments that erode at the uniform rate (in space and time), the 

channel slope scales as a power-law function of the drainage area (Wobus et al., 2006; Cyr et al., 2010): 85 

𝜕𝑧

𝜕𝑥
= 𝑘s𝐴

−𝜃,                                                                                                                                                                                 (3) 

where 𝜃 = 𝑚/𝑛  and 𝑘s = (𝐸/𝐾)
1/𝑛  (L2m/n) are commonly referred to as the channel concavity and steepness indices, 

respectively (Wobus et al., 2006). An alternative perspective to equation (3) emerges when integrating it along the channel, 
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while assuming constant E/K. Following such an integration, a linear relation emerges between the elevation, z, and the 

parameter χ (L) (Perron and Royden, 2013): 90 

𝑧(𝑥) = 𝑧𝑏 + (
𝐸

𝐾𝐴0
𝑚)

1

𝑛
χ(𝑥),                                                                                                                                                          (4) 

χ(𝑥) = ∫ (
𝐴0

𝐴(𝑥′)
)𝑚/𝑛

𝑥

𝑥𝑏
𝑑𝑥′,                                                                                                                                                            (5) 

where zb is the base-level elevation, and the factor A0 (L2) is introduced to maintain the χ dimensions to length. The 

parameter χ depends only on the drainage area distribution along the channel, which can easily be calculated for any m/n as 

part of basic morphometric analysis (Perron and Royden, 2013). When setting 𝐴0 = 1 L
2, the slope of the χ-z plot becomes 95 

channel steepness index, ks. 

Under steady-state conditions, when 𝑑𝑧/𝑑𝑡 = 0 and 𝐸 = 𝑈, the SPIM steepness index becomes a function of the tectonic 

uplift rate: 

𝑘s = (𝑈/𝐾)1/𝑛  ,                                                                                                                                                                          (6) 

When U varies in time, equation (6) can be used to express transient conditions, where a channel segment is eroding at a rate 100 

that corresponds to some previous uplift rate, Up (Niemann et al., 2001; Goren et al., 2014). In this case, its steepness index 

could be expressed as: 

𝑘s_p = (𝑈P/𝐾)
1/𝑛,                                                                                                                                                                       (7) 

3 Slope-break knickpoint migration 

A slope-break knickpoint occurs when there is an abrupt change in the slope and steepness index along a channel long 105 

profile (Haviv et al., 2010). Within the scope of the SPIM, slope-break knickpoints are commonly associated with a step 

change in the tectonic uplift rate. When the rate increases, the slope and steepness index below the knickpoint are greater, 

and the slope-break is convex upward. When the rate decreases, the slope and steepness index below the knickpoint are 

smaller, and the slope-break would appear as a concave kink along the overall concave channel profile. In this latter case, 

alluviation might occur below the knickpoint and the assumption of detachment-limited conditions might be violated. This 110 

behaviour is beyond the scope of the current analysis. Also outside of the scope of the current study, are the cases of ‘stretch 

zones’ (U increases and 𝑛 < 1, and, U decreases and 𝑛 > 1) (Royden and Perron, 2013). 

To predict the retreat rate of slope-break knickpoints, we develop a model based on long profile linearization in the 

proximity of the knickpoint as shown in Figure 1.  
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Figure 1a shows the predicted channel profile evolution following a step increase in the rock uplift rate from U0 to U1 and 115 

𝑛 > 1. The figure emphasizes that below and above the knickpoint, the channel segments erode at rates that correspond to 

the new (U1) and old (U0) uplift rates, respectively, and their corresponding steepness indices are 𝑘𝑠_1 = (𝑈1/𝐾)
1/𝑛 and 

𝑘𝑠_0 = (𝑈0/𝐾)
1/𝑛. Figure 1b shows the linearized channel segments near the knickpoint. The river profile varies from zt to 

zt+dt during time step dt, accompanied by the knickpoint migrating from point A to D. Segment DG represents the vertical 

change in knickpoint location, and it can be expressed as: 120 

DG = 𝑧𝑡+𝑑𝑡(𝑥 + 𝑑𝑥) − 𝑧𝑡+𝑑𝑡(𝑥) = (
𝜕𝑧

𝜕𝑥
)1 ∙ 𝑣H ∙ 𝑑𝑡,                                                                                                                    (8) 

where vH is the horizontal velocity for the knickpoint retreat (hereafter, knickpoint celerity). Figure 1b shows that: 

DG = DB + BG,                                                                                                                                                                          (9) 

Where DB is a function of the difference between present uplift rate (U1) and previous river incision rate, U0: 

DB = (𝑈1 − 𝑈0) ∙ 𝑑𝑡,                                                                                                                                                                (10) 125 

The segment BG is the elevation difference between points A and B: 

BG = (
𝜕𝑧

𝜕𝑥
)0 ∙ 𝑣H ∙ 𝑑𝑡,                                                                                                                                                                 (11) 

Combining equations (8-11), we solve for the knickpoint celerity: 

𝑣H =
(𝑈f−𝑈i)

(
𝜕𝑧

𝜕𝑥
)
1
−(

𝜕𝑧

𝜕𝑥
)
0

,                                                                                                                                                                       (12) 

which resembles the derivation of Whipple and Tucker (1999). Assigning equations (1, 6-7) into (12), vH can be re-written as: 130 

𝑣H =
𝐾(𝑘s_1

𝑛 −𝑘s_0
𝑛 )

(𝑘s_1−𝑘s_0)
𝐴𝑚/𝑛 =

𝑘s_1
𝑛 (1−𝛾0_1

𝑛 )

𝑘s_1(1−𝛾0_1)
𝐾𝐴𝑚/𝑛 =

𝑘s_1
𝑛−1(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
 𝐾𝐴𝑚/𝑛,                                                                                       (13) 

where 𝛾0_1 = 𝑘s_0/𝑘s_1. Accordingly, the fluvial response time, τ(xp) is expressed as: 

𝜏(𝑥𝑝) = ∫
1

𝑣H

𝑥𝑝
0

𝑑𝑥 = ∫
𝑘s_1(1−𝛾0_1)

𝑘s_1
𝑛 (1−𝛾0_1

𝑛 )
∙

1

𝐾𝐴𝑚/𝑛

𝑥𝑝
0

𝑑𝑥 =
𝑘s_1(1−𝛾0_1)

𝑘s_1
𝑛 (1−𝛾0_1

𝑛 )
∙

1

𝐾𝐴0
𝑚/𝑛 ∙ 𝜒(𝑥𝑝),                                                                        (14) 

The response time is the time for a perturbation, e.g., a knickpoint, to propagate from the river outlet (𝑥 = 0) to its present 

location xp. Alternatively, τ(xp), can also be thought of as the knickpoint age (Gallen and Wegmann, 2017), or the time before 135 

the present when the knickpoint formed at the river outlet. 

Importantly, equations (8-14) are developed for the migration of a single knickpoint based on a Lagrangian perspective, i.e., 

in the reference frame of the migrating knickpoint. Accordingly, equations (13-14) predict that knickpoint celerity and 

response time depend only on the steepness indices immediately above and below the knickpoint and are independent of the 

steepness indices at lower reaches below lower, newer knickpoints. This means that as long as knickpoints are not merging, 140 
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as discussed in the following section, knickpoints celerity and response time are not affected by later changes in the tectonic 

uplift rate and channel steepness. 

Equations (13-14) reveal that knickpoint dynamics depends on both the slope exponent, n, and the steepness ratios, γ. 

Notably, although the derivations in this section are based on convex-up knickpoint (increasing U and 𝑛 > 1), equations (12-

14) are valid also for concave knickpoints (decreasing U and 𝑛 < 1, see details in supplementary Text S1). For 𝑛 = 1, vH 145 

and τ(xp) are independent of the steepness indices and their ratio. Supplementary Text S2 compares the current derivation to 

previous models of knickpoint celerity (Rosenbloom and Anderson, 1994; Weissel and Seidl, 1998; Oskin and Burbank, 

2007; Castillo et al., 2017). 

4 Knickpoint preservation and merging 

When more than a single knickpoint propagates upstream a channel profile and 𝑛 ≠ 1, the sensitivity of knickpoint celerity 150 

to ks and γ leads to potentially complex interactions between the knickpoints. Considering the case of 𝑛 > 1 and two 

knickpoints that formed by two step-increase in tectonic uplift rate: kp1 formed when U0 changed to U1 and kp2 formed 

when U1 changed to U2 (𝑈2 > 𝑈1 > 𝑈0), then the celerity of knickpoint kp2 is larger than that of kp1, and the distance 

between them gradually decreases (see detailed demonstration in Appendix A). Consequently, depending on the knickpoints 

relative celerity and the channel length, kp2  can eventually reach kp1 , and the two knickpoints merge (referred to as 155 

consuming knickpoint in Royden and Perron, 2013). To elucidate knickpoint merging dynamics, we derive an expression for 

the time of knickpoint merging. Assuming that kp1 formed at time 𝑡 = 0 and that kp2 formed at time 𝑡 = T1, equation (14) is 

used to express the 𝜒 values of the two knickpoints at any time T2 > T1 as: 

𝜒(kp2) = T2𝐾
𝑘s_2
𝑛 (1−𝛾1_2

𝑛 )

𝑘s_2(1−𝛾1_2)
, and 𝜒(kp1) = (T2 + T1)𝐾

𝑘s_1
𝑛 (1−𝛾0_1

𝑛 )

𝑘s_1(1−𝛾0_1)
,                                                                                           (15) 

where 𝛾1_2 = 𝑘s_1/𝑘s_2. Knickpoints merging occur at time T2_m when 𝜒(kp1) = 𝜒(kp2). The ratio T2_m/T1 is expressed as: 160 

T2_m/T1 =
𝛾1_2
𝑛 (1−𝛾0_1

𝑛 )

𝛾1_2(1−𝛾0_1)
/(
(1−𝛾1_2

𝑛 )

(1−𝛾1_2)
−

𝛾1_2
𝑛 (1−𝛾0_1

𝑛 )

𝛾1_2(1−𝛾0_1)
),                                                                                                                        (16) 

Equation (16) predicts that the timing of knickpoint merging depends on the ratios of channel steepness indices but not on 

steepness indices themselves. We present a detailed description of the relationship between T2_m/T1 , slope exponent, and 

the steepness ratios (Figure 2 and 3).  

Figure 2 shows the results for convex-up consuming knickpoints (n > 1 and increasing U). When γ1_2 = γ0_1, the ratio T2_m/T1 165 

decreases with n (Figure S2a). This means that a higher slope exponent reduces the life expectancy of knickpoints. Figure 2a 

also shows that for a constant n, lower steepness indices ratio leads to lower T2_m/T1. To explore the dependency of T2_m/T1 

on γ1_2 and γ0_1, we fix n = 2 and vary each of the steepness ratios independently (Figure 2b-c). Comparing figures 2b and 2c, 
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it is found that T2_m/T1 is more sensitive to γ1_2 than to γ0_1, indicating that the celerity of the younger knickpoint has a 

greater control over the timing of knickpoint merging. 170 

For the case of concave-up consuming knickpoints (n < 1 and decreasing U), figure 3a shows that the ratio T2_m/T1 (when 

γ1_2 = γ0_1) increases with increasing n, and for a constant n, a higher steepness ratio leads to a higher T2_m/T1 ratio. This 

means that a lower uplift rate, U2 (with a lower steepness index below knickpoint kp2) leads to a shorter time to knickpoint 

merging T2_m. In Figures 3b-c, n is fixed at 0.5, and the steepness ratios change. Here as well, an inverse dependency is 

observed with respect to the convex slope-break knickpoints, showing that T2_m/T1 is more sensitive to γ0_1 than to γ1_2, 175 

indicating that the preservation time of kp1 is more sensitive to its own celerity than to that of the younger knickpoint. 

We note that when 𝑛 = 1 , 𝜒(kp1) > 𝜒(kp2)  always holds, indicating that within the framework of the linear SPIM, 

knickpoints are always preserved and merging cannot occur.  

Upon knickpoint merging, only a single knickpoint propagates along the channel, and the steepness indices above and below 

the knickpoint correspond to ks_0 and ks_2, respectively. Based on equation (13), the instantaneous merged knickpoint celerity 180 

becomes: 

𝑣H_after_merger =
𝑘s_2
𝑛 (1−𝛾0_2

𝑛 )

𝑘s_2(1−𝛾0_2)
 𝐾𝐴(𝑥𝑝)

𝑚/𝑛,                                                                                                                                (17) 

where 𝛾0_2 = 𝑘s_0/𝑘s_2. The channel reach that used to stretch between the two knickpoints is fully consumed, and the 

channel profile holds no record of U1. Consequently, evaluating the merged knickpoint age by using equation (14) and the 

steepness indices above and below the merged knickpoint does not yield a meaningful answer. The reason is that upon 185 

merging, the steepness indices above and below the merged knickpoint change. Critically, the channel profile does not hold 

any clue for the event of knickpoint merging, and the river profile would be indistinguishable from a case of a single step 

increase in uplift rate from U0 to U2. 

5 A forward analytic model for knickpoint and channel long profile evolution 

The elevation change of slope-break knickpoint, 𝑧(𝑡, 𝑥) = 𝑧[𝑡, 𝑥 = 𝑥𝑝(𝑡)], formed by a step-increase in uplift rate from U0 190 

to U1, can be expressed as: 

𝑑𝑧

𝑑𝑡
=

𝜕𝑧

𝜕𝑡
+

𝜕𝑧

𝜕𝑥

𝑑𝑥

𝑑𝑡
,                                                                                                                                                                          (18) 

where 
𝑑𝑥𝑝(𝑡)

𝑑𝑡
= 𝑣H is the knickpoint celerity. Combining equations (2), (13) and (18) yields: 

𝑑𝑧(𝑡,𝑥𝑝(𝑡))

𝑑𝑡
= 𝑈(𝑡) − 𝐾𝐴𝑚 (𝑘s_1𝐴

−
𝑚

𝑛)
𝑛

+ 𝑘s_1𝐴
−
𝑚

𝑛
𝑘s_1
𝑛 (1−𝛾0_1

𝑛 )

𝑘s_1(1−𝛾0_1)
𝐾𝐴

𝑚

𝑛 = 𝑈(𝑡) − 𝑈1 + 𝑈1
(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
,                                             (19) 

Integrating equation (19) to solve for the knickpoint elevation leads to: 195 
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𝑧(𝑡, 𝑥𝑝(𝑡)) = ∫ [𝑈(𝑡′) − 𝑈1 + 𝑈1
(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
]

𝑡

0
𝑑𝑡′,                                                                                                                      (20) 

As long as knickpoints do not merge, the second and third terms of the integrand in equation (20) are time invariant, and the 

elevation of the knickpoint could be more simply expressed as: 

𝑧 (𝑡, 𝑥𝑝(𝑡)) = ∫ 𝑈(𝑡′)
𝑡

0
𝑑𝑡′ + [

(1−𝛾0_1
𝑛 )

(1−𝛾0_1)
− 1] ∙ 𝑈1 ∙ 𝑡,                                                                                                                 (21) 

Equation (21) predicts the elevation of knickpoints for all values of n, as the sum of the time integral over the uplift rate 200 

history and a time independent term that depends on the steepness indices ratio. When 𝑛 = 1, equation (21) reduces to 

become a function of the uplift history only (Goren et al. 2014), 𝑧(𝑡, 𝑥𝑝(𝑡)) = ∫ 𝑈(𝑡′)
𝑡

0
𝑑𝑡′.  

Next, we combine equation (21), which is conditioned by knickpoint preservation, with equation (16) that predicts the 

duration of preservation to generate a piecewise solution for knickpoint elevation beyond merging. We consider the case of 

two knickpoints, kp1 and kp2, generated by two step-increase of 𝑈2 > 𝑈1 > 𝑈0, and 𝑛 > 1. The time of merging, T2_m, is 205 

constrained by equation (16). For any 𝑡 < T2_m + T1, the elevations of kp1 and kp2 is predicted by equation (21), when 

assigning the knickpoint ages, 𝑡 =  𝜏(𝑥𝑝) , which corresponds to the time since the change in U(t) that generated the 

knickpoint. Upon merging, when 𝑡 > T2_m + T1, the elevation of the merged knickpoint, 𝑧kp_12, with respect to the formation 

time of kp1 (𝑡 = 0) can be expressed as:  

𝑧kp_12 = 𝑧1(T2_m + T1) + 𝑧12 or 𝑧kp_12 = 𝑧2(T2_m + T1) + 𝑧12,                                                                                             (22) 210 

where 

{
 
 

 
 𝑧1(𝑡 = T2_m + T1, 𝑥𝑝1) = ∫ 𝑈(𝑡′)

T2_m+T1
0

𝑑𝑡′ + [
(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
− 1] ∙ 𝑈1 ∙ (T2_m + T1)

𝑧2(𝑡 = T2_m + T1, 𝑥𝑝2) = ∫ 𝑈(𝑡′)
T2_m+T1
T1

𝑑𝑡′ + [
(1−𝛾1_2

𝑛 )

(1−𝛾1_2)
− 1] ∙ 𝑈2 ∙ (T2_m)

𝑧12(𝑡 > T2_m + T1, 𝑥𝑝12) = ∫ 𝑈(𝑡′)
𝑡

T2_m+T1
𝑑𝑡′ + [

(1−𝛾0_2
𝑛 )

(1−𝛾0_2)
− 1] ∙ 𝑈2 ∙ (𝑡 − (T2_m + T1))  

,                                       (23) 

Before merging, the horizontal position of the knickpoints can be expressed as the inverse of equation (14): 

𝑥𝑝(𝑡) = 𝜒
−1 [𝐾𝐴0

𝑚/𝑛
𝑡
𝑘𝑠_1
𝑛 (1−𝛾0_1

𝑛 )

𝑘𝑠_1(1−𝛾0_1)
],                                                                                                                                           (24) 

where again, 𝑡 =  𝜏(𝑥𝑝), is the knickpoint age. After merging, for 𝑡 > T2_m + T1 

𝑥𝑝(𝑡) = 𝜒
−1 {[𝐾𝐴0

𝑚/𝑛
T2_m

𝑘𝑠_2
𝑛 (1−𝛾1_2

𝑛 )

𝑘𝑠_2(1−𝛾1_2)
] + [𝐾𝐴0

𝑚

𝑛 (𝑡 − T2_m − T1)
𝑘𝑠_2
𝑛 (1−𝛾0_2

𝑛 )

𝑘𝑠_2(1−𝛾0_2)
]},                                                                        (25) 215 

While equations (22-25) present a simple case of two merging knickpoints, it is possible to use equation (16) to calculate the 

timing and order of several knickpoint merging, including the merger of already merged knickpoints, and to develop a 

tailored piece-wise analytic solution for their elevation. 
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When deriving an analytic solution for the channel long profile as a function of time, equations (21-23) are used for 

knickpoint elevation, equations (24-25) are used for the knickpoint x-positions, and equation (14) is used for the knickpoint 220 

values. The channel profile between knickpoints is represented in the -z domain as a linear line connecting the 

knickpoints. To illustrate long-profile and knickpoint time evolution before and after knickpoint merging and to demonstrate 

the validity of the analytic forward model, Figure 4 shows the consistence between the analytic solution and a 1-D upwind 

first-order finite-difference solver of equation (2), for a channel that experiences two step-increases in U.  

6 An inverse model to estimate tectonic uplift rate history 225 

Here, the analytic solution for knickpoint evolution is used to derive a linear inverse model for retrieving the tectonic uplift 

history from river long profile. The inverse model relaxes the critical assumption of 𝑛 = 1 that was a precondition for 

previous linear inverse models (Goren et al. 2021) and allows inferring the uplift history for any value of n, under two 

assumptions: First, if 𝑛 > 1, U(t) is a monotonically increasing staircase function and if 𝑛 < 1, U is decreasing. Second, all 

the knickpoints are preserved within the time resolved by the model. The model is based on the block uplift assumption, 230 

whereby a suite of basins and tributaries experience and respond to the same time-dependent tectonic history U(t). The 

model infers the best fit U(t) based on the long profiles of the tributaries and basins.  

Changes in U through time emerge as a series of knickpoints with elevations and χ values, (𝑧1, χ1), (𝑧2, χ2), … (𝑧𝑞−1, χ𝑞−1), 

which are duplicated across the tributaries and basins. The basin outlets are at (𝑧0 = 0, χ0 = 0) and the highest χ channel 

head is identified with (𝑧𝑞 , χ𝑞 = χ𝑚𝑎𝑥). The knickpoints are used to divide the χ-z space into segments. Segment j, between 235 

(χ𝑗−1, χ𝑗), is characterized by a uniform steepness index that shaped the river profile during time interval (𝑡𝑗−1, 𝑡𝑗), where 

time tj is the age of knickpoint j. Knickpoint ages can be constrained from equation (15), and the uplift rate responsible for 

the formation of each knickpoint can be constrained based on the steepness index below the knickpoints by using equation 

(7). Consequently, a full uplift history, with discrete step-increase can be derived.   

A difficulty may arise because tj in equation (15) and Uj in equation (8) depend on the erodibility, K, whose value is 240 

commonly poorly constrained. Thus, following Goren et al. (2014), we present a K-independent version for the knickpoint 

age and uplift rate. Scaling equations (15) and (8) by an erosion rate scale factor, 𝐾𝐴0
𝑚/𝑛 𝑘s_𝑗

𝑛 (1−𝛾𝑗
𝑛)

𝑘s_𝑗(1−𝛾𝑗)
, (L/T), a K-independent 

scaled time and a non-dimensional uplift rate are defined: 

𝑡𝑗
∗ = 𝑡𝑗 ∙ 𝐾𝐴0

𝑚/𝑛
∙
𝑘s_𝑗
𝑛 (1−𝛾𝑗

𝑛)

𝑘s_𝑗(1−𝛾𝑗)
= χ𝑗,                                                                                                                                              (26) 

𝑈𝑗
∗ = 𝐴0

−𝑚/𝑛
𝑘s_𝑗 = 𝐴0

−𝑚/𝑛
∙ (𝑈𝑗/𝐾)

1/𝑛,                                                                                                                                    (27) 245 
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Equations (26-27) produce a non-dimensional uplift rate history, (𝑈𝑗
∗, 𝑡𝑗

∗), without any prior information on K, as long as it is 

spatially uniform. 

We propose the following steps for the application of the inverse model. First, the data of basins and tributaries is considered 

in the χ-z domain, where it is divided into q segments along the χ space, χ𝑗  (𝑗 = 0, 1, 2, … 𝑞). The division points are 

considered to be slope-break knickpoints that formed in response to a step-increase in uplift rate. The scaled age of the 250 

knickpoints is solved based on equation (26) as 𝑡𝑗
∗ = χ𝑗 . Second, linear regression is applied in the χ-z domain, 

independently for each segment. The slope of the regression is identified as 𝑘s_𝑗, from which 𝑈𝑗
∗ can be derived based on 

equation (27). Third, conversion from (𝑈𝑗
∗, 𝑡𝑗

∗) to a dimensional history (𝑈𝑗 , 𝑡𝑗) by solving equations (26-27), after K and n 

are independently constrained (e.g. Dibiase et al., 2010; Ma et al., 2020). 

The first step of dividing the χ-z domain into segments calls for some consideration. First, calculating the χ value requires 255 

calibrating for the concavity, m/n. We propose a tributary and basin collapse approach (e.g., Perron and Royden, 2013; 

Goren et al., 2014; Shelef et al., 2018) or the disorder approach (e.g., Hergartena et al., 2016; Gaillton et al., 2021) that finds 

the m/n that minimizes the scatter in the χ-z domain. Second, segment division should ideally be based on division points 

that represent true slope-break knickpoints. Many algorithms have been previously proposed to identify slope-break 

knickpoints (e.g., Mudd et al., 2014). Here, we suggest a different approach that rely on the simplicity and efficiency of the 260 

inverse model. The inversion procedure could be run many times, while choosing the division points randomly. Inversion 

results could be evaluated by comparing the measured profiles and the profile predicted by our forward model. The quality 

of the solution with a specific number and location of division points could be evaluated based on an optimization criterion, 

such as a misfit. Here, we consider a misfit function that penalizes models with more knickpoints (more parameters) for their 

excess complexity:   265 

misfit =
1

𝑁/𝑀
√∑ (𝑧𝑖 − 𝑧𝑖̃)

2𝑁
𝑖=1 ,                                                                                                                                                  (28) 

where zi and 𝑧𝑖̃ are the measured and predicted elevations at pixel i, respectively. N is the total number of data along the river 

long profiles, and 𝑀 = 𝑞 is the number of division points, or the number of parameters. 

To demonstrate the applicability of the inverse method, we use a low resolution numerical model (which suffers from 

numerical diffusion) to generate ten river profiles with variable channel length and drainage area distribution. These rivers 270 

respond to the same uplift rate history, with two step-increases in the rate forming two knickpoints in each profile. 

Knickpoints do not merge over the timeframe of U(t) application (Figure 5a and b). To artificially increase the noise in the 

data, the elevations are perturbed by random errors (equation 29): 

𝑧𝑖̂(perturbed) = 𝑧𝑖−1 + (𝑧𝑖+1 − 𝑧𝑖−1) ∗ rand(1),                                                                                                                   (29) 
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where rand(1) is a random number between 0 and 1. Inversion in applied to the data with 1-6 division points. For each 275 

number of division points, 5000 realizations of the inversion model were performed with different random position of the 

division points.  Figure 5c shows the minimal misfit (equation 28) achieved for each number of division points, indicating 

that the best fit solution has division points corresponding to the two knickpoints. Figure 5d compares between the applied 

and inferred histories, showing that the 2 division points inversion correctly infers the applied history. 

7 Discussion and conclusion  280 

The current analysis explores river long profile evolution in response to temporal step-changes in the tectonic rock uplift rate 

U(t) and a non-unity slope exponent, leading to consuming channel segments (Royden and Perron, 2013) and merging 

knickpoints. The approach we adopt here, of resolving knickpoint kinematics in a Lagrangian frame of reference, allows us 

to constrain the timing of knickpoint merging and the elevation of knickpoint before and after merging. The finding that 

despite channel reach consumption, knickpoint celerity depends only on the channel steepness below and above the 285 

knickpoint, allow us to develop a piece-wise analytic solution that represents the evolution of knickpoints and channel long 

profile through time, before and after knickpoint merging. 

Analytic solutions of long profile evolution can significantly expedite forward and inverse tectonic – fluvial landscape 

evolution. However, so far, analytic solutions were used in such models only under linear assumption (Pritchard et al., 2009; 

Fox et al. 2014; Goren et al., 2014, 2021; Rudge et al., 2015; Steer et al. 2021). The simple analytic derivation that we 290 

present here can expand the domain of parameters for which analytic solutions are used in such models, by including new 

geomorphic scenarios with 𝑛 ≠ 1 (with the restriction of increasing U(t) for 𝑛 > 1 and decreasing U(t) for 𝑛 < 1). For 

example, inverse models that are based on Bayesian statistics (Fox et al., 2015; Gallen and Fernández-Blanco, 2021), which 

have gain recent popularity could become significantly more efficient and accurate when the forward model is represented 

with an analytic solution. 295 

The knickpoint merging analysis further emphasizes a critical property of the links between tectonic and long profile 

evolution when 𝑛 ≠ 1. Each tectonic history is associated with a single, well-defined river profile at any given time. 

However, any particular river profile could be generated by infinitely many tectonic histories. All histories except for one 

lead to knickpoint merging dynamics. The linear inverse model that we develop here finds the single history for which all 

knickpoint are preserved. While this inverse approach is highly restrictive, it finds the correct solution when only a single 300 

knickpoint exists in the data. We further suggest that when a small number of knickpoint groups is identified in the data, the 

solution of this simple inverse model could still be highly informative as a preliminary guess for the tectonic history that 

shaped the fluvial landscape. 
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Appendix A: A mathematical demonstration of knickpoint merging  

In this section, we show that two knickpoints formed with 𝑛 > 1 and step increases in U must eventually merge. The two 305 

knickpoints are denoted by kp1, which was formed by an uplift rate increase from U0 to U1, and kp2 formed by an increase 

from U1 to U2 (𝑈2 > 𝑈1 > 𝑈0). The celerity of the two knickpoints is expressed by equation (13): 

𝑣H_kp1 =
𝑘s_1
𝑛−1(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
 𝐾𝐴(kp1)

𝑚/𝑛, and 𝑣H_kp2 =
𝑘s_2
𝑛−1(1−𝛾1_2

𝑛 )

(1−𝛾1_2)
 𝐾𝐴(kp2)

𝑚/𝑛,                                                                        (A1) 

Since kp2 is located below to kp1, 𝐴(kp2) is larger than 𝐴(kp1). Next, it is left to show that  
𝑘s_2
𝑛−1(1−𝛾1_2

𝑛 )

(1−𝛾1_2)
>

𝑘s_1
𝑛−1(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
 . We 

define a variable: 310 

𝑓 =
𝑘s_1
𝑛−1(1−𝛾0_1

𝑛 )

(1−𝛾0_1)
/
𝑘s_2
𝑛−1(1−𝛾1_2

𝑛 )

(1−𝛾1_2)
=

1

𝛾1_2
1−𝑛

(1−𝛾0_1
𝑛 )/(1−𝛾0_1)

(1−𝛾1_2
𝑛 )/(1−𝛾1_2)

,                                                                                                             (A2) 

Because 𝑛 > 1, we can re-write 𝑛 = 𝛼/𝛽, where 𝛼 > 𝛽 > 1 and α and β are both integers. Thus, 

𝑓 =
1

𝛾1_2
1−𝛼/𝛽

(1−(𝛾0_1
1/𝛽

)𝛼)/(1−(𝛾0_1
1/𝛽

)𝛽)

(1−(𝛾1_2
1/𝛽

)𝛼)/(1−(𝛾1_2
1/𝛽

)𝛽)
=

𝑓nume

𝑓deno
,                                                                                                                               (A3) 

where 𝑓nume and 𝑓deno are the numerator and denominator of 𝑓, respectively. We use the method of polynomial division: 

{
1 − (𝛾0_1

1/𝛽
)𝛼 = (1 − 𝛾0_1

1/𝛽
)((𝛾0_1

1/𝛽
)𝛼−1 +⋯+ (𝛾0_1

1/𝛽
)𝛽 +⋯+ (𝛾0_1

1/𝛽
)0 )

1 − (𝛾0_1
1/𝛽
)𝛽 = (1 − 𝛾0_1

1/𝛽
)((𝛾0_1

1/𝛽
)𝛽−1 + (𝛾0_1

1/𝛽
)𝛽−2 +⋯+ (𝛾0_1

1/𝛽
)0 )

,                                                                             (A4) 315 

Assigning equation (A4) into 𝑓nume, we can derive: 

𝑓nume =
(𝛾0_1
1/𝛽

)𝛼−1+⋯+(𝛾0_1
1/𝛽

)𝛽+⋯+(𝛾0_1
1/𝛽

)0

(𝛾0_1
1/𝛽

)𝛽−1+(𝛾0_1
1/𝛽

)𝛽−2+⋯+(𝛾0_1
1/𝛽

)0
=

(𝛾0_1
1/𝛽

)𝛼−1+(𝛾0_1
1/𝛽

)𝛼−2+⋯+(𝛾0_1
1/𝛽

)𝛽

(𝛾0_1
1/𝛽

)𝛽−1+(𝛾0_1
1/𝛽

)𝛽−2+⋯+(𝛾0_1
1/𝛽

)0
+ 1 =

(𝛾0_1
1/𝛽

)𝛼−1−𝛽+(𝛾0_1
1/𝛽

)𝛼−2−𝛽+⋯+(𝛾0_1
1/𝛽

)𝛽−𝛽

(𝛾0_1
1/𝛽

)−1+(𝛾0_1
1/𝛽

)−2+⋯+(𝛾0_1
1/𝛽

)−𝛽
+ 1,    (A5) 

Because (𝛾0_1
1/𝛽
)𝛼−1−𝛽 + (𝛾0_1

1/𝛽
)𝛼−2−𝛽 +⋯+ (𝛾0_1

1/𝛽
)𝛽−𝛽 < 1 + 1 +⋯+ 1 = α − β , and (𝛾0_1

1/𝛽
)−1 + (𝛾0_1

1/𝛽
)−2 +⋯+

(𝛾0_1
1/𝛽
)−𝛽 > 1 + 1 +⋯+ 1 = 𝛽, we can derive: 

𝑓nume <
α−β

𝛽
+ 1,                                                                                                                                                                      (A6) 320 

Again, we use polynomial division: 

{
1 − (𝛾1_2

1/𝛽
)𝛼 = (1 − 𝛾1_2

1/𝛽
)((𝛾1_2

1/𝛽
)𝛼−1 + (𝛾1_2

1/𝛽
)𝛼−2 +⋯+ (𝛾1_2

1/𝛽
)0 )

1 − (𝛾1_2
1/𝛽
)𝛽 = (1 − 𝛾1_2

1/𝛽
)((𝛾1_2

1/𝛽
)𝛽−1 + (𝛾1_2

1/𝛽
)𝛽−2 +⋯+ (𝛾1_2

1/𝛽
)0 )

,                                                                                 (A7) 

Assigning equation (A7) into 𝑓deno, we derived: 
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𝑓deno =
(𝛾1_2
1/𝛽

)𝛼−1+(𝛾1_2
1/𝛽

)𝛼−2+⋯+(𝛾1_2
1/𝛽

)0

(𝛾1_2
1/𝛽

)𝛽−1+(𝛾1_2
1/𝛽

)𝛽−2+⋯+(𝛾1_2
1/𝛽

)0
∙ (𝛾1_2

1/𝛽
)𝛽−𝛼 =

(𝛾1_2
1/𝛽

)𝛽−1+(𝛾1_2
1/𝛽

)𝛽−2+⋯+(𝛾1_2
1/𝛽

)𝛽−𝛼

(𝛾1_2
1/𝛽

)𝛽−1+(𝛾1_2
1/𝛽

)𝛽−2+⋯+(𝛾1_2
1/𝛽

)0
,                                                           (A8) 

or, 𝑓deno =
(𝛾1_2
1/𝛽

)𝛽−1+(𝛾1_2
1/𝛽

)𝛽−2+⋯+(𝛾1_2
1/𝛽

)0+(𝛾1_2
1/𝛽

)−1+(𝛾1_2
1/𝛽

)−2+⋯+(𝛾1_2
1/𝛽

)𝛽−𝛼

(𝛾1_2
1/𝛽

)𝛽−1+(𝛾1_2
1/𝛽

)𝛽−2+⋯+(𝛾1_2
1/𝛽

)0
=

(𝛾1_2
1/𝛽

)−1+(𝛾1_2
1/𝛽

)−2+⋯+(𝛾1_2
1/𝛽

)𝛽−𝛼

(𝛾1_2
1/𝛽

)𝛽−1+(𝛾1_2
1/𝛽

)𝛽−2+⋯+(𝛾1_2
1/𝛽

)0
+ 1,                     (A9) 325 

Because (𝛾1_2
1/𝛽
)−1 + (𝛾1_2

1/𝛽
)−2 +⋯+ (𝛾1_2

1/𝛽
)𝛽−𝛼 > 1 + 1 +⋯+ 1 = 𝛼 − 𝛽 , and (𝛾1_2

1/𝛽
)𝛽−1 + (𝛾1_2

1/𝛽
)𝛽−2 +⋯+ (𝛾1_2

1/𝛽
)0 <

1 + 1 +⋯+ 1 = 𝛽, we derived: 

𝑓deno >
α−β

𝛽
+ 1,                                                                                                                                                                     (A10) 

Assigning equations (A6 and A10) into (A3), we can derive: 

𝑓 =
𝑓nume

𝑓deno
< (

α−β

𝛽
+ 1)/(

α−β

𝛽
+ 1) = 1,                                                                                                                                 (A11) 330 

Thus, 𝑣H_kp1 < 𝑣H_kp2, kp2 always migrates faster than kp1, and given sufficient channel length the two knickpoints will 

merge. The time of merging is given by equation (16). 

Code and data availability  

This study has no complex codes or data sharing issue, because all the figures can be re-produced by solving the related 

equations. 335 

Author contribution   

Both YW and LG developed these models, conducted the study, and designed structure of the manuscript. YW solved these 

equations, and wrote the manuscript. LG wrote the 1-D numerical codes and helped to test the analytical derivations. The 

manuscript was mostly revised, polished, and improved by LG. DZ and HZ provided valuable suggestions and made some 

revisions.  340 

Competing interests   

The authors declare that they have no conflict of interest.  

Acknowledgments   

We thank George E. Hilley for revising the earlier version of this manuscript many times with great patience and stimulating 

our inspiration in using the method of characteristics to solve the equation. We thank Fiona Clubb, Eitan Shelef, and Sean F. 345 

https://doi.org/10.5194/esurf-2021-101
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



14 

 

Gallen for constructive instructions on an earlier version of this manuscript. This work was supported by the National 

Science Foundation of China (41802227). 

References 

Anthony, D.M., and Granger, D.E.: An empirical stream power formulation for knickpoint retreat in Appalachian Plateau 

fluviokarst. J. Hydrol. 343: 117-126, 2007. 350 

Baynes, E.R.C., Attal, M., Niedermann, S., Kirstein, L.A., Dugmore, A.J., and Naylor, M.: Erosion during extreme flood 

events dominates Holocene canyon evolution in northeast Iceland. Proc. Natl. Acad. Sci. U. S. A. 112:2355–2360. 

http://dx.doi.org/10.1073/pnas.1415443112, 2015.  

Bennett, R.A., Wernicke, B.P., Niemi, N.A., Friedrich, A.M., and Davis, J.L.: Contemporary strain rates in the northern 

Basin and Range Province from GPS data. Tectonics, 22(2), 1008. doi:10.1029/2001TC001355, 2003.  355 

Berlin, M.M., and Anderson, R.S.: Modeling of knickpoint retreat on the Roan Plateau, western Colorado. J. Geophys. Res., 

112, F03S06, doi:10.1029/2006JF000553, 2007. 

Bishop, P., Hoey, T.B., Jansen, J.D., and Artza, I.L.: Knickpoint recession rate and catchment area: the case of uplifted rivers 

in Eastern Scotland. Earth Surf. Process. Landf. 30:767-778, 2005.  

Bookhagen, B., and Burbank, D.W.: Toward a complete Himalayan hydrological budget: spatiotemporal distribution of 360 

snowmelt and rainfall and their impact on river discharge. J. Geophys. Res. 115, F03019, 2010. 

Burchfiel, B.C., Hodges, K.V., and Royden, L.H.: Geology of Panamint Valley – Saline Valley pull-apart system, California: 

palinspastic evidence for low-angle geometry of a Neogene range-bounding fault. J. Geophys. Res. 92, 10,422-410,426, 

1987.  

Castillo, M., Ferrari, L., and Munoz-Salinas, E.: Knickpoint retreat and landscape evolution of the Amatlan de Canas half-365 

graben (northern sector of Jalisco Block, western Mexico). J. S. A. Earth Sci. 77, 108-122, 2017.  

Cook, K.L., Turowski, J.M., and Hovius, N.: A demonstration of the importance of bedload transport for fluvial bedrock 

erosion and knickpoint propagation. Earth Surf. Process. Landf. 38, 683–695, 2013.  

Cyr, A.J., Granger, D.E., Olivetti, V., and Molin, P.: Quantifying rock uplift rates using channel steepness and cosmogenic 

nuclide–determined erosion rates: Examples from northern and southern Italy. Lithosphere 2(3), 188–198. 370 

https://doi.org/10.1130/L96.1, 2010.  

DiBiase, R.A., Whipple, K.X., Heimsath, A.M., and Ouimet, W.B.: Landscape form and millennial erosion rates in the San 

Gabriel Mountains, CA. Earth Planet. Sci. Lett. 289(1): 134–144, 2010. 

Duvall, A., Kirby, E., and Burbank, D.: Tectonic and lithologic controls on bedrock channel profiles and processes in coastal 

California. J. Geophys. Res. 109, F03002, 2004.   375 

Ferrier, K. L., Huppert, K. L., and Perron, J. T.: Climatic control of bedrock river incision. Nature 496(7444), 206–209. 

https://doi.org/10.1038/nature11982, 2013.  

https://doi.org/10.5194/esurf-2021-101
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



15 

 

Fox, M., Goren, L., May, D.A., and Willett, S.D.: Inversion of fluvial channels for paleorock uplift rates in Taiwan. J. 

Geophys. Res. Earth 119:1853–1875. http://dx.doi.org/10.1002/2014JF003196, 2014. 

Fox, M., Bodin, T., and Shuster, D.L.: Abrupt changes in the rate of Andean Plateau uplift from reversible jump Markov 380 

Chain Monte Carlo inversion of river profiles. Geomorphology 238:1–14, 2015. 

Gailleton, B., Mudd, S.M., Clubb, F.J., Grieve, S.W.D., and Hurst, M.D.: Impact of changing concavity indices on channel 

steepness and divide migration metrics. J. Geophys. Res. Earth (submitted), https://doi.org/10.1002/essoar.10505724.1, 

2021 

Gailleton, B., Mudd, S. M., Clubb, F. J., Peifer, D., and Hurst, M. D.: A segmentation approach for the reproducible 385 

extraction and quantification of knickpoints from river long profiles, Earth Surf. Dynam. 7, 211–230, 

https://doi.org/10.5194/esurf-7-211-2019, 2019. 

Gallen, S. F., and Fernández-Blanco, D.: A new data-driven Bayesian inversion of fluvial topography clarifies the tectonic 

history of the corinth rift and reveals a channel steepness threshold. J. Geophys. Res. Earth, 126, e2020JF005651. 

https://doi.org/10.1029/2020JF005651, 2021. 390 

Gallen, S.F., and Wegmann, K.W.: River profile response to normal fault growth and linkage: an example from the Hellenic 

forearc of south-central Crete, Greece. Earth Surf. Dyn. 5, 161–186, 2017.  

Gasparini, N. M., and Brandon, M. T.: A generalized power law approximation for fluvial incision of bedrock channels, J. 

Geophys. Res., 116, F02020, doi:10.1029/2009JF001655, 2011. 

Goren, L., Fox, M., and Willett, S.D.: Tectonics from fluvial topography using formal linear inversion: theory and 395 

applications to the Inyo Mountains, California. J. Geophys. Res. Earth 119:1651–1681, 2014.  

Goren, L., Fox, M., and Willett, S. D.: Linear Inversion of Fluvial Long Profiles to Infer Tectonic Uplift Histories, Reference 

Module in Earth Systems and Environmental Sciences, Elsevier, ISBN 9780124095489, https://doi.org/10.1016/B978-0-

12-818234-5.00075-4, 2021.  

Gourmelen, N., Amelung, F., and Lanari, R.: Interferometric synthetic aperture radar-GPS integration: interseismic strain 400 

accumulation rates across the Hunter Mountain fault in the eastern California shear zone. J. Geophys. Res. 115, B09408, 

2010.  

Hack, J.T.: Studies of Longitudinal Stream Profiles in Virginia and Maryland, U.S. Geological Survey Professional Paper 

294(B), 97, 1957.  

Hack, J.T.: Stream profile analysis and stream-gradient index. Journal of Research of the U.S. Geological Survey 1, 421–429, 405 

1973. 

Harel, M.-A., Mudd, S.M., and Attal, M.: Global analysis of the stream power law parameters based on worldwide 10Be 

denudation rates. Geomorphology 268, 184-196. doi:10.1016/j.geomorph.2016.05.035, 2016.  

Harkins, N., Kirby, E., Heimsath, A., Robinson, R., and Reiser, U.: Transient fluvial incision in the headwaters of the 

Yellow River, northeastern Tibet, China. J. Geophys. Res. Earth 112: F03S04, 2007.  410 

https://doi.org/10.5194/esurf-2021-101
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



16 

 

Haviv, I., Enzel, Y., Whipple, K.X., Zilberman, E., Matmon, A., Stone, J., and Fifield, K.L.: Evolution of vertical 

knickpoints (waterfalls) with resistant caprock: insights from numerical modelling. J. Geophys. Res. Earth 115 (F3), 

F03028. http://dx.doi.org/10.1029/2008JF001187, 2010.  

Hergarten, S., Robl, J., and Stüwe, K.: Tectonic geomorphology at small catchment sizes-extensions of the stream-power 

approach and the χ method. Earth Surf. Dynam. 4, 1-9, 2016.  415 

Hilley, G.E., Porder, S., Aron, F., Baden, C.W., Johnstone, S.A., Liu, F., Sare, R., Steelquist, A., and Young, H.H.: Earth’s 

topographic relief potentially limited by an upper bound on channel steepness. Nat. Geosci. 12: 828–832, 2019.  

Howard, A.D., and Kerby, G.: Channel changes in badlands. Geol. Soc. Am. Bull. 94, 739-752, 1983. 

Kent, E., Boulton, S.J., Whittaker, A., Stewart, I.S., and Alçiçek, M.C.: Normal fault growth and linkage in the Gediz 

(Alaşehir) Graben, Western Turkey, revealed by transient river long-profiles and slope-break knickpoints. Earth Surf. 420 

Process. Landf. 42, 836–852, 2017.  

Kirby, E., Regalla, C., Ouimet, W.B., and Bierman, P.R.: Reconstructing Temporal Variation in Fault Slip from Footwall 

Topography: An Example from Saline Valley, California. 2010 Fall Meeting, American Geophysical Union, San 

Francisco, CA, 2010. 

Kirby, E., and W. Ouimet: Tectonic geomorphology along the eastern margin of Tibet: Insights into the pattern and 425 

processes of active deformation adjacent to the Sichuan basin, in Growth and Collapse of the Tibetan Plateau, Geol. Soc. 

Lond. Spec. Publ., vol. 353, edited by R. Gloaguen and L. Ratschbacher, pp. 165–188, 2011.  

Kirby, E., and Whipple, K.X.: Expression of active tectonics in erosional landscapes. J. Struct. Geol. 44:54–75. 

http://dx.doi.org/10.1016/j.jsg.2012.07.009, 2012.  

Lague, D.: The stream power river incision model: evidence, theory and beyond. Earth Surf. Process. Landf. 39, 38–61, 2014. 430 

Lamb, M.P., Mackey, B.H., and Farley, K.A.: Amphitheater-headed canyons formed by megaflooding at Malad Gorge, 

Idaho. Proc. Natl. Acad. Sci. U. S. A. 111:57–62. http://dx.doi.org/10.1073/pnas.1312251111, 2014.  

Lavé, J., and Avouac, J.P.: Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J. Geophys. Res. Sol.  

Ea. 106: 26,561-26,591, 2001. 

Leopold, L., and Maddock, T.: The hydraulic geometry of stream channels and some physiographic implications. Geol. Surv. 435 

Prof. Pap. 252: 1-57, 1953. 

Luke, J. C.: Mathematical models for landform evolution. J. Geophys. Res., 77, 2460–2464, 1972. 

Ma, Z., Zhang, H., Wang, Y., Tao, Y., and Li, X.: Inversion of Dadu River bedrock channels for the late Cenozoic uplift 

history of the eastern Tibetan Plateau. Geophys. Res. Lett. 47(4). https://doi.org/10.1029/2019GL086882, 2020.  

Mackey, B.H., Scheingross, J.S., Lamb, M.P., and Farley, K.A.: Knickpoint formation, rapid propagation, and landscape 440 

response following coastal cliff retreat at the last interglacial sea-level highstand: Kaua'i, Hawai'i. Geol. Soc. Am. Bull. 

126:925–942. http://dx.doi.org/10.1130/B30930.1, 2014. 

https://doi.org/10.5194/esurf-2021-101
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



17 

 

Mudd, S.M., Attal, M., Milodowski, D.T., Grieve, S.W., and Valters, D.A.: A statistical framework to quantify spatial 

variation in channel gradients using the integral method of channel profile analysis, J. Geophys. Res. Earth, 119, 138-152, 

2014. 445 

Mudd, S.M., Clubb, F.J., Gailleton, B., and Hurst, M.D.: How concave are river channels? Earth Surf. Dynam. 6, 505-523, 

2018.  

Niemann, J.D., Gasparini, N.M., Tucker, G.E., and Bras, R.L.: A quantitative evaluation of Playfair's law and its use in 

testing long-term stream erosion models. Earth Surf. Process. Landf. 26 (12), 1317–1332, 2001. 

Oskin, M.E., and Burbank, D.: Transient landscape evolution of basement-cored uplifts: example of the Kyrgyz Range, Tian 450 

Shan. J. Geophys. Res. 112, F03S03. https://doi.org/10.1029/2006JF000563, 2007. 

Ouimet, W.B., Whipple, K.X., and Granger, D.E.: Beyond threshold hillslopes: channel adjustment to base-level fall in 

tectonically active mountain ranges. Geology 37(7), 579–582. http://dx.doi.org/10.1130/G30013A.1, 2009. 

Perron, J.T., and Royden, L.: An integral approach to Bedrock River profile analysis. Earth Surf. Process. Landf. 38:570–

576. http://dx.doi.org/10.1002/esp.3302, 2013. 455 

Pritchard, D., Roberts, G.G., White, N.J., and Richardson, C.N.: Uplift histories from river profiles. Geophys. Res. Lett., 36, 

L24301. doi:10.1029/2009GL040928, 2009.  

Rosenbloom, N.A., and Anderson, R.S.: Hillslope and channel evolution in a marine terraced landscape, Santa Cruz, 

California. J. Geophys. Res. 99(B7), 14,013–14,029, 1994.  

Royden, L., and Perron, J.T.: Solutions of the stream power equation and application to the evolution of river longitudinal 460 

profiles. J. Geophys. Res. Earth 118 (2):497–518. http://dx.doi.org/10.1002/jgrf.20031, 2013. 

Rudge, J.F., Roberts, G.G., White, N.J., and Richardson, C.N.: Uplift histories of Africa and Australia from linear inverse 

modeling of drainage inventories. J. Geophys. Res. Earth 120, 894–914, 2015. 

Schwanghart. W., and Scherler, D.: Divide mobility controls knickpoint migration on the Roan Plateau (Colorado, USA). 

Geology, 48(7). https://doi.org/10.1130/G47054.1, 2020.  465 

Shelef, E., Haviv, I., and Goren, L.: A potential link between waterfall recession rate and bedrock channel concavity. J. 

Geophys. Res. Earth 123. https://doi.org/10.1002/2016JF004138, 2018.  

Snyder, N. P., Whipple, K. X., Tucker, G. E., and Merritts, D.: Landscape response to tectonic forcing: DEM analysis of 

stream profiles in the Mendocino Triple Junction region, northern California. Geol. Soc. Am. Bull., 112(8), 1250–1263, 

2000. 470 

Steer, P.: Short communication: Analytical models for 2D landscape evolution. Earth Surf. Dynam., 9(5), 1239-1250, 2021. 

Stock, G.M., Frankel, K.L., Ehlers, T.A., Schaller, M., Briggs, S.M., and Finkel, R.C.: Spatial and temporal variations in 

denudation of the Wasatch mountains, Utah, USA. Lithosphere 1 (1), 34-40, 2009. 

Stock, J.D., and Montgomery, D.R.: Geologic constraints on bedrock river incision using the stream power law. J. Geophys. 

Res. Sol. Ea., 104, 4983-4993, 1999.  475 

https://doi.org/10.5194/esurf-2021-101
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



18 

 

Venditti, J.G., Li, G., Deal, E., Dingle, E., and Church, M.: Struggles with stream power: Connecting theory across scales. 

Geomorphology, 366, 106817, 2019. 

Wang, Y., Zhang, H., Zheng, D., Dassow, W.V., Zhang, Z., Yu, J., and Pang, J.: How a stationary knickpoint is sustained: 

new insights into the formation of the deep Yarlung Tsangpo Gorge. Geomorphology 285, 28–43, 2017. 

Weissel, J. K. and Seidl, M. A.: Inland propagation of erosional escarpments and river profile evolution across the southeast 480 

Aus tralian passive continental margin, Geophys. Monogr., 107, 189–206, 1998. 

Whipple, K.X., Hancock, G.S., and Anderson, R.S.: River incision into bedrock: Mechanics and relative efficacy of plucking, 

abrasion, and cavitation. Geol. Soc. Am. Bull. 112, 490-503, 2000. 

Whipple, K.X., DiBiase, R.A., and Crosby, B.T.:. Bedrock rivers. In: Shroder, J. (Editor in Chief) and Wohl, E. (Ed.), 

Treatise on Geomorphology. Academic Press, San Diego, CA, vol. 9, Fluvial Geomorphology, pp. 550–573, 2013. 485 

Whipple, K.X., and Tucker, G.E.: Dynamics of the stream power river incision model: Implications for height limits of 

mountain ranges, landscape response timescales and research needs, J. Geophys. Res., 104, 17,661–17,674, 1999. 

Whipple, K.X., and Tucker, G.E.: Implications of sediment-flux-dependent river incision models for landscape evolution. 

Journal of Geophysical Research, Solid Earth 107(B2). https://doi.org/10.1029/2000JB000044, 2002. 

Whitham, G.B.: Linear and Non-Linear Waves. 636 pp., John Wiley, New York, 1974.  490 

Whittaker, A.C., and Boulton, S.J.: Tectonic and climatic controls on knickpoint retreat rates and landscape response times. J. 

Geophys. Res. Earth. 117: F02024. doi:10.1029/2011JF002157.F02024, 2012. 

Willett, S.D., McCoy, S.W., Perron, J.T., Goren, L., and Chen, C.-Y.: Dynamic reorganization of river basins. Science, 

343(6175), 1248765. https://doi.org/10.1126/science.1248765, 2014. 

Wobus, C., Whipple, K.X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D.: Tectonics from 495 

topography: procedures, promise, and pitfalls. In: Willett, S.D., Hovius, N., Brandon, M.T., Fisher, D.M. (Eds.), Tectonics, 

Climate, and Landscape Evolution. Geological Society of America Special Paper 398, Penrose Conference Series, pp. 55–

74, doi: 10.1130/2006.2398(04), 2006.  

 

 500 

 

https://doi.org/10.5194/esurf-2021-101
Preprint. Discussion started: 21 December 2021
c© Author(s) 2021. CC BY 4.0 License.



19 

 

Figure 1: (a) Schematics of a channel profile evolution in response to an increase in the relative uplift rate from U0 to U1 (revised 

from Goren et al., 2014). The blue solid line shows the steady-state channel under uplift rate U0. The black solid and gray dashed 

lines show the transient channel at time t and t+dt. The black dashed line shows the final steady-state channel under uplift rate U0. 

(b) Schematics of knickpoint retreat (revised from Wang et al., 2017). Points A and D are the knickpoint positions at time t and 505 
t+dt. Evolution of the channel profile in the time step dt is shown as the transition from zt to zt+dt .  

 

 

Figure 2: The duration of convex knickpoint preservation as a function of slope exponent n (a), γ1_2 (b), and γ0_1 (c). In (a), 

steepness ratio is equal, γ1_2 = γ0_1. In (b) and (c), n=2. Assuming two knickpoints, kp1 (upper) and kp2 (lower), generated by two 510 

step increases in tectonic uplift rates, T1 dates the time between the formation of kp1 and the formation of kp2, and T2_m dates the 

time from the emergence of kp2 to the its merging with kp1. γ1_2 is the ratio of steepness indices above and below kp2, and γ0_1 is the 

ratio of steepness indices above and below kp1. 

 

 515 

Figure 3: The duration of concave knickpoint preservation as function of the slope exponent n (a), γ1_2 (b), and γ0_1 (c), under 

decreasing U and n < 1. In (a), steepness ratio is equal, γ1_2 = γ0_1. In panels (b) and (c), n=0.5. 
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Figure 4: Evolution of a river long profile, with drainage area set by Hack’s law, 𝑨 = 𝒌𝒂(𝑳 − 𝒙)
𝒉. Parameters (n, K, m, ka, and h) 520 

and the applied uplift history are described in panel a. L, total river length, is 6km (colluvial-channel length is 1km). The analytic 

(colored, solid) and numerical solutions (black, dashed) match in the x-z (a) and -z (b) domains. Panel (c) depicts the river -z 

long profiles offset in elevation, demonstrating knickpoint merging dynamics. 

 

 525 

Figure 5: River profile inversion. (a-b) River profiles and χ-z plots generated via numerical model, with river length ~12 to 21 km, 

ka ~ 2 to 1.55, and h ~ 0.67 to 4.27. (c) Elevation misfit, equation 28, as a function of the number of division points. (d) The inverted 

uplift history, based on 2 division points.  
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